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The quantum nature of electron spin is crucial for establishing topological invariants in real materials. Since
the spin does not in general commute with the Hamiltonian, some of the topological features of the material can
be extracted from its study. In insulating materials, the spin operator induces a projected operator on valence
states called the spin valence operator. Its spectrum contains information with regard to the different phases of
the spin Chern class. If the spin valence spectrum is gapped, the spin Chern numbers are constant along parallel
planes thus defining spin Chern insulating materials. If the spin valence spectrum is not gapped, the changes in
the spin Chern numbers occur whenever this spectrum is zero. Materials whose spin valence spectrum is gapless
will be denoted spin Weyl topological insulators and their definition together with some of their properties will be
presented in this work. The classification of materials from the properties of the spin valence operator provides
a characterization which complements the existing list of topological invariants.

DOI: 10.1103/PhysRevB.109.045126

I. INTRODUCTION

Topological insulators exhibit a unique electronic structure
where the bulk of the material remains insulating due to the
presence of a large energy band gap, while the surface or
edge states emerge when the material interfaces with a trivial
insulator [1,2]. This feature of a material can be related to
classical topological invariants associated to the vector bundle
of occupied states (valence eigenstates) such as the first Chern
number in the 2D case and the Chern-Simons invariant (θ
term) in the 3D case [3–5].

The characterization of the topological nature of a material
from first-principles calculations has been extensively studied,
and several procedures have been established to extract its
features, such as Wilson loop calculations [6,7], eigenvalues
of crystal symmetry operators [8,9], and elementary band
representation of valance bands [10,11]. In this work we pro-
pose an alternative strategy to detect the topological nature
of a material which is based on the topological properties of
the spin operator. The noncommutativity of the spin operator
with the Hamiltonian permits us to infer relevant information
of the material from the spectrum of the spin operator once
it is restricted to the valence bands [12]. The geometrical
and topological properties of this spectrum follow the same
structural behavior as the ones from the energy spectrum
[13,14]. Gapless systems will then have Weyl points (spin
Weyl points), and the understanding of the location and the
chirality of these points is the key ingredient underlying our
proposal for a new indicator.
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Our proposal for an indicator enhancing the known classi-
fication of topological materials is called the spin invariants
vector. This vector has seven integer numbers where the first
number counts the number of spin Weyl points with positive
chirality and the next six are the Chern numbers of the nega-
tive spin valence eigenvalues across the planes kl = 0, π for
l = x, y, z. The first number is denoted the spin Weyl indicator
and it is zero only when the spin valence spectrum is gapped.
In this case the spin Chern numbers are constant across par-
allel planes and the next six coordinates simply encode these
constant Chern numbers; in this case the material is a spin
Chern insulator when some Chern number is nonzero, or a
spin insulator if all Chern numbers are trivial. If the spin Weyl
indicator is not zero, then the spin valence spectrum is gapless
and the Chern number across parallel planes may differ; we
call these materials spin Weyl topological insulators. The next
six coordinates provide the information of the Chern numbers
across the six planes kl = 0, π , and the spin Weyl indicator
measures the total positive change of Chern number across
parallel planes.

The parity of the spin Weyl indicator is precisely the
Fu-Kane-Mele invariant, and in the case of the spin Weyl indi-
cator being even, it provides an enhancement for the detection
of weak and fragile topological phases [15].

In order to understand the features of the spin invariants
vector, we analyze the behavior of the spin valence operator
in the 3D Bernevig-Hughes-Zhang (BHZ) model [16], as well
as in particular the tight-binding Hamiltonian [17]. In the
3D BHZ model we obtain five different topological phases
depending on one parameter: two trivial insulator phases,
two strong topological insulator phases, and one spin Weyl
topological insulator phase. This last phase exhibits a gapless
spin valence spectrum with a total of four spin Weyl points.
Its topological nature is also inferred from the change of spin
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Chern number from −1 in kz = 0 to 1 in kz = π (see Fig 2).
The tight-binding Hamiltonian exhibits a strong topological
insulator phase with two Weyl points and with spin invariants
vector (1|10 − 1000). Finally, we calculate the properties of
the spin valence spectrum in materials Bi2Te3, Bi, and SnTe,
thus characterizing Bi2Te3 as a strong topological insulator,
Bi as a spin Chern insulator, and SnTe as a spin Weyl topolog-
ical insulator. All three materials exhibit a nonzero spin Hall
effect, suggesting that the appearance of the phenomenon is
predicted by the nontriviality of the spin Chern numbers.

The spin Chern numbers thus become a customized tool
for the distinction and classification of topological insulators.
This ansatz was originally put forward by Prodan [12] who
showed the robustness of the spin Chern numbers and car-
ried out an extensive analysis of the properties of the spin
valence spectrum. The implications of the robustness of the
spin Chern numbers have been explored by other authors [18],
and in the case of 3D insulating materials, a comprehensive
analysis of both theoretical and computational aspects has
been studied by several authors [19,20]. By introducing nested
spin-resolved Wilson loops and layer constructions, Lin et al.
[20] studied the behavior of the spin Chern numbers across
parallel planes in the BZ, thus describing topological prop-
erties of these numbers while detecting the presence of spin
Weyl points. This analysis allowed Lin et al. [20] to propose a
novel method for further classifying topologically insulating
phases.

In the present paper we further explore the properties of
the spin valence spectrum in 3D insulating materials and we
propose an indicator that can effectively identify 3D topo-
logically insulating phases. This newly established indicator,
based on the spin properties, offers valuable insights into
the fundamental understanding and potential applications of
topological materials.

