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We propose that the Fermi surface anomaly of symmetry group G in any dimension is universally classified
by G-symmetric interacting fermionic symmetry-protected topological (SPT) phases in (0 + 1)-dimensional
spacetime. The argument is based on the perspective that the gapless fermions on the Fermi surface can be viewed
as the topological boundary modes of Chern insulators in the phase space (position-momentum space). Given the
noncommutative nature of the phase-space coordinates, we show that the momentum space dimensions should
be counted as negative dimensions for SPT classification purposes. Therefore, the classification of phase-space
Chern insulators (or, more generally fermionic SPT phases) always reduces to a (0 + 1)-dimensional problem,
which can then be answered by the cobordism approach. In addition to the codimension-1 Fermi surface case,
we also discuss the codimension-p Fermi surface case briefly. We provide concrete examples to demonstrate
the validity of our classification scheme, and make connections to the recent development of Fermi surface
symmetric mass generation.
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I. INTRODUCTION

The Fermi liquid [1,2] is a conventional and ubiquitous
phase of matter in condensed matter physics, modeling the
universal low-energy features of electrons in metals. Despite
its long history of study, there has been renewed interest in
the Fermi liquid, motivated by the quest to understand the
surprising stability [3–6] of gapless fermions on the Fermi
surface. An emerging paradigm in condensed matter theory
is to understand all gapless quantum phases of matter from
the perspective of emergent symmetries and quantum anoma-
lies [7–16]. This paradigm has led to significant progress in
understanding the Fermi liquid as a gapless state of fermions
protected by an emergent quantum anomaly known as the
Fermi surface anomaly [17–30].

The boundary-bulk correspondence between quantum
anomalies and symmetry-protected topological (SPT) orders
has been a key area of study in condensed matter physics in the
past decade [31–40]. There is a growing consensus [41–45]
that the gapless fermions on the Fermi surface can be viewed
as the topological boundary modes of a bulk fermionic SPT
state and that the Fermi surface anomaly is related to the bulk
SPT order. So what should be the “bulk” of a Fermi surface?
The most honest answer is the Fermi sea—a region in the
momentum space enclosed by the Fermi surface. Then what
is “topological” about the Fermi sea? Reference [44] made
a key observation that a d-dimensional Fermi sea could be
viewed as a quantum Hall insulator (or, equivalently, a Chern
insulator) in the 2d-dimensional phase space (i.e., position-
momentum space). This sets the basis for classifying Fermi
surface anomaly by classifying topological insulators in the
phase space.

The main goal of this paper is to provide a comprehen-
sive and rigorous classification of the Fermi surface anomaly
along the above line of thought. We will primarily consider

codimension-1 Fermi surface [26] (i.e., the Fermi surface is
one dimension fewer than the momentum space dimension)
and comment on the higher codimension cases in the sum-
mary section (Sec. V). Our key result is that the classification
of the Fermi surface anomaly in any spacetime dimension
is universally equivalent to the classification of interacting
fermionic SPT phases in (0+1)-dimensional spacetime. This
might not be too surprising as many thermodynamic and
transport properties of Fermi liquids remain identical across
different dimensions already. The proposed equivalence is
established through a careful analysis of the noncommutative
geometry [46–49] in phase space, the synthetic dimension
reduction [50,51] of a phase-space Dirac fermion field theory,
and the use of cobordism classification [52–61] for interacting
fermionic SPT states.

We also provide a nonperturbative definition [30] of the
Fermi surface anomaly protected by the internal symmetry
G and the translation symmetry. When G = U(1), our results
match known results such as the Luttinger theorem [62–64]
for conventional Fermi liquids. When the U(1) symmetry
is broken down to G = Z4 (both contain the fermion parity
symmetry ZF

2 as a subgroup), we discover nontrivial examples
of Fermi surface symmetric mass generation (SMG) [29],
where the Fermi surface can be gapped out by multifermion
interactions and deformed to a trivial product state without
breaking any symmetry.

As illustrated in Fig. 1, the article is organized as follows.
In Sec. II, we analyze the noncommutative geometry in the
phase space to establish a mathematical foundation for defin-
ing quantum field theory in the phase space. We propose a
phase-space Dirac fermion field theory as the bulk regulariza-
tion for the Fermi surface and demonstrate that it reproduces
the expected phase space Chern-Simons response theory of
the Fermi liquid, as well as the Fermi surface gapless modes
as topological boundary modes. This sets the stage for our

2469-9950/2024/109(4)/045123(19) 045123-1 ©2024 American Physical Society

https://orcid.org/0000-0001-6453-2602
https://orcid.org/0000-0001-9396-9010
https://orcid.org/0000-0003-4080-5340
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.045123&domain=pdf&date_stamp=2024-01-12
https://doi.org/10.1103/PhysRevB.109.045123


DA-CHUAN LU, JUVEN WANG, AND YI-ZHUANG YOU PHYSICAL REVIEW B 109, 045123 (2024)

FIG. 1. Outline of this paper. We propose using the phase-space Chern insulator to understand the Fermi surface anomaly. From the
phase-space Chern insulator that describes the bulk Fermi sea (Sec. II B), we draw the connection to Fermi surface using dimension reduction
method (Sec. II C), technical details are summarized in Appendix B. Once integrating out the massive fermion in the phase-space Chern
insulator, one can obtain the topological response Chern-Simons theory and its relation to the anomaly of emergent loop group symmetry are
discussed in Sec. III. Finally, the classification of the anomaly is translated to the classification of the 0 + 1d fermion SPT (Sec. IV) [65].

argument. We then provide a nonperturbative definition of the
Fermi surface anomaly and connect it to the recently proposed
emergent loop group anomaly in Sec. III. Using dimension
reduction techniques of synthetic dimensions, we prove our
key result: the equivalence between Fermi surface anomaly
and (0+1)-dimensional fermionic SPT order in Sec. IV. We
use cobordism tools to classify a list of unitary and anti-
unitary symmetries and provide physical insights into our
classification results. The article concludes with a summary
in Sec. V.

II. EFFECTIVE DESCRIPTIONS OF FERMI LIQUIDS

A. Noncommutative phase-space geometry

Given the spacetime manifold Md × R of a (d + 1)-
dimensional physical system (where Md is the d-dimensional
spatial manifold and R is the time axis), for each position
x = (x1, x2, . . . , xd ) ∈ Md in the space, the conjugate momen-
tum k = (k1, k2, . . . , kd ) generates infinitesimal translations
on the manifold Md in the vicinity of x and hence lives in the
d-dimensional cotangent space T ∗

x Md . Thus the phase space
is represented by the cotangent bundle T ∗Md := {(x, k)|x ∈
Md , k ∈ T ∗

x Md}, equipped with a canonical commutator (set-
ting h̄ = 1)

[xi, ki] = i (i = 1, 2, . . . , d ), (1)

with i being the imaginary unit. Unlike in a classical space
where all coordinates commute, the phase-space coordinates
obey nontrivial commutation relations Eq. (1), which makes
the phase space T ∗Md a noncommutative manifold.

There are two strategies to deal with the noncommutative
phase-space coordinates:

(i) Phase-space background Berry curvature. Treat both x
and k as ordinary commuting coordinates at the price of intro-
ducing a uniform background magnetic field (Berry curvature)
in each (xi, ki ) plane, such that any unit-charged particle mov-
ing in such a background magnetic field will accumulate the

same Berry phase as required by the commutation relation
Eq. (1).

(ii) Canonical quantization. Represent the position oper-
ator x = i∂k as a gradient operator in the eigenbasis of the
momentum operator k, or vice versa k = −i∂x, such that the
commutation relation Eq. (1) is satisfied on the operator level
as in quantum mechanics. See Appendix A for a detailed
formulation.

The strategy (i) of phase-space background Berry curvature
has been used in many papers [23,24,26,27,44] to formulate
the Fermi liquid as a phase-space quantum Hall insulator. The
phase-space Berry curvature is also responsible for the Berry
phase term in Wen’s effective theory of Fermi liquid [25],
or the Wess-Zumino-Witten term in the recently proposed
nonlinear bosonization of Fermi surfaces by the coadjoint
orbit method [66]. In this paper, we will explore more of
the strategy (ii) of canonical quantization and hope to gain
different insights.

For simplicity, we will always restrict our scope to a
translation invariant Fermi liquid in the Euclidean position
space Md = Rd , then the momentum space is also Euclidean
T ∗

x Md = Rd and is identical among all points x. The phase
space reduces to a trivial bundle as a product of the position
and the momentum spaces

T ∗Md = Rd �� Rd . (2)

We use the symbol �� instead of × to indicate the noncom-
mutative nature between the position and momentum space
coordinates.

B. Bulk description: Fermi sea = Phase-space Chern insulator

We posit that every Fermi sea corresponds to a phase-space
Chern insulator regarding low-energy topological properties,
though this correspondence is neither unique nor exhaus-
tive. Alternative descriptions of the Fermi sea exist, such as
semimetals in magnetic fields noted in Ref. [26]. Moreover,
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not all topological phases in phase space can be interpreted
as a Fermi sea. Nevertheless, viewing the Fermi sea as a
phase-space Chern insulator has the advantage of exposing its
topological nature, which will lead to a useful classification
scheme.

