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Interacting nodal semimetals with nonlinear bands
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We investigate the quasiparticle and transport properties of a model describing interacting Dirac and Weyl
semimetals in the presence of local Hubbard repulsion U , where we explicitly include a deviation from the
linearity of the energy-momentum dispersion through an intermediate-energy scale �. Our focus lies on the
correlated phase of the semimetal. At the nodal point, the renormalization of spectral weight at a fixed temper-
ature T exhibits a weak dependence on � but is sensitive to the proximity to the Mott transition. Conversely,
the scattering rate of quasiparticles and the resistivity display high-temperature exponents that crucially rely
on �, leading to a crossover towards a conventional Fermi-liquid behavior at finite T . Finally, by employing
the Nernst-Einstein relation for conductivity, we identify a corresponding density crossover as a function of the
chemical potential.
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I. INTRODUCTION

Nodal semimetals are characterized by a linear crossing of
bands, protected either by topology or by lattice symmetries.
Contrary to conventional metals possessing a sizable density
of states (DOS) at the Fermi level, the DOS of nodal semimet-
als in three (two) spatial dimensions vanishes quadratically
(linearly). The consequently small carriers’ density at the
nodal point is the origin of nontrivial transport properties. The
possibility of having excitations with arbitrarily small energy
gives rise to nontrivial resistivity temperature exponents [1,2].

Further, the shrinking of the Fermi surface down to a
single point reduces the phase space for fermion-fermion
scattering and guarantees robust protection against electronic
correlations for short-range interactions [3,4]. In the weak-to-
intermediate regime, the lifetime of quasiparticles is indeed
much longer than in conventional Fermi liquids. This shield-
ing effect breaks down only at strong coupling, where the
self-energy can diverge and a Mott insulating state sets in.

From a general point of view, the electronic properties of
realistic semimetals are significantly affected by the precise
spin/orbital structure of the band dispersion in the whole
vicinity of the nodal point. In particular, the position of the
Fermi energy with respect to the symmetry point significantly
impacts the low-temperature behaviors. Further, corrections
beyond the considered “Lorentz-invariant” linear dispersion
translate into corresponding deviations in the DOS at a
scale—defined henceforth as �—at which the nonlinearity of
the dispersion starts to appear (see the sketch in Fig. 1).

The goal of the present work is to study the competition
between two effects: the protection against electron-electron
interaction originating from the fermiology of the semimetal-
lic band structure, and the tendency of the system to flow
to strong coupling when the strength of the local Hubbard

interaction U reaches the electronic half-bandwidth D. The
interplay between these two counteracting effects is enriched
by the presence of the intermediate scale of nonlinear disper-
sion � and by finite doping when the chemical potential no
longer sits at the Dirac cone. Both are nonuniversal factors
that are present in materials and quantitatively influence their
behavior and are expected to change, for instance, the trans-
port exponents as well as the position of the crossover scales
in the phase diagram of interacting semimetals. In particular,
we will focus on quasiparticle properties and transport as a
function of the temperature and of the Hubbard repulsion for
different �/D ratios.

We need to go beyond perturbative approaches in the
electron-electron interaction. For this reason, in order to
address weakly and strongly interacting semimetals on an
equal footing, we apply dynamical mean field theory (DMFT)
[5]. DMFT maps the many-electron lattice model onto a
self-consistent quantum impurity problem, which, in this
case, consists of two orbitals and two spin species. In three
spatial dimensions, DMFT can be viewed as a tool for get-
ting an approximate momentum-independent self-energy. The
latter is obtained by solving the DMFT equations written
in terms of the local Green’s function only. Further, the
momentum-dependent Green’s function can be calculated
with the Hamiltonian describing the noninteracting lattice
model under consideration. For this, we will use here a cor-
responding DOS sketched in Fig. 1 that is specific for the 3D
case and where the half-bandwidth D is our energy unit.

As we describe in Sec. II, we solve the DMFT equa-
tions within iterated perturbation theory (IPT), which keeps
enough accuracy on the real frequency axis [6–8] and hence
allows us to reliably extract transport quantities as was done
in Ref. [9]. Apart from the specific solver, a general dis-
claimer on single-site DMFT is in order, particularly when
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FIG. 1. The free-particle energy dispersion (on the right) and the
correspondent DOS in three dimensions (on the left) are shown. The
DOS is taken quadratic at low energy |ε| < � and constant at high
energy � < |ε| < D. The cutoff � sets the scale where the deviation
from the linearity of the bands becomes relevant.

focusing on transport properties: nodal points are well pro-
tected against local interactions. Single-site DMFT does not
include a momentum-dependent self-energy, therefore the
long-wavelength effects of interaction are absent. In the case
of a vanishing DOS, these effects are relevant while ap-
proaching the nodal point, and the value of the temperature
exponents can be modified with respect to the single-site
DMFT [10,11].

II. THE MODEL

We consider the following Hamiltonian for electrons
(σ =↑,↓) in two orbitals (α = 1, 2) interacting through on-
site Hubbard repulsion:

Ĥ =
∑

k

ψ†
kĤ0

(4×4)
(k)ψk

+ U
∑
i,α

(
ni,α,↑ − 1

2

)(
ni,α,↓ − 1

2

)
, (1)

where ψ
(†)
k ≡ (c(†)

k,1,↑, c(†)
k,2,↑, c(†)

k,1,↓, c(†)
k,2,↓) is a four-component

spinor of annihilation (creation) operators for the electrons in
k-space. The density of carriers ni,α,σ = c†

i,α,σ ci,α,σ .
The matrix H0(k) defines the noninteracting part of the

Hamiltonian that can have the general form

Ĥ
(4×4)
0 (k) = �σz ⊗ �b(k) · �τ , (2)

where the energy dispersion function is

�b(k) = (bx(k), by(k), M(k)). (3)

Here the Pauli matrices �σ act on spin and �τ on orbital
space. The three components of �b(k) are such that around
the Dirac node (here located at k = 0), they acquire a linear
k-dependence such that for an isotropic Dirac node we have

Ĥ0
(4×4)

(k) � �σz ⊗ vF k · �τ , with vF being the Fermi velocity.
Since we do not consider spontaneous time-reversal

symmetry-breaking and our microscopic Hamiltonian does
not contain explicit time-reversal-breaking terms, all calcula-
tions shown in the following will be representative of both
Dirac and Weyl fermions. The interplay between the phase-
space suppression of electron-electron (el-el) scattering and

local Mottness is mainly determined by the form of the
band structure and on the type of interaction. For this rea-
son, this basic competition of physical effects would equally
characterize actual Weyl fermions in the presence of time-
reversal breaking terms in the single-particle Hamiltonian.
The decisive point is the parabolic density of states of the
three-dimensional lattice with linear dispersion.

The second term in Eq. (1) is a purely local Hubbard
repulsion. We use DMFT to treat this last term. For a general
Hamiltonian of the kind of Eq. (2), the standard DMFT pro-
cedure gives a local self-energy that, in view of the diagonal
form of interaction in the orbital space, is also diagonal. In this
work, we analyze the semimetallic correlated and Mott phases
in the absence of long-range order. In real-life materials, such
states are reachable upon heating above the transition tem-
peratures, in particular when these are suppressed by lattice
geometrical effects [12,13]. Paramagnetic DMFT is hence an
ideal way of studying the effect of strong frustration.