II. INVARIANTS OF TOPOLOGICAL INSULATORS

The mathematics behind the theory of topological in-
variants in insulating materials has been extensively studied
[21,22]. Several methods for detecting topological invariants
of a prescribed Hamiltonian have been established and the
construction of a comprehensive list of all possible indicators
for such invariants is currently an active area of research
[23,24].

The importance of these topological invariants lies in
the amazing relation that some of them have with certain
electromagnetic properties of materials. For instance, in 2D
insulators, the Chern number of the occupied states provides
the quantization of the anomalous Hall effect [25], and in
3D insulators with time-reversal symmetry (TRS), the non-
triviality of the Fu-Kane-Mele invariant (FKM) provides an
indicator of a strong topologically insulating type [26], just to
mention a few.

The main line of thought underlying the existence of
the topological invariants in insulators goes as follows. The
Hamiltonian of the periodic system provides a Hermitian op-
erator acting on parametrized vectors over the Brillouin zone
(BZ):

Ĥ : �(CN × B) → �(CN × B). (1)

Here N is the number of bands, B denotes the BZ, and �

denotes the space of sections of the trivial complex vector
bundle CN × B.

Whenever there is an energy gap at the Fermi level on the
eigenvalues of the Hamiltonian, we say that the material is
insulating. The insulating condition permits us to separate the
valence states from the conducting ones. This separation at the
level of vector bundles defines the partition

CN × B ∼= Eval ⊕ E cond, (2)

where the sections of the bundle Eval are generated by the
valence eigenvectors of the Hamiltonian {|ψi〉}nocc

i=1, where nocc

indicates the number of occupied bands which is the rank of
Eval.

Since Eval is a complex vector bundle over the BZ, we
may assign to it the topological invariants that it defines in
the complex K-theory groups. The only interesting invariant
that appears here, besides the rank of the vector bundle, is the
first Chern class. This first Chern class c1 := c1(Eval ) can be
evaluated on planes inside the BZ and the associated numbers
can be determined.

If the first Chern class c1 is not zero, the material is called
a Chern insulator. In the 2D case it provides the quantization
of the anomalous Hall effect and several materials exhibit this
property [27]. On the other hand, 3D materials with a Chern
insulating property have been elusive to detect and until now
no single 3D material exhibits this property.

By incorporating geometrical and physical symmetries of
the Hamiltonian into the analysis, more specific information
regarding the topological invariants can be deduced. If the sys-
tem preserves TRS (T ), and we are in the spin-orbit coupling
(SOC) environment with T 2 = −1, then the FKM invariant
provides an indicator of the strong topologically insulating
property [26,28]. If the symmetry preserved is C2T , a combi-
nation of a 180◦ rotation and TRS, then an indicator of being
an axion insulator is the Stiefel-Whitney class of the C2T
invariant real vector bundle of Eval restricted to the planes
fixed by C2T [29].

It is important to notice that every extra crystal symmetry
will induce topological invariants. Sometimes the invariants
already appeared due to another symmetry, but some other
times the invariant is new and may or may not imply the ex-
istence of invariants of other symmetries. The task of finding
a complete set of indicators for all geometrical symmetries is
an ongoing subject of research.

Besides the geometrical symmetries, there are also the
physical symmetries. These are the ones that come from the
fact that we are dealing with a quantum mechanical system.
One such symmetry is the spin, and incorporating it into
the analysis of topological invariants has been very fruitful
[12]. In what follows we will study some of the topological
invariants which can be extracted when the spin operator acts
in the occupied wave function space.

III. SPIN WEYL INDICATOR

If the spin operator Ŝz does not commute with the Hamilto-
nian, we cannot expect to simultaneously diagonalize it with
the Hamiltonian. In order to obtain a symmetry of the vector
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bundle Eval, we compose the action of the spin operator with
the projection onto the occupied states:

Ŝval
z : �(Eval ) → �(Eval ), (3)

ϕ �→ πval ◦ Ŝz(ϕ). (4)

Here πval : �(CN × B) → �(Eval ) is the projection operator∑nocc
i=1 |ψi〉〈ψi|.
We call the operator Ŝval

z the spin valence (SV) operator
and one could see it as a physical symmetry of the bundle Eval

of occupied states. This SV operator can be diagonalized, and
its spectrum can be studied with exactly the same tools as the
ones used to understand the spectrum of the Hamiltonian. We
have used the Ŝval

z component for the spin operator, but it can
be generalized to include other components.

Note that the SV spectrum takes values in the interval
[−1, 1] (in h̄/2 units), and moreover, that an eigenvalue of
zero means that there is a combination of occupied states
whose spin lies completely on the unoccupied states. Hence
it is important to measure whether the SV spectrum crosses
the zero value or not, and two different scenarios appear (see
Fig. 1).

A. Gapped spin valence spectrum

If the SV spectrum is gapped at zero, then we can partition
the vector bundle Eval into two different vector bundles:

Eval ∼= Eval
s+

z
⊕ Eval

s−
z

, (5)

where Eval
+ and Eval

− denote respectively the positive and neg-
ative SV eigenstates.

The topological invariants associated to these two complex
vector bundles are the first Chern classes

c
s±

z

1 := c1
(
Eval

s±
z

)
(6)

and since

c1 = c
s+

z

1 + c
s−

z

1 , (7)

the new invariant is usually defined as half the difference
between the two Chern classes:

csz

1 = 1

2

(
c

s+
z

1 − c
s−

z

1

)
. (8)

This Chern class is called the spin Chern class, and together
with the total first Chern class c1, determines uniquely the first
Chern class of both the positive and the negative SV states.