To clarify what we mean by a phase-space Chern insulator,
we start with a minimal toy model. A Chern insulator in the
phase space T ∗Md can be formally described by a low-energy
effective Hamiltonian of massive Dirac fermions [44]

H =
∫

T ∗Md

dd xdd k ψ†(i∂x · �x + i∂k · �k + m(k)�0)ψ, (3)

where ψ := ψ (x, k) is a 2d -component fermion operator de-
fined at each “point” of the 2d-dimensional phase space
T ∗Md = Rd �� Rd (let us not worry about the noncommuta-
tivity between x and k for now, which will be resolved later).
Let �μ (for μ = 0, 1, 2, . . . , 2d) be a set of 2d × 2d anticom-
muting Hermitian matrices, satisfying {�μ, �ν} = 2δμν and
�0 = id

∏2d
μ=1 �μ. These � matrices can be grouped into the

temporal �0, the position spatial �x = (�1, . . . , �d ), and the
momentum spatial �k = (�d+1, . . . , �2d ) components. Here
i∂x · �x = ∑d

i=1 i∂xi�
i denotes the dot product between the

differential operator i∂x and the set of matrices �x, and sim-
ilarly for i∂k · �k . A few comments on this theory are as
follows:

(i) Locality. Without interaction, Eq. (3) looks like a valid
local theory of the fermion field ψ in the phase space. How-
ever, once fermion interaction is introduced, Eq. (3) is no
longer a local field theory because the interaction is generally
nonlocal in the momentum space. Therefore, Eq. (3) should
only be viewed as a “formal” description of the phase-space
Chern insulator. One way to regularize the theory is to evoke
the strategy (II) in Sec. II A to resolve the noncommutative
phase-space geometry by replacing i∂k → x (see Appendix A
for more rigorous treatments), and rewrite Eq. (3) as

H =
∫

Md

dd x ψ†(i∂x · �x + x · �k + m(−i∂x)�0)ψ, (4)

which is solely defined in the position space and respects
the position space locality such that local interactions can be
introduced if needed.

(ii) Mass profile. The bulk Dirac mass m(k) is supposed
to be a polynomial function of k, which specifies the shape of
the Chern insulator in the phase space. For example, given the
Fermi momentum kF , m(k) = k2 − k2

F is one possible choice
of the mass profile. Suppose the Fermi sea occupies a region
� ⊂ Rd in the momentum space enclosed by the (d − 1)-
dimensional Fermi surface ∂�, the Dirac fermion mass profile
should satisfy

m(k)

{
� 0 if k ∈ �,

> 0 if k /∈ �.
(5)

This described a phase-space Chern insulator in the Fermi sea
region �, such that the Fermi surface ∂� (as the boundary
of the phase-space Chern insulator) corresponds to the mass
domain wall at m(k) = 0.

The fermions are gapped everywhere in the phase space
except on the Fermi surface, where the fermion mass van-
ishes. This is consistent with the physical intuition that the

gapless fermions on the Fermi surface are the only nontrivial
low-energy feature of the Fermi liquid. We will study these
boundary fermion modes in more detail in Sec. II C to show
that they travel in the directions perpendicular to the Fermi
surface as expected.

(iii) Particle-hole symmetry. Under the particle-hole trans-
formation ZC

2 , the inside and outside of the Fermi surface will
interchange, corresponding to flipping the fermion mass ZC

2 :
m → −m, or equivalently, conjugating the fermion operator

ZC
2 : ψ → K�0ψ∗, (6)

where K denotes the complex conjugate operator, such that
ZC

2 : ψ†�0ψ → −ψ†�0ψ . Note that ZC
2 is not a symmetry of

the Hamiltonian H in Eq. (3), as the mass term m explicitly
breaks this symmetry. However, it is useful in defining the
Fermi surface. We propose that the Fermi surface should
be more generally defined as the particle-hole symmetric
submanifold in the phase space, specified by the locus of
〈ψ†�0ψ〉 = 0. This definition applies to the case of interact-
ing fermions.

(iv) Phase-space U(1) symmetry. The Hamiltonian H in
Eq. (3) has a 0-form U(1) symmetry in the phase space,
generated by the charge operator

Q =
∫

T ∗Md

dd xdd k ψ†ψ. (7)

The symmetry transformation eiφQ forms the U(1) symmetry
group, where φ ∈ [0, 2π ) and Q ∈ Z. The fermion field trans-
forms as ψ → eiφψ under the symmetry transformation.

The essential bulk topological response of the Fermi
liquid is captured by a phase-space Chern-Simons theory
[23,24,26,27,44] of the phase-space U(1) symmetry. To show
that the effective Hamiltonian in Eq. (3) indeed reproduces
the desired topological response, we first gauge the 0-form
U(1) symmetry of the fermion ψ (under which ψ → eiφψ)
by introducing a 1-form gauge field A in the phase spacetime

A = A0dt + Ax · dx + Ak · dk, (8)

where A0, Ax = (A1, . . . , Ad ), Ak = (Ad+1, . . . , A2d ) are re-
spectively the components of the U(1) gauge connection in
the time, position, and momentum spaces. We will treat A
as a background gauge field that does not have dynamics.
Let F := dA be the U(1) gauge curvature. Following the
strategy (I) mentioned in Sec. II A, we must set Fi,d+i = 1 for
i = 1, 2, . . . , d to reproduce the position-momentum commu-
tator in Eq. (1). This background gauge curvature effectively
replaces the noncommutative 2d-dimensional phase-space ge-
ometry, and the effective Hamiltonian (3) becomes [44]

H =
∫

T ∗Md

dd xdd k ψ†(iDx · �x + iDk · �k + m�0 − A0)ψ,

(9)

where iDμ := i∂μ − Aμ are gauge covariant derivatives. Now,
in Eq. (9), x and k are ordinary commuting coordinates,
as the background Berry curvature Fi,d+i = 1 has been im-
plemented in the U(1) gauge configuration to resolve the
noncommutativity. Therefore, we can use conventional field
theory approaches to deal with Eq. (9).
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FIG. 2. Illustration of a point kF on the Fermi surface ∂� with
the normal vector n and the tangent vector(s) τ j , for the case when
the Fermi sea � dimension is d = 2.

Integrating out the fermion field in Eq. (9) generates the
following Chern-Simons action in the (2d + 1)-dimensional
phase spacetime [44,67] (assuming the Dirac fermion ψ is
such regularized that m > 0 corresponds to a trivial insulator)

S = 1

(d + 1)!(2π )d

∫
T ∗Md ×R

1 − sgn m

2
A ∧ (dA)∧d . (10)

This is the defining bulk topological field theory [23,24,28]
whose inflow generates the Fermi surface anomaly [68].
In particular, if we plug in the phase-space background
gauge configuration Fi,d+i = 1 (i.e., dA = F = ∑d

i=1 dxi ∧
dki), take the fermion mass profile in Eq. (5), and finish the
momentum space integration, Eq. (10) will reduce to

S = 1

(2π )d

∫
Md ×R

dt dd x A0vol�, (11)

which indicates that the fermion charge density ν (filling
fraction) is related to the Fermi volume vol� by

ν = δS

δA0
= vol�

(2π )d
, (12)

where vol� := ∫
dd k (1 − sgn m(k))/2 is by-definition the

momentum-space volume where m(k) � 0. This is precisely
the Luttinger theorem—a hallmark of the Fermi surface
anomaly. Thus we have confirmed that the effective bulk
Hamiltonian (3) can produce the correct anomaly inflow to de-
scribe a (d + 1)-dimensional unit-charged Fermi liquid with
a single Fermi surface. The extension to cases of generic
fermion charges and multiple Fermi surfaces is straightfor-
ward (see Ref. [23] for example) and will not be elaborated
further here.

C. Boundary description: Fermi surface = Phase-space
chiral boundary fermions

How do we see more explicitly that the effective Hamil-
tonian (3) reproduces the low-energy fermions on a Fermi
surface? Since the Fermi surface is interpreted as the bound-
ary of the phase-space Chern insulator, the gapless fermions
should arise as the topological boundary modes, which can be
analyzed as follows.

As shown in Fig. 2, we consider a point kF ∈ ∂� on the
Fermi surface at which the normal vector is specified by n.
This means that the fermion mass will cross zero in the phase

space at kF with a gradient along the n direction,

m(kF ) = 0, ∂km(kF ) ∝ n. (13)

Such a mass domain wall at kF will trap gapless fermion
modes in the eigenspace specified by the projection P0 = (1 +
i(n · �k )�0)/2. See Appendix B for a review of this projection
operator approach for the domain wall dimensional reduction.
Under this projection, only those terms that commute with P0

can remain, so the effective Hamiltonian (3) reduces to

H =
∫

∂�

dkF

∫
Md��TkF ∂�

dd x dd−1kψ†P0

(
i(n · ∂x)(n · �x )

+
d−1∑
j=1

(i(τ j · ∂x)(τ j · �x ) + i(τ j · ∂k)(τ j · �k ))

)
P0ψ,

(14)

where TkF ∂� denotes the (d − 1)-dimensional tangent space
of the Fermi surface ∂� at the base point kF , and τ j (for
j = 1, 2, . . . , d − 1) denote a set of orthonomal basis of the
tangent space TkF ∂�.

To resolve the noncommutativity between x and k coordi-
nates, we evoke the strategy (II) outlined in Sec. II B. Given
that x = i∂k resolves the canonical commutation relation in
Eq. (1), we can simply replace the gradient operator i∂k by
x, and fall back to the standard quantum mechanical descrip-
tion in the position space M alone. Under this replacement,
Eq. (14) becomes

H =
∫

∂�

dkF

∫
Md

dd x ψ†P0

(
i(n · ∂x)(n · �x )

×
d−1∑
j=1

(i(τ j · ∂x)(τ j · �x ) + (τ j · x)(τ j · �k ))

)
P0ψ.

(15)

Now the terms (τ j · x)(τ j · �k ) in the Hamiltonian (15) can
be interpreted as a new set of perpendicular domain walls of
fermion masses (each one is normal to a τ j direction). They
will further localize the fermions to the origin in all tangent
directions τ j (for j = 1, . . . , d − 1). The localized fermion
modes are specified by a sequence of further projections Pj =
(1 + (τ j · �x )(τ j · �k ))/2, such that the total projection is

P = P0

d−1∏
j=1

Pj . (16)

Under the total projection P, only one fermion mode survives.
This can be seen by a simple counting argument: the fermion
field ψ has 2d components to start with, given P0, . . . , Pd−1

are d commuting projectors, each reducing the number of
fermion components by half, the remaining component num-
ber is 2d/2d = 1.

