
PHYSICAL REVIEW B 109, 045125 (2024)

Cavitation in electron fluids and the puzzles of photoemission spectra in alkali metals
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Angle-resolved photoemission spectra of alkali metals exhibit a puzzling, nondispersing peak in the apparent
density of states near the Fermi energy. We argue that the holes left behind a significant fraction of photoejected
electrons are not wavepacketlike objects used to describe excitations of an equilibrium Fermi liquid, but instead,
are relatively localized entities resulting from a photon-induced cavitation in the electron fluid. At the same
time, these special localized holes can be thought of as vacancies in a transient Wigner solid. The corresponding
contribution to the photoemission current is nondispersive and is tied to the Fermi level; it exhibits certain
similarities to photoemission from localized core orbitals such as the presence of recoil currents. Calculated
spectra are consistent with experiment. We briefly discuss the present findings in the context of quantum
measurement.
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Angle-resolved spectra of sodium and potassium exhibit
a distinct, peculiar peak near the Fermi energy, within a
substantial range of photon energies [1–3]. This peak does
not move with the photon’s energy and is narrower than the
momentum-conserving, dispersing peak. The intensity of the
nondispersing peak is substantial even when the initial state of
the electron for a vertical transition would be above the Fermi
energy. Furthermore, in potassium, it is the dispersing peak
that is often hard to resolve [2], while the anomalous peak is
clearly visible. The Fermi surfaces in Na and K are partic-
ularly simple—nearly spherical in fact—and fully contained
within the first Brillouin zone [4]; thus, no sharp features in
the density of states are expected. Surface states do not seem
to be at play either, since the resulting peaks, if any, would not
be strictly tied to the Fermi energy.

Mahan and coworkers [5,6] argued that the peculiar pho-
toemission peak is a wing of the dispersing peak when the
latter is centered at electron energies above the Fermi surface;
the broadening is due to interactions and their interplay with
the free surface. Detailed estimates [5,6] yield photoemis-
sion spectra that are qualitatively similar to some of those
observed in sodium for photon energies corresponding to the
(1, 1, 0) → (3, 3, 0) transitions, but lack the anomalous “bal-
cony peaks” seen in the adjacent range of photon energies that
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correspond to the (1, 1, 0) → (−4,−4, 0) transitions [7]. The
situation with potassium is even less conclusive [8].

Overhauser [9] proposed, alternatively, that the anomalous
peak results from a static charge-density wave (CDW) [10].
Sodium does become close packed at sufficiently low temper-
atures, thus implying, potentially, a structural instability. Still,
experimental studies [11] decisively rule out the presence of
a static CDW, consistent with recent studies [12] according
to which the Fermi surface of sodium is relatively insensitive
to the detailed structure of the crystal. A detailed review of
previous work can be found in Ref. [3].

Here we argue that the puzzling photoemission peak is
caused by nonadiabatic effects that are not amenable to
perturbative expansions around the equilibrium state of the
electron assembly. The frequency ωph of the incoming photon
is much greater than the typical rates of electronic mo-
tions ωph � vF /a, where vF and a are the Fermi velocity
and lattice spacing, respectively. Thus, one expects a re-
sponse similar to giant resonances seen in nuclear spectra
[13], though spanning a relatively narrow spectral range be-
cause the plasma oscillations are in their ground state at
the energies in question. To quantify the photocurrent one
must compute the one-particle density function ρ(r1, r2) of
the electron. The momentumlike argument k of the Wigner
transform of the latter density matrix ρ(r, k) = ∫

d3(r2 −
r1)ρ(r1, r2)e−ik(r2−r1 ) essentially corresponds to the momen-
tum k of the electronic wavepacket, while the dependence of
the latter Wigner transform on the center-of-mass variable r =
(r1 + r2)/2 reflects the spatial variation of the corresponding
charge density. Landau’s Fermi-liquid theory corresponds to
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the limit of this spatial variation being very slow and describes
the quasiequilibrium response of the electron fluid [14]. Con-
versely, high-frequency motions of the electron fluid ω >

vF /a are heavily hybridized with the plasmons via Landau
damping [15,16], whereby the charge density varies on length
scales comparable to the lattice spacing. This, then, suggests
a possibility that in addition to extended electron wavepackets
characteristic of the equilibrium, Fermi-liquid behavior, the
fast photons can also knock out individual electrons in the
form of localized entities.