When TRS is preserved, the vector bundles Eval
s+

z
and Eval

s−
z

are isomorphic via the antiunitary transformation defined by

T . In this case c
s+

z

1 = −c
s−

z

1 and therefore the spin Chern class
csz

1 is the invariant preserved. In 2D materials whose spin al-
most commutes with the Hamiltonian, the spin Chern number
is a good indicator for the quantum spin Hall effect. These
materials are called quantum spin Hall insulators (QSHIs) and
they include both functionalized and pristine antimonene and
bismuthene 2D materials [30,31].

In 2D systems Chern classes are uniquely determined by
the Chern number, namely the integration of the Chern class
on the whole BZ, while on 3D systems they are determined by
the integrals along all closed surfaces in the BZ. The value of

FIG. 1. Topological classification of 3D insulators using Chern
classes and the SWI (spin Weyl indicator). If the total Chern class c1

of the valence states is nontrivial, there is a plane where the Chern
number is not zero. In this case the material is a Chern insulator
(CI) and the anomalous Hall effect is quantized (QAHE). When
the total Chern class of the valence states is trivial, then the SWI
number indicates whether the spin Chern numbers vary along parallel
planes. Whenever the SWI is trivial, then there are no SW points and
therefore the spin Chern numbers do not vary; these materials will be
called topological spin insulators (TSIs). In this case if the spin Chern

class c
s−z
1 is trivial, the material is a spin insulator (SI); otherwise the

material is a spin Chern insulator (SCI) and has a quantized spin
Hall effect (QSHE). Whenever the SWI is not zero, the spin Chern
numbers vary along parallel planes and therefore the spin Chern
numbers along the planes kl = 0, π do not constitute a complete
topological indicator of the material. The case of the SWI being 1
corresponds with most models whose FKM invariant is nontrivial;
these are the strong topological insulators (STIs). Materials whose
SWI is nontrivial will be denoted spin Weyl topological insulators
(SWTIs); these materials show a spin Hall effect (SHE) inside the
energy band gap.

this integral over any closed surface surf is the Chern number
associated with the surface:

c
s±

z

1 (surf ) :=
∫

surf
c1

(
Eval

s±
z

)
. (9)

The spin Chern numbers are usually associated with planes
of the form kl = 0, π , and in the case of a gapped SV spec-
trum, these numbers are constant along parallel planes. The
spin Chern number can only vary on parallel planes whenever
the SV spectrum is gapless, thereby indicating the presence of
spin Weyl (SW) points.

B. Gapless spin valence spectrum

Whenever the SV spectrum is not gapped, we cannot
partition the occupied states into positive and negative SV
eigenvectors all across the BZ. But outside the points in mo-
mentum space where the SV eigenvalue is zero, this partition
can be performed.

Call spin Weyl (SW) points the points in momentum space
where there is a zero SV eigenvalue. Around each SW point
k, a 2D sphere Sε (k) of small radius ε > 0 could be defined.
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The vector bundle of occupied states restricted to this sphere
splits into positive and negative SV eigenvectors. Therefore
we could associate to the SW point the Chern number of the
negative SV eigenvectors restricted to the sphere.

Mimicking the definition of the chirality of Weyl points of
the Hamiltonian, we define the spin chirality of the SW point
k as follows:

χ sz (k) := c
s−

z

1 (Sε (k)). (10)

By the Nielsen-Ninomiya theorem [32], the sum of the spin
chiralities of all SW points is zero:∑

k∈SW

χ sz (k) = 0, (11)

where SW denotes the finite set of spin Weyl points in a
generic Hamiltonian.

Therefore the maximum Berry curvature flux of the neg-
ative SV states is given by the sum of all positive spin
chiralities. Simply enclose with a closed surface the spin Weyl
points with positive chirality, and by Gauss’s law, the total flux
is the sum of the chiralities inside the surface.

We claim that this maximum Berry curvature flow of the
negative SV states is a topological indicator of the system.
We therefore propose to define the spin Weyl indicator (SWI)
of the system as the sum of the positive chiralities of all SW
points:

SWI := 1

2

∑
k∈SW

|χ sz (k)|. (12)

The formula above simply computes the sum of the absolute
value of all chiralities and divides by two. This way there is
no need to distinguish the positive chiralities from the negative
ones.

The SWI is a natural number that encodes topological
information about the system. For instance, in the presence
of TRS or TRS composed with a 2-fold rotation, the parity
of the SWI is respectively equivalent to the FKM invariant
[26,28] or to the value of the θ term [29]. Whenever the SWI
is zero, the projected spin operator is gapped, and the material
can be classified as a spin Chern insulator if any spin Chern
number is not zero. Whenever SWI is even, the material might
be endowed with weak or fragile topological phases.

Calculating the SWI by detecting the SW points together
with their chiralities might be cumbersome. Alternatively, we
propose to calculate the Chern number of the negative SV
eigenstates across planes perpendicular to a given axis. By
choosing the kl axis for l = x, y, z we calculate and plot the
function

SCN : [−π, π ] →Z, (13)

t �→c
s−

z
1 (kl = t ). (14)

This function increases and decreases by integer values when-
ever SW points are crossed, and the total amount of positive
changes is precisely the SWI. We will call this function the
signal of the spin Chern number (SCN); cf. [19].