Together with the action of local interaction, we take into
account deviations from quadratic low-energy behavior of
the total DOS, which are included in the specific form of
the vector �b(k). In particular, we introduce an intermediate
energy cutoff � separating different zones in energy space as
is depicted in Fig. 1 (see Appendix A for details).

In a low-energy sector (|ε| < �), we will consider a linear
approximation for the band structure in Eq. (2). For (|ε| >

�) instead we will neglect bx(k), by(k) terms in Eq. (2) to
maintain only the mass term. In addition, assuming that the
orbital-diagonal term M(k) is such that

∑
k M(k) = 0, we

arrive at an expression of the local Green’s function that is
a functional of the total DOS (see Appendix A).

This choice takes into account not only finite-bandwidth
effects (|ω| < D) essential to deal with the metal-insulator
transition as in Ref. [9], but also deviations from linearity
occurring above the intermediate energy cutoff �. A flat DOS
is considered to mimic a more realistic one than that obtained
from tight-binding models (see, e.g., Ref. [14]) at intermediate
frequencies � < |ω| < D. This form of the DOS will allow
for analytical estimates of various quantities of interest.

III. THE SEMIMETAL INSULATOR TRANSITION
AT NODAL POINT

We describe here the approach to the semimetal-to-
insulator transition (sMIT) that occurs when the chemical
potential is fixed at the nodal point upon increasing the
interaction’s strength U . The overall behavior is qualita-
tively similar to the prototypical Mott transition in DMFT
for a conventional metallic DOS. Assuming spin degeneracy
(paramagnetic solutions), this statement can be illustrated by
means of the single-particle local spectral function Aloc(ω) =
Tr

∑
k A(k, ω), with A(k, ω) = −ImG(k, ω)/π being the

spectral function matrix in the spin/orbital space obtained
from the Green’s-function matrix

Ĝ(k, ω) = {
[ω + μ − 	(ω)]1 − Ĥ

(4×4)
0 (k)

}−1
. (4)

The evolution of the semimetallic solution across the sMIT
revealed by the IPT solver of DMFT is fairly similar to that
of the DMFT solution of the Hubbard model on the cubic or
Bethe lattice: the low-frequency central feature in the spectral
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FIG. 2. sMIT at half-filling with �/D = 1 and T/D = 0.01 il-
lustrated with the evolution of the local DMFT spectral function. The
transition from the semimetallic to the insulating state occurs at a
specific critical value Uc2 that in this specific case is Uc2/D = 5.6.

function, made of a renormalized parabola (henceforth called
a U-shape), loses weight in favor of the upper and lower
Hubbard bands at ω = ±U

2 . Such a corresponding U-shape,
describing a correlated nodal semimetal (NSM), finally disap-
pears above Uc2/D (see Fig. 2). The width of the parabolic
U-shape gets smaller while its curvature increases as the
renormalized Fermi velocity decreases. The system remains
semimetallic all the way to the sMIT, at which the curvature
of the parabolic U-shape diverges and the renormalized Fermi
velocity becomes zero. At larger interactions, only the Hub-
bard bands survive. The overall picture is remarkably similar
to that found in solving a tight-binding version of the Weyl-
Hubbard Hamiltonian with exact diagonalization [15].

Specifically, in Fig. 3 we show the shape of the central co-
herent part of the DOS at a fixed temperature (T/D = 0.01) in
the strongly correlated NSM phase near the sMIT U/D = 4.2
for different values of the cutoff �/D. The overall weight of
the central U-shape here shows a strong dependence on �/D
while approaching the sMIT by decreasing �/D itself (see
below).

In the NSM case, there is no quasiparticle peak at the nodal
point, therefore the factor Z , defined as

Z =
(

1 − ∂ Re[	(ω)]

∂ω

)−1

ω=0

, (5)

should be associated with the renormalization of the Fermi
velocity. Indeed, the free-particle DOS A0(ω) scales quadrati-
cally in energy for a linear band structure [A0(ω) ∝ ω2/v3

F ]
and therefore the self-energy effects included in the renor-
malization factor Z lead to A(ω) ∝ (ω/Z )2/v3

F , which indeed
amounts to a rescaling of the Fermi velocity vF → ZvF as
well as to a reduction of the total spectral weight associated
with the central U-shape, as is shown in the inset to Fig. 3,
where A(ω) is plotted against ω/Z . The strong dependence
of the factor Z on � observed in Fig. 3 is attributed to the
proximity of the sMIT. Interestingly, when plotted against the

FIG. 3. The low-frequency spectral function at half-filling for
U/D = 4.2 and T/D = 0.01 in the strongly correlated semimetallic
phase for different values of �/D. Inset: the same quantity with
the frequency axis scaled with quasiparticle Z . The Fermi level is
indicated by the dashed line.

distance from the sMIT, the factor Z shows little qualitative
dependence on � (see Fig. 4). Thus, the observed � depen-
dence of Z arises primarily from the variation of the critical U
with �, as illustrated in the inset of Fig. 4(a).

As in the case of the Hubbard model with a metallic DOS,
the sMIT shows a finite-temperature region of coexistence
of insulator and NSM solutions between Uc1 and Uc2 , both
depending on �. The value of Uc1 is obtained by starting from
the insulating solution and decreasing U until at U = Uc1 the
semimetallic U-shape suddenly appears. As for the standard
MIT, the IPT solver gives larger critical values Uc1 and Uc2

when compared with ED [15]. In Fig. 4(b), a comparison of
IPT and a CTQMC solver [16] is shown in the case �/D =
1.0 for T/D = 0.01 as a function of U/Uc2. The overall
behavior is similar, however for this temperature CTQMC
predicts Uc2/D = 4.85 while IPT gives Uc2/D = 5.6.

Differently from the Z factor, the scattering rate � =
−Im	(ω = 0) depends explicitly on the cutoff � and not
only on the distance from the sMIT, as is shown in Fig. 5.
In particular, � increases by orders of magnitude as far as �

decreases in the NSM phase. We shall discuss the implications
of transport of this behavior in the next section.

In Fig. 6, the evolution of the central U-shape is shown
for increasing temperature at the given value of U/D = 3 in
the strongly correlated NSM phase for �/D = 0.2. This low-
energy spectral structure disappears quickly when increasing
the temperature, going from the coherent semimetallic state
to the incoherent bad metal. This is also reflected in the
momentum distribution [〈n(k)〉 = ∫

dωTrA(k, ω)] (inset of
Fig. 6), where the sharp decrease around ε(k) = 0 signal-
ing the semimetallic Fermi point around k = 0 progressively
disappears as the temperature reaches the scale (T/D)∗ ∼
0.1, where the semimetallic peak disappears (black curves in
Fig. 6). In the DMFT approach to the MIT in the single-band
Hubbard model, the temperature above which the spectral
function becomes pseudogapped has been interpreted as the
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(a)

(b)

FIG. 4. (a) The quasiparticle weight Z at half-filling for T/D =
0.01 is calculated at several values of �/D as a function of U/Uc2.
The same figure also shows the value obtained for a flat DOS
(�/D = 0). The black lines represent the second-order diagram cal-
culations both for the Dirac model with �/D = 1 [9] and the flat
one with �/D = 0 (Appendix G). In the inset, the values Uc1/D and
Uc2/D as a function of �/D are shown for T/D = 0.01. (b) Com-
parison between the renormalization factor Z calculated with IPT
and QMC. Horizontal error bars are estimated considering the uncer-
tainty in calculating Uc2/D, and they are shown in order to specify
that the two methods give different values beyond errors, but the
resulting behavior is qualitatively similar.

