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Collective excitations and screening in two-dimensional tilted nodal-line semimetals
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Topological nodal-line semimetals are characterized by symmetry-protected one-dimensional band-touching
lines or loops, which give rise to their peculiar Fermi surfaces at low energies. Furthermore, if time reversal
or inversion symmetry breaking tilts the bands, anisotropic Fermi surfaces simultaneously hosting electron and
hole carriers can also appear. We analytically investigate the linear density-density response function of a two-
dimensional tilted nodal-line semimetal in the intrinsic and doped regimes. Despite the anisotropic electronic
bands, the polarizability remains isotropic in our model system. We find that the plasmon dispersion in the
long-wavelength limit exhibits a standard behavior proportional to the wave vector’s square root, characteristic of
two-dimensional electron liquids. Tilting enhances the plasmon frequency, and the Drude weight does not depend
on the carrier density at low doping levels. Unlike the intrinsic and highly doped systems, static polarizability
has two distinct singularities at finite wave vectors in the low doped regimes. These two singularities result in
beat patterns in the Friedel oscillations.
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I. INTRODUCTION

Topological phases of matter are an emerging subject in
modern condensed-matter physics that has sparked consider-
able interest in the past two decades. Even though the starting
point of these topological materials was topological insulators
characterized by their gapped bulk electronic energy spectrum
and symmetry-protected gapless surface states [1–3], gapless
topological materials have been gaining significant attention
lately. These appealing materials are known as topological
semimetals, they possess zero-gap bulk states [4,5], and they
may also support nontrivial surface states. In topological
semimetals, the valence and conduction bands touch each
other either in isolated points or along open or closed lines
in the Brillouin zone (BZ). The topological band crossing in
the bulk is either accidental or symmetry-enforced [6]. The
low-energy excitations around the nodal points are described
by the massless Dirac equation [7–10], with the representative
examples being Na3Bi [11] and Cd3As2 [12] for the Dirac
semimetals, as well as TaAs [13] and TaP [14] for the Weyl
semimetals. Breaking the time-reversal or inversion symmetry
in Dirac semimetal results in a Weyl semimetal with twofold-
degenerate point nodes in momentum space [5].

Dirac cones in Dirac or Weyl semimetals might be tilted
[15,16], and several interesting phenomena are associated
with that [17–20]. These tilted semimetals are usually clas-
sified according to the geometry of their Fermi surfaces.
For instance, in so-called type-II Weyl semimetals, overtilted
Dirac cones give rise to particle and hole pockets at the inter-
section of the Dirac cone with the Fermi level [15].

In another family of topological semimetals, namely nodal-
line semimetals (NLSMs), band crossing takes place along a
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line or closed loop in the BZ [21,22]. A large variety of ma-
terial candidates are proposed for NLSMs. Cu3PdN [23] and
CaAgAs [24] are among the vast number of theoretical candi-
dates, whereas ZrSiS [25,26], NbAs2 [27], and YbMnSb2 [28]
are examples of experimentally validated three-dimensional
(3D) NLSMs. Similar to Dirac cones, the nodal line can be
tilted too, due to time reversal or inversion symmetry break-
ing. Such tilted nodal lines are observed in several materials,
including ZrSiS, HfSiS, and ZrSiSe [29,30].

Nodal-line semimetals are investigated in two dimensions
as well. Jin et al. predicted a family of two-dimensional
(2D) nodal-line semimetals MX with M = Pd, Pt, and X =
S, Se, Te [31] using an evolutionary algorithm and first-
principles calculations, and Lu et al. suggested a possible
realization of 2D NLSMs in a mixed honeycomb-kagomé
lattice structure [32]. A Lieb lattice structure for compounds
like Be2C and BeH2 is also suggested as a feasible candidate
for robust two-dimensional NLSMs [33,34]. Time-reversal or
inversion symmetry breaking can induce band tilting in two
dimensions, too.

Various properties of different types of NLSMs have been
extensively explored so far (see, e.g., Ref. [6], and references
therein). Optical conductivity [35,36] and thermoelectric re-
sponses [37] of two- and three-dimensional NLSMs are
investigated. As for the collective excitations, the plasmon
frequency of 3D NLSMs at long wavelength shows an n1/4

dependence on the carrier density n, which is distinct from
the ordinary electron liquids, and Dirac or Weyl semimetals
[38]. The Friedel oscillations in 3D NLSMs exhibit an angle-
dependent algebraic power-law decay [39]. Also, a recent
study [40] of the collective modes of a 2D nonsymmorphic
NLSM with an open band-touching line predicts a strongly
anisotropic plasmon dispersion in these materials.

This paper considers an effective low-energy two-band
Hamiltonian with a circular nodal loop and a linear tilt term.
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We investigate the zero-temperature linear density-density
response function in the static and dynamic regimes at dif-
ferent carrier concentration levels of this system. The rest
of this paper is organized as follows. Section II introduces
the low-energy effective Hamiltonian of a 2D tilted NLSM
and discusses its different doping regimes. In Sec. III, we
analytically calculate the imaginary and real parts of the
linear density-density response function in the intrinsic and
doped regimes. The static limit behavior and screening of the
charged impurity are discussed in Sec. IV, while Sec. V is
devoted to a discussion of the collective density mode and the
behavior of plasmon frequency at long wavelength as well as
arbitrary wave vectors within the random phase approxima-
tion (RPA). We conclude and summarize our main findings in
Sec. VI. Finally, Appendix A illustrates the steps for obtain-
ing an effective two-band continuum model Hamiltonian of
a 2D NLSM from the tight-binding model of a Lieb lattice,
and in Appendix B we present the details of calculating the
dynamical polarizability.