The SCN signal has been plotted in the 3D Bernevig-
Hughes-Zhang (BHZ) model in Fig. 2, in the tight-binding
(TB) model of pristine pyrochlore in Fig. 4(c), and in real

materials Bi2Te3 and SnTe in Figs. 5(c) and 5(c′), respectively.
In all these cases the value of the SWI can be deduced from
the signal of the SCN in the BZ.

C. Spin invariants vector

It is important to notice that the SWI cannot be deduced
solely from the spin Chern numbers of the planes kl = 0, π

with l = x, y, z. The material SnTe has spin Chern number
equal to 2 along the planes kl = 0, π for l = x, y and 0 along
the planes kz = 0, π [see Fig. 5(c′)], while its SWI equals 8.

A coherent set of invariants associated with the SV opera-
tor should therefore include the spin Chern numbers along the
preferred planes plus the value of the SWI. Hence we propose
to define the spin invariants vector as the array of seven integer
numbers (

n|n0
x, nπ

x , n0
y , nπ

y , n0
z , nπ

z

)
, (15)

where n = SWI and nw
l = c

s−
z

1 (kl = w).
The spin invariants vector will provide the information

necessary to determine the spin topological classification pre-
sented in Fig. 1. The zero vector represents a spin insulator,
a vector with n = 0, which is moreover nontrivial, represents
a spin Chern insulator, and a vector with n �= 0 represents a
spin Weyl topological insulator.

IV. 3D BHZ MODEL

The 2D Bernevig-Hughes-Zhang (BHZ) two-band model
[upper left 2 × 2 matrix of (16)] for a spin topological insu-
lator [16] can be used to construct a four-band Hamiltonian
in 3D where two opposite copies of the 2D BHZ model are
superposed [matrix of (16) with D = 0]. In order to obtain
a change of phase for the 2D layers, an off-diagonal term D
depending on kz is added thus obtaining one version of the 3D
BHZ Hamiltonian

HBHZ(k) =

⎛
⎜⎜⎝

M A 0 D
A∗ −M D 0
0 D M −A∗
D 0 −A −M

⎞
⎟⎟⎠, (16)

where

M =M0 − B0[cos(kx ) + cos(ky) + cos(kz )], (17)

A =A0[sin(kx ) + i sin(ky)], (18)

D =D0 sin(kz ). (19)

This Hamiltonian is written in a basis given by the states
|F ↑〉, |H ↑〉, |F ↓〉, |H ↓〉, in that order, and it models a phase
transition of a 2D topological insulator. In what follows we
will show that changes in the value of M0

B0
induce five different

insulating phases for this 3D model, where each phase change
is marked by the closure of the energy band gap.

For 3 < |M0
B0

| it is a trivial insulator, for 1 < |M0
B0

| < 3 we
have a strong topological insulator (STI) whose SWI is 1, and
for −1 < M0

B0
< 1 we have a spin Weyl topological insulator

(SWTI) whose SWI is 2. These phases are illustrated in Fig. 2.
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FIG. 2. Five phases of the 3D BHZ Hamiltonian of Eq. (16). For M0
B0

= −3, −1, 1, 3 the Hamiltonian is gapless, and for other values of M0
B0

the Hamiltonian is gapped. For | M0
B0

| > 3 the system is a trivial insulator, for 1 < | M0
B0

| < 3 it is a strong TI with SWI = 1, and for | M0
B0

| < 1
it is a SWTI with SWI = 2. The cones are located where the spin valence eigenvalues are zero, and this occurs along the axis parallel to the
kz axis: in the first nontrivial phase they are on (kx, ky ) = (0, 0), on the second nontrivial phase on (kx, ky ) = (0, π ) and (kx, ky ) = (π, 0), and
on the third nontrivial phase on (kx, ky ) = (π, π ). The signs on the TRIMs denote the eigenvalues of the inversion operator on the negative
spin valence eigenstate. The step function on the right of each BZ is the plot of the Chern number of the negative spin valence eigenstate on
the planes kz = t when t varies from −π to π . The energy and spin valence plots vs the appropriate axis parallel to the kz axis in the three
nontrivial phases are shown for specific choices of structural constants. The spin Weyl points can be seen in all of them.

The degenerate eigenvalues of the Hamiltonian are E =
±λ with

λ =
√

(M2 + |A|2 + D2), (20)

and one choice of eigenvectors is

ν1 =((M − λ), A∗, 0, D), (21)

ν2 =(A,−(M + λ), D, 0), (22)

ν3 =((M + λ), A∗, 0, D), (23)

ν4 =(A,−(M − λ), D, 0). (24)

The energy spectrum is gapless only when M = A = D = 0
and this only happens whenever M0

B0
= −3,−1, 1, 3. For any

other choice of M0
B0

the energy spectrum is gapped.
Note that the valence states ν1 and ν2 are not linearly

independent as presented above; nevertheless this simple
presentation of the eigenvectors permits us to deduce an im-
portant result that it will be outlined in what follows.

A. Spin Weyl points

The spin operator Ŝz in this case is the diagonal matrix
diag(1, 1,−1,−1), and we may restrict the spin operator only
to the valence states. If ψ j are the eigenvectors of the Hamil-
tonian forming a unitary base (norm one and perpendicular to

one another), then the SV matrix is defined as follows:

(Msz )i j = 〈ψi |̂Sz(ψ j )〉, i, j ∈ {1, 2}. (25)

The eigenvalues of the SV matrix give us the SV spectrum.
Whenever there is an SV eigenvalue gap, we could separate
the positive states from the negative states, and we could find
the topological invariants for each group of SV eigenstates.
Where the SV spectrum is not gapped, a spin Chern number
transition occurs in the BZ. Let us show that this indeed is
what happens in the 3D BHZ Hamiltonian.