In fact, just this latter possibility is the only one that could
be realized classically. For concreteness, we consider a setup
in which a compact region of a Newtonian fluid changes its ve-
locity instantaneously from zero to v0, as it would in response
to a sudden perturbation applied to the region. Specifically
for a spherically shaped region of radius R, the reactive force
of the surrounding fluid depends on time in the following
manner, per the solved problem 24.9 from Ref. [17]:

F (t ) = 6πηRv0[1 + R
√

ρ/tπη] + 2π

3
ρR3v0δ(t ), (1)

where η and ρ are the viscosity and density, respectively, of
the fluid. The intensity of dissipation is given by v0F (t ). Of
interest here is the nonadiabatic contribution ∝ t−1/2 to the
viscous part of the response, which represents a characteris-
tic hydrodynamic tail and, tellingly, scales with the area of
the sphere. The corresponding loss spectrum amounts to an
inverse-square root peak ω−1/2, which diverges at low ener-
gies. The latter low energies would correspond to the vicinity
of the Fermi energy in an electron fluid.

This notion prompts us to inquire whether a classical-like
photoemission from localized electronic states can occur—as
a bulk phenomenon—in quantum fluids made of electrons. It
would suffice for such localization, if any, to be only transient,
because of the short duration of photoemission events. Local-
ization of particles in the bulk simply means the particles have
formed a solid. A solid is a state of broken translational sym-
metry in which the particles are each assigned to specific sites
in space; the particles perform vibrational motions around
their respective sites [18]. The notion of a solidlike component
to the wavefunction of an electron fluid may seem surprising,
at first. We recall, however, that the electric current, if any,
is exclusively due to the electrons’ ability to tunnel through
classically forbidden, internuclear regions. One may associate
the time spent in classically forbidden regions with the liquid
component of the wavefunction. The remaining time electrons
perform bound motions within the classically allowed regions,
each region assigned to a corner of a lattice. These motions
correspond to a solidlike component of the overall wavefunc-
tion and lower translational symmetry, even if transiently.

Let us construct the solidlike component for a monovalent
solid, which houses one electron per site. Begin with a Wigner
solid of the jellium, whereby the electrons are sufficiently far
apart and the positive charge is uniformly distributed [13].
Imagine a process where we uniformly compress the system.
To compensate for the concomitant increase in the kinetic
energy of the electrons, we redistribute the positive charge
so as to create a local excess of positive charge at the lattice
sites of the original Wigner solid; the sites will become the
actual atomic nuclei at the end of the compression process.

(The number of sites remains constant during the process.
The pertinent Wigner solid does not have to be strictly pe-
riodic [19], thus allowing for vibrational displacements of
the nuclei and a variety of cell shapes.) Since the barriers in
the crystal field that separate distinct lattice sites are finite,
a fluid component to the electronic wavefunction will appear
eventually. Because the number of electrons per site remains
constant, the “compression construct” represents a continuous
process; thus the solidlike and the liquidlike components of
the electron assembly coexist, when both are present. The two
phases remain in mutual equilibrium, while their respective
mole fractions depend on the extent of the compression. This
effective coexistence of two distinct phase behaviors in the
very same region of space is analogous to what happens
during the crossover to activated transport in liquids [18,20],
when metastable structures begin to form. Translational sym-
metry is broken on time scales shorter than the lifetimes of
the metastable structures but is restored on longer times. Note
a coexistence of liquid and solid behaviors, respectively, has
been reported for Hartree-Fock solutions in jellium [21].

