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Accurate determination of low-energy eigenspectra with multitarget matrix product states
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Determining the low-energy eigenspectra of quantum many-body systems is a long-standing challenge in
physics. In this paper, we solve this problem by introducing two algorithms to determine low-energy eigenstates
based on a compact matrix product state (MPS) representation of multiple targeted eigenstates. The first
algorithm utilizes a canonicalization approach that takes advantage of the imaginary-time evolution of multitarget
MPSs, offering faster convergence and ease of implementation. The second algorithm employs a variational
approach that optimizes local tensors on the Grassmann manifold, capable of achieving higher accuracy. These
algorithms can be used independently or combined to enhance convergence speed and accuracy. We apply
them to the transverse-field Ising model and demonstrate that the calculated low-energy eigenspectra agree
remarkably well with the exact solution. Moreover, the eigenenergies exhibit uniform convergence in gapped
phases, suggesting that the low-energy excited eigenstates have nearly the same level of accuracy as the ground
state. Our results highlight the accuracy and versatility of multitarget MPS-based algorithms for determining
low-energy eigenspectra and their potential applications in quantum many-body physics.
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I. INTRODUCTION

In the study of many-body quantum systems, excited states
offer more physical information than the ground state. They
are closely associated with various novel or unresolved physi-
cal phenomena [1–3]. As a result, the investigation of excited
states has led to the emergence of new research fields and
insights into open questions.

The behavior of energy eigenspectra plays a crucial role
in classifying quantum phase transitions according to Ehren-
fest’s classification in the thermodynamic limit [4]. A crossing
between two energy levels indicates a first-order quantum
phase transition involving the swap of two wave functions.
In contrast, if two energy levels gradually touch each other
but without crossing, it leads to a continuous quantum phase
transition [5,6]. Hence by detecting the level crossing, we
can distinguish quantum phase transitions and determine the
critical points [7–9].

Moreover, a quantum phase transition may directly arise
from excited states when the vanishing gap between the
ground state and the first excited state does not occur in iso-
lation but in conjunction with the clustering of levels near the
ground state. This local divergence in the density of excited
states propagates to higher excitation energies as the control
parameter varies, leading to an excited-state quantum phase
transition. Various many-body quantum systems have been
found to exhibit such transitions, including the dynamical
Hamiltonian [10–12], Lipkin-Meshkov-Glick model [13–15],
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Dicke model [16,17], interacting boson model [18], kicked-
top model [19], vibron model [20], and others. Many-body
localization systems also undergo a quantum transition from
the ergodic to the localized regime, which remains elusive
at finite energy densities. This is attributed to the low entan-
glement entropy of highly excited states and the presence of
numerous local excitations [21–23].

Excited states exhibit fascinating physical properties be-
yond their energy levels. For example, the entanglement
entropy of excited states related to the primary field ex-
hibits universal scaling similar to the ground state in a
one-dimensional critical model [24]. The study of entangle-
ment away from the critical point is also important [25,26].
Analysis of low-energy excited states can provide confor-
mal data, one of the most important physical quantities
used to identify the universal class of a phase transition,
with unprecedented accuracy [27]. In some nonequilib-
rium systems, considering the low-lying excited states is
necessary to avoid inaccurate results and extend the re-
liable predicted time [28]. Research on excited states is
expected to find new quantum protocols and solve outstanding
problems.

Exact diagonalization is a reliable method to obtain all
eigenstates for small many-body systems. However, the com-
putational time and cost become prohibitively large for larger
systems due to the exponential growth of the Hilbert space.
This limitation restricts the system size to approximately two
dozen sites, leading to finite size effects that can obscure
the understanding of certain physical properties [7,29,30]. In
contrast, the density matrix renormalization group (DMRG)
provides a powerful tool for studying large quantum lattice
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systems [31]. The success of DMRG relies on the fact that the
wave function generated by this method is a matrix product
state [32], which faithfully captures the entanglement struc-
ture of the ground state.

Although DMRG provides unprecedented accuracy in cal-
culating ground state properties of one-dimensional systems,
computing excited states can be challenging. Various schemes
have been proposed to calculate low-energy excited eigen-
states. If the excited states of interest are the lowest-lying
states of different sectors distinguished by symmetry, they
can be obtained by searching for the lowest-energy states in
those sectors [2]. However, new algorithms are required if the
system lacks symmetry or the states of interest are in the same
symmetry sector. One such approach is the multitarget DMRG
[2], where multiple low-energy eigenstates are calculated by
diagonalizing the renormalized Hamiltonian obtained in the
DMRG sweep. This renormalized Hamiltonian is obtained by
minimizing the truncation error of the reduced density ma-
trix defined by summing over all targeted states with certain
weights [2,28,33]. Within the block tensor train (TT) format,
one can also obtain the low-lying eigenstates through the
minimization of the block Rayleigh quotient [34,35]. Fur-
thermore, a more rigorous renormalization group technique
is available to compute low-energy excited states, although it
is computationally demanding [36–38].