The SV eigenvalues vanish whenever the whole SV matrix
vanishes. Note that in this case, we could use the degenerate
basis {ν1, ν2} of Eqs. (21) and (22) in order to solve the
equations

〈νi |̂Sz(ν j )〉 = 0, i, j ∈ {1, 2}. (26)

The equations become

〈ν1 |̂sz(ν2)〉 = 2Aλ = 0, (27)

〈ν2 |̂sz(ν1)〉 = 2A∗λ = 0, (28)

〈ν1 |̂sz(ν1)〉 = (M − λ)2 + |A|2 − D2 = 0, (29)

〈ν2 |̂sz(ν2)〉 = (M + λ)2 + |A|2 − D2 = 0, (30)
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TABLE I. Topologically nontrivial phases of the 3D BHZ Hamiltonian. The SW points appear on the four kz axes, and due to TRS, in
pairs of opposite chirality. The first and the third phase have nontrivial FKM invariant and SWI of 1, while the middle phase has trivial FKM
invariant with a SWI of 2. The vector of spin invariants appears in the last column.

Phase Spin Weyl points Spin Chern number Spin Weyl indicator FKM invariant Spin invariants vector

−3 <
M0
B0

< 1 (π, π, ± cos−1( M0
B0

− 2)) c
s−z
1 (kz = 0) = 0

SWI = 1 FKM = 1 (1|000001)
(π, π, ± cos−1( M0

B0
− 2)) c

s−z
1 (kz = π ) = 1

−1 <
M0
B0

< 1 (π, 0, ± cos−1( M0
B0

)) c
s−z
1 (kz = 0) = −1

SWI = 2 FKM = 0 (2|0000 − 11)
(0, π,± cos−1( M0

B0
)) c

s−z
1 (kz = π ) = 1

1 <
M0
B0

< 3 (0, 0, ± cos−1( M0
B0

− 2)) c
s−z
1 (kz = 1) = 0

SWI = 1 FKM = 1 (1|000010)
(0, 0, ± cos−1( M0

B0
− 2)) c

s−z
1 (kz = π ) = 0

and therefore A = 0 and M = 0. The SW points on each of the
three nontrivial phases can be seen in Table I. In this Hamilto-
nian the SW points come in pairs with opposite chirality due
to the TRS.

Now let us find the linear expansion on k of the SV eigen-
values around the SW points. For this end we need to find an
orthonormal basis of the valence states, and instead of doing
it in complete generality, we will only calculate the linear
kz expansion centered on the point (0, 0, cos−1( M0

B0
)) for the

phase −1 < M0
B0

< 1.
Restricting the system to kx = 0 = ky we find that the va-

lence unitary eigenvectors for the Hamiltonian HBHZ(k) for
k = (0, 0, cos−1( M0

B0
)) are

ψ1 = (M − λ,−D,−(M − λ), D)√
2(M − λ)2 + 2D2

, (31)

ψ2 = (M − λ, D, M − λ, D)√
2(M − λ)2 + 2D2

. (32)

The SV matrix becomes

Msz = (M − λ)2 − D2

(M − λ)2 + D2
σx = −M

λ
σx, (33)

where σx is the Pauli matrix. Deriving with respect to kz and
replacing kz = cos−1( M0

B0
) we obtain the kz-linear term of the

SV matrix:

Msz ∼ B0

D0

[
kz − cos−1

(
M0

B0

)]
σx. (34)

Note that when D0 goes to zero, the slope of the SV spectrum
goes to infinity, and the anticommutator of the spin and the
Hamiltonian goes to zero. This fact is further explored in
Fig. 3.

Similar calculations can be performed for the kx and ky

linear expansions, thus showing that the SV eigenvalues are
linear on k around the SW points.

When the structural constants are M0 = 0, B0 = A0 =
D0 = 1, one can show that

Msz ∼ kxσz + kyσy +
[

kz − cos−1

(
M0

B0

)]
σx, (35)

thus implying that the SW points have chirality ±1 and that
the SV operator behaves like a k · p Hamiltonian.

B. Zeeman effect

Consider the BHZ Hamiltonian subject to an external mag-
netic field in the spin direction

H (k) = HBHZ(k) + BŜz. (36)

The energy eigenvalues of the two valence states become

λ = −
√

±2
√

B2(M2 + |A|2) + M2 + |A|2 + D2 + B2, (37)

and one can see that there are Weyl-type degenerate eigen-
states whenever |A| = 0 = M. The same relations were found
while solving Eqs. (27)–(30) for the position of the SW
points in the BHZ Hamiltonian. Therefore the SW points in
the BHZ Hamiltonian, in the presence of a strong magnetic
field aligned with the spin direction, evolve into energy Weyl
points.

C. Spin Weyl indicator

The three nontrivial topological phases of the 3D BHZ
Hamiltonian could be read from the amount of SW points
present in the system. The first and third phases provide exam-
ples of TIs with nontrivial FKM invariants, thus making them

FIG. 3. Spin Hall conductivity calculated with the Kubo formula
(40) divided by the spin Hall conductivity calculated from the dis-
tance of the SW points in the reciprocal space (38) as a function of
the SOC strength D0 of the 3D BHZ model (16). It is noted that the
SHE inside the bang gap is proportional to the SW point distance in
the negligible SOC limit.
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strong TIs, while the second one has trivial FKM invariant but
its SW indicator is equal to 2.