Within a single-electron picture, the localized states can be
thought of as bound states that individual electrons transiently
create for each other on short times. (This is in addition to the
potentials due to the ionic cores, of course). The correspond-
ing energy levels are, however, not well defined because the
electrons are not static. The resulting line broadening is anal-
ogous to what happens during spectral diffusion [22,23], since
the leading contribution of local charge fluctuation to the shift
of on-site energies is dipole-dipole, owing to charge conser-
vation. An electron moves from site to site at rate vF /a, while
inducing a local dipole moment change ea. These effective
dipoles are uniformly distributed at concentration n ∼ 1/a3.
Contributions of individual dipoles to the overall spectral
shift are roughly ∼(ae)2/r3 ≡ A/r3, each fluctuating at rate
γ ∼ vF /a. The width of the corresponding spectral line in-
creases with time [22,23] at the rate ∼nAγ = (e2/a)(vF /a) �
EF (vF /a). The broadening on the time scale π/ωph of a pho-
toemission event is, then, roughly EF (vF /aωph) ∼ 10−1EF ,
consistent with experiment. The solidlike response will be
progressively diminished for slower experimental probes, the
overall response ultimately approaching that of a Fermi liquid.

The liquidlike and solidlike contributions to the wavefunc-
tion correspond to two distinct, nonoverlapping components
of the overall wavefunction characterized by pronounced lo-
calization in the momentum and direct space, respectively.
Indeed, already the ground state of an electron fluid in the
presence of a scattering potential is orthogonal to the ground
state in the absence of the potential [24]. Very generally, a
solid must be separated by a discontinuous transition from the
fluid state [18,25,26]. Consequently, the two phases occupy
disconnected portions of the phase space. Because of this lack
of overlap between the liquidlike and solidlike contributions
to the overall wavefunction, we may present the total inten-
sity of the photocurrent as a weighted sum of the respective
intensities of those two contributions:

I (E ) = xliqIliq(E ) + xsolIsol(E ), (2)

where E is the energy of the detected electron and xliq + xsol =
1, by construction.

045125-2



CAVITATION IN ELECTRON FLUIDS AND THE PUZZLES … PHYSICAL REVIEW B 109, 045125 (2024)

To estimate the solidlike contribution Isol(E ) to the pho-
tocurrent, we first note that in the spectral range in question
[1–3], no plasmons are produced. Indeed, the plasmon fre-
quency in Na, 5.7 eV [27], is significantly greater than the
Fermi energy, 2.8 eV [1]. In other words, our transient elec-
tron solid recoils as a whole. We will approximate this solid
as harmonic. The coordinates of any lattice fragments thus
obey the Gaussian distribution [28]; denote the correspond-
ing variance with δr2. The probability for the solid to recoil
as a whole, after the fragment absorbs or emits momentum
q, is given by e−q2(δr)2

, a notion used in Mössbauer spec-
troscopy [29]. Conversely, the expression e−q2(δr)2

can be
viewed, up to a multiplicative factor, as the probability dis-
tribution for a local harmonic degree of freedom δr that is
compatible with a zero-phonon recoil of the lattice at mo-
mentum q. The corresponding ground-state wavefunction is
ψq(r) = (q2/π )3/4 e−q2r2/2, where q represents a parameter.
We thus estimate the photocurrent Isol(E ), due to localized
initial states, by first evaluating the current using the func-
tion ψq(r) as the initial state, for a given value of q, and
then averaging over a pertinent distribution of q. The set
of recoil values q, due to emitting a localized electron,
should be consistent with the rate of spatial variation of the
valence electrons. At values k f of the momentum of the
outgoing electron pertinent to Plummer et al.’s experiment
k f ∼ 3kF , the valence wavefunction can be largely approx-
imated by the frontier atomic orbital ψfr on an individual
center. (For Na, this would be the 3s orbital.) Thus we use
the magnitude squared of the normalized Fourier transform
|ψ̃fr(q)|2, times 4πq2, as the probability distribution for the
parameter q.