The only term in the Hamiltonian that commute with the
total projection P is i(n · ∂x)(n · �x ), which will survive in
the low-energy theory. Moreover, (n · �x ) becomes an identity
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operator in the projected subspace, because

P(n · �x )P = P(n · �x )i(n · �k )�0

×
d−1∏
j=1

(i(τ j · �x )(τ j · �k ))P

= P

(
id

2d∏
μ=0

�μ

)
P = P1P = P. (17)

The first equality in Eq. (17) relies on the fact that we can in-
sert between projection operators P matrices like i(n · �k )�0

or i(τ j · �x )(τ j · �k ), as they all behave like identity operators
in the projected subspace. If we denote the projected fermion
mode as ψkF = Pψ (the low-energy fermion localized on the
intersection of mass domain walls at the Fermi momentum
kF ), the effective Hamiltonian for this fermion mode reads

H =
∫

∂�

dkF

∫
d (n · x) ψ

†
kF

i(n · ∂x)ψkF , (18)

which describes a single chiral fermion moving along the
normal direction n at every momentum kF ∈ ∂� on the Fermi
surface, which matches the low-energy physics of Fermi
liquid precisely. Therefore, the phase-space Chern insulator
effective Hamiltonian H (3) indeed provides a bulk regu-
larization for the Fermi liquid, reproducing all the expected
low-energy behaviors of gapless fermions on the Fermi sur-
face. This is an alternative bulk regularization of Fermi liquid
compared to the Weyl fermion regularization proposed by Ma
and Wang [26] recently. To make a comparison between our
regularization and that in Ref. [26],

(i) We use the canonical quantization approach to re-
solving the noncommutative phase-space geometry, while
Ref. [26] uses the phase-space background Berry curvature
approach.

(ii) The low-energy chiral fermions are realized as
domain-wall fermions in our approach, compared to Landau-
level Weyl fermions in Ref. [26]. The directional nature of
the chiral fermions (i.e., they always move along the normal
direction at each point on the Fermi surface) is more explicit
in our regularization.

III. DEFINITION OF FERMI SURFACE ANOMALY

A. Emergent loop group symmetry and perturbative
Fermi surface anomaly

The chiral boundary fermion effective Hamiltonian (18)
has a rather large emergent symmetry, described by the
loop-∂� group of U(1) [23,24] or the mapping space from
the Fermi surface ∂� to U(1), denoted as L∂�U(1) :=
Map(∂�, U(1)) [69]. Under the group action, fermion oper-
ators transform as

L∂�U(1) : ψkF → eiφ(kF )ψkF (∀kF ∈ ∂�) (19)

where φ(kF ) is a continuous function on the Fermi sur-
face ∂�, subject to the equivalence φ(kF ) ∼ φ(kF ) + 2π .
Mathematically, the loop group L∂�U(1) is the group of

all continuous maps from the closed manifold ∂� to U(1),
with the group multiplication defined pointwise. For more
discussion on the physical meaning of the loop group sym-
metry, see a review in Appendix C.

In contrast, for a conventional real-space U(1)-symmetric
Chern insulator, the boundary theory only has the same U(1)
symmetry inherited from the bulk. In this case, the bound-
ary symmetry is not enlarged because the gapless fermion
mode can propagate (along tangent directions) throughout the
boundary, locking pointwise U(1) transformations together
into a global U(1) transformation on the boundary manifold.
However, for the phase-space Chern insulator, due to the
noncommutative nature between the position and momentum
coordinates, the boundary fermion mode is localized in all
tangent directions of the Fermi surface and only propagates
along the normal direction n. Therefore, the U(1) transforma-
tions at different momentum points kF on the Fermi surfaces
are not locked together, giving rise to the enlarged loop group
symmetry L∂�U(1).

Our argument establishes the loop group symmetry
L∂�U(1) on the Fermi surface as an emergent symme-
try, originated from the U(1) symmetry in the phase-space
bulk. Therefore, the Fermi surface anomaly, which was pro-
posed [23] to be a perturbative anomaly of L∂�U(1), can
be described by the bulk topological field theory of a U(1)
connection A of the U(1) bundle in the phase spacetime, as
derived in Eq. (10) already,

S = k

(d + 1)!(2π )d

∫
Md ×�×R

A ∧ (dA)∧d . (20)

Here we have added in the Chern-Simons level k ∈ Z for
generality, which should correspond to the multiplicity (de-
generacy) of the Fermi surface. We set k = 1 for a single
Fermi surface. Various physical consequences of this theory
have been discussed in the literature [23,24,26,27,44], which
we will not reiterate. This description sets the basis to classify
the loop group LG anomaly on the (d − 1)-dimensional Fermi
surface by the G-symmetric invertible topological phases in
the 2d-dimensional phase space, which will be our key strat-
egy in Sec. IV.

B. Interstitial defect and nonperturbative
Fermi surface anomaly

One drawback of using the phase-space Chern-Simons the-
ory (20) to characterize the Fermi surface anomaly is that it is
not straightforward to extend the description to Fermi liquids
with a more general symmetry group G, such as G = Z2n.
We propose to define the Fermi surface anomaly in a lattice
fermion system by the projective representation of the internal
symmetry G in the presence of an interstitial defect that adds
an extra site to the lattice [30,70], as illustrated in Fig. 3(a).

Consider a lattice fermion system in d-dimensional space
with global internal symmetry G and lattice translation sym-
metry Zd . Let Ti be the generator of translation symmetry
in the ith spatial direction. In the phase space, the lattice
translation symmetry Zd acts as an emanant momentum-space
dipole symmetry Rd (i.e., the dipole moment conservation in
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FIG. 3. (a) Illustration of characterizing the Fermi surface
anomaly by the projective representation of the internal symmetry in
the presence of an interstitial defect. (b) On the lattice, an interstitial
defect (the red dot) is created by translating a semi-infinite line of
sites along the line direction. (c) In the phase space, this creates extra
Berry curvature (in the shaded plaquettes) along a line of momenta
at the defect position.

the momentum space) [71]

ψ (x, k) → Tiψ (x, k)T −1
i = eikiψ (x, k). (21)

An emanant symmetry [30] is an exact IR symmetry that
only acts on low-energy degrees of freedom. Its action on
high-energy degrees of freedom is not well defined. How-
ever, it arises from a UV symmetry in that any low-energy
operator charged under the emanant symmetry must also
be charged under the corresponding UV symmetry. The
momentum-space dipole symmetry Rd in Eq. (21) emanates
from the lattice translation symmetry Zd in the sense that any
low-energy operator violating the momentum-space dipole
symmetry will also break the lattice translation symmetry
[30,72], even though there is no group homomorphism be-
tween these two symmetry groups.

An interstitial defect is a point defect that adds one extra
site (or unit cell) to the lattice. It can be created by translating
a semi-infinite line of sites along the line direction as shown
in Fig. 3(b) on the lattice level. The choice of direction for
this semi-infinite line does not matter. We may choose it to be
along the positive axis of x1. The twist operator Utw creates
the interstitial defect at the origin x = 0,

Utw = T 
(x1 )
∏d

i=2 δ(xi )
1 , (22)

where 
 is the Heaviside step function and δ is the Kronecker
delta function,


(x) =
{

1 if x > 0,

0 if x < 0,
δ(x) = ∂x
(x). (23)

They together ensure that the translation is only implemented
along the positive axis of x1.

For any field or operator O, we defined the twisted version
Otw as Otw := UtwOU −1

tw . In particular, the fermion field is
twisted to

ψtw(x, k) = eik1
(x1 )
∏d

i=2 δ(xi )ψ (x, k). (24)

This allows us to define the twisted Hamiltonian Htw and the
twisted representation of symmetry operation ρtw(g) for any
group element g ∈ G of the internal symmetry group G by

replacing all operators in H or ρ(g) with their twisted version.
We say that the fermion system has a Fermi surface anomaly,
if there exists a cyclic subgroup of G (generated by g ∈ G and
gn = 1) such that the twisted partition function accumulates a
nontrivial phase ei2πν �= 1 (or equivalently, a nontrivial index
ν �= 0 mod 1) under the cyclic symmetry action,

Tr (e−βHtwρtw(g)n) = ei2πν Tr e−βHtw . (25)

This indicates that the interstitial defect transforms projec-
tively under the internal symmetry G, which provides a
nonperturbative definition of the Fermi surface anomaly. From
this perspective, the Fermi surface anomaly may also be
viewed as the mixed anomaly between the internal symmetry
G and the emanant symmetry Rd , which was proposed by
Wen [25].

To demonstrate the validity of the general definition of the
Fermi surface anomaly by Eq. (25), we consider the special
case of G = U(1) and show that it reproduces the known
filling constraints by the Luttinger theorem. When G = U(1),
for g = eiφ ∈ G, we have ρ(g)tw = eiφQtw , where Qtw is twisted
from the charge operator Q in Eq. (7). The twisted partition
function can be defined as

Ztw(β, φ) = Tr(e−βHtw eiφQtw ). (26)

The Fermi surface anomaly is manifested by

Ztw(β, φ + 2π ) = ei2πνZtw(β, φ), (27)

where ν (mod 1) serves as the anomaly index, and ei2πν is the
same nontrivial phase factor that appeared in Eq. (25).