The FKM invariant can be read from the eigenvalues of the
inversion operator on the 8 TRIMs. The inversion operator
acts via the diagonal matrix diag(1,−1, 1,−1) and the eigen-
values can be seen in Fig. 2. The parity of the number of pairs
of negative eigenvalues on the 8 TRIMs is the FKM invariant,
and one can see in Fig. 2 that the second phase has trivial FKM
invariant. Calculating the first Chern class of the negative SV
eigenstates across the planes kz = 0 and kz = π we see that
the absolute value of the difference of these Chern numbers is
precisely the SWI. The information has been summarized in
Table I.

D. Spin Hall effect

It is known that the spin Hall conductivity (SHC) within
the energy band gap is a way to classify the charge-spin
transport response in topological insulator materials. For 2D
TIs, the SHC takes a constant value within the band gap, and
in ideal cases like the Kane-Mele model, it becomes quantized
(QSHE) [26]. In real materials, the inclusion of SOC induces
spin mixing, breaking the commutativity between the spin and
Hamiltonian operators, thereby resulting in a nonquantized
value for the SHC within the energy gap [33,34]. Despite
this fact, the spin Chern numbers [12], and therefore the SWI
included in the last section, are well-defined quantities even
in the presence of SOC. Therefore, the SWI is a quantity
that permits enhancing the characterization of the underlying
properties of the system.

In 3D TIs, the characterization of nontrivial SHC within
the band gap by topological invariants is still an active area
of research. The 3D BHZ Hamiltonian presented above offers
a promising model to understand this relation. By performing
SHC calculations for the 3D BHZ model (see Fig. 3), we have
found that in the limit of minimal spin mixing [corresponding
to a small D0 term in the Hamiltonian (16)], the SHC becomes
directly proportional to the proportion of k layers in the recip-
rocal space with spin Chern numbers equal to 1. This also
permits us to detect a relationship between the SHC and the
distance between SW points, generalizing the well established
relation between the AHE and the distance between energy
Weyl points [35]. In the case of the two SW points in the third
nontrivial phase of the 3D BHZ model, the SHC inside the
band gap can be calculated as [36]

σ z
i j = − h̄

2e

e2bz

2π2h̄
, (38)

where 2bz = 2 cos−1( M0
B0

− 2) is the distance between the SW
points in the reciprocal space. When considering the finite
spin mixing term in real materials, it becomes evident that
the SHC presents a constant and nonquantized value within
the energy gap, influenced by the strength of the SOC. This
observation is depicted in Fig. 3.

V. TIGHT-BINDING MODEL

The spin Weyl indicator can also be incorporated in
tight-binding (TB) models for 3D TIs. We have carried out
an extensive calculation on the TB model of the pristine

FIG. 4. Tight-binding model introduced in [17] with the Hamil-
tonian of Eq. (39) and λ = 0.3t . (a) Bulk band structure and (b) spin
valence spectrum along high-symmetry lines in the BZ. (c) Spin
Chern number (SCN) calculated for perpendicular planes along the
kx and ky reciprocal axis, (d) spin Hall conductivity, and (e) spin
density of states as a function of the Fermi energy of the tight-binding
model. (f) Position of the spin Weyl points in the reciprocal space
with the k planes used for the SCN calculation.

pyrochlore model as was introduced by Varnava and Vander-
bilt [17]. In this particular case it is well known that the TB
model defines a 3D TI and its Hamiltonian has the following
form:

H = −t
∑

〈i, j〉,σ
ĉ†

iσ ĉ jσ + iλ
∑

〈〈i, j〉〉,αβ

νi j ĉ
†
iασαβ ĉ jβ, (39)

where the first term represents the nearest-neighbor hopping
interaction, while the second term represents the intrinsic
SOC interaction (characterized by the coupling strength λ).
In this context, σi represents the Pauli matrices, while νi j is
determined by the cross product of bi j × di j with di j . Here di j

is the unit vector connecting site i with site j, and bi j is the
unit vector from the center of a tetrahedron to the midpoint of
the bond 〈i j〉. This model is exactly the one that appears in
Ref. [17], Sec. 3].

This model exhibits a 3D TI that maintains time-reversal
and inversion symmetry. By setting the parameter λ = 0.3t ,
we computed the band structure at half filling, revealing a
band gap of approximately 1.0 eV, as depicted in Fig. 4. We
observed the emergence of two SW points along the -M-�-M
path in the BZ, indicating the presence of these novel spin
topological indicators. TB calculations along different k paths
revealed that the energy and SV spectrum are gapped in other
regions of the BZ.
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FIG. 5. (a) and (a′) Bulk band structure, (b) and (b′) spin valence spectrum along high-symmetry lines in the BZ, (c) and (c′) spin Chern
number—SCN—calculated for perpendicular planes along the kx , ky, and kz reciprocal axis, (d) and (d′) spin Hall conductivity, and (e) and
(e′) spin density of states as a function of the Fermi energy of the 3D topological materials Bi2Te3 and SnTe. The central panel at the bottom
presents the position of the eight SW points of SnTe with their chiralities.

This system exhibits a spin Chern number transition along
planes perpendicular to both the kx and the ky axis. The
presence of SW points in the bulk is inferred from the SCN
signal along the kx and ky axis as shown in Fig. 4(c). Fig-
ure 4(f) depicts the position of the SW points with opposite
chirality that produces the SCN signal in the system. This
system models a SWTI with SWI = 1, confirming the strong
topologically insulating property of the pyrochlore lattice
shown in [37,38]. The spin invariants vector for the TB model
is (1|10 − 1000).