Kondo scale of the associated Anderson impurity model
(AIM) [5,17,18].

The fact that a Kondo screening is observed in the NSM
strongly correlated phase despite the vanishing of the DOS

FIG. 5. The scattering rate �/D at half-filling for T/D = 0.01
calculated at several values of �/D as a function of U/Uc2.

at the Fermi point can indeed be rationalized by looking
at the peculiar nature of the associated AIM. As in the
standard single-site single-orbital DMFT, in our case the lo-
cal Green function (see Appendix A) can be expressed as
Ĝ = (ω + μ − � − 	)−11 in terms of the hybridization func-
tion � of an AIM. If one assumes, as is customary for a
non-pseudo-gapped system, that −Im�(ω) ∝ −ImG(ω) for

FIG. 6. The central U-shape in the spectral function at half-filling
for U/D = 3.0 and �/D = 0.2 as a function of temperatures. In
the inset, the momentum distribution as a function of ε(k). The
black bold line is T ∗/D = 0.1. The vertical dashed line indicates the
position of the Fermi level.
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ω � 0, then one should not expect Kondo screening to occur
due to the lack of states around the nodal point [19]. However,
the semimetallic solution shows instead a diverging � around
zero energy since to get a vanishing DOS, i.e., −ImG(ω =
0) = 0, one needs a diverging Im� assuming that the self-
energy is still irrelevant in the semimetallic phase around the
nodal point. This large hybridization guarantees the presence
of Kondo screening even when the DOS vanishes.

IV. TRANSPORT

dc and ac conductivity are obtained using the Kubo formula
within the standard DMFT approach, which neglects vertex
corrections (see Appendixes B and E). Here we exploit the
Nernst-Einstein relation

σ = e2χD, (6)

where χ is the charge compressibility,

χ = ∂〈n〉
∂μ

, (7)

and D is the charge diffusivity. In a previous work [9], some
of us derived the asymptotic behavior for the conductivity
at the nodal point as well as for finite chemical potential in
the semimetallic regime establishing an approximate Drude-
Boltzmann approximation for linearly dispersing bands,

σ = e2neffτ

m∗ , (8)

where neff/m∗ is the effective number of carriers (scaled with
effective mass) and τ is a scattering time defined in terms of
the quasiparticle scattering rate �. At weak coupling one can
easily prove that neff ∝ χ and τ ∝ D [20]. We consider here
the outcomes of the DMFT process away from half-filling
by evaluating numerically χ as the derivative of 〈n〉 over μ

and computing the diffusivity spanning from weak to strong
coupling. In particular, we will identify different crossovers in
terms of different temperature exponents α of the quantities
appearing in Eq. (6), which are related by ασ = αχ + αD.

A. Temperature crossover at the nodal point

A study of the three transport quantities mentioned before
(σ , χ , and D) has been performed as a function of the tem-
perature at half-filling where the Fermi energy is chosen to be
exactly at the nodal point.

It is worth remembering here some results that are valid
in the single-band Hubbard model at half-filling for the Bethe
model. At weak coupling, in the Fermi-liquid state, the system
behaves like a conventional metal. Therefore, in the Drude
approach, the temperature dependence of the conductivity
arises entirely from the scattering time. In the Nernst-Einstein
approach, the compressibility is indeed almost constant with
respect to both temperature and chemical potential, assuming
that T � D and |μ| � D. The temperature dependence of
the conductivity is therefore solely due to the temperature
dependence of the diffusivity, i.e., D ∝ τ ∝ T −2 and in terms
of temperature exponents ασ = αD = −2.

In the opposite limit of incoherent scattering when T �
T ∗, the linear behavior for the resistivity is solely due to the

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 7. Conductivity (a), charge compressibility (b), and diffu-
sivity (c) at μ = 0 as a function of the temperature at weak coupling
(U/D = 0.5). The same quantities [(d), (e), and (f), respectively]
at μ = 0 as a function of the scaled temperature at weak cou-
pling (U/D = 0.5). The dashed gray lines are useful to separate the
crossover central region from the NSM one at lower temperatures
and the bad metal one at higher temperatures.

temperature dependence of the compressibility, while the dif-
fusion constant is almost constant, i.e., ασ = αχ = −1 [21].

The analysis of Ref. [9] for the case of pure quadratic DOS
(�/D = 1.0) at half-filling can then be reinterpreted in terms
of temperature exponents for σ , χ , and D. The vanishing of
the spectral function at the nodal point induces qualitative
deviations from the conventional Fermi liquid behavior in the
weak-coupling regime. In this case, both χ and D contribute
to the temperature exponent of conductivity, namely αχ = 2,
while αD = −8, which corresponds to ασ = −6 [9]. From the
point of view of the Nernst relation, the large diffusivity of
the states near the nodal point overcompensates the vanishing
charge susceptibility, i.e., the vanishing number of available
carriers in Eq. (8) leading to a large temperature exponent
for resistivity. Moving away from half-filling (|μ| < T ), the
low-temperature behavior becomes dominated by the pres-
ence of a finite spectral function at the chemical potential, and
Fermi-liquid exponents are expected, ασ = αD = −2.

These exponents are further modified by the presence of
cutoff energy � leading to temperature and density crossover.
In Fig. 7 we show the conductivity (a), charge compressibility
(b), and diffusivity (c) at the nodal point as a function of the
temperature at weak coupling (U/D = 0.5). The low-energy
behavior can be studied by introducing a scaling method. This
scaling method is designed to bring different models with
different values of the cutoff �/D to the same Fermi velocity,
thereby achieving the same curvature of the density of states
around zero energy, as described in Appendix D. In Figs. 7(d),
7(e) and 7(f), we present the same coefficients as shown in
Figs. 7(a), 7(b) and 7(c) but plotted as a function of scaled
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(a) (b) (c)

FIG. 8. Conductivity (a), charge compressibility (b), and diffu-
sivity (c) at μ = 0 as a function of the temperature at strong coupling
near the sMIT. Arrows indicate the temperature at which the quasi-
particle U-shape disappears (T ∗/D = 0.1). The dashed gray lines are
useful to separate the transition central region from the NSM one at
lower temperatures and the bad metal one at higher temperatures.

temperatures at weak coupling (U/D = 0.5). The scaling ap-
proach enables a collapse of the curves at low temperatures
for various values of the cutoff �/D.

As explicitly shown in Appendix D, this scaling introduces
a factor S(λ) = [λ3 + 3λ2(1 − λ)]

1
3 , where λ = �/D, and the

temperature is calculated in units of a fixed half-bandwidth
D0 = S(λ)D. The scaled picture highlights that the limiting
temperature behavior found for T/D0 � 1 shows the charac-
teristic low-temperature exponents ασ = −6, αχ = 2, αD =
−8. However, by increasing the temperature, we enter the
intermediate temperature metallic phase characterized by the
same exponents found for a Fermi liquid, i.e., ασ − 2, αχ = 0,
and αD = −2. By further increasing the temperature, when
T/D > 1 the incoherent �-independent regime is reached.
This regime is clearly seen in Fig. 7, where ασ = −1, αχ =
−1, αD = 0, i.e., the same as for the incoherent bad metallic
regime [21].