Another way to compute excited states is to add a penalty
term to the original Hamiltonian H , resulting in a modified
Hamiltonian

H1 = H + λ|ψ0〉〈ψ0|, (1)

where |ψ0〉 is the ground state of H . The penalty term shifts
the original lowest energy E0 to E0 + λ, making the first
excited state of H the ground state of H1 for sufficiently large
λ. In principle, higher excitation states can be obtained by
repeating the procedure. Still, this approach faces challenges
due to the high accuracy required for the states in the penalty
term [39,40]. There is a similar method to solve the excited
state with the constraint that it is orthogonal to the predeter-
mined MPS [41,42].

The dynamical correlation function provides excitation
spectra by evaluating time-dependent DMRG or time-
evolving block decimation (TEBD) [43] from the ground
state. However, it can be computationally expensive, and ar-
tificial extrapolation is often used to improve the frequency
resolution [44]. The tangent-space method based on the single
mode approximation has been developed to capture excita-
tions on the lattice with translation invariance [32,45–50].

In this paper, we show that the wave functions generated
by the multitarget DMRG can be represented as a group of
MPSs that share a common set of matrices and each individual
MPS corresponds to a specific target state of the system. We
call this kind of wave function a multitarget MPS. Based on
this multitarget MPS representation, we propose two algo-
rithms to determine low-energy eigenspectra accurately and
simultaneously. The first method, referred to as the multitarget
update method (MTU), is similar to the conventional update
[51] or TEBD method for the ground state [43], but optimized
for a batch of states simultaneously with reorthonormaliza-
tion after each projection step. The virtual bond dimension is
proportional to the number of target states to contain more

entanglement. The second method, referred to as the varia-
tional Riemannian optimization (VRO), utilizes a subspace
formed by isometric matrices to perform optimization without
the normalized denominator that may diverge [52]. VRO can
achieve accurate results with a small virtual bond dimension
by preserving the orthonormalization of states and satisfying
the Ring-Wirth nonexpansive condition [53], enabling the
algorithm to be globally convergent. While MTU has faster
convergence, the virtual bond dimension needs to increase
with the number of states, and VRO can significantly improve
the numerical accuracy based on the results of MTU.

As will be discussed, the use of multitarget MPSs allows
for the efficient computation of properties of multiple target
states simultaneously, without the need to perform separate
calculations for each state. This can be particularly useful
when one is interested in studying the properties of multiple
low-energy states of the system.

We test the two methods by evaluating the low-energy
eigenspectra of a finite transverse-field Ising chain with open
boundary conditions. The simulated results agree excellently
with the exact solution. This demonstrates the reliability and
potential of our proposal. The absolute errors of the eigen-
spectra and the variances in energy exhibit striking uniform
convergence in the gapped phase, indicating that it is possible
to compute several low-lying excited states with nearly the
same precision.

II. MPS PARAMETRIZATION
OF THE MULTITARGET DMRG STATES

To construct the MPS representation for the eigenstates
generated by the multitarget DMRG method [2], let us first
consider how the MPS representation is obtained for the
ground state obtained in a DMRG calculation [31,32]. In the
original DMRG calculation, a system known as a superblock
is partitioned into four parts: a left subblock, a right subblock,
and two added lattice sites. Assuming i and i + 1 are the two
added sites, then the left block contains all the sites on the
left of i and the right block contains all the sites on the right
of i + 1. If we use |si−1〉 and |ei+2〉 to represent the basis
states retained in the DMRG iterations for the left and right
subblocks, then the ground state is as ψ0(si−1, σi, σi+1, ei+2)
with σ j ( j = i, i + 1) the quantum number of the basis states
at site j.