To compute the anomaly index ν, we notice that the trans-
formation of the fermion field in Eq. (24) induces a U(1)
gauge transformation in the phase space [22,72], such that

Atw = A + 
(x1)
d∏

i=2

δ(xi ) dk1. (28)

This means that the background U(1) gauge field component
Ak1 in the phase space is shifted by a uniform amount over
the half-plane of x1 > 0, as shown in Fig. 3(c). As a result,
this leads to additional U(1) gauge curvature F := dA in the
phase space along the interface of x1 = 0,

Ftw = F + δ(x) dx1 ∧ dk1, (29)

where δ(x) = ∏d
i=1 δ(xi ). Substitute into the bulk topological

response theory in Eq. (20), and take a phase-space uniform
configuration for the temporal gauge field A0(x, k) = ϕδ(t ) at
the t = 0 time slice, we have

Stw = S + kϕ
vol�

(2π )d
, (30)

hence the twisted charge operator is given by

Qtw = ∂Stw

∂ϕ
= Q + k

vol�

(2π )d
. (31)

Substituting Eq. (31) to Eq. (26), we can compute the anoma-
lous phase factor in Eq. (27). Given that the total charge
Q ∈ Z is quantized, the Fermi surface anomaly index ν

is associated with the fractional charge of the global U(1)
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symmetry induced by the interstitial defect

ν = k
vol�

(2π )d
mod 1. (32)

The level k ∈ Z is integer classified in this case. For generic
Fermi volume vol� that is not a rational fraction of the
Brillouin zone volume (2π )d , the Fermi surface anomaly is
nonvanishing as long as the level k �= 0. This reproduces the
know results about Fermi liquid with U(1) symmetry and
demonstrates that our nonperturbative definition of the Fermi
surface anomaly in Eq. (25) falls back to the perturbative
L∂�U(1) anomaly proposed in Refs. [23,24] for the case of
G = U(1).

For more general internal symmetry G, we proposed that
the Fermi surface anomaly should be defined via Eq. (25),
following the general idea of the twist defect construction
by Cheng and Seiberg [30]. The major difference is that they
twist the translation symmetry in time and internal symmetry
in space, while we twist the translation symmetry in space
and internal symmetry in time. This modification allows us
to define the Fermi surface anomaly in general dimensions
[beyond (1 + 1)D].

IV. CLASSIFICATION OF FERMI SURFACE ANOMALY

A. Synthetic dimension reduction argument

The remaining objective is to classify the Fermi surface
anomaly for a general internal symmetry group G. According
to Sec. III B, the anomaly is defined by the fractionalized
representation of G carried by interstitial defects in the
fermionic system, indicating that the anomaly classification
can be mapped to the classification of (0 + 1)-dimensional
phase transitions between G-symmetric invertible topological
phases of fermions, which is equivalent to the classification
of (0 + 1)-dimensional fermionic SPT states. However, in
Sec. III A, the bulk topological field theory described by
Eq. (20) suggests a different conclusion that classifying the
Fermi surface anomaly of a (d + 1)-dimensional Fermi liq-
uid is equivalent to classifying the (d + d + 1)-dimensional
fermionic SPT states in phase spacetime. This raises a para-
dox as the two different counting of dimensions seem to be
inconsistent with each other.

The paradox can be resolved by considering the nontrivial
dimension counting in the phase space. Because position and
momentum are noncommuting coordinates, their dimensions
should not be simply added together. Instead, the correct
classification should consider the momentum dimensions
as “negative” spatial dimensions [50], effectively defining
the bulk SPT phase in a (d − d + 1) = (0 + 1)-dimensional
spacetime, aligning with the view from the interstitial defect.

To understand this unusual dimension counting, we revisit
the effective bulk Hamiltonian (3), which describes a phase-
space Chern insulator (or, equivalently, a d-dimensional Fermi
sea). Following the strategy (II) of canonical quantization
to regularize the bulk Hamiltonian by replacing i∂k → x as
Eq. (4), we have

H =
∫

Md

dd x ψ†(i∂x · �x + x · �k + m�0)ψ. (33)

TABLE I. The physical and synthetic space each has the position
and the momentum coordinates. For ordinary Fermi surface, we
consider the interactions that are local in all physical real coordi-
nates and synthetic momentum coordinates, thus, d = δ. For generic
codimension-p Fermi surface, the number of synthetic momentum
coordinates reduces to δ = d − p + 1.

Interaction Real space Momentum space

Physical Local Nonlocal
Synthetic Nonlocal Local

This describes a series of perpendicular mass domain walls
(one in each independent direction) that intersect at x = 0,
trapping a single fermion mode at the intersection point,
which is described by the following effective Hamiltonian,

H = m(ψ†ψ − 1/2), (34)

where m plays the role of the chemical potential, and the
2d -component spinor is projected to one-dimensional spinor
ψ . This single fermion mode can also be understood as the
topological zero mode of the Dirac operator iD = iDx · �x +
iDk · �k in the phase space T ∗Md , as required by the index
theorem (assuming Md = Rd is Euclidean),

index(D) =
∫

T ∗Md

ch(D) = 1

d!

∫
Rd ×Rd

(
dA

2π

)d

= 1. (35)

Therefore, regardless of the spatial dimension d of a Fermi
sea, its corresponding bulk description as a phase-space
Chern insulator is always equivalent to a (0 + 1)-dimensional
fermion mode at low energy under dimension reduction. As
a result, the classification of the Fermi surface anomaly for a
Fermi liquid in (d + 1)-dimensional spacetime is equivalent
to the classification of fermionic SPT phases in (0 + 1)-
dimensional spacetime.

The above statement holds true even in the presence of
fermion interactions. It was originally realized by Teo and
Kane [50] that momentum space (or parameter space) dimen-
sions should be treated as negative dimensions in classifying
topological defects in free fermion SPT states. The argument
is recently generalized by Jian and Xu [51] to classify in-
teracting fermionic SPT phases with synthetic dimensions,
which is relevant to our discussion here as the Hamiltonian
in Eq. (33) precisely describes a fermionic SPT system with
physical dimension d and synthetic dimension δ = d . Related
discussions are also found in Refs. [73–75] under the perspec-
tive of “anomaly in the parameter space”.

According to Ref. [51], the key criterion to distinguish
the physical and synthetic dimensions relies on the locality
of fermion interactions: The interactions must be local in
the physical coordinate space and the synthetic momentum
space, while nonlocal in the physical momentum space and
the synthetic coordinate space Table I. For the codimension-1
Fermi surface, the interactions we considered here are lo-
cal in all physical real coordinates and synthetic momentum
coordinates. For generic codimension-p Fermi surface, the
dimension counting is discussed around Table IV. The main
result of Ref. [51] is that the classification of interacting
fermionic SPT states in (d, δ) physical-synthetic dimension
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is the same as that in deff-dimensional physical space with

deff = d − δ. (36)

Applying this result to our case, we conclude that the clas-
sification of interacting phase-space Chern insulators (or
phase-space fermionic SPT states more generally) in any
spatial dimension d is equivalent to the classification of real-
space interacting fermionic SPT states in (d − δ) = (d −
d ) = 0-dimensional space [or, correspondingly, in (0 + 1)-
dimensional spacetime].

B. Cobordism classification results

Using the cobordism classification [52–61] of interacting
fermionic SPT states, we propose:

The classification of the Fermi surface anomaly associated
with the loop group symmetry LG is equivalent to the clas-
sification of (0 + 1)-dimensional interacting fermionic SPT
phases with symmetry G, which is given by TP1(Spin � G).

Here G is the global internal symmetry group, and Spin �

G denotes the total spacetime-internal symmetry group given
by the extension 1 → G → Spin � G → Spin → 1, with
Spin being the spin group of the spacetime manifold. Al-
though we start with the Dirac fermion theory Eq. (3) in the
2d-dimensional phase space, the effective Euclidean space-
time manifold is only (0 + 1)-dimensional after the synthetic
dimension reduction, so the Euclidean spacetime rotation
symmetry of the fermionic spinor field is described by the
Spin(1) group. In the presence of time-reversal symmetry, the
Spin structure can be further extended to Pin± structures [60].
In particular, Pin+ corresponds to T 2 = (−1)F , while Pin−

corresponds to T 2 = 1 [54]. The Fermi surface ∂� with sym-
metry G can have an emergent loop-∂� group of G symmetry
denoted as LG in general. The notion of loop group symmetry
is more subtle when G is discrete, which will be discussed
case by case later.

In (0 + 1)-dimensional spacetime, SPT phases protected
by the total symmetry Spin � G are classified by the
cobordism group TP1(Spin � G) [55] and their topological
invariants are given by the cobordism group generators (i.e.,
the cobordism invariants). Here TP is shorthand for the topo-
logical phase [55–57,60]. Table II summarizes a few examples
of the cobordism classification of Fermi surface anomalies.
The cobordism group element k ∈ TP1(Spin � G) is always
an integer index given by

k = ±qN, (37)

where q is the symmetry charge carried by the fermion, N is
the multiplicity (flavor degeneracy) of the Fermi surface, and
the sign depends on whether the Fermi surface is electron-like
(+) or hole-like (−). If there are multiple Fermi surfaces in
the system, each one can have an independent integer-valued
cobordism index kα ∈ TP1(Spin � G). The total Fermi sur-
face anomaly is characterized by a U(1)-valued index ν,

ν =
∑

α

kα

vol�α

(2π )d
mod 1. (38)

TABLE II. Cobordism classification of the Fermi surface
anomaly of the loop group symmetry LG by TP1(Spin � G). In
the table, n ∈ N stands for any natural number, and Spin ×H G :=
(Spin × G)/H denotes the quotient of the group product by their
shared normal subgroup. ZF

2 denotes the Fermion parity symmetry.