In Fig. 8, the quantities σ , χ , and D are shown in the
strongly correlated NSM phase (U/Uc2 = 0.75) at half-filling.
At low temperatures (T < T ∗), a semimetallic behavior is
observed but with apparent exponents that deviate slightly
from that of the weak coupling at �/D = 1, as shown in
the figure. Deviation from the exponents observed in the
weak-coupling regime gets more marked for �/D < 1. By
increasing the temperature, we eventually meet the first-order
finite-temperature transition for �/D = 1, which appears to
be smoothed out for smaller �. By further increasing the
temperature, a nonmonotonic behavior of σ and χ is observed
after the disappearance of the coherent central U-shape at
T ∗/D (arrows in Fig. 8). A final bad metallic regime with
the conductivity and compressibility decreasing linearly with
T is reached on a temperature scale larger than the bare
half-bandwidth. Interestingly, the sharp variation of charge
compressibility observed around T = T ∗ in Fig. 8(b) is sim-
ilar to that found in the strongly correlated metallic phase
of the single-band Hubbard model [21]. There, the charge
susceptibility increases upon decreasing the temperature, and
it reaches a constant value at T/D = 0 due to the onset of
Kondo screening of the local moments. Here, in contrast,
χ , after a first increase, finally decreases when lowering the
temperature, as expected from the vanishing of the spectral
function. However, its initial growth, which occurs as far as

(a) (b) (c)

FIG. 9. Conductivity (a), charge compressibility (b), and dif-
fusivity (c) for U/D = 0.5 and �/D = 0.2 as a function of the
chemical potential. Different curves refer to different temperatures.
Dashed gray lines indicate the width of the U-shaped structure in the
spectral function.

the central U-shape is restored for T < T ∗, indirectly suggests
that an interpretation of the results in terms of the screening
of local moments is possible in the strongly correlated NSM,
at least on an intermediate temperature scale due to the finite,
albeit small, spectral weight at the nodal point [5,17].

B. Density crossover away from the nodal point

Figures 9 and 10 show the quantities involved in the Nernst
relation as a function of the chemical potential for different
temperatures. While conductivity is obtained by the Kubo
formula Eq. (B1), the compressibility has been obtained by
probing the electron density as a function of chemical poten-
tial for constant temperatures, as shown in Appendix H.

At weak coupling and low temperatures (T < �) (Fig. 9),
we can identify three regions:

(i) When |μ| � T , the system is really close to the nodal
point and the temperature exponents are those found at the
nodal point [9]. In this region, thermal fluctuations probe
energy ranges in which the spectral density is very small and
the behavior of all quantities tends to be weakly dependent
on μ.

(ii) When T < μ < �, the behavior in μ is that of a NSM
with linear bands: the diffusivity decreases and the compress-
ibility increases with μ as expected from the increasing of the

(a) (b) (c)

FIG. 10. Conductivity (a), charge compressibility (b), and dif-
fusivity (c) for U/D = 3.0 and �/D = 0.2 as a function of the
chemical potential. Different curves refer to different temperatures.
The green bold line (T ∗/D = 0.1) marks the temperature at which,
at half-filling, the quasiparticle U-shape vanishes. Dashed gray lines
indicate the width of the U-shaped structure in the spectral function.
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spectral density. The smaller the temperature, the sharper the
conductivity drop.

(iii) When μ > �, the transport properties have a Fermi
liquid behavior dominated by the nonlinear part of the band
structure.

A clear distinction between these zones disappears grad-
ually as T approaches � when the semimetallic regime is
gradually washed out.

In the strongly correlated NSM phase (Fig. 10), the very
low-temperature μ-dependence of all quantities resembles
qualitatively that of the weakly interacting case only at very
low temperatures. One may note that with increasing U , the
energy range where the quadratic pseudogap is present is
narrower (Fig. 6) and therefore the crossover region (ii) seen
at weak coupling is restricted here to very low temperature
(here, T/D < 0.05). The strong reduction of the spectral
weight at the minimum of the U-shaped quasiparticle feature
(see Fig. 6) occurring around T � T ∗ at μ = 0 marks here
a qualitative change of the behavior in μ of all quantities:
for T > T ∗, σ increases with increasing chemical potential
as a result of the concomitant enhancement of both χ and
D, which can be ascribed here to the partial restoring of the
coherent U-shape with increasing μ (see Appendix F).

C. Energy crossover at the nodal point and optical damping

The �-dependent crossover seen at the nodal point in the
weak-coupling regime (Fig. 7) has a counterpart in an energy
crossover for the frequency-dependent scattering rate shown
in Fig. 11 at constant temperature T/D = 0.02 and scaled
with the scaling factor S9(�) to compare systems with the
same Fermi velocity vF . The scaling dimensions S9(�) can
be recovered from the dependence on vF of �; see Eq. (C1).
The predicted polynomial behavior of the scattering rate at the
nodal point [9] spanning from a constant at low energy to ω8

at higher energies is shown here for �/D = 1 (see also Ap-
pendix C). For �/D < 1, a crossover can be seen at ω � �,
while above this energy scale a Fermi liquid ω2-behavior is
recovered.

In panel (b) the scattering rate is shown in the strong-
coupling NSM phase. For �/D = 1 the energy exponent
again spans from 0 to 8.

For �/D < 1, a crossover to smaller energy exponents is
found at ω � �, though it is less evident than in the weak-
coupling case. When the energy scale � approaches the order
of the temperature, the low-temperature scaling fails (see Ap-
pendix D).

The optical absorption is the result of both intraband
and interband contributions [22]. Appendix E shows sample
data of optical spectra. Here, we focus our attention on the
low-energy optical spectra, which are due to the intraband
transition and which have a Drude form

σ (�) = σ (0)�2
opt

�2 + �2
opt

. (9)

The low-energy peak is very narrow due to the smallness of
the scattering rate around the nodal point. As is shown in
Fig. 12, the optical scattering rate at weak coupling depends
strongly on the amplitude of the energy scale � through the
same scaling function introduced in Fig. 7 since �opt � 2�

(a)

(b)

FIG. 11. The imaginary part of the self-energy at half-filling for
U/D = 0.5 and T = 0.02 scaled with S9(�) in order to obtain the
same Fermi velocity of any �/D (a). The same quantity for U/D =
3.0 (b).

(Appendix E). Scaling does not hold in the NSM strongly
correlated phase where �opt is not simply proportional to the
scattering rate, as shown in Fig. 12. Although the qualitative
dependence on � is similar in both cases, we notice a signif-
icant deviation of the optical scattering rate from its estimate
based on the quasiparticle scattering rate when nonlinear de-
viations become important.
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FIG. 12. �opt and � at half-filling for T/D = 0.02 and U/D =
0.5 and 3.0. The dashed green line represents the �/D dependence
from the perturbation theory [Eq. (C1)].