The (zero-plasmon) recoil due to the transient-solid com-
ponent of the electron assembly causes a negligibly small
shift of the photoemission spectrum, as does the recoil due
to the pertinent nuclei. If it were not for the recoil due to
the electron fluid, localized electrons would be all extracted
near the Fermi energy, the latter nominally corresponding to a
quiescent fluid devoid of currents, consistent with the classical
limit considered above. This notion can be also formulated
quantum mechanically, in an effective single-electron picture:
Single-particle states for the extended and localized states
tend to mutually repel [30,31], while the extended states form
a continuous band. Our effective localized states—which note
are not tied to lone pairs, impurity levels, or surface states
etc.—are thus “pushed” outside of the continuous band. At
the same time, there should be no gap between the delocal-
ized and localized states either, because the two sets of states
correspond, respectively, to a liquid and solid that coexist, as
already mentioned. Consequently, the chemical potentials of
the phases are mutually equal, which pegs the emission line
for localized electrons near the Fermi energy of the electron
liquid. Conversely, no such matching of the chemical poten-
tials is expected in nonmonovalent metals, because there is no
continuous process that converts a Wigner solid into a lattice
with more than one electron per site. The resulting mismatch
in the chemical potentials actually corresponds to the recoil
energy of the electrons sharing the site with the photoejected
electron. Thus we predict that in nonmonovalent metals, there
will also be a photocurrent due to localized sources, but the
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FIG. 1. The ratio of the integrated photocurrents from Eq. (3)
as a function of the photon frequency without (solid line) and with
(dashed line) line-broadening effects included.

energy of the outgoing electron will be down shifted, relative
to the Fermi level, by the said recoil energy.

The dispersing part of the photocurrent is, likewise, largely
determined by the Fourier transform of the wavefunction of
the atomic valence shell, but within a near vicinity of the
momentum of the outgoing electron, according to a standard
calculation [32–39] detailed in Supplemental Material [40].
When the broadening of the dispersing peak is neglected, one
obtains a rather simple expression for the relative intensity of
the liquid- and solidlike contributions to the photocurrent, at a
given value of the photon frequency

Iliq

Isol
= π1/2

2

k3
f ,liq

k3
f ,sol

|ψ̃fr(k f ,liq )|2∫ ∞
0

dq
q e−k2

f ,sol/q2 |ψ̃fr(q)|2
. (3)

Here, k f ,liq and k f ,sol denote the momentum for the outgo-
ing electron extracted as a wavepacket and localized object,
respectively. The two momenta are rather close numerically
because the photon frequency is much greater than EF . Ac-
cording to Eq. (3), the contribution of the localized electrons
is distributed over a broad momentum range and, thus, should
be suppressed but only several fold, relative to the momentum-
conserving transitions, except when the latter transitions fall
into the spectrally forbidden region. The result of the calcula-
tion, shown in Fig. 1 with the solid line, is consistent with this
expectation.

The peak due to localized sources of photocurrent is in-
trinsically broadened owing to the short-lived nature of the
effective confining potential due to the transient electronic
solid, as already discussed. Smaller in magnitude, but signif-
icant methodologically is the broadening of the Fermi-energy
peak due to recoil currents of the electron fluid. These currents
must arise because a spatially uniform fluid is not the ground
state of the electron assembly in the presence of a bounding
potential due to the (photo-induced) localized hole. The re-
coil currents are entirely analogous to those arising during
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photoemission from a deep localized state. Under the latter
circumstances, a sharp absorption line will broaden to become
a skewed peak, the low-energy side of which is an integrable
power divergence [41,42]:

Isol(E ) ∝ 1

(E − E f )1−α
, (4)

where

α = 2
∑

l

(2l + 1)(δl/π )2 (5)

and δl is the phase shift for scattering, due to the aforemen-
tioned local potential, at value l of the angular momentum.
As alluded to already, the majority of scattering in alkali
metals occurs at l = 0. If we assume, for simplicity, that the
scattering is exclusively in the l = 0 channel and that the
Friedel sum rule [43] 1 = (2/π )

∑
l (2l + 1)δl applies, we

obtain δ0 = π/2, thus yielding α = 1/2. This is the same
exponent for the loss spectrum as in the classical limit of
the Newtonian liquid considered earlier. Consistent with this
notion, the phase shift π/2 corresponds to a purely viscous
response, whereby for an oscillating signal eiωt the momentum
transfer rate goes as η(d/dt )eiωt = η ω ei(ωt+π/2). Still, one
should generally expect scattering at l > 0 as well, which will
amount to deviations from the hydrodynamic result in Eq. (1).