LG G Spin � G TP1

LU(1) U(1) Spinc Z
LU(n) U(n) Spin ×ZF

2
U(n) Z

LSU(2n) SU(2n) Spin ×ZF
2

SU(2n) 0
L̃U(1) × Z2n Z2n Spin ×ZF

2
Z2n Z2n

LSU(2n + 1) SU(2n + 1) Spin × SU(2n + 1) Z2

L̃U(1) × Z2n+1 Z2n+1 Spin × Z2n+1 Z4n+2

LU(1) � ZT
2 U(1) � ZT

2 Pin−
�ZF

2
U(1) Z

LU(1) �ZF
2
ZT F

4 U(1) �ZF
2
ZT F

4 Pin+
�ZF

2
U(1) Z

LU(1) × ZT
2 U(1) × ZT

2 Pinc 0

Each cobordism index kα is multiplied by the fraction of
Fermi volume vol�α in the Brillouin zone. The Fermi surface
anomaly can vanish in the following cases:

(i) vol�α/(2π )d ∈ Z. The Fermi volume is an integer
multiple of the Brillouin zone volume, i.e., the fermion filling
is an integer per unit cell for every fermion flavor. In this case,
there is no Fermi surface anomaly regardless of the cobordism
index k.

(ii) kα ∼ 0 (meaning kα = 0 when k ∈ Z or kα = 0
mod 2n when k ∈ Z2n). When the cobordism index kα is
trivial, there is no Fermi surface anomaly, regardless of the
filling. This scenario becomes particularly noteworthy when
the cobordism group is Z2n, as in this case kα = 2n multiples
of the (unit-charged) Fermi surface can collectively cancel
the anomaly and become deformable to a symmetric product
state.

(iii) Multiple Fermi surfaces of different cobordism in-
dices kα and Fermi volumes vol �α can cancel the anomaly
collectively, if ν adds up to an integer. Examples of such
have been recently studied in the context of Fermi surface
symmetric mass generation (SMG) [29].

More generally, the Fermi surface SMG refers to the phe-
nomenon that the Fermi surface anomaly vanishes ν ∼ 0.
Still, no symmetric fermion bilinear operator can gap out
the Fermi surface into a symmetric product state. Then the
symmetric gapping of the Fermi surface can only be achieved
through nontrivial interaction effects. It generalizes the con-
cepts of the interaction-reduced SPT classification [76–101]
and symmetric mass generation [102–130] to the case of finite
fermion filling. We will explore more examples of such in the
next subsection.

C. Examples and comments

In the following, we will provide some physical under-
standing of the cobordism classifications in several different
cases. To focus our discussion on the discrete aspect of the
Fermi surface anomaly (as characterized by the integer-valued
cobordism index k), we will restrict our scope to a unit-
charged (q = 1) single Fermi surface of multiplicity N (such
that the cobordism index is k = N) with a generic Fermi
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TABLE III. The summary of the Fermi surface anomaly-free
condition. The system with a certain number of copies can be sym-
metrically gapped. The anomaly is free if and only if ν = k vol�

(2π )d = 0
mod 1. The integer-valued index k is classified by cobordism in
Table II. The case that the normalized Fermi volume vol�

(2π )d is irra-
tional is discussed in Sec. IV C and summarized in the fourth column.
The condition for the normalized Fermi volume being rational num-
ber p/q with p, q ∈ Z is summarized in the third column.

Integer Number of copies to trivialize

LG index k vol�
(2π )d = p/q vol�

(2π )d is irrational

LU(1) Z q Never
LU(n) Z q Never
LSU(2n) 0 1 1
L̃U(1) × Z2n Z2n gcd(q, 2n) 2n
LSU(2n + 1) Z2 gcd(q, 2) 2
L̃U(1) × Z2n+1 Z4n+2 gcd(q, 4n + 2) 4n + 2
LU(1) � ZT

2 Z q Never
LU(1) �ZF

2
ZT F

4 Z q Never
LU(1) × ZT

2 0 1 1

volume vol� (e.g., vol� is some irrational fraction of the
Brillouin zone volume), such that the Fermi surface anomaly
index ν = kvol�/(2π )d is only trivialized when the cobor-
dism index k ∼ 0 belongs to the trivial class.

Our starting point will be the dimension-reduced (0 + 1)-
dimensional effective bulk theory of the Fermi liquid, as
described by the single-mode fermion Hamiltonian Eq. (34).
The objective is to understand the interacting fermionic SPT
classification in this (0 + 1)-dimensional quantum system
and make connections to the classification of Fermi surface
anomaly. After the case by case discussions, we summarize
the anomaly-free condition in Table III.

1. G = U(1) and Z classification

The G = U(1) is the most common symmetry in the
conventional discussion of Fermi liquids, under which the
fermion operator ψ transforms as ψ → eiφψ for φ ∈ [0, 2π ).
The dimension-reduced bulk effective Hamiltonian H =
m(ψ†ψ − 1/2) has only two eigenstates: |nψ = 0〉 and |nψ =
1〉, labeled by the two distinct eigenvalues of the fermion num-
ber operator nψ := ψ†ψ . The excitation gap closes at m = 0
as the ground state switches from one to another, which is also
the point where the particle-hole symmetry ZC

2 is restored.
The gap closing signifies a “quantum phase transition” in
the (0 + 1)-dimensional system. Therefore, m < 0 and m > 0
should be identified as two different SPT phases. If there are
many copies of such system, each copy can undergo the SPT
transition separately, leading to Z-classified SPT phases.

In the presence of the U(1) symmetry, this gap closing
cannot be avoided even under interaction. Because the U(1)
symmetry enforces that the interaction can only take the form
of a polynomial of nψ , which does not change the fact that
|nψ = 0〉 and |nψ = 1〉 are still eigenstates of the interacting
Hamiltonian. Then the two states have to be degenerate on the
locus of 〈nψ 〉 = 1/2 where the particle-hole symmetry ZC

2 is
restored, resulting in the unavoidable gap closing. So the Z

classification is robust against fermion interaction, confirming
the cobordism calculation.

As discussed previously in Sec. II B, the Fermi surface
should be defined as the particle-hole symmetric submanifold
in the phase space. Tuning the mass parameter m across 0 in
the effective theory can be viewed as going across the Fermi
surface in the momentum space. The inevitable gap closing at
m = 0 (or at the particle-hole symmetric point) corresponds
to the protected gapless fermions on the Fermi surface. The
cobordism index k ∈ Z labels the number of gapless fermion
modes [assuming fermions are unit-charged under U(1)] both
at the SPT transition in the effective theory and on the Fermi
surface in the Fermi liquid system.

In this case, the emergent symmetry on the Fermi surface is
L∂�U(1) : ψkF → eiφ(kF )ψkF , which is defined for any smooth
phase function eiφ(kF ) on the Fermi surface ∂�. There is no
further constraint on the choice of the function φ(kF ). The
loop group symmetry is denoted as LU(1) for short in Table II.

2. G = U(n) and Z classification

Apart from carrying U(1) charge, the fermions may also
have internal degrees of freedom. For example, electrons also
carry the SU(2) spin freedom, such that for electronic Fermi
liquid in a metal, the total internal symmetry is U(1) ×ZF

2

SU(2) = U(2). More generally, we may consider a U(n)
symmetry, under which an n-component fermion field ψ

transforms as ψa → Uabψb for U ∈ U(n). The classification
of Fermi surface anomaly for G = U(n) is the same as that
of G = U(1), which is Z, because the protecting symmetry is
only the U(1) = U(n)/SU(n) quotient group. In this case, the
emergent symmetry on the Fermi surface is L∂�U(n) : ψkF →
U (kF )ψkF with U (kF ) ∈ U(n), denoted as LU(n) in Table II.

3. G = SU(2n) and trivial classification

However, once the internal symmetry is reduced from
U(2n) to SU(2n), the classification collapses, and there is no
Fermi surface anomaly for any Fermi volume. From the per-
spective of the (0 + 1)-dimensional effective theory, a SU(2n)
fundamental fermion ψ (which contains 2n flavor components
ψa for a = 1, 2 . . . , 2n) can always be gapped by the follow-
ing multifermion interaction,

Hint =
2n∏

a=1

ψa + H.c. (39)

This interaction always stabilizes a unique SU(2n) singlet
ground state. In the presence of this interaction, the m < 0 and
m > 0 phases can be smoothly tuned to each other without
gap closing. Therefore, the (0 + 1)-dimensional interacting
fermionic SPT states have only a trivial class under the
SU(2n) symmetry.

The vanishing Fermi surface anomaly implies that the
SU(2n) symmetric Fermi liquid at any filling level (of any
Fermi volume) can always be deformed into a gapped product
state without breaking the SU(2n) and translation symmetry.
For n = 1, this gapping term is simply the s-wave spin-
singlet pairing. For n > 1, the gapping will be achieved
by uniform SU(2n)-singlet multifermion condensation. Such
multifermion condensation can happen independently on each
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site (or in each unit cell), resulting in a gapped symmetric
product state.

4. G = Z2n and Z2n classification

When reducing the symmetry from U(2n) to SU(2n), what
essentially happens is that the U(1) = U(2n)/SU(2n) quotient
group is broken to its Z2n subgroup, which is also the Z2n

center of SU(2n). In fact, we only need to keep this essen-
tial Z2n center symmetry, under which the fermion operator
transforms as ψ → e

2π i
2n mψ for m = 0, 1, . . . , 2n. The multi-

fermion condensation interaction Eq. (39) is still the gapping
interaction to trivialize the SPT phase (or to gap out the SPT
phase transition). However, since the Z2n group has only one-
dimensional representations, the fermionic SPT root state (the
generator state) only contains one fermion flavor. Therefore,
the trivialization is achieved at 2n copies of the root state so
that the classification is Z2n.