V. CONCLUSIONS

In this work, we have studied the correlation effects on
a Dirac-semimetal, which leads to a semimetal-to-insulator
transition (sMIT) at large values of U . Compared to the stan-
dard description of MIT within DMFT, no quasiparticle peak
appears. Instead, the semimetallic U-shaped peak is preserved
up to the transition to the Mott insulator. Its shape is renor-
malized and its width decreases with increasing interaction
strength while spectral weight is transferred to the Hubbard
bands. This coherent low-temperature phase, as in the case
of DMFT calculations for the Bethe lattice, disappears upon
increasing the temperature.

While the overall features of the sMIT are not affected
much by the presence of an energy scale �, which separates
the linear from nonlinear momentum dependence in the band
structure, the presence of � largely affects the transport prop-
erties. Several crossovers are found to be crucially dependent
on the presence of such a scale with the analysis of the Nernst
relation involving the conductivity, the compressibility, and
the diffusivity with respect to the temperature, the chemical
potential, and the energy in the weakly correlated phase.

At the nodal point, a crossover in temperature is found to-
ward a Fermi-liquid-like behavior as the temperature exceeds
a �-dependent scale. In the same way, at a given temperature
if the chemical potential exceeds the � scale, we enter into a
Fermi-liquid-like regime.

The energy-dependent scattering rate shows a similar
crossover where the NSM character dominates at low energy
and is progressively replaced by a Fermi-liquid-like behavior
at higher energies. This is reflected in a strong � dependence
on the optical scattering rate.

By increasing electronic correlations, a coherent behavior
that shows the previously mentioned crossovers does exist
only for very low temperatures. Interestingly, we also found
an intermediate temperature window in which the behavior
of the charge compressibility may be indicative of a partial
screening of the local moments. Ongoing work specifically
dedicated to this aspect will help to clarify the precise role
played by Kondo screening processes in NSM [23].

Another point that deserves further investigation, which is
beyond the scope of the present work, is the role of vertex
corrections on the transport properties. Vertex corrections may
introduce a different temperature dependence in transport and
quasiparticle scattering, as has been shown for Dirac fermions
in two dimensions [24], or they may lead to deviations in low-
frequency optical conductivity at low density [10].
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APPENDIX A: DMFT APPROACH TO NODAL SEMIMETAL

The purpose of this Appendix is to introduce a simplified
model for the density of states (DOS) as the relevant quantity
that enters in the calculations of the spectral functions in the
DMFT approach and in the calculation of the conductivity
from the Kubo formula. Our model’s total density of states,
i.e., the DOS of all orbital and spin degrees of freedom de-
scribed in the main text (see the Introduction), is characterized
by an intermediate cutoff in energy (�) separating the low-
energy part (linear bands) and the high-energy part (separated
bands).

Here we want to calculate the Green’s function (Ĝ) of the
general Hamiltonian [Eq. (1)] and we want to show that the
local Green’s function of the model, under certain conditions,
can be expressed as a functional of the total DOS. Assuming
that the �σ are the Pauli matrices representing the spin part of
the Hamiltonian and �τ are the orbital Pauli matrices, Eq. (2)
for H (4×4)

0 has the standard Weyl Hamiltonian form but with
different coefficients that now are k-dependent. Each com-
ponent of the energy dispersion function in Eq. (3) includes
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the linear and nonlinear parts. We define bx, by, and M(k)
to be linear functions of k around k → 0 (nodal point). The
term M(k) implicitly includes the linear term bz(k). In
the notation �b⊥(k) and �σ⊥, �b and �σ are vectors projected in
the x, y subspace.

Now, defining

b−(k) = [bx(k) − iby(k)], (A1)

b+(k) = [bx(k) + iby(k)], (A2)

the matrix in Eq. (2) has the following form:

Ĥ
(4×4)
0 (k) =

⎛
⎜⎜⎜⎜⎝

M(k) b−(k) 0 0

b+(k) −M(k) 0 0

0 0 −M(k) −b−(k)

0 0 −b+(k) M(k)

⎞
⎟⎟⎟⎟⎠.

(A3)

The eigenvalues of the Hamiltonian Eq. (A3) are easily eval-
uated as

ε(k) = ±
√

M2(k) + b2
x(k) + b2

y(k). (A4)

The next step is to calculate the interacting Green’s func-
tion of the model. If there is no interaction that matches the
two blocks, and therefore the self-energy is diagonal, then
we must utilize a 2 × 2 matrix. The inverse Green’s function
reads

Ĝ−1
k =

(
z1 − M(k) −b−(k)

−b+(k) z2 + M(k)

)
, (A5)

where

zi = ω + μ − 	i(ω). (A6)

The self-energy is a complex quantity 	(ω) = Re[	(ω)] +
i Im[	(ω)] and each band (i = 1, 2) has in principle a differ-
ent self-energy.

Finally, inverting Eq. (A5),

Ĝk = 1

[z2 + M(k)][z1 − M(k)] − b2
⊥(k)

×
(

z2 + M(k) b−(k)

b+(k) z1 − M(k)

)
, (A7)

where b⊥(k) =
√

b2
x(k) + b2

y(k) is the modulus of the energy
dispersion in the (x, y)-plane.

The single-site DMFT approach involves the calculation
of the local Green function Ĝloc = ∑

k Ĝk. We will show that
under some conditions, the local Green function becomes a
scalar quantity.

From Eq. (A7) we can deduce the equation for Ĝloc =∑
k Ĝk by defining the functions

F (z1, z2) =
∑

k

1

[z2 + M(k)][z1 − M(k)] − b2
⊥(k)

, (A8)

P(z1, z2) =
∑

k

M(k)

[z2 + M(k)][z1 − M(k)] − b2
⊥(k)

, (A9)

and the off-diagonal terms

U±(z1, z2) =
∑

k

b±(k)

[z2 + M(k)][z1 − M(k)] − b2
⊥(k)

, (A10)

thus we have the local G as

Ĝloc =
(

z2F (z1, z2) + P(z1, z2) U−(z1, z2)

U+(z1, z2) z1F (z1, z2) − P(z1, z2)

)
.

(A11)

The mass term in Eq. (A3) can be separated into an even
and an odd term in k, which yields

M(k) = ME (k) + MO(k), (A12)

where the symmetries ensure that
∑

k MO(k) = 0 in the first
Brillouin zone. Furthermore, we assume that

ME (k) = 0. (A13)

Let us assume also that the out-diagonal terms b+ and b−
are odd functions of k, as can be seen, e.g., from tight-biding
models [14].

When M(k) is an odd function of k, the function defined
in Eq. (A8) is even under the argument exchange F (z1, z2) =
F (z2, z1). This property guarantees that the DMFT self-
consistency has as a possible solution z1 = z2 = z and
P(z, z) = U±(z, z) = 0. In this case, the spectral function
A(k, ω) = − 1

2π
ImTrĜk(ω) from Eq. (A7) is

A(k, ω) = − 1

2π
Im

(
1

z − |�b(k)| + 1

z + |�b(k)|

)
1. (A14)

All these considerations show that the off-diagonal terms van-
ish after the sum over k is performed, and the self-consistency
condition takes the following form:

Ĝloc =
∑

k

z

z2 − |�b(k)|2 1 (A15)

=
∑

k

1

2

(
1

z − |�b(k)| + 1

z + |�b(k)|

)
1. (A16)

The local Green’s function can be written by separating
the two parts, i.e., high energy [|E (k)| > �] and low energy
[|E (k)| < �]:

Ĝloc =
∑
k>k�

Ĝ>
k +

∑
k<k�

Ĝ<
k , (A17)

where Ĝ>
k and Ĝ<

k are, respectively, the high- and low-energy
limits of the Green’s function in Eq. (A7) and |k�| = �/vF .