Although the localized electron is extracted near the ab-
sorption edge, the present situation is distinct from the x-ray
edge problem. There, the excited electron (hole) scatters
from a core orbital right into the continuum perturbed by
the excess local potential created by the excitation; thus the
electron (hole) itself contributes to the recoil currents and, in
turn, the overall response of the fluid [42,44]. Here, instead,
the outgoing electron—which had been localized in the first
place—does not itself contribute to the recoil currents. Thus,
in contrast with the conventional edge problem, the recoil
always results in a divergence at the spectrum’s edge.

We estimate the weights xliq and xsol in Eq. (2) by compar-
ing the times valence electrons spend in classically forbidden
and allowed regions, respectively,

xliq

xsol
≈ 4D

tforbidden

tallowed
, (6)

where we have also included the transmission coefficient D
for the tunneling so as to account only for successful tun-
neling attempts. Because the occupied portion of the valence
band in alkali metals is comparable in width to that of a
free electron gas at the same density, one may assume that
the potential energy barrier separating two nearest-neighbor
sites is sufficiently narrow so that the shape of the potential
energy maximum separating two nearest-neighbor ionic cores
can be well approximated by an inverted parabola. Thus the
time the electron travels one way under the barrier is given
by tforbidden = π/ω‡, where ω‡ is the frequency of the mo-
tion within the parabola. We estimate the frequency ω‡ by
using the curvature of the Thomas-Fermi potential at distances
corresponding to the midpoint between two nearest atoms
in the lattice. The residence time in the classical region is
determined by the plasmon frequency itself, tallowed = π/ωp,
since this is the pertinent frequency for charge oscillations
even on small lengthscales ∼a, in view of the dispersion
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FIG. 2. Photoemission spectra from Eq. (2) data for sodium in
the (1, 1, 0) direction for select values of photon frequencies indi-
cated in the legend, to be compared with Fig. 2 from Ref. [1]. The
electron energy is relative to the Fermi level. We set α = 1/2 in
Eq. (4).

ωp(k) being relatively weak. We qualitatively estimate the
transmission coefficient as the ratio of the band width for
the electrons in the metal and free electrons: D = m/m∗. (We
adopt m∗/m = 1.28 for the effective mass of the electron rel-
ative to its free-particle value [45,46].) Indeed, the band width
scales with the tunneling matrix element, while one should
recover D = 1 for free electrons. The factor 4 reflects that
there are 4 internuclear spaces separating closest neighbors
in the bcc lattice per nucleus. This yields xliq/xsol ≈ 1.85.

Thus we have argued that a substantial contribution to the
overall electronic wavefunction is due to localized electrons.
The photocurrent due to this contribution, per absorbed pho-
ton, is comparable to that stemming from the Fermi liquid.
Spectrally, the photocurrent due to localized sources is tied
to the Fermi level, apart from some broadening. Put together,
the above notions then rationalize the puzzling Fermi-energy
photoemission peak in alkali metals. We evaluate the photoe-
mission spectra for sodium, shown in Fig. 2, to be compared
with Fig. 2 of Ref. [1]. (Experimental spectra also contain a
background due to a variety of processes [36], not considered
here.) The extent of broadening of the dispersive line was
chosen by hand to be similar to that seen in the experiment;
the breadth is nonetheless consistent with the electron’s mean
free path [47–49]. The integrated intensity of the Fermi peak
is less than that for the dispersive peak, when the latter is
allowed, but the Fermi peak is also sharper near the top and
remains visible within a substantial range of photon energies.
This is qualitatively consistent with experiment. Incidentally
we note that the narrowness of the anomalous peak, relative
to the dispersive peak, is consistent with the former stemming
from nonitinerant electrons. Because the dispersive peak is
broadened, its total intensity is somewhat diminished in the
spectrally allowed range. Conversely, even when the center
of the dispersive peak is in the spectrally forbidden region,
its wings generally extend into the occupied region of the
valence band, as in Refs. [5,6]. The intensity ratio from Eq. (3)
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corrected for these broadening effects is shown in Fig. 1
with the dashed line. For the anomalous peak, we adopt the
parametrization from Ref. [50].