In particular, for n = 1, a Z2 symmetric Fermi liquid al-
lows the opening of a pairing gap by superconductivity. In this
case, the Z2 classification of the Fermi surface anomaly indi-
cates that for generic Fermi volume, the deformation of the
Fermi liquid to a symmetric product state is only achievable
when there are two fermion flavors (like spin-1/2 electrons)
with the cobordism index k = 2 ∼ 0, which enables the
s-wave spin-singlet pairing. One may wonder, even when
the fermion flavor number is one (like spinless fermions in
condensed matter language) with the cobordism index k = 1,
it is still possible to fully gap the Fermi surface by px + ipy

pairing in (2 + 1)D, although the Fermi surface anomaly is
not canceled for general Fermi volume. However, one should
note that the px + ipy superconductor is not a trivial gaped
state, as it is not deformable to a product state due to its
chiral edge mode. The nonvanishing Fermi surface anomaly
at k = 1 enforces the nontrivial invertible topological order
in the gapped state. This is related to many discussions about
filling-enforced SPT states in the literature [19,131,132].

Another case worth discussing is the n = 2 case, which is
the simplest case where Fermi surface SMG [29] can occur.
In this case, the fermions have a Z4 internal symmetry that
forbids any pairing gap from opening on the fermion bilinear
level. The Z4 classification indicates that every four copies
of the Fermi surface (with generic Fermi volume) can be
deformed to a gapped product state by interaction. A simple
lattice model to demonstrate this phenomenon is described by
the following Hamiltonian:

H =
4∑

a=1

∑
i j

ti jψ
†
iaψ ja + g

∑
i

ψi1ψi2ψi3ψi4 + H.c. (40)

There are four fermion modes ψia (a = 1, 2, 3, 4) on each site
i. The ti j term describes a generic fermion hopping model
on the lattice. Without finetuning the chemical potential, the
fermion system will generally fall in the Fermi liquid phase
with a generic Fermi volume. Gapping of the Fermi surface
can be achieved by the Z4-symmetric interaction g, which
drives four-fermion condensation on each site, leading to a
gapped symmetric product state in the g → ∞ limit. This
gapping mechanism applies to lattice fermions in any spatial

dimension. So the Z4-symmetric Fermi liquid is universally
Z4 classified in any dimension.

A key feature of our dimension counting argument is
that the classification of the Fermi surface anomaly does not
depend on the spacetime dimension. Instead, if we naively
considered (d + 1)D Fermi liquid as a quantum Hall insula-
tor in the 2d-dimensional phase space, we might mistakenly
classify the Fermi surface anomaly by fermionic SPT states
in (2d + 1)-dimensional spacetime. The problem may not be
exposed if the symmetry is U(1) because the classification
is always Z and never gets reduced by the interaction effect.
So we would not tell any difference. However, once the U(1)
symmetry is broken to its Z4 subgroup, the discrepancy will
be manifest. Take d = 2 for example, the phase space is
a four-dimensional space, and the Z4-symmetric fermionic
SPT states in (4 + 1)-dimensional spacetime is Z16 classified,
which clearly deviates from the Z4-classified Fermi surface
anomaly predicted by our theory. We know that Z4 should
be the correct answer because the lattice model Eq. (40)
explicitly trivialized the Fermi surface in multiples of four
(not sixteen). This speaks for the correctness of our dimension
counting approach that the momentum space should be treated
as negative dimensions, and Fermi liquids in any dimension
are topologically equivalent to (0 + 1)-dimensional fermionic
SPT states (with boundaries).

Finally, we would like to comment on the emergent loop
group symmetry on the Fermi surface when the U(1) symme-
try is broken to Z2n. With the multifermion condensation term
g, the low-energy theory takes the form of

H =
∑

kF ∈∂�

εkF ψ
†
kF

ψkF + · · ·

+ g
∑

{k(a)
F }∈∂�

δ∑2n
a=1 k(a)

F

2n∏
a=1

ψk(a)
F

+ H.c., (41)

which is symmetric under

ψkF → ei 2π p
2n eiφ(kF )ψkF , (42)

with p = 0, 1, . . . , 2n labeling a Z2n group element and
φ(kF ) ∼ φ(kF ) + 2π being a smooth function of kF subject
to the following constraint:

∀
2n∑

a=1

k(a)
F = 0 :

2n∑
a=1

φ(k(a)
F ) = 0 mod 2π. (43)

All the U(1) functions eiφ(kF ) satisfying the constraint in
Eq. (43) form a group under pointwise multiplication. We
denoted this constrained loop group as L̃∂�U(1). Then the
emergent symmetry on the Fermi surface is L̃∂�U(1) × Z2n,
or shorthanded as L̃U(1) × Z2n in Table II.

5. G = SU(2n + 1) and Z2 classification

We have discussed the case of SU(2n) flavor symmetry
with an even number of fermion flavors. Now we turn to the
case when the fermion flavor number is odd and the flavor
symmetry is SU(2n + 1). The major difference here is that
the SU(2n + 1) flavor symmetry group no longer contains
the ZF

2 fermion parity symmetry as a subgroup. In this case,
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the Fermi surface anomaly is Z2 classified. The physical
argument is that with a single copy of the SU(2n + 1) fun-
damental fermion ψ (with contains 2n + 1 flavor components
ψa for a = 1, 2, . . . , 2n + 1), it is no longer possible to write
down the SU(2n + 1)-singlet multifermion gapping term of
the form

∏2n+1
a=1 ψa + H.c. in the (0 + 1)-dimensional effec-

tive theory, because such a term contains an odd number
of fermion operators and does not respect the ZF

2 fermion
parity symmetry. Therefore, one has to double the system and
introduce two SU(2n + 1) fundamental fermions ψ1 and ψ2,
such that the following gapping interaction becomes possible

Hint =
2n∏

a=1

ψ1aψ2a + H.c. (44)

Similar multifermion interaction is applicable to gap out the
Fermi surface at a generic Fermi volume if there are two
copies of SU(2n + 1) fundamental fermions on the Fermi
surface, which explains the Z2 classification. This is also an
example of the Fermi surface SMG.

6. G = Z2n+1 and Z4n+2 classification

If the SU(2n + 1) flavor symmetry is broken to its center
Z2n+1 symmetry group, under which the fermion operator
transforms as ψ → e

2π i
2n+1 mψ for m = 0, 1, . . . , 2n + 1, the

Fermi surface anomaly classification will be Z4n+2. The
physics is essentially the same as the G = SU(2n + 1) case,
which relies on the same multifermion interaction Eq. (44)
to drive the SMG in the (0 + 1)-dimensional effective the-
ory. Similar interaction also drives Fermi surface SMG. The
SMG gapping mechanism only works when the fermion flavor
number is 4n + 2, which is consistent with the Z4n+2 classifi-
cation.

7. G = U(1) � ZT
2 and Z classification

We can extend our discussion to anti-unitary symmetries
[133,134], which will be generally denoted as time-reversal
symmetries ZT

2 . There are different ways that an anti-unitary
symmetry can be combined with the U(1) charge conservation
symmetry of the fermion. Let us first consider the case of
G = U(1) � ZT

2 , where the U(1) rotation does not commute
with the anti-unitary symmetry action T ∈ ZT

2 and T 2 = +1.
More specifically, the fermion operator transforms as

U(1) : ψ → eiφψ,

ZT
2 : ψ → Kψ,ψ† → Kψ†, (45)

where KiK−1 = −i denotes the complex conjugation operator
that acts on all complex coefficients in the operator algebra.

In this scenario, the presence of the anti-unitary sym-
metry does not alter the anomaly classification. The
(0 + 1)-dimensional effective theory, characterized by the
Hamiltonian H = m(ψ†ψ − 1/2), still includes the mass term
m, which is symmetric under ZT

2 . As the anti-unitary symme-
try does not impose additional restrictions on the Hamiltonian,
the SPT classification remains unchanged from the case with
G = U(1), which is Z. As a result, the Fermi surface anomaly
is still classified as Z.

8. G = U(1) �ZF
2
ZTF

4 and Z classification

Another way to combine the anti-unitary symmetry with
U(1) is to consider G = U(1) �ZF

2
ZT F

4 , meaning that the
U(1) rotation does not commute with the generator T ∈ ZT F

4
of the anti-unitary symmetry, but T 2 = −1 [or more precisely,
T squares to the fermion parity operator, hence the anti-
unitary symmetry is fourfold and sharing the ZF

2 subgroup
with U(1)]. This is actually the standard time-reversal sym-
metry of electrons that enforces a Kramers doublet [135]. The
fermion operator ψ = (ψ↑, ψ↓)ᵀ is a doublet, which trans-
forms under the symmetry as

U(1) : ψ → eiφψ,

ZT F
4 : ψ↑ → Kψ↓, ψ↓ → Kψ↑. (46)

The time-reversal symmetry is denoted as a Z4 group because
its twofold action is nontrivial and corresponds to the fermion
parity operation (ψ → −ψ) that falls in the ZF

2 subgroup of
U(1).

The mass term H = m(ψ†ψ − 1/2) is still allowed in the
effective Hamiltonian under the ZT F

4 symmetry. As the anti-
unitary symmetry does not introduce new restrictions, the SPT
classification remains the same as the G = U(1) case, which
is Z. Therefore, the Fermi surface anomaly is also Z classified
in this case.

9. G = U(1) × ZT
2 and trivial classification

We further consider G = U(1) × ZT
2 where the ZT

2 anti-
unitary symmetry operation commutes with the U(1) sym-
metry operation. The symmetry action can be realized on the
fermion operator as

U(1) : ψ → eiφψ,

ZT
2 : ψ → Kψ†, ψ† → Kψ. (47)

The anti-unitary symmetry ZT
2 here should be interpreted as a

particle-hole symmetry, which maps ψ and ψ† to each other.
In the presence of this symmetry, the original mass term

H = m(ψ†ψ − 1/2) is forbidden in the effective Hamilto-
nian. A symmetry-allowed mass term can only be realized
in the doubled system, where the fermion operator ψ =
(ψ+, ψ−)ᵀ must contain two components, and the symmetry
G = U(1) × ZT

2 acts as

U(1) : ψ± → eiφψ±,

ZT
2 : ψ± → Kψ

†
∓, ψ

†
± → Kψ∓, (48)

such that two anticommuting mass terms are allowed

H = m(ψ†
+ψ+ − ψ

†
−ψ−) + m′(iψ†

−ψ+ + H.c.). (49)

It is possible to tune smoothly from m < 0 to m > 0 without
closing the excitation gap of this (0 + 1)-dimensional system
in the presence of m′ �= 0. Therefore, all gapped state belongs
to the same SPT phase and the SPT classification is trivial.