Now we divide the superblock into two parts, a system
block plus an environment block. The system block contains
the left block plus site i. The environment block, on the other
hand, contains the right block plus site i + 1. In this bipartite
representation, ψ0 can be regarded as a matrix with (si−1, σi )
the row index and (σi+1, ei+2) the column index. This wave
function can be diagonalized using two unitary matrices, U
and V , through a singular value decomposition

ψ0(si−1σi, σi+1ei+2) =
∑

l

Usi−1σi,lClVl,σi+1ei+2 , (2)

where C is the diagonal singular matrix, which is also the
square root of the eigenvalue matrix of the reduced density
matrix of the system or environment block. Both U and V
are basis transformation matrices. In particular, U is also the
matrix that diagonalizes the reduced density matrix of the
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system block that is defined by tracing out all basis states in
the environment block:

ρsys = Trenv|ψ0〉〈ψ0|. (3)

Similarly, V is the matrix that diagonalizes the reduced den-
sity matrix of the environment block.

In the MPS language, U and V are represented by two
three-leg tensors:

Ai
si−1si

[σi] = Usi−1σi,si , (4)

Bi+1
ei+1ei+2

[σi+1] = Vei+1,σi+1ei+2 . (5)

After truncating the basis space to retain the largest D singular
values, Ai and Bi+1 become left and right isometric, respec-
tively. The ground state then becomes

|ψ0〉 ≈
∑
siei+1

Csiδsi,ei+1 |si, ei+1〉, (6)

where si and ei+1 are the basis states retained after truncation:

|si〉 =
∑
si−1σi

Ai
si−1si

[σi]|si−1σi〉, (7)

|ei+1〉 =
∑

ei+2σi+1

Bi+1
ei+1ei+2

[σi+1]|σi+1ei+2〉. (8)

Equations (7) and (8) hold recursively for all the lattices in
the system and environment blocks, respectively. Substituting
them into Eq. (6) recursively, we can eventually express ψ0 as
an MPS:

ψ0 = A1[σ1] . . . Ai[σi]CBi+1[σi+1] . . . BL[σL]. (9)

Graphically, it can be represented as

(10)

To improve the accuracy of the ground state wave function,
one can increase the bond dimension D. Alternatively, one can
also use several different MPSs, not necessarily orthogonal to
each other, to represent the ground state wave function [54].

If M > 1 eigenstates are targeted, we obtain M or-
thonormalized eigenfunctions, ψm(si−1, σi, σi+1, ei+2) (m =
0, . . . , M − 1), by diagonalizing the renormalized Hamilto-
nian at each step of DMRG iteration. Again, we can find a
unitary matrix U to diagonalize the reduced density matrix of
the system. But the reduced density matrix is now defined by

ρsys =
∑

m

wmTrenv|ψm〉〈ψm|, (11)

where wm is a positive weighting factor the sum of which
equals 1. Similarly, we can find another unitary matrix V to
diagonalize the reduced density matrix of the environment
block.

In this case, the mth eigenstate can be represented as

|ψm〉 ≈
∑
siei+1

Csi,ei+1 [m]|si, ei+1〉, (12)

where C[m] is a matrix defined by

Csi,ei+1 [m] =
∑
si−1σi

∑
σi+1ei+2

ψm(si−1σiσi+1ei+2)

× U ∗(si−1σi, si )V
∗(ei+1, σi+1ei+2). (13)

Following the steps leading to the MPS representation of
the ground state and using the recursive relations (7) and (8),
we can also express ψm as an MPS [55]:

ψm = A1[σ1] . . . Ai[σi]C[m]Bi+1[σi+1] . . . BL[σL]. (14)

The corresponding graphical representation is

(15)

Here we use the same symbol C to represent the central
canonical tensor, but C now contains an extra leg “m.”

The formula presented in Eq. (15) is derived solely from
the eigenvectors ψm. It does not depend on the weights
wm specified in the reduced density matrix ρsys. While
these weights do play a role in determining the accuracy of
the eigenstates of ρsys used for determining the basis states
retained in the DMRG calculation, they have no impact on the
structure of the multitarget MPS.

As Aj and B j are left and right canonicalized,∑
σ

Aj†[σ ]Aj[σ ] = 1,
∑

σ

B j[σ ]B j†[σ ] = 1, (16)

it is simple to show that ψm are orthonormalized,

〈ψm′ |ψm〉 = δm,m′ , (17)

if C[m] is orthonormalized:

(18)

In the above expression, the canonical center C[m] is de-
fined on the bond linking sites i and i + 1. One can also absorb
C[m] into Ai and define a canonical center at site i:

(19)

In this case, ψm becomes

(20)

This is just the bundled MPS introduced in Ref. [56]. If we put
C[m] at one end of the lattice, this multitarget MPS is equiv-
alent to the numerical renormalization group MPS proposed
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in Ref. [57]. The canonical center Ci is now a four-leg tensor
and the orthonormal condition of ψm becomes

(21)