VI. MATERIALS REALIZATION

We have calculated the spin invariants presented above in
real materials, and we have focused our attention on Bi2Te3,
which is a 3D STI, and SnTe, which exhibits a distinct spin
Weyl topologically insulating property. The first material is
modeled in a rhombohedral unit cell and consists of two
layers of Bi atoms and three layers of Te/Se atoms, arranged
in a quintuple layer structure. The coupling between atomic
layers within one quintuple layer is strong, but much weaker
between two quintuple layers [39]. The electronic band struc-
ture of Bi2Te3 in the rhomboidal crystal structure is shown in
Fig. 5(a). The material exhibits an indirect band gap energy of
approximately 0.2 eV.

In the SV spectrum shown in Fig. 5(b) we observe the pres-
ence of two SW points along the T-�-T k path, corresponding

to the main diagonal of the BZ. As depicted in Fig. 5(e), the
spin density of states reveals that the eigenvalues of the spin
valence operator are concentrated around ±1 values, except
at the SW points. These SW points exhibit opposite chirality
and give rise to a transition of the SCN when scanned across
perpendicular k planes in the reciprocal lattice. From Fig. 5(c)
it is noted that the SCN changes precisely at the positions
of the SW points, signifying a topological transition between
distinct planes of reciprocal space.

The topological nature of Bi2Te3 is evident in our SHC
calculation, where a nonzero signal in Fig. 5(d) is observed
within the band gap. This material can be classified by a SWI
= 1, in agreement with the Fu-Kane-Mele invariant of 1. This
indicator is obtained from the calculation of Wilson loops on
the kl = 0, π planes, corresponding to 0 and 1, respectively.
The position and chirality of the SW points can be inferred
from the change of the topological index of 0 at kl = 0 to 1
at kl = π along each kl direction [see Fig. 5(c)], and its spin
invariants vector becomes (1|101010).

On the other hand, the SnTe exhibits a rocksalt crystal
structure with two atoms by unit cell [40], and its band gap
of around 0.1 eV is located at four equivalent L points within
the face-centered-cubic BZ as can be seen in Fig. 5(a′). De-
spite the trivial FKM invariant calculation predicting a trivial
character for SnTe, this material was previously classified as
a crystalline topological insulator based on the presence of a
nontrivial mirror Chern number [40]. Our findings have been
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TABLE II. Spin topology calculated for 3D materials. Spin Weyl points, spin Weyl indicator, Fu-Kane-Mele index, spin invariants vector,
time-reversal and inversion symmetry, and spin topology classification according to Fig. 1. Bismuth (Bi) has a constant spin number of 2 along
three directions of the BZ. MnBi2Te4 and CaMnO3 were calculated in the collinear antiferromagnetic phase with Néel vector along the z axis.

Material SW points SWI FKM Spin inv. vec. TRS Inversion sym. Spin top. class.

Te 0 0 0 (0|000000) � X SI
GaAs 0 0 0 (0|000000) � X SI
AuF3 0 0 0 (0|000000) � X SI
Bi [41] 0 0 0 (0|222222) � � SCI
Bi2Te3 [39] 2 1 1 (1|101010) � � STI
Bi2Se3 [42] 2 1 1 (1|101010) � � STI
SnTe [40] 8 4 0 (4|222200) � � SWTI
CaMnO3 0 0 0 (0|000000) X � SI
MnBi2Te4 [43,44] 2 1 1 (1| − 1010 − 10) X � STI

corroborated by the observation of a nonzero SHC within the
band gap, as shown in Fig. 5(d′).

From the SV spectrum presented in Fig. 5(b′), eight SW
points are detected close to the L and T points inducing a
change of SCN as presented in Fig. 5(c′). Accordingly, this
material is classified by a SWI = 4. The existence of these
SW points serves as an indication of the transition in the
internal topological phase along the kx, ky, and kz directions.
This transition involves a shift from a spin Chern number of
2 at the planes kx = 0 and ky = 0 to 0 in the interior of the
interval (0, π ), to again a shift back to 2 across the planes
kx = π and ky = π . This feature confirms the SWTI nature
of SnTe, but more importantly, it highlights a significant dif-
ference from the conventional classification of SnTe using
the Fu-Kane-Mele invariant. Here is worth mentioning that
knowing the spin Chern number of the system along the planes
kl = 0, π is not enough to distinguish its topological nature.
In the particular case of SnTe, the spin Chern numbers along
the planes kl = 0, π for l = x, y is 2, while along the planes
kz = 0, π is 0. One could mistake this material as a SCI,
since the spin Chern numbers are equal along parallel planes
kl = 0, π . Nevertheless, its correct classification is being an
SWTI with spin invariants vector equal to (4|222200).

Finally, Table II presents a summary of the 3D trivial and
topological insulator materials studied in this work. The table
includes the number of spin Weyl points, the spin Weyl indi-
cator, the Fu-Kane-Mele invariant, the spin invariants vector,
and the respective (time-reversal and inversion) symmetries
associated with each material. We have considered repre-
sentative examples from different 3D insulator materials to
highlight the classification presented in Fig. 1. Te, GaAs,
AuF3, and CaMnO3 display trivial insulator behavior with
energy and spin gaps. In contrast, bismuth (Bi) exhibits a
constant spin Chern number of 2 along three directions in the
BZ, indicating its classification as a spin Chern insulator. This
is consistent with previous theoretical investigations that have
demonstrated the presence of a 3D topological band structure
in Bi [41].