II. MODEL HAMILTONIAN

We consider the following effective low-energy single-
particle model Hamiltonian, for a two-dimensional semimetal
with a circular nodal line and linear tilt (h̄ = 1) [41,42]:

Ĥ0 = u · k τ̂0 + 1

2m

(
k2 − k2

0

)
τ̂x. (1)

Here, u is the tilt velocity vector, τ̂0 and τ̂x are, respec-
tively, the two by two identity matrix and x-component of the
Pauli matrix, acting on the pseudospin (i.e., orbital) degree of
freedom, m is the band mass, k = |k| =

√
k2

x + k2
y is the mag-

nitude of the wave vector, and k0 is the radius of the nodal loop
in the absence of tilt. Note that we can arrive at the effective
Hamiltonian (1) from the low-energy limit of tight-binding
models. For an example of such models in a Lieb lattice, see
Appendix A. The linear tilt term can have different origins. A
feasible scenario is an in-plane electric field that breaks the
inversion symmetry and induces spin-orbit coupling (SOC).
Such a SOC tilts two spin subbands in opposite directions (see
Appendix A for details). As our results are independent of the
tilt direction and real spin degree of freedom, in the following
we will work with the simple spin-independent Hamiltonian
of Eq. (1).

Eigenvalues corresponding to Hamiltonian (1) are given by

εk,s = u · k + s

∣∣k2 − k2
0

∣∣
2m

, (2)

where s = +(−) labels the conduction (valance) band. More-
over, the eigenstates of our model Hamiltonian are readily
obtained as

|k, s〉 = 1√
2

(
1

s sgn
(
k2 − k2

0

)
)

. (3)

Here, sgn(x) is the sign function. The tilt term considered in
Eq. (1) does not affect the eigenstates, and in the u → 0 limit
we recover the model Hamiltonian for untilted 2D NLSMs
[35]. It is worth noting that in the BZ of real materials, tilted
nodal lines should appear in pairs of opposite tilt velocities,
either at the same point or at different valleys in the BZ.

FIG. 1. (a) Low-energy spectrum of a 2D tilted NLSM [in units
of ε0 = k2

0/(2m)], vs kx/k0 for ky = 0. (b)–(e) Fermi surfaces for
(b) εF = 0, (c) εF = 0.3 ε0, (d) εF = 0.8 ε0, and (e) εF = 1.5 ε0. Elec-
tron and hole portions of the Fermi surfaces are identified by blue and
red, respectively. We have fixed the tilt velocity at u = 0.3 v0, with
v0 = k0/m in all plots.

As we will see later, our results are independent of the tilt
direction; therefore, additional nodal lines will contribute to
the degeneracy factor. In the following, without losing the
generality of our problem, we will take the tilt along the x
direction and set uy = 0.

In Fig. 1, panel (a) shows the energy dispersion of a 2D
tilted NLSM, and panels (b)–(e) illustrate the Fermi surfaces
for the intrinsic (i.e., undoped) system and for different doping
values. A finite tilt rotates the band-touching circle around
the y-axis, partially lifting the valence band into positive en-
ergies and pushing down the conduction band into negative
energies. This rotation leads to the simultaneous appearance
of electron and hole pockets at the Fermi levels in the intrin-
sic and low-doped systems. We can readily find the density
of states per unit area (DOS) from the energy dispersions,
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ρ(ε) = ρ0[2 − �(|ε| − εm)], where ρ0 = gm/(2π ) is the
DOS of an ordinary 2D electron gas [43], with g the total
degeneracy factor, �(x) is the Heaviside step function, and
εm = ε0(1 + u2/v2

0 ), where v0 = k0/m is the energy corre-
sponding to the extremum point of the conduction band, and
ε0 = k2

0/(2m). Note that the Fermi surface becomes a full disk
for |εF| > εm, where εF is the Fermi energy [see Fig. 1, panel
(e)]. Considering only electron-doped (i.e., εF > 0) systems,
just for the sake of definiteness, we can easily find the Fermi
energy in terms of the extra carrier density

εF =
{

ne/(2ρ0), ne � nm,

(ne/ρ0) − εm, ne > nm,
(4)

where ne is the doped carrier concentration, measured with
respect to the intrinsic limit, i.e., εF = 0, and nm = 2ρ0εm is
the density at εF = εm.

III. NONINTERACTING DENSITY-DENSITY
RESPONSE FUNCTION

When an electronic system is subjected to an external elec-
tromagnetic perturbation, the charge distribution changes, and
the system becomes polarized. The noninteracting density-
density response function, or the polarizability of a 2D NLSM,
is given by the bare bubble diagram [43]

�(q, ω) = g

S

∑
kss′

Fss′ (k, k′)
f (εk,s) − f (εk′,s′ )

h̄ω + εk,s − εk′,s′ + i0+ , (5)

where S is the sample area, k′ = k + q, f (ε) =
1/[exp (β(ε − μ)) + 1] is the Fermi-Dirac distribution
function, with β = 1/(kBT ) the inverse temperature, μ is
the chemical potential, and Fss′ (k, k′) = |〈k, s|k′, s′〉|2 =
[1 + ss′ sgn(k2 − k2

0 ) sgn(k′2 − k2
0 )]2/4 is the form factor

obtained from the overlap between eigenstates. Note that this
form factor is either 0 or 1.

In the following subsections, we present analytic results
for the real and imaginary parts of �(q, ω) at different doping
regimes and zero temperature, where f (ε)|T →0 = �(εF − ε).

A. Polarizability of intrinsic 2D NLSM

In an intrinsic NLSM, the Fermi energy is zero, and the
imaginary part of �(q, ω) reads

Im �(q, ω) = 2ρ0k0

q

∑
s=±1

s
√

κ2 − ν2
s �

(
κ2 − ν2

s

)
, (6)

where κ =
√

εm/ε0 =
√

1 + u2/v2
0 , and ν± = ω/(v0q) ±

q/(2k0).
In Fig. 2, panel (a), the shaded regions show the

electron-hole continuum (EHC), where Im �(q, ω) is differ-
ent from zero. ω± = q2/(2m) ± κv0q separates EHC from
Im �(q, ω) = 0 regions, where single electron-hole excitation
is not allowed.