Mapping to the Fermi surface, imposing the particle-hole
symmetry enforces the Fermi surface to be perfectly nested
[136]. Tuning m from the inside (m < 0) to the outside (m > 0)
of the Fermi surface, two bands cross at the Fermi level. In this
case, a band hybridization term (similar to m′) is sufficient to
gap out the Fermi surface fully without symmetry breaking

045123-11



DA-CHUAN LU, JUVEN WANG, AND YI-ZHUANG YOU PHYSICAL REVIEW B 109, 045123 (2024)

(note that the nesting momentum is already zero in this case).
Therefore, the system is free of Fermi surface anomaly, con-
sistent with the trivial classification.

V. SUMMARY

In this paper, we propose an approach to classify the Fermi
surface anomaly by leveraging the correspondence between
the Fermi liquid and the Chern insulator in the phase space.
Specifically, we suggest using the classification of interact-
ing fermionic symmetry-protected topological (SPT) states
in the phase space to determine the Fermi surface anomaly.
The noncommutative geometry of the phase space implies
that the phase-space SPT states follow unusual dimension
counting, where the momentum space dimensions are treated
as negative dimensions. As a result, the effective spacetime
dimension for the classification problem is reduced to (0 +
1)D. To support our argument, we analyze a phase-space
Dirac fermion field theory of fermionic SPT states and ap-
ply the dimension reduction technique after resolving the
noncommutative geometry. Our proposed approach offers a
comprehensive and rigorous way to classify the Fermi surface
anomaly, providing valuable insights into the universal low-
energy features of electrons in metals.

To summarize, the Fermi surface anomaly can be defined
by the projective representation of the internal symmetry G on
the interstitial defect in the fermion system. It is characterized
by a U(1)-valued anomaly index

ν =
∑

α

kα

vol�α

(2π )d
mod 1, (50)

which is a sum of contributions from each Fermi surface
labeled by α. Each term in the summation contains an
integer-valued index kα multiplied with a real-valued fraction
vol�α/(2π )d . The ratio vol�α/(2π )d describes the fraction
of Fermi volume vol�α in the Brillouin zone. The integer
kα = ±qαNα is given by the fermion charge qα and multiplic-
ity (flavor degeneracy) Nα of the Fermi surface and classified
by the cobordism group TP1(Spin � G). Assuming a generic
Fermi volume for each Fermi surface [i.e., vol�α/(2π )d is not
a rational number], the Fermi surface anomaly is determined
by the cobordism index kα ∈ TP1(Spin � G). The classifica-
tion result for a list of internal symmetries G is shown in
Table II.

The complete gapping of the Fermi surface into a product
state is feasible if and only if the Fermi surface anomaly
vanishes, i.e., ν ∼ 0. This can occur through the opening of
a superconducting gap (when G = Z2) or a perfect-nested
band hybridization gap (when G = U(1) × ZT

2 ) at the free
fermion level, when the fermion flavor number falls in the
trivial cobordism class. Nevertheless, unconventional mech-
anisms exist for gapping, referred to as the Fermi surface
symmetric mass generation (SMG) [29], that can solely be re-
alized via interaction effects when the Fermi surface anomaly
vanishes but no fermion bilinear gapping term is allowed due
to symmetry constraints. One informative example of such is
the quartet (charge-4e) fermion condensation [137–146], on
Fermi surfaces with internal G = Z4 symmetry, where the
Fermi surface anomaly is Z4 classified. In this scenario, every
four multiples of Fermi surfaces can be collectively gapped

TABLE IV. Classification of codimension-p Fermi surface
anomaly with LU(1) symmetry in (3 + 1)D spacetime.

Fermi surface Fermi sea

codim p dim dim deff + 1 TPp

Weyl points 3 0 1 2 + 1 Z × Z
Fermi rings 2 1 2 1 + 1 0
Fermi surfaces 1 2 3 0 + 1 Z

via four-fermion interactions. The fact that this gapping mech-
anism is feasible in all dimensions aligns with our assertion
that the Fermi surface anomaly is universally categorized by
(0 + 1)-dimensional fermionic SPT phases. More cases of
Fermi surface trivialization are summarized in Table III.

It is worth mentioning that we have only focused on the
codimension-1 Fermi surface in this paper. However, the
synthetic dimension reduction argument in Eq. (36) applies
to more general codimension-p Fermi surfaces. Assuming
the spatial dimension is d , a codimension-p Fermi surface
will be a (d − p)-dimensional closed manifold in the mo-
mentum space, which is the boundary of a δ = (d − p +
1)-dimensional Fermi sea. As the momentum space (Fermi
sea) dimension δ should be considered as negative dimension,
the effective spatial dimension deff for SPT classification is
deff = d − δ = p − 1, and the corresponding effective space-
time dimension is deff + 1 = p. Therefore, we propose:

The codimension-p Fermi surface anomaly with the loop
group symmetry LG is classified by G-symmetric interacting
fermionic SPT phases in p-dimensional spacetime, which is
given by TPp(Spin � G).

For example, consider LU(1) symmetric generalized Fermi
surfaces in d = 3 dimension, classifications of Fermi surface
anomalies are summarized in Table IV. The results are consis-
tent with the understanding that Fermi rings are topologically
unprotected with U(1) symmetry only, but Weyl points and
Fermi surfaces are topologically stable.

The classification of Fermi surface anomalies can help us
understand the possible ways a Fermi surface can be gapped
and the role of interactions in this process. The recent pro-
posal of the ancilla qubit approach [147,148] for pseudogap
physics draws a connection between the pseudogap metal to
Fermi liquid transition with the Fermi surface SMG transi-
tion in the ancilla layers, as both transitions are described by
field theories of fermionic deconfined quantum critical points
[114,118,149–151]. The Fermi surface anomaly constrains the
dynamical behavior of such field theories and can potentially
shed light on the open problem of pseudogap transition in
correlated materials.
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FIG. 4. Single-particle modes in (a) coherent state lattice basis,
(b) coordinate space basis, (c) momentum space basis. Each dot
represents a mode. The three basis choices are related by Fourier
transformation (F.T.).

supported by the Center for Mathematical Sciences and
Applications at Harvard University and NSF Grant No. DMS-
1607871 “Analysis, Geometry and Mathematical Physics.”

APPENDIX A: FORMULATION OF CANONICAL
QUANTIZATION

The goal of this Appendix is to develop the formulation
to justify the canonical quantization approach used in the
main text. We will first start with the simple case of a two-
dimensional phase space spanned by one position and one
momentum, and then generalize to higher-dimensional cases
more systematically.

In the conventional field theory formulation, fermion
modes are labeled by either position, denoted by x, or momen-
tum, denoted by k—but not simultaneously. Conversely, in the
phase-space framework, a mode ψ (x, k) is characterized by
both position and momentum. To make sense of this, one can
imagine a lattice of coherent states in the phase space, with
the lattice spacing ax and ak along the respective directions of
coordinate and momentum, see Fig. 4(a).

Assuming the phase-space unit-cell volume axak � 2π is
substantially larger than the Heisenberg uncertainty limit of
2π (akin to the Planck volume), coherent states at different
sites will be nearly orthogonal (with any mode overlap dimin-
ishing exponentially), such that each fermion mode ψ (x, k)
can be defined on the phase-space lattice site almost as an
independent mode. Of course, we do not expect such a loose
lattice in the phase space to give the complete description
of all fermion modes (many modes are missing). But for
formulating the field theory, it suffices to focus only on the
low-energy modes that correspond to smooth-varying ψ (x, k)
field in the phase space, justifying the sampling of the fermion
field on a large-scale sparse lattice. With this understanding,
the following phase-space field theory Hamiltonian can be

defined:

H =
∫

dx dk ψ (x, k)†(i∂x�x + i∂k�k + m(k)�0)ψ (x, k).

(A1)

The integration
∫

dx dk should be understood as the mode
summation on the phase-space lattice.

However, we also have the flexibility to represent the
fermion field purely in the coordinate space, as in Fig. 4(b),
or purely in the momentum space, as in Fig. 4(c), which are
defined by the following Fourier transforms:

ψ (x, x̃) :=
∫

dk ψ (x, k)eikx̃,

ψ (k̃, k) :=
∫

dx ψ (x, k)e−ik̃x. (A2)

For example, in the coordinate space representation, as shown
in Fig. 4(b), the fermion mode ψ (x, x̃) is jointly labeled by
a large-scale coordinate x with a lattice spacing ax and a
small-scale coordinate x̃ varying within the range of 2π/ak .
The assumption axak � 2π ensures that 2π/ak � ax, which
allows us to arrange all modes using a unified coordinate x + x̃
without worrying about different modes overlapping in their
coordinates.

Thus we redefine ψ (x, x̃) as ψ (x + x̃), and rewrite the
Hamiltonian (A1) as

H =
∫

dx dx̃ ψ (x + x̃)†(i∂x�x + x̃�k

+ m(−i∂x̃ )�0)ψ (x + x̃). (A3)

The replacements
∫

dk → ∫
dx̃ and i∂k → x̃ are enabled by

the Fourier transform from k to x̃. Given that x and x̃ can be
unified into a single coordinate, the mode summation can be
denoted as a single integral

H =
∫

dx ψ (x)†(i∂x�x + x�k + m(−i∂x )�0)ψ (x). (A4)

The unification of x + x̃ → x does not impact the topological
properties. For example, the term x̃�k describes a kink of the
�k fermion mass in the x direction. This scenario is topolog-
ically equivalent to the term x�k with x̃ replaced by x. Since
we are only going to use the field theory tools to analyze topo-
logical properties like mass domain walls and zero modes, the
unification of large- and small-scale coordinates is warranted.