III. METHODS

A. MTU

MTU is essentially a canonicalization method that updates
relevant local tensors without explicitly contracting the whole
MPS. Like TEBD, this method is particularly suitable for
studying a system with short-range interactions. As an ex-
ample, let us consider a Hamiltonian with nearest-neighbor
interactions Hi,i+1 only:

H =
L−1∑
i=1

Hi,i+1. (22)

To find the low-energy Hilbert space that optimizes the mul-
titarget MPS, we iteratively apply the projection operator
exp(−τH ) to these MPSs. Here, τ is a small parameter that is
used to decouple exp(−τH ) into a product of local projection
operators, exp(−τHi,i+1), through the second-order Trotter-
Suzuki decomposition formula

e−τH =
∏

i

e−τHi,i+1 + O(τ 2). (23)

In practical calculation, we sweep the lattice by applying the
local projection operators to MPSs alternatively from one end
to the other end. At each step, the canonical center is moved
one site along the direction of the sweep.

We use the MPS ψm represented by Eq. (20) to demonstrate
how to update the canonical center and other local tensors
when we sweep the lattice from left to right. By applying
the local projection operator exp(−τHi,i+1) to Eq. (20), this
changes ψm to

(24)

where T is a five-leg tensor:

(25)

Taking a QR decomposition to decouple T into a product
of a unitary matrix Ai and an upper triangular matrix C̃i+1, we
obtain

(26)

Here, a thick bond is used to emphasize that it is a bond
before truncation. After truncation (indicated by the approxi-
mate equality), it becomes a thin bond the bond dimension of
which is lower than the thick one. This truncation introduces
errors in the determination of the multitarget MPS. However,
these truncation errors do not affect the accuracy of the final
converged results.

Substituting Eq. (26) into Eq. (20), we obtain an updated
MPS the canonical center of which moves to site i + 1.
However, the canonical center C̃i+1 obtained is not orthonor-
malized. Consequently, the updated MPS ψ ′

m are also not
orthonormalized. Before taking the step of projection, we
should reorthonormalize these MPSs. To do this, we first turn
C̃i+1

αβ [σ, m] into a matrix by grouping (α, β, σ ) as the row
index and m as the column index, and then diagonalize it
through singular value decomposition:

C̃i+1
αβ [σ, m] =

∑
n

Vαβσ,nλnU
∗
m,n, (27)

where U is a M × M unitary matrix, V is an isometric matrix,
and λ is the diagonal singular value matrix of C̃i+1. Finally,
we update the canonical tensor at site i + 1 by the formula

Ci+1
αβ [σ, n] = Vαβσ,n. (28)

It is straightforward to show that Ci+1 such defined is or-
thonormalized.

We can also orthonormalize C̃ by first diagonalizing the
density matrix

Xm′,m = 〈ψm′ |ψm〉 =
∑
αβσ

C̃∗
αβ[σ, m′]C̃αβ[σ, m]

=
∑

n

Um′,nλ
2
nU

∗
m,n. (29)

By leveraging its eigenvalues and eigenvectors, we can
express the canonical center C as

Ci+1
αβ [σ, n] =

∑
m

C̃i+1
αβ [σ, m]Um,nλ

−1
n . (30)

The above orthonormalization steps (27) and (28) are
crucial to maintaining the orthonormal properties of the multi-
target MPS. Repeating the above steps by sweeping the lattice
sufficiently many times, we will cool down the temperature
and project ψm onto the subspace spanned by the M-lowest
eigenstates of H approximately.

The singular value λ defined in Eq. (27) measures the prob-
ability of the corresponding eigenvectors in the multitarget
MPS obtained. At the first few MTU sweeps, as the weights of
low-energy excited states are still low in the multitarget MPS
computed, λn is generally small but will quickly increase and
converge to a value of order 1.

The converged MPSs ψm are not automatically the eigen-
states of the Hamiltonian. To find the eigenfunctions, we first
calculate the matrix elements of H in the subspace spanned by
these M orthonormal basis states ψm:

Hm,n = 〈ψm|H |ψn〉. (31)

The eigenvalues and eigenvectors of this Hamiltonian give the
approximate solution of the lowest-M eigenenergies and the
corresponding eigenstates of the system.
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To carry out the above projection efficiently, it is suggested
not to start with a too small τ . Instead, one should gradually
decrease τ to reduce the Trotter error after completing several
sweeps.

B. VRO

One can also take the tensor elements of the multitarget
MPS as variational parameters to determine them by optimiz-
ing a cost function that implements the variational principle
[58,59]. This can improve