Regions of the EHC labeled as I and II in Fig. 2, panel (a),
refer to areas of the ω-q plane defined through

I : ν2
+ < κ2; ν2

− < κ2,

II : ν2
+ > κ2; ν2

− < κ2. (7)

FIG. 2. Electron-hole continuum of a 2D tilted NLSM with u =
0.3 v0, in the intrinsic regime (a), and the low-doped regime with
εF = 0.3 ε0 (b). Different colors point to regions of the ω-q plane
with different expressions for the imaginary part of the noninter-
acting polarizability (see the text for definitions), and Im �(q, ω)
vanishes in the white regions.

With the help of the Kramers-Kronig relation, we can find the
real part of the polarizability

Re �(q, ω) = −2ρ0 + 2ρ0k0

q

∑
s=±1

s sgn(νs)

×
√

ν2
s − κ2�

(
ν2

s − κ2
)
. (8)

B. Polarizability of 2D NLSM at low dopings

For 0 < εF < εm, the Fermi surface has a hollow in its
center. In this regime, analytic expressions for the imaginary
and real parts of the zero-temperature density-density linear
response function are obtained, respectively, as

Im �(q, ω) = ρ0k0

q

∑
s,s′=±1

s
√

κ2
s′ − ν2

s �
(
κ2

s′ − ν2
s

)
(9)

and

Re �(q, ω) = −2ρ0 + ρ0k0

q

∑
s,s′=±1

s sgn(νs)

×
√

ν2
s − κ2

s′�
(
ν2

s − κ2
s′
)
, (10)

where κ± =
√

κ2 ± εF/ε0.
Panel (b) of Fig. 2 illustrates the EHC of a 2D tilted NLSM

in the low-doped regime. Now, the boundaries of the EHC
are given by ω± = q2/(2m) ± κ±v0q. Different regions of the
EHC are defined through the following conditions:

I : ν2
+ < κ2

−; ν2
− < κ2

+; ν2
− < κ2

−; ν2
+ < κ2

+,

II : ν2
+ > κ2

−; ν2
− < κ2

+; ν2
− < κ2

−; ν2
+ < κ2

+,

III : ν2
+ > κ2

−; ν2
− < κ2

+ν2
− < κ2

−; ν2
+ > κ2

+,

IV : ν2
+ > κ2

−; ν2
− > κ2

+; ν2
− < κ2

−; ν2
+ < κ2

+,

V : ν2
+ > κ2

−; ν2
− > κ2

+; ν2
− < κ2

−; ν2
+ > κ2

+. (11)
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(a) (b)

(c) (d)

Re
Im

FIG. 3. The real [(a) and (b)] and imaginary [(c) and (d)] parts of
the noninteracting dynamical polarizability of a 2D tilted NLSM as
a function of ω/ε0 for q = 0.5 k0 [panels (a) and (c)] and q = 1.5 k0

[panels (b) and (d)] and for varying Fermi energies. The Fermi ener-
gies εF = 0, εF = 0.3 ε0, and εF = 2.0 ε0 correspond to the intrinsic,
low-doped, and high-doped regimes, respectively. We fixed the tilt
velocity at u = 0.3 v0 in all panels.

C. Polarizability of 2D NLSM at high dopings

In the high doping regime, where εF > εm, the Fermi sur-
face becomes a filled circle with radius k0κ+, centered around
(−mu, 0) in the kx-ky plane. The density-density response in
this regime is similar to the intrinsic case. One only needs to
substitute κ in Eqs. (6) and (8) with κ+ and divide the whole
expressions with 2, as the density of states, in this case, is half
of the undoped system. We write the final expressions here
just for the sake of completeness,

Im �(q, ω) = ρ0k0

q

∑
s=±1

s
√

κ2+ − ν2
s �

(
κ2

+ − ν2
s

)
, (12)

Re �(q, ω) = −ρ0 + ρ0k0

q

∑
s=±1

s sgn(νs)

×
√

ν2
s − κ2+�

(
ν2

s − κ2
+
)
. (13)

It is clear from Eq. (12) that the EHC looks similar to panel
(a) of Fig. 2, where the boundaries now depend on the Fermi
energy ω± = q2/(2m) ± κ+v0q, and different regions of the
EHC are defined through

I : ν2
+ < κ2

+; ν2
− < κ2

+,

II : ν2
+ > κ2

+; ν2
− < κ2

+. (14)

Figure 3 illustrates the behavior of noninteracting dynamical
polarizability �(q, ω) versus ω for varying wave vectors and
doping regimes. In the intrinsic limit, the real part of the
polarizability [red curves in panels (a) and (b) of Fig. 3]
has a negative plateau for ω < ω−, and it changes sign at
higher frequencies. The imaginary part of the polarizability
[red curves in panels (c) and (d) of Fig. 3] for q < 2k0 dis-
plays a cusp at the boundary between regions I and II of the
EHC and vanishes for ω > ω+, i.e., beyond the upper edge
of the EHC. In the low-doped regime (blue curves in Fig. 3),
the polarizability’s real and imaginary parts display several
distinct cusps corresponding to crossings between different
regions within the EHC. The imaginary part vanishes outside
the EHC, i.e., for ω > ω+. The behavior of �(q, ω) in the
high-doped regime (dashed black lines), apart from the Fermi
energy dependence, is similar to the intrinsic system.

IV. STATIC RESPONSE AND FRIEDEL OSCILLATIONS

In this section, we discuss the behavior of the noninter-
acting linear density-density response function of a 2D tilted
NLSM in the static limit, and we investigate how this system
screens charged impurities at different doping regimes.

A. Static polarizability

The static polarizability is a real function, and its analytic
form at different dopings is obtained easily from the ω → 0
limit of Eqs. (8), (10), and (13), which reads

�(q) = −ρ0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − 2�(q − 2k0κ )
√

1 − (2k0κ/q)2, εF = 0,

2 − ∑
s=±1 �(q − 2k0κs)

√
1 − (2k0κs/q)2, 0 < |εF| < εm,

1 − �(q − 2k0κ+)
√

1 − (2k0κ+/q)2, |εF| > εm.

(15)

In the long-wavelength limit, the static density-density response function is equal to the negative of the density of states at the
Fermi level. Another essential characteristic of static polarizability is its singular behavior due to the Fermi surface separating
empty and filled states. As Fig. 4 shows, static polarizability of the intrinsic and highly doped systems has singular points at
q = k0κ and q = k0κ+, respectively. In the low-doping regime, on the other hand, two singularities at q = k0κ± correspond to
the radius of inner and outer circles of the Fermi surfaces [see panels (c) and (d) in Fig. 1].

B. Friedel oscillations

The singular points of the static density response function cause Friedel oscillations in the impurity screening. The Fourier
transform of the static polarizability, i.e., �(r) = ∫

d2q �(q)eiq·r/(2π )2, gives the charge density induced at a distance r from a
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point impurity potential [43]. Taking the Fourier transforms of Eq. (15), we find

�(r) = 8k2
0ρ0

π

∑
n=0,1

⎧⎪⎪⎨
⎪⎪⎩

2κ2Jn(2k0κr)Nn(2k0κr), εF = 0.∑
s=±1 κ2

s Jn(2k0κsr)Nn(2k0κsr), 0 < |εF| < εm.

κ2
+Jn(2k0κ+r)Nn(2k0κ+r), |εF| > εm,

(16)

where Jn(x) and Nn(x) are the Bessel functions of the first and
second kind, respectively.

It is easy to verify that �(r) decays as r−2 at long distances.
Furthermore, the Bessel functions give rise to an oscillatory
spatial modulation of the induced density. The behavior of
�(r) versus r at different Fermi energies is depicted in Fig. 5.
The period of oscillations in the intrinsic regime is given by
the radius of the nodal ring k0. In contrast, the ring radius
and the Fermi energy contribute to the doped systems’ oscilla-
tion period. At low dopings, two distinct singularities of �(q)
give rise to the superposition of two oscillating functions with
different periods. The resulting beat patterns are evident in
panels (b) and (c) of Fig. 5.

V. DRUDE WEIGHT AND PLASMON DISPERSION

In the random phase approximation, the interacting linear
density-density response function reads

χRPA(q, ω) = �(q, ω)

εRPA(q, ω)
. (17)

Here, εRPA(q, ω) = 1 − v(q)�(q, ω) is the dynamical dielec-
tric function within the RPA, where v(q) = 2πe2/q is the
Fourier transform of the Coulomb interaction in 2D, with e the
electron charge. Zeros of the dynamical dielectric function (or
equivalently, poles of the interacting dynamical polarizability)
give the dispersions of the collective density oscillations, i.e.,
plasmon modes.

To find the dispersion of undamped plasmons, we solve
1 − v(q)Re �(q, ω) = 0, outside the EHC. In the following,

FIG. 4. Behavior of the noninteracting static polarizability of a
2D tilted NLSM (in units of −ρ0) vs q/k0 in the intrinsic (dashed
black line), low-doped with εF = 0.8 ε0 (solid blue line), and high-
doped with εF = 1.5 ε0 (dotted red line) regimes. The tilt parameter
is u = 0.3 v0.

we first investigate the long-wavelength behavior of plasmon
modes in a 2D tilted NLSM at different doping regimes. In the
q → 0 limit, from [44]

lim
ω→0

lim
q→0

Re �(q, ω) = D
πe2

q2

ω2
, (18)

we find

ωpl(q → 0) ≈
√

2Dq, (19)

where

D = D0

{
2κ2, |εF| � εm,

κ2
+, |εF| > εm

(20)

is the Drude weight with D0 = ge2ε0/2.
Figure 6 presents the Fermi energy and tilt velocity depen-

dence of the Drude weight. As is evident from panel (a) of
Fig. 6, the Drude weight is constant for |εF| < εm and linearly
increases with Fermi energy for |εF| > εm. Panel (b) shows
how the Drude weight enhances with increasing the tilt ve-
locity at different Fermi energies. Notice that the low doping
regime is defined as |εF| < εm = ε0(1 + u2/v2

0 ). Therefore,
for u > v0�(|εF| − ε0)

√|εF|/ε0 − 1, we have a topological
transition in the shape of the Fermi surface. At larger tilt
velocities, more curves fall into the low doping regime and
merge with the blue line, which shows the intrinsic system
behavior.

The Drude weight also manifests itself in the behavior of
optical conductivity in the local (i.e., q → 0) limit. The only
contribution to the optical conductivity of our model Hamilto-
nian (1) arises from the intraband transitions [35]. Therefore,

(a) (b)

(c) (d)

FIG. 5. The real-space static polarizability �(r) (in units of
ρ0/r2) of a 2D tilted NLSM vs k0r, at εF = 0, εF = 0.3 ε0, εF =
0.8 ε0, and εF = 1.5 ε0, for panels (a), (b), (c), and (d), respectively.
The tilt parameter is u = 0.3 v0 in all figures.
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(a) (b)

FIG. 6. The Drude weight (in units of D0 = ge2ε0/2) vs Fermi
energy (a) for varying values of the tilt velocity, and (b) vs tilt
velocity for varying Fermi energies.

the real part of the optical conductivity of a clean system only
has the Drude peak, i.e., Re σ (ω) = Dδ(ω), and its imaginary
part is Im σ (ω) = D/(πω).

As we noted, the Drude weight, and therefore the plas-
mon dispersion to the leading order in the wave vector, is
interestingly independent of the carrier concentration below a
threshold density nm = 2ρ0εm. However, the effects of Fermi
energy on the plasmon dispersion show up at larger wave
vectors. Next to the leading order in q, the plasmon dispersion
reads

ωpl(q → 0) ≈
√

2Dq(1 + γ q + · · · ), (21)

with

γ = 3aB

8g

{
1 + (εF/εm)2, |εF| � εm,

2, |εF| > εm,
(22)

where aB = 1/(me2) is the effective Bohr radius. In pass-
ing, we note that two widely explored examples of two-
dimensional electronic systems, i.e., the ordinary 2D electron
gas with a single parabolic band (2DEG) and the Dirac
fermions in a single-layer doped graphene sheet, also have
a long-wavelength plasmon dispersion similar to Eq. (21).
The noninteracting Drude weight in both of these systems is
proportional to the Fermi energy, i.e., D = e2εF, the behavior
we recover only at high doping for our 2D tilted NLSM.
The coefficients of the sub-leading correction to the plas-
mon dispersion of 2DEG and graphene are γ2DEG = 3aB/(4g)
and γG = −ge2εF/v

2
F, respectively, where vF is the energy-

independent Fermi velocity of graphene [45,46].
It is possible to find analytic expressions for the plasmon

dispersion of 2D tilted NLSMs at arbitrary wave vectors in the
intrinsic and highly doped limits as

ωpl(q) = ε0

√
q̄(η + q̄)

√
4η2κ2 + 2ηq̄3 + q̄4

η
√

2η + q̄
(23)

and

ωpl(q) = ε0

√
q̄(η + 2q̄)

√
η2κ2+ + ηq̄3 + q̄4

η
√

η + q̄
, (24)

respectively, where q̄ = q/k0 and η = 2g/(k0aB). Figure 7
displays the full plasmon dispersions in three different dop-
ing regimes within the RPA. Note that we could not find an

FIG. 7. Plasmon dispersion (in units of ε0) vs q/k0 for intrinsic
εF = 0 (solid red line), low-doping with εF = 0.3 ε0 (solid black
line), and high-doping with εF = 1.5 ε0 (solid blue line) 2D tilted
NLSMs. The tilt velocity is fixed at u = 0.3 v0 and η = 2g/(k0aB) =
4. The upper edges of the EHC at each Fermi energy are shown
with dashed lines of the same color as their corresponding plasmon
dispersion curves.

analytic expression for the plasmon dispersion at arbitrary
wave vectors for intermediate values of the Fermi energies.
Therefore, the plasmon dispersion at εF = 0.3 ε0 (the solid
black line in Fig. 7) is obtained numerically.

VI. SUMMARY AND CONCLUSION

We have investigated the linear density-density response
function of two-dimensional tilted nodal-line semimetals in
the intrinsic and doped regimes. Nodal-line semimetals are
theoretically predicted in different two-dimensional struc-
tures, and band tilting can be induced by different means, such
as external electric or magnetic fields or spin-orbit couplings
originating from structural inversion asymmetry.

Despite the anisotropic band structure of the system, in-
tegration over the angular part of the wave vector k washes
out the anisotropy of polarizability in our simple model.
Correspondingly, screening, collective mode dispersion, and
optical conductivity remain isotropic at all doping levels. The
origin of this isotropy lies in the absence of pseudo-spin-orbit
coupling in our model system and the diagonal form of the tilt
in the orbital basis. For more sophisticated tilted nodal-line
models, anisotropic responses are plausible.

At low doping, two distinct singularities in the static
polarizability give rise to beating patterns in the Friedel os-
cillations. The nodal ring radius gives the period of oscillation
in the intrinsic limit. In contrast, in the doped systems, both
the Fermi energy and the radius of the nodal ring contribute
to the oscillation period. We also find analytical expres-
sions for the plasmon dispersion in the intrinsic and highly
doped systems. The tilt strength enhances the plasmon fre-
quency. The collective mode frequency is proportional to
q1/2 at long wavelengths. However, the Drude weight is in-
dependent of the carrier density below a threshold carrier
density.
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APPENDIX A: TIGHT-BINDING MODEL OF
TWO-DIMENSIONAL NODAL-LINE SEMIMETALS

IN A LIEB LATTICE

As illustrated by Yang et al. [33], a simple three-band
tight-binding model with pz and s (or px,y) orbitals on a Lieb
lattice can host robust two-dimensional nodal lines. Candi-
date materials for such structures are Be2C and BeH2. In the

following, we discuss only the lattice model with one pz and
two s orbitals at each unit cell [see Fig. 8(a)] as a represen-
tative model for the 2D NLSM, but similar conclusions could
be drawn from other models.

The orthogonality of pz and s orbitals at different
sites prevents nearest-neighbor hopping. If we consider the
next-nearest-neighbor hoppings (for every sublattice), the
tight-binding Hamiltonian in momentum space reads

H(k) =

⎛
⎜⎜⎜⎝

εp − 2tp[cos(kxa) + cos(kya)] 0 0

0 εs −4ts cos
( kxa

2

)
cos

( kya
2

)
0 −4ts cos

( kxa
2

)
cos

( kya
2

)
εs

⎞
⎟⎟⎟⎠, (A1)

where εs and εp are the on-site energies of s and pz orbitals,
a is the lattice constant, and −ts and −tp are the hopping
amplitudes between two nearest orbitals of type s and pz,
respectively.

Diagonalizing Hamiltonian (A1), we find

εp(k) = εp − 2tp[cos(kxa) + cos(kya)],

εs,±(k) = εs ± 4ts

∣∣∣∣cos

(
kxa

2

)
cos

(
kya

2

)∣∣∣∣. (A2)

With a suitable choice of on-site and hopping parameters,
a nodal line is formed around the �-point in the Brillouin
zone from the intersection of εp(k) and εs,+(k) bands [33],
as illustrated in Fig. 8(b).

Assuming that the Fermi energy is adjusted close to the
nodal line, and concentrating on the low-energy behavior of
the system, we can write an effective two-band Hamiltonian
of pz and hybrid s + s orbitals,

H(k) =
(

εp(k) 0
0 εs,+(k)

)
≡ d0(k)τ0 + d (k)τz, (A3)

where d0(k) = [εp(k) + εs,+(k)]/2, d (k) = [εp(k) −
εs,+(k)]/2, and τ0 and τz are, respectively, the 2 × 2 identity
matrix and the z-component Pauli matrix in the pseudospin
basis. Furthermore, with a simple rotation around the y-axis
in the pseudospin basis, we replace τz → τx, and then write
the eigenvalues as ε±(k) = d0(k) ± |d (k)|.

(a) (b)
0

−2

−4

−6
0 2−2

FIG. 8. (a) A Lieb lattice consisting of pz and s orbitals. (b) The
tight-binding band dispersion of εp(k) and εs,+(k) bands vs kx for
ky = 0, and at the vicinity of the band touching point. We have
used εs − εp = 10tp and ts = 2tp for on-site and hopping parameters,
respectively.

In the low-energy (i.e., k → 0) limit, we have

d0(k → 0) ≈ εs + εp

2
+ 2(ts − tp)

+ 1

2
(tp − ts/2)k2a2 + O(k4),

d (k → 0) ≈ −εs − εp

2
− 2(ts + tp)

+ 1

2
(tp + ts/2)k2a2 + O(k4). (A4)

For ts ≈ 2tp, d0(k → 0) becomes independent of the wave
vector (up to the quadratic order k) and represents the constant
energy of the band crossing point, and we find

H(k → 0) ≈ d (k → 0)τx ≈ 1

2m∗
(
k2 − k2

0

)
τx, (A5)

where we have defined 1/m∗ = a2(tp + ts/2) and k2
0 = m∗

[εs − εp + 4(ts + tp)].
Up to now, we had forgotten about the real spin degree

of freedom, and the bands we obtained were spin-degenerate.
The nodal line can get tilted through either inversion or
time-reversal symmetry breaking. The effects of structural in-
version asymmetry appear as a spin-orbit coupling term [47],

HSOC = α(k × E) · σ, (A6)

where α is the strength of spin-orbit coupling, σ is the vector
of Pauli matrices acting on real spin, and E is an electric field
resulting from the structural inversion asymmetry. An in-plane
electric field E = (Ex, Ey, 0) produces a linear tilt term in the
nodal-line Hamiltonian as (u · k)σz, where u = α(Ey,−Ex, 0)
is the tilt velocity vector, and up and down spin subbands are
tilted in opposite directions because of σz.

APPENDIX B: DETAILS OF CALCULATING
THE DYNAMICAL POLARIZABILITY

The dynamical polarizability of the 2D NLSM could be
obtained from Eq. (5), and we use the identity limη→0+ 1/(x +
iη) = P(1/x) − iπδ(x) to find its real and imaginary parts.

045120-7



HAMID RAHIMPOOR AND SAEED H. ABEDINPOUR PHYSICAL REVIEW B 109, 045120 (2024)

It is more convenient to calculate the imaginary part of the
polarizability first and then use the Kramers-Kronig relation to
obtain the real component. Making use of the Dirac δ function
to eliminate the integration over ky, we find

Im �(q, ω) = −ρ0

q2|qy|
∑

s,s′=±1

∑
λ=±

∫ ∞

−∞
dkx�(sAλ)�(s′Bλ)

× [�(Cλ + εF) − �(Cλ + εF − ω)], (B1)

where we have used the following definitions:

A+(kx ) = −
[

1 +
(

qx

qy

)2
]

k2
x +

(
f+qx

q2
y

)
kx − f 2

+
4q2

y

+ 1,

A−(kx ) =
[

1 +
(

qx

qy

)2
]

k2
x −

(
f−qx

q2
y

)
kx + f 2

−
4q2

y

− 1,

B+(kx ) = A+ − q2 − f+, (B2)

B−(kx ) = A− + q2 + f−,

C±(kx ) = −A± − ukx,

with f± = ±(2uqx − ω) − q2. In the above equation, for con-
venience, we used the dimensionless quantities in which all
energies, velocities, and wave vectors are expressed in units
of ε0, v0, and k0, respectively. Now, performing the sum-
mation over the band indices in Eq. (B1), and noting that

�(−x) = 1 − �(x), we arrive at

Im �(q, ω) = −ρ0

q2|qy|
∑
λ=±

∫ ∞

−∞
dkx[�(Cλ(kx ) + εF )

× −�(Cλ(kx ) + εF − ω)]. (B3)

Considering the arguments of the above four step-functions
that are quadratic functions of kx, 16 regions can be defined,
but only the following five regions,

I : �1 > 0; �2 > 0; �3 > 0; �4 > 0,

II : �1 < 0; �2 > 0; �3 > 0; �4 > 0,

III : �1 < 0; �2 > 0; �3 > 0; �4 < 0,

IV : �1 < 0; �2 < 0; �3 > 0; �4 > 0,

V : �1 < 0; �2 < 0; �3 > 0; �4 < 0, (B4)

give nonzero contributions to the integrand in Eq. (B3),
where �1 = κ2

− − ν2
+, �2 = κ2

+ − ν2
−, �3 = κ2

− − ν2
−, and

�4 = κ2
+ − ν2

+ are the discriminants of four quadratic func-
tions of kx, i.e., C+(kx ) + εF, C−(kx ) + εF, C+(kx ) + εF − ω,
and C−(kx ) + εF − ω, respectively, and κ± and ν± are defined
in the main text. By determining the sign of the functions and
solving the integral over kx in Eq. (B3), we arrive at Eq. (9).

The real parts of the polarizability can be obtained from
the imaginary parts using the Kramers-Kronig relation. The
procedure is straightforward and results in Eq. (10).

Note that for vanishing Fermi energy, where �1 = �4 and
�2 = �3, regions II, IV, and V do not exist, and we find two
regions corresponding to the EHC of an undoped system.

[1] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[2] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H.-H. Lin, A. Bansil,
D. Grauer, Y. Hor, R. Cava, and M. Z. Hasan, Observation of
a large-gap topological-insulator class with a single Dirac cone
on the surface, Nat. Phys. 5, 398 (2009).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] A. Burkov, Topological semimetals, Nat. Mater. 15, 1145
(2016).

[5] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[6] A. P. Schnyder, Topological semimetals, in Topology, Entangle-
ment, and Strong Correlations, Schriften des Forschungszen-
trums Jülich, Reihe Modeling and Simulation Vol. 10, edited
by E. Pavarini and E. Koch, Autumn School on Correlated
Electrons (Forschungszentrum Jülich GmbH Zentralbibliothek,
Verlag, Jülich, 2020).

[7] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac semimetal in three dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[8] B.-J. Yang and N. Nagaosa, Classification of stable three-
dimensional Dirac semimetals with nontrivial topology, Nat.
Commun. 5, 4898 (2014).

[9] A. A. Burkov and L. Balents, Weyl semimetal in a topological
insulator multilayer, Phys. Rev. Lett. 107, 127205 (2011).

[10] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the elec-
tronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101
(2011).

[11] Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran,
S.-K. Mo, Z. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. Chen,
Discovery of a three-dimensional topological Dirac semimetal,
Na3Bi, Science 343, 864 (2014).

[12] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-
dimensional Dirac semimetal and quantum transport in Cd3As2,
Phys. Rev. B 88, 125427 (2013).

[13] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. Sanchez, B. Wang, A. Bansil, F. Chou,
P. Shibayev, H. Lin, and M. Z. Hasan, Discovery of a Weyl
fermion semimetal and topological Fermi arcs, Science 349,
613 (2015).

[14] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Weyl semimetal phase in noncentrosymmetric transition-metal
monophosphides, Phys. Rev. X 5, 011029 (2015).

[15] A. Soluyanov, D. Gresch, Z. Wang, Q.-S. Wu, M. Troyer,
X. Dai, and B. Bernevig, Type-II weyl semimetals, Nature
(London) 527, 495 (2015).

045120-8

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nphys1274
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nmat4788
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1126/science.1245085
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1038/nature15768


COLLECTIVE EXCITATIONS AND SCREENING IN … PHYSICAL REVIEW B 109, 045120 (2024)

[16] X.-P. Li, K. Deng, B. Fu, Y. K. Li, D.-S. Ma, J. F. Han, J. Zhou,
S. Zhou, and Y. Yao, Type-III weyl semimetals: (TaSe4)2I,
Phys. Rev. B 103, L081402 (2021).

[17] C.-Y. Tan, J.-T. Hou, C.-X. Yan, H. Guo, and H.-R. Chang,
Signatures of Lifshitz transition in the optical conductivity
of two-dimensional tilted Dirac materials, Phys. Rev. B 106,
165404 (2022).

[18] A. Hosseinzadeh and S. A. Jafari, Semiclassical transport in
two-dimensional Dirac materials with spatially variable tilt,
arXiv:2303.06030.

[19] Z. Jalali-Mola and S. A. Jafari, Tilt-induced many-body correc-
tions to optical conductivity of tilted Dirac cone materials, Phys.
Rev. B 104, 085152 (2021).

[20] Z. Faraei and S. A. Jafari, Electrically charged Andreev modes
in two-dimensional tilted Dirac cone systems, Phys. Rev. B 101,
214508 (2020).

[21] C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line
semimetals, Chin. Phys. B 25, 117106 (2016).

[22] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[23] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological
node-line semimetal and Dirac semimetal state in antiperovskite
Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[24] X.-B. Wang, X.-M. Ma, E. Emmanouilidou, B. Shen, C.-H.
Hsu, C.-S. Zhou, Y. Zuo, R.-R. Song, S.-Y. Xu, G. Wang, L.
Huang, N. Ni, and C. Liu, Topological surface electronic states
in candidate nodal-line semimetal CaAgAs, Phys. Rev. B 96,
161112(R) (2017).

[25] M. B. Schilling, L. M. Schoop, B. V. Lotsch, M. Dressel,
and A. V. Pronin, Flat optical conductivity in ZrSiS due to
two-dimensional Dirac bands, Phys. Rev. Lett. 119, 187401
(2017).

[26] A. Topp, R. Queiroz, A. Grüneis, L. Müchler, A. W. Rost, A.
Varykhalov, D. Marchenko, M. Krivenkov, F. Rodolakis, J. L.
McChesney, B. V. Lotsch, L. M. Schoop, and C. R. Ast, Surface
floating 2D bands in layered nonsymmorphic semimetals: ZrSiS
and related compounds, Phys. Rev. X 7, 041073 (2017).

[27] Y. Shao, Z. Sun, Y. Wang, C. Xu, R. Sankar, A. J. Breindel,
C. Cao, M. M. Fogler, A. J. Millis, F. Chou, Z. Li, T. Timusk,
M. B. Maple, and D. N. Basov, Optical signatures of Dirac
nodal lines in NbAs2, Proc. Natl. Acad. Sci. USA 116, 1168
(2019).