1. Low energy

The low-energy part is obtained by linearization around the
Weyl points,

Ĥ< =
(

tzkz λ(kx − iky)

λ(kx + iky) −tzkz

)
, (A18)

where tz and λ are the Fermi velocity near the nodal point
of the z-component and the x, y-components, respectively.
The linearized Hamiltonian corresponds to the effective Weyl
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Hamiltonian HWeyl = vF k · �τ , where without loss of gener-
ality we assume that the velocity is isotropic in the three
directions tz = λ = vF .

The local Green function at low energy can be rewritten as

G<
loc = 1

2

∫ �

−�

dε
D<(ε)

z − ε
, (A19)

where D<(ε) = cε2 is the quadratic density of states corre-
sponding to the linear part of the bands at low energy near the
node(s), and c is the normalization constant.

2. High energy

For energies larger than �, we consider a constant DOS
model in which D+

> and D−
> are, respectively, the electron and

the hole DOSs. Since M(k) = −M(−k), then D+
> = D−

> =
D> = c�2. The term in Eq. (A16) is

∑
k>k�

1

z ± |�b(k)| (A20)

=
∑
k>k�

∫
δ(ε ± |�b(k)|)

z − ε
dε (A21)

=
∫

D∓
>(ε)

z − ε
dε. (A22)

The local Green’s function at high energy is thus

G>
loc = 1

2

(∫ −�

−∞
dε

D>(ε)

z − ε
+

∫ ∞

�

dε
D>(ε)

z − ε

)
. (A23)

3. Final formula

We can define a total DOS from which the local Green
function can be expressed as

Ĝloc =
∫ ∞

−∞
dε

N (ε)

z − ε
, (A24)

where

N (ε) =
{

cε2, −� < ε < �,

c�2, � < |ε| < D.
(A25)

Notice that the normalization constant takes into account the
presence of another Weyl node associated with the second
block of the Hamiltonian Eq. (2) as well as spin multiplicity,∫ +D

−D
N (ε)dε = 1, (A26)

which gives

c = 1

2�2(D − �) + 2
3�3

. (A27)

A comparison of the present model DOS and that of the
anisotropic Weyl semimetal tight-binding model [14] is shown
in Fig. 13.

FIG. 13. Model of free-particles DOS compared with the DOS
calculated from the tight-binding (TB) model of Ref. [14] with
parameters λ = 0.2. We fit our model to the curvature at the nodal
point, which sets our scale at �/D = 0.3.

APPENDIX B: KUBO FORMULA AND DC CONDUCTIVITY

The calculation of the conductivity starts from the Kubo
formula, where we neglect vertex corrections,

Reσi, j (�) = e2π

�

∫ +∞

−∞
dω[ f (ω − μ) − f (ω − μ + �)]

×
∫

d3k

(2π )3
Tr[viρ(k, ω)v jρ

′(k, ω + �)],

(B1)

where ρ(k, ω) is the density function defined as ρ(k, ω) =
− 1

π
Im[Ĝ(k, ω)], and vi = ∂H

∂ki
is the velocity operator. This

last quantity can be calculated, for example, in the x-direction
from the upper block of Hamiltonian Eq. (A3),

v̂x =
⎛
⎝ ∂M(k)

∂kx

∂b−(k)
∂kx

∂b+(k)
∂kx

− ∂M(k)
∂kx

⎞
⎠. (B2)

Instead, considering the Green’s function in Eq. (A7), we
can set z1 = z2 = z when the components of �b(k) are odd
with respect to k, as shown in this Appendix. This Green’s
function is the same as that considered in [27] but also includ-
ing the nonlinear dispersion in the different components. The
k-integral can be divided into two different sums for low and
high energies,∑

k

Tr[vkρvkρ
′] =

∑
k<k�

Tr[v<
k ρ<v<

k ρ<′
]

+
∑
k>k�

Tr[v>
k ρ>v>

k ρ>′
], (B3)
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where we can separate the low-energy and high-energy den-
sity and velocity operator.

1. Low energy

We can calculate the vertex function in the x-direction from
Eq. (B2) assuming the limit kx → 0 near the Weyl point of
Eq. (A18) and considering an isotropic Fermi velocity λ =
tz = vF ,

v̂<
x =

(
0 vF

vF 0

)
= vF �σx. (B4)

It has the same spinorial structure as that in Ref. [27], includ-
ing intraband and interband transitions.

2. High energy

Again, the high-energy contribution to the conductivity can
be calculated by neglecting the interband-contribution terms
b± both in the vertex function [Eq. (B2)] and in the Green’s
function [Eq. (A7) with z1 = z2]. This means that the vertex
function in the high-energy regime, v̂>

x , reads

v̂>
x =

(
∂M(k)
∂kx

0

0 − ∂M(k)
∂kx

)
= ∂M(k)

∂kx
�σz. (B5)

Both the velocity operator and the Green’s function are diag-
onal, therefore the two orbitals are independent. The spectral
density ρ> is

ρ>(k, ω) =
(

ρ+ 0
0 ρ−

)
(k, ω), (B6)

where

ρ±(k, ω) = − 1

π

Im[	]

([ω∓M(k) − Re[	]]2 + [Im[	]]2)
. (B7)

The trace becomes

Tr[v̂>
x ρ̂>v̂>

x ρ̂>′
] =

(
∂M(k)

∂kx

)2

(ρ+ρ ′
+ + ρ−ρ ′

−), (B8)

and it contains only the intraband transition terms.
Therefore, the dc conductivity is given by lim�→0 Reσ (�),

Reσxx = e2π

∫ +∞

−∞
dω

(
− df

dω

)

×
∫

k>k�

d3k

(2π )3
φ(k)[ρ+ρ+ + ρ−ρ−], (B9)

where φ(k) is the vertex function, and k� = �/vF as in Ap-
pendix A. Since we can define a vertex density as φ(ε)D(ε) =∑

k φ(k)δ(ε − εk), then
∫

d3k
(2π )3 φ(k) = ∫

dεφ(ε)D(ε) and the
integral in k is

Reσxx = e2π

∫ +∞

−∞
dω

(
− df

dω

)[ ∫ +D

�

φ(ε)D+
>(ε)ρ (+)ρ (+)

+
∫ −�

−D
φ(ε)D−

>(ε)ρ (−)ρ (−)

]
, (B10)

where this time ρ (±) = ρ (±)(ε, ω) are

ρ (±)(ε, ω) = − 1

π

Im[	]

([ω∓ε − Re[	]]2 + [Im[	]]2)
. (B11)

This formulation is valid whenever M2(k) � (b2
x + b2

y ).
Now, we need to briefly discuss the evaluation of φ(ε).

Our objective is to match the high-energy vertex function,
φ(ε), with the constant vertex described in Ref. [27], which
is φLE = v2

F /3. To simplify the analysis, we assume that the
vertex function in the high-energy case is constant with re-
spect to energy, and we force both to be the same constant
φ(ε) = φLE = 1/3.