The above formulation can be seamlessly extended to
phase spaces of higher dimensions. As discussed in the main
text, the bulk of the Fermi surface is the Fermi sea, which can
be alternatively viewed as the phase-space Chern insulator.
The phase space is parameterized by real space coordinates xi

and momentum space coordinates ki. The phase-space Chern
insulator is given by Eq. (3),

H =
∫

dd xdd kψ†(i∂x · �x + i∂k · �k + m(k)�0)ψ, (A5)

where �i are the Gamma matrices from the complex Clifford
algebra C�2d+1. The mass term only depends on the momen-
tum and negative inside the Fermi sea � while positive outside
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the Fermi sea,

m(k)

{
� 0 if k ∈ �,

> 0 if k /∈ �.
(A6)

To define the theory in the phase space, we consider sam-
pling the fermion field ψ on a phase-space lattice, with the
lattice spacing ax and ak in each position and momentum
direction. The single-particle wave functions are taken to be
coherent states located on the phase-space lattice sites, such
that the fermion modes are by (x, k). Assuming axak � 2π ,
such that the fermion modes are almost independent in the
phase space, allowing us to formulate Eq. (A5).

There are three representations of the fermion field,
(i) the coherent state lattice representation ψ (x, k),
(ii) the position space representation ψ (x, x̃),
(iii) the momentum space representation ψ (k̃, k).
The small-scale coordinates x̃ and k̃ emerge from the

Fourier transformation

ψ (x, x̃) :=
∫

dd k ψ (x, k)eik·x̃,

ψ (k̃, k) :=
∫

dd x ψ (x, k)e−ik̃·x. (A7)

Under the Fourier transformation, Eq. (A5) can be rewritten
as

H =
∫

dd xdd x̃ ψ†(i∂x · �x + x̃ · �k + m(−i∂x̃)�0)ψ,

H =
∫

dd k̃dd k ψ†( − k̃ · �x + i∂k · �k + m(k)�0)ψ,

(A8)

As far as topological properties are concerned, we can unify
the position coordinate x + x̃ → x, as well as the momentum
coordinate k + k̃ → k, as explained previously. This enables
us to reformulate the Hamiltonian purely in the position space
or the momentum space as

H =
∫

dd x ψ†(i∂x · �x + x · �k + m(−i∂x)�0)ψ,

H =
∫

dd k ψ†( − k · �x + i∂k · �k + m(k)�0)ψ, (A9)

as if we are allowed to make the replacement i∂k → x or
i∂x → −k following the convention of canonical quantization.

APPENDIX B: EFFECTIVE HAMILTONIAN UNDER
DOMAIN WALL PROJECTION

The domain wall of the Chern insulator hosts gapless
modes. In this Appendix, we present details of obtaining
effective Hamiltonian that describes these modes. This proce-
dure is vastly used in reducing the formal Hamiltonian Eq. (3)
to the physical Hamiltonian.

We begin with ordinary Chern insulator in dimension d ,
H = ψ†hψ , and

h =
d∑

i=1

�ii∂xi + m�0 (B1)

where �0∼d are d + 1 mutually anti-commuting matrices.
Suppose the mass term changes sign along x1 direction and
m(x1 = 0) = 0. One side is the Chern insulator, the other
side is the vacuum. Moreover, there are gapless modes on
the codimension 1 space at x1 = 0. We define the projection
operator P1 = 1+i�1�0

2 , and obtain the effective Hamiltonian
by hbdy = P1hP1. The projection operator anticommutes with
�0,1 and projects them out, while leaves �2∼d untouched,
since they commute,

hbdy = P1

d∑
i=2

�ii∂xi P1. (B2)

When restricting to the nonzero eigenvalue sector of P1, the
effective Hamiltonian is

h̃bdy =
d∑

i=2

�̃ii∂xi . (B3)

In general, the Hamiltonian can have several mass terms with
�a

m that creating mass domain walls along different directions
xia , whose corresponding �-matrix is �ia . One can construct
the projection operators sequentially,

Pa = 1 + i�ia�a
m

2
(B4)

and obtain the effective Hamiltonian by projection hbdy =
(
∏

a Pa)h(
∏

a Pa) and restricting to the sector with nonzero
eigenvalues.

a. Case 1. Reduction the formal Hamiltonian to physical
Hamiltonian. For example, the Hamiltonian of the 2d Chern
insulator is

h2d = σ 1i∂x1 + σ 3i∂x2 + mσ 2. (B5)

Suppose putting the Chern insulator in the negative half plane
x1 < 0, then there is a gapless modes along x2 at x1 = 0. The
projection operator is σ 0−σ 3

2 . Under the projection and restrict-
ing to the nonzero eigenvalue sector, the effective Hamiltonian
for the chiral gapless mode is

h̃bdy = i∂x2 . (B6)

This real space 2d Chern insulator can be thought of
the formal description of the phase-space Chern insulator in
Eq. (3). Instead of having real space coordinates x1,2, we have

hxk = σ 1i∂x + σ 3i∂k + m(k)σ 2. (B7)

The mass profile is m > 0 for k inside the interval (−kF , kF )
and m < 0 otherwise. The detail of the function m(k) does not
matter, only the sign counts. Then there are two domain walls
at ±kF , and the gapless modes are described by h̃bdy = ±i∂x

following previous derivation.
b. Case 2. reduction in classification problem. For the clas-

sification of the Fermi surface anomaly, we reduce the formal
Hamiltonian in various dimensions to a 0d Hamiltonian. We
give an example in 3d as an illustration. The Hamiltonian for
the phase-space Chern insulator is

h =
3∑

i=1

�i
xi∂xi + �i

ki∂ki + �0m, (B8)
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where �i
x, �

i
k, �

0 are 7 mutually anticommuting ma-
trices. Here, we choose �x = (σ 1000, σ 200, σ 310), �k =
(σ 320, σ 331, σ 332), �0 = σ 333. They can be constructed as
Clifford algebra. To convert the formal Hamiltonian to the
physical one, the i∂ki is substituted as xi as mentioned in the
main text,

h =
3∑

i=1

�i
xi∂xi + �i

kxi + �0m. (B9)

These xi change sign when xi = 0, and create domain walls
therein. First, we project the Hamiltonian onto the domain
wall created by x1, the projection operator is σ 000+σ 220

2 the
resulting Hamiltonian is

h = −σ 20i∂x2 − σ 10i∂x3 + σ 31x2 − σ 32x3 − mσ 33. (B10)

The projection operator for x2 is σ 00+σ 11

2 , the resulting Hamil-
tonian is

h = −σ 1i∂x3 − σ 2x3 − mσ 3. (B11)

And after projecting to the x3 = 0,

h = m. (B12)

This reproduces Eq. (34) with a specific dimension.
Note that the interaction effect is considered after the pro-

jection, since on-site interaction will appear as a generic form
after the projection to the 0d Hamiltonian. And the interaction
is much simpler in the projected 0d Hamiltonian, whose effect
is discussed in the main text.

APPENDIX C: LOOP GROUP SYMMETRY

As discussed in Sec. III A, the Fermi liquid phase has emer-
gent loop group symmetry. To illustrate its physical meaning,
we focus on 2d in this Appendix. The Fermi surface is pa-
rameterized by an angular variable θ , and the fermions on the
Fermi surface can transform with different phases depending
on the angular variable,

LU(1) : ψθ → eiφ(θ )ψθ, (C1)

where φ(θ ) is a continuous function, and φ(θ ) ∼ φ(θ ) +
2π . This loop U(1) symmetry is different from the naive

TABLE V. The phase φ(θ ) = φ0 + ∑
n cn cos(nθ ) + sn sin(nθ )

can be expanded as a Fourier series, and each order has the physical
meaning.

Symbol Physical meaning

φ0 Global U(1) rotation
c1 Translation in x direction
s1 Translation in y direction
c2, s2 Press and stretch in perpendicular directions
... ...

expectation of the symmetry, which is U(1)∞. One prominent
difference is that the loop U(1) contains only one U(1) sub-
group but U(1)∞ has infinite U(1) subgroups.

The physical meaning of the phase function is summarized
in Table V. The U(1) subgroup of LU(1) is obtained by setting
φ(θ ) to be a constant, it corresponds to the total charge conser-
vation symmetry. The U (1) subgroup of LU(1) is obtained by
setting φ(θ ) to be a constant, it corresponds to the total charge
conservation symmetry. Since φ(θ ) is a periodic function, it
can be expended as Fourier series. Besides the constant part,
the first-order sin(θ ) corresponds to translation symmetry
along the y direction. Because sin(θ ) states that fermion at the
top of the Fermi surface transforms by a positive phase while
the fermion at the bottom transforms by a negative phase, this
is exactly the action of the translation symmetry along the
y direction. Similarly cos(θ ) corresponds to the translation
along x direction. Therefore, the loop U (1) symmetry can
be thought of as emanant from the lattice translation and
charge conservation symmetry. The higher order expansion is
less obvious, and it is interesting to elaborate their physical
meaning.

The discrete cyclic loop group is obtained by condensing
multiple charge object and breaking LU(1) to discrete sub-
groups. The generalization to LU(n), LSU(2n) can also be
understood using the series expansion point of view. For ex-
ample, the zeroth order corresponds to the global U(n), SU(n)
symmetry and first order corresponds to the translation
symmetry.
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