To avoid ambiguity, we note the present analysis pertains
exclusively to the bulk physics. Effects of the free surface
are not included. Also, strictly speaking, on the short time
scales of photoemission, plasmons should be regarded as a
symmetry-lowering perturbation to the Fermi liquid. These
effects can be visualized and contribute to the background
[32,51], see Supplemental Material [40].

Photoemission out of a localized state exhibits classical
features, consonant with the infrared catastrophe [24] accom-
panying the recoil currents. (Similar catastrophes, leading to a
classical-like localization of a quantum motion, take place as
part of the Kondo effect or, for instance, the localization of a
particle interacting with a bath [52].) The photon’s momentum
and energy are initially imparted to the material within a
localized region, before they are passed on to the rest of the
electrons and the nuclei. The density of the grand-canonical
free energy (V = const, T = const) is equal to the negative
pressure [53]. Thus a photon impinging on a volume V ef-
fectively creates an excess negative pressure −h̄ωph/V , the
corresponding forces being much greater than the character-
istic electronic forces when V � a3(h̄ω/EF ) � 101a3. This
negative pressure is, in fact, the driving force behind the
decrease in local density caused by photoemission. This neg-
ative pressure will persist until the hole is filled by the recoil
currents. When creating a localized hole, we are bringing in
physical contact two distinct phases thus incurring a mismatch
penalty. (If the interface is thin, the penalty amounts to a
conventional surface tension [53].) Thus, the formation of the
hole is a nucleationlike process. Nucleation of a low-density
phase caused by local excess of negative pressure is a well-
known phenomenon called “cavitation,” hence the title of the
article. Nucleation, of course, is a strongly nonlinear phe-
nomenon; homogeneous nucleation furthermore represents a
breaking of spatial symmetry.

As a dividend of the present analysis, we note that the metal
acts as a transmitter of electrons, during photoemission, the
final state of the particle being a plane wave. Conversely, one
may consider the reciprocal process, in which the metal is the
receiver. Hereby, the electron is initially a plane wave and

eventually enters the metal in the form of a localized object
while filling a localized vacancy, whose concurrent formation
is accompanied by recoil currents. This reciprocal process can
be thought of as a detection event for the received electron, so
that its location becomes known to the extent determined by
the size and shape of the hole. As the measurement proceeds,
the single-particle density matrix progressively deviates from
its initial, nearly free-electron value. Thus the present scenario
is an explicit example of how a measurement event is a result
of a strongly nonlinear, many-body phenomenon but can be
profitably thought of as a “collapse” of a one-particle wave-
function, if the full density matrix of the system is unavailable.
Because the event is an instance of symmetry breaking, its
outcome is history dependent. This is analogous to how the
precise magnetization pattern in a magnet below the Curie
point or, to give another example, the detailed structure of a
glass below the glass transition [18], depend on the prepa-
ration protocol. Other, arguably simpler, scenarios can be
imagined. For example, consider a dilute gas or a set of deep
core orbitals in a metal such that the photon’s wavelength is
much greater than the spatial separation between pertinent
orbitals. An electron to be photoemitted is automatically lo-
calized within an orbital whose eventual identity will have
emerged as a result of a symmetry-lowering process and,
thus, depends on the history. The nonlinear phenomenon is
whatever the process that causes individual orbitals not to
form a band in the first place, such as a metal-insulator tran-
sition [54]. Likewise, receiving orbitals are also automatically
localized.
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