3. Final formula

Taking into account the parts in Ref. [27] with the appro-
priate considerations for the vertex function and Eq. (B10),
and following Eq. (B3),

Reσxx = e2π

∫ +∞

−∞
dω

(
− df

dω

)

×
( ∫ D

−D
dεN (ε)[ρ (+)ρ (+) + ρ (−)ρ (−)]

+
∫ �

−�

dε 2cε2[ρ (+)ρ (−) + ρ (−)ρ (+)]

)
. (B12)

Here, N (ε) and c are the same as in Eq. (A25).

APPENDIX C: QUASIPARTICLE DAMPING
IN WEAK COUPLING

From perturbation theory calculations [9], the small energy
and temperature behavior of the imaginary part of the self-
energy has a polynomial dependence

Im[	(ω)] = −8π9T 8U 2

(
1

2π2v3
F

)3

P8(ω/T ) (C1)

with

P8(x) = a0 + a2x2 + a4x4 + a8x8, (C2)

a0 = 3π8

128
, (C3)

a2 = 31π6

504 × 2!
, (C4)

a4 = 7π4

40 × 4!
, (C5)

a8 = 1

8!
, (C6)

and according to our definition of the density of states in
Eqs. (A25) and (A27), v3

F = 1/(2π2c) = 1
2π2 [2�2(D − �) +

2
3�3].

In Fig. 14 we show the temperature evolution of the quasi-
particle damping � = −Im[	(ω = 0)] normalized with U 2

for different values of the interaction strength (U = U/D)
and for different values of the cutoff (�/D). The tempera-
ture exponent ranges from a pure T 8 characteristic of nodal
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FIG. 14. The quasiparticle damping at half-filling normalized
with U 2 as a function of the temperature (T = T/D) for � = �/D =
1.0, 0.2, 0.05 and several values of U = U/D from the metallic side
approaching the MIT.

semimetal to T 2 being the characteristic exponent of the Fermi
liquid phase. With regard to �/D < 1, nonlinear band effects
extend to low energy and the exponent decreases from 8 to 2.
Increasing U/D for �/D < 1 leads to a more evident decrease
of the exponent from the second-order perturbation theory
result. A clear deviation from perturbation theory is shown
for the smallest value of �/D and the largest value of U .

Employing a suitable scaling of � and T in order to com-
pare systems with the same zero-energy Fermi velocity (see
Appendix D), we get the rescaled curves shown in Fig. 15.
We identify a clear crossover from the semimetal liquid to
the Fermi liquid behavior of the quasiparticle damping, which
occurs when T ∼ 0.1vF . For the smallest �/D = 0.05, the
range of T is too narrow to observe semimetal liquid pertur-
bative behavior, which we expect at very low temperatures.

APPENDIX D: SCALING AT WEAK COUPLING

In Fig. 16 we show the total noninteracting DOS for
�/D = 1 and for �/D < 1. To compare systems with the
same bare Fermi velocity (curvature of the DOS around zero
energy), a rescaling of the DOS (inset of Fig. 16) is required.
The rescaling affects both the temperatures and the interaction
strengths for �/D < 1. First, we fix the half-bandwidth of
the model with �/D = 1 to a value D0. The normalization
constant entering the DOS in Eq. (A25) as � = D0 can be
expressed as

c = 3

2D3
0

. (D1)

Then, we can define a scaling factor such that

c0S3(λ) = 3

2D3
0

, (D2)

where the subscript 0 stands for the constants describing
the DOS model with half-bandwidth D0. The constant λ =
�/D = �0/D0 is independent of the rescaling. Recalling

(a) (d)

(b) (e)

(c) (f)

FIG. 15. The quasiparticle damping at half-filling normalized
with U 2

0 at fixed U = U/D and � = �/D as a function of the
temperature (T/D0) and scaled to obtain a comparison between
quantities with the same bare Fermi velocity. The subscript 0 indi-
cates that the quantity is in units D0 (see Appendix D). The color
code is the same as in Fig. 14.

FIG. 16. Free-particle DOS used in the IPT codes. Notice the
different curvature around ω = 0, which implies different bare Fermi
velocity. Inset: Scaled free-particle DOS, which shows the same bare
Fermi velocity.
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the formula for the normalization constant in (A27), c0 =
1/[[ 2

3λ3 + 2λ2(1 − λ)]D3
0], and therefore

S(λ) = [λ3 + 3λ2(1 − λ)]1/3. (D3)

To keep D0 constant, we should rescale the half-bandwidth as

D = D0

S(λ)
(D4)

but also the temperature and the interaction consistently,
T

D0
= T

D

D

D0
= T

S(λ)
>

T

D
, (D5)

U

D0
= U

D

D

D0
= U

S(λ)
>

U

D
. (D6)

APPENDIX E: OPTICAL CONDUCTIVITY

Using the Kubo formula (B1), the optical conductivity is

Reσxx = e2π

∫ +∞

−∞
dω

(
− df

dω

)

×
( ∫ D

−D
dεN (ε)[ρ (+)ρ ′(+) + ρ (−)ρ ′(−)]

+
∫ �

−�

dε 2cε2[ρ (+)ρ ′(−) + ρ (−)ρ ′(+)]

)
, (E1)

where ρ ′ is the spectral function evaluated at ω + � and ρ at
ω. The results from the Kubo formula [Eq. (E1)] are shown in
Fig. 17 in the (a) weak- and (b) strong-coupling NSM phases.
Note that the intraband contribution is obtained from Eq. (E1),
taking into account only the first term in the integral over ε.

Our approximation for the optical conductivity (E1) ne-
glects the interband transitions at large energy � and therefore
can describe accurately the optical spectra at low energy � <

�. A sharp zero-frequency Lorentzian Drude peak is indeed
found in Fig. 17, and its �−2 tail is shown. Only intraband
transitions contribute to this peak. Both the amplitude and
the width of this peak depend strongly on the energy scale
�. At an energy ω > T as T < �, interband transitions start
to contribute, producing an increase in optical absorption. At
weak coupling, the intraband absorption is of the Drude form

σintra(�) = σ (0)�2
opt

�2 + �2
opt

, (E2)

thus the effect of �/D < 1 reduces at low temperature to
simple scaling of low-frequency optical conductivity, and for
� > �opt the scaling of the optical spectra reduces to the scal-
ing of σ (0)�2

opt. From the results shown in Fig. 7(d) we know
that σ (0) scales with S6(�). On the other hand, as is shown
in Fig. 12 and derived below, �opt scales as the quasiparticle
damping [S−9(�)], and therefore at weak coupling and low
temperature the scaling of low-energy optical conductivity
is that of S−12(�). The scaled optical conductivity is shown
in the inset of Fig. 17(a). In the strongly correlated NSM
phase the scaling does not hold, but the low-frequency optical
conductivity has a Lorentzian form with �opt that deviates
from a simple proportionality with quasiparticle damping, as
shown in Fig. 12 of the main text.

(a)

(b)

FIG. 17. Optical conductivity at half-filling for T/D = 0.02 and
U/D = 0.5 (a) and U/D = 3.0 (b). In both panels, the dashed red
curve indicates the intraband contribution to the optical spectra at
�/D = 1. They are obtained by taking into account only the intra-
band contribution from the Kubo formula [Eq. (B1)].