The spin Weyl indicator confirms that the material Bi2Se3

exhibits a strong topological character similar to Bi2Te3,
consistent with previous theoretical and experimental studies
[39,42]. Finally, material SnTe exhibits a spin Weyl topolog-
ical insulator property having eight SW points in the bulk;

and whose distribution can be seen in the central-bottom
panel of Fig. 5. This material has a trivial FKM invariant
but Fig. 5(d′) shows that it exhibits a nonzero SHC inside
the band gap. Therefore we claim that the SWI is more
suited to detect SHC signals in 3D topological insulator
materials.

Here it is worth mentioning that the properties of the spin
Chern number and spin Weyl points in topological insulators
remain valid when TRS invariance is broken. This is shown
in the case of CaMnO3 and MnBi2Te4, where the collinear
antiferromagnetic phase with Néel vector along the z axis
was considered (see Table 1). The topological invariant vector
confirms the predicted topological response in MnBi2Te4, as
reported in previous works [43,44].

VII. COMPUTATIONAL DETAILS

We used density-functional theory (DFT) calculations to
investigate the spin topology of magnetic and nonmagnetic
materials. The generalized gradient approximation (GGA)
[45], as implemented in the Vienna ab-initio simulation pack-
age (VASP) [46], was used to account for exchange and
correlation effects. In the electronic structure calculations, we
expanded the electron wave function in plane waves with a
cutoff energy of 520 eV. The Brillouin zone was sampled
using a k mesh of 0.03 (2π/Å) k-space resolution. The lattice
constants for the studied materials were obtained from the
Materials Project database [47].

We employed the wannier90 code to build the maximally
localized Wannier basis [48] as a postprocessing approach fol-
lowing the DFT calculations. The pythtb-wannier90 interface
of the pythtb code [49] was utilized to generate tight-binding
Hamiltonians for the TB model and for each material. Next,
we used the electron wave functions of the valence states
to generate the spin valence matrix operator and performed
its diagonalization to obtain the spin valence spectrum. To
study the spin topological properties, we used the spin valence
eigenvectors to integrate the Berry curvature (berry-flux utility
in pythtb) [49] over 2D k planes, thereby extracting spin
Chern numbers across the Brillouin zone. The workflow of
this method is shown in Fig. 6.

The intrinsic spin Hall conductivity was calculated using
the WannierBerri code [50] by integrating the spin Berry
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FIG. 6. Workflow showing the computational method. Ab initio
calculations (VASP code) are used to find the electronic structure
of the material. Subsequently, the wannier90 code is utilized to
construct the Wannier Hamiltonian, which serves as a basis for the
generation of the tight-binding model using the pythtb-wannier90
interface. The next step involves the generation of the spin matrix
operator for valence states, followed by its diagonalization to obtain
the spin valence spectrum. Finally, the Berry curvature is integrated
over 2D k planes to determine the spin Chern number.

curvature over the first Brillouin zone. For the case of SHC
(σ z

xy) we set

σ z
xy = −e2

h̄

∑
n

∫
BZ

dk3

(2π )3
fn(k)�z

xy(k), (40)

where fn(k) is the Fermi-Dirac distribution and the Berry
curvature �z

n(k) for the nth band is

�z
xy(k) = −2h̄2Im

∑
m �=n

〈ψn| ĵz
x|ψm〉〈ψm |̂vy|ψn〉

(εn,k − εm,k )2 , (41)

where |ψn(k)〉 are the Bloch functions of a single band n,
k is the Bloch wave vector, εn,k is the band energy, v̂i is
the velocity operator in the i direction, and ĵz

x = 1
2 {v̂x, ŝz} is

the spin current operator. It is important to note that the ĵz
x

definition does not incorporate the spin torque contributions,
which is taken into account when the universal spin current
operator is used [51]. Finally, the FKM index was computed
using the WannierTools code [52].

VIII. CONCLUSIONS

We have found that 3D topological insulators (TI) can
be identified by the presence of spin Weyl points in their

spin valence spectrum or by the nontriviality of the spin
Chern numbers. Both indicators serve as novel predictors of
topologically insulating phases. It is important to note that
these phenomena cannot be regarded simply as a stack of
two-dimensional states, thus making these indicators truly 3-
dimensional. In addition, we have found a correlation between
the presence of spin Weyl points in 3D TIs and the topological
signal of the spin Hall effect (SHE) for the 3D BHZ model.

We propose the use of the spin invariants vector to enhance
the topological classification of 3D materials. This vector con-
tains the information regarding the spin Weyl indicator, and
the values of the spin Chern numbers of the negative spin va-
lence eigenvectors across the planes kl = 0, π for l = x, y, z.
This vector contains the necessary information to distinguish
the material as a spin insulator, a spin Chern insulator, or a
spin Weyl topological insulator. We have provided an array of
materials which exhibit interesting spin topology phases and
whose spin invariants vector predicts its topological nature.

The novelty of the spin invariants vector is shown when
applied to bismuth and SnTe. In the former case the material
exhibits a spin Chern insulating property, while the former
shows a spin Weyl topologically insulating property. In both
cases, the new invariant permits us to carry out a precise
classification of these with regard to their spin properties.

We believe that the spin invariants vector adds informa-
tion to the characterization of the topological classification of
materials, enhancing the known invariants and detecting new
spin topological phases. Nevertheless, the relation of the spin
invariants vector with the whole package of electromagnetic
properties stills needs to be investigated.
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