[28] Z. Qiu, C. Le, Z. Liao, B. Xu, R. Yang, J. Hu, Y. Dai, and X. Qiu,
Observation of a topological nodal-line semimetal in YbMnSb2

through optical spectroscopy, Phys. Rev. B 100, 125136
(2019).

[29] C. Chen, X. Xu, J. Jiang, S.-C. Wu, Y. P. Qi, L. X. Yang, M. X.
Wang, Y. Sun, N. B. M. Schröter, H. F. Yang, L. M. Schoop,
Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen,
C. Felser, B. H. Yan, Z. K. Liu et al., Dirac line nodes and effect
of spin-orbit coupling in the nonsymmorphic critical semimet-
als MSiS, (M = Hf, Zr), Phys. Rev. B 95, 125126 (2017).

[30] Y. Shao, A. Rudenko, J. Hu, Z. Sun, Y. Zhu, S. Moon, A. Millis,
S. Yuan, A. Lichtenstein, D. Smirnov, Z. Mao, M. Katsnelson,
and D. Basov, Electronic correlations in nodal-line semimetals,
Nat. Phys. 16, 636 (2020).

[31] J. Yuanjun, R. Wang, J. Zhao, C. Zheng, L.-Y. Gan, J. Liu, H.
Xu, and S. Tong, A family group of two-dimensional node-line
semimetals, Nanoscale 9, 13112 (2016).

[32] J.-L. Lu, W. Luo, X.-Y. Li, S.-Q. Yang, J. Cao, X.-G. Gong,
and H. Xiang, Two-dimensional node-line semimetals in a
honeycomb-Kagome lattice, Chin. Phys. Lett. 34, 057302
(2016).

[33] B.-J. Yang, X. Zhang, and M. Zhao, Dirac node lines in two-
dimensional Lieb lattices, Nanoscale 9, 8740 (2017).

[34] C. Ding, H. Gao, W. Geng, and M. Zhao, Anomalous plasmons
in a two-dimensional Dirac nodal-line Lieb lattice, Nanoscale
Adv. 3, 1127 (2021).

[35] S. Barati and S. H. Abedinpour, Optical conductivity of three
and two dimensional topological nodal-line semimetals, Phys.
Rev. B 96, 155150 (2017).

[36] S. Ahn, E. J. Mele, and H. Min, Electrodynamics on Fermi
cyclides in nodal line semimetals, Phys. Rev. Lett. 119, 147402
(2017).

[37] S. Barati and S. H. Abedinpour, Thermoelectric response of
nodal-line semimetals: Probing the Fermi surface topology,
Phys. Rev. B 102, 125139 (2020).

[38] Z. Yan, P.-W. Huang, and Z. Wang, Collective modes in nodal
line semimetals, Phys. Rev. B 93, 085138 (2016).

[39] J.-W. Rhim and Y. B. Kim, Anisotropic density fluctuations,
plasmons, and Friedel oscillations in nodal line semimetal, New
J. Phys. 18, 043010 (2016).

[40] J. Cao, H.-R. Chang, X. Feng, Y. Yao, and S. A. Yang, Plasmons
in a two-dimensional nonsymmorphic nodal-line semimetal,
Phys. Rev. B 107, 115168 (2023).

[41] J. Ekström, E. H. Hasdeo, M. B. Farias, and T. L. Schmidt, Kerr
effect in tilted nodal loop semimetals, Phys. Rev. B 104, 125411
(2021).

[42] A. Martín-Ruiz and A. Cortijo, Parity anomaly in the nonlinear
response of nodal-line semimetals, Phys. Rev. B 98, 155125
(2018).

[43] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005).

[44] S. H. Abedinpour, G. Vignale, A. Principi, M. Polini, W.-K.
Tse, and A. H. MacDonald, Drude weight, plasmon dispersion,
and ac conductivity in doped graphene sheets, Phys. Rev. B 84,
045429 (2011).

[45] E. H. Hwang and S. Das Sarma, Dielectric function, screening,
and plasmons in two-dimensional graphene, Phys. Rev. B 75,
205418 (2007).

[46] F. Stern, Polarizability of a two-dimensional electron gas, Phys.
Rev. Lett. 18, 546 (1967).

[47] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, Springer Tracts in Modern Physics
Vol. 191 (Springer, Berlin, 2003).

045120-9

https://doi.org/10.1103/PhysRevB.103.L081402
https://doi.org/10.1103/PhysRevB.106.165404
https://arxiv.org/abs/2303.06030
https://doi.org/10.1103/PhysRevB.104.085152
https://doi.org/10.1103/PhysRevB.101.214508
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevB.96.161112
https://doi.org/10.1103/PhysRevLett.119.187401
https://doi.org/10.1103/PhysRevX.7.041073
https://doi.org/10.1073/pnas.1809631115
https://doi.org/10.1103/PhysRevB.100.125136
https://doi.org/10.1103/PhysRevB.95.125126
https://doi.org/10.1038/s41567-020-0859-z
https://doi.org/10.1039/C7NR03520A
https://doi.org/10.1088/0256-307X/34/5/057302
https://doi.org/10.1039/C7NR00411G
https://doi.org/10.1039/D0NA00759E
https://doi.org/10.1103/PhysRevB.96.155150
https://doi.org/10.1103/PhysRevLett.119.147402
https://doi.org/10.1103/PhysRevB.102.125139
https://doi.org/10.1103/PhysRevB.93.085138
https://doi.org/10.1088/1367-2630/18/4/043010
https://doi.org/10.1103/PhysRevB.107.115168
https://doi.org/10.1103/PhysRevB.104.125411
https://doi.org/10.1103/PhysRevB.98.155125
https://doi.org/10.1103/PhysRevB.84.045429
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevLett.18.546