We now derive the relation between �opt and �. By using
the intraband part of the Kubo formula in Eq. (E1), each term
of the optical conductivity can be written as the integral over
energies and frequencies of the product of two Lorentzians,

Reσi, j (�) = e2π

�

∫ +∞

−∞
dω[ f (ω − μ) − f (ω − μ + �)]

×
∫

dε N (ε)
�(ω)

[ω − Re	(ω) − ε]2 + �2(ω)

× �(ω + �)

[ω + � − Re	(ω + �) − ε]2 + �2(ω + �)

(E3)
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FIG. 18. The spectral function shown at various chemical po-
tentials for �/D = 0.2, U/D = 3.0, and T = T ∗(μ = 0.0) = 0.1D,
where at half-filling the semimetal behavior (U-shape) disappears.
The dashed gray line indicates the position of the Fermi level.

= e2π

�

∫ +∞

−∞
dω[ f (ω − μ) − f (ω − μ + �)]

×I (ω,�). (E4)

Let �(ω) = �1, �(ω + �) = �2 and ω − Re	(ω) =
ε1, ω + � − Re	(ω + �) = ε2. Then the integral in en-
ergy ε can be made using the specific model with
�/D = 1 and the corresponding quadratic density of states
N (ε) = 3ε2/2D3,

I (ω,�) =
∫

dεN (ε)
�1

(ε1 − ε)2 + �2
1

× �2

(ε2 − ε)2 + �2
2

= 3π

2D3

�1ε
2
2 + �2ε

2
1 + �2

1�2 + �2
2�1

(ε1 − ε2)2 + (�1 + �2)2
. (E5)

Hence, we perform some approximations: (i) we neglect
the real part of the self-energy, and (ii) we take a constant
imaginary part of the self-energy in the limit of ω � T and
� � T (�1 = �2 = �).

The optical conductivity is thus

Reσi, j (�) = 3π2

2D3

∫ +∞

−∞
dω

(
− ∂ f

∂ω

)

× �(ω2 + (ω + �)2) + 2�3

ω2 + (2�)2
(E6)

since the derivative of the Fermi function can be written as

−∂ f (ω)

∂ω
= 1

2

β

1 + cosh(βω)
. (E7)

Then the integral over the frequencies is

Reσ (�) = 3π

2D3

�

�2 + (2�)2

(
2π

3β2
+ 2�2 + �2

)
. (E8)

In the range � � �,ω � T ,

Reσ (�) = π3

D3β2

�

�2 + (2�)2
, (E9)

the optical damping is twice as strong as the quasiparticle
damping (�opt = 2�).

APPENDIX F: DOS AT NONZERO CHEMICAL
POTENTIAL

For finite doping, we have used a modified version of the
IPT proposed in [7] using the formulation illustrated in [9].
As occurs within DMFT, in the metallic Hubbard model the
temperature T ∗ at which the central U-shape gets destroyed
depends strongly on the chemical potential [5]. In Fig. 18 we
show the evolution of the DOS by varying the chemical poten-
tial at a constant temperature T ∗/D(μ = 0.0) = 0.1. Moving
away from the nodal point, a rebirth of the central U-shape is
observed.

APPENDIX G: SECOND-ORDER PERTURBATION
THEORY CALCULATIONS

The imaginary part of the self-energy for a generic DOS,
calculated with second-order perturbation theory, is

Im[	(ω)] = − πU 2
∫

dεkdεk′dεk′′N (ε�k )N (ε�k′ )N (ε�k′′ )

× [ f (ε�k′ )[1 − f (ε�k′′ )][1 − f (ε�k )]

+ [1 − f (ε�k′ )] f (ε�k′′ ) f (ε�k )]

× δ(ω + ε�k − ε�k′ + ε�k′′ ) (G1)

as calculated in [9].
In [9], the specific imaginary part of the self-energy was

calculated for a quadratic dispersed DOS. Here, the calcula-
tion for the flat dispersed DOS is shown, as it is relevant for
our �/D = 0 case.

We consider a flat band with large bandwidth D, which
gives

Im[	(ω)] = − πU 2

(2D)3
[ξ (ω) + ξ (−ω)] (G2)

with

ξ (ω) =
∫

dεkdεk′dεk′′δ(ω−(εk+εk′ + εk′′ )) f (ε�k ) f (ε �k′ ) f (ε �k′′ )

=
∫

dα

2π
eiαωA3(α). (G3)

A(α) is given by

A(α) =
∫

dε e−iα̃ε f (ε), (G4)

where α̃ = α + iδ. A complex integration is then performed.
When α � 0, we close the integration path in the lower

complex half-plane,

A(α) = i2πT
∞∑

m=0

eiα̃[−iπT (2m+1)]

= iπT
1

sinh(α̃πT )
. (G5)
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(a)

(b)

FIG. 19. Filling as a function of the chemical potential for differ-
ent temperatures at �/D = 0.2 and U/D = 0.5 (a) and U/D = 3.0
(b). Dashed gray lines indicate the width of the U-shaped structure
in the spectral function.

If α < 0, we obtain the same result closing the path in the
upper half-plane,

A3(α) = −i(πT )3 1

sinh3(α̃πT )
. (G6)

We expand around the poles α̃ = in
T with n ∈ N,

A3
n(α) = −i(πT )3

[
1

(πT )3
(
α̃ − in

T

)3 − 1

2(πT )
(
α̃ − in

T

)
]

= −i(−1)n

[
1(

α̃ − in
T

)3 − (πT )2

2
(
α̃ − in

T

)
]
, (G7)

which gives

ξ (ω) =
∫

dα

2π
eiαωA3(α) =

∮
dz

2π
eizωA3(z)

= i(−i)
∞∑

n=1

(−1)ne− nω
T

[
−ω2

2!
− (πT )2

2

]

= 1

1 + e
ω
T

[
ω2

2
+ (πT )2

2

]
. (G8)

We get for the imaginary part of the self-energy

Im[	(ω)] = − πU 2

(2D)3
[ξ (ω) + ξ (−ω)]

= − πU 2

(2D)3

1

2
[ω2 + (πT )2]. (G9)

The real part of the self-energy is obtained using the
Kramers-Kronig relations using a large frequency cutoff L as

Re[	(ω)] = − 1

π
P

∫ L

−L
dε

Im[	(ε)]

ω − ε
. (G10)

We use Eq. (G9),

−Im[	(ω)] = [a2ω
2 + a0T 2], (G11)

where

a0 = U 2π3

2(2D)3
, a2 = U 2π

2(2D)3
. (G12)

For ω << L, we get

Re[	(ω)]

D
� −U 2

D2

[
π2L

8D2
− T 2

8D2L

]
ω, (G13)

which shows a linear dependence in ω.

APPENDIX H: CHEMICAL POTENTIAL
DEPENDENCE OF THE FILLING

The compressibility shown in Figs. 9 and 10 is obtained by
numerical derivative of the filling with respect to the chemical
potential. In Figs. 19(a) and 19(b), the dependence of the
filling on the chemical potential is shown explicitly. The small
density of carriers in the node region is at the origin of the drop
in compressibility near the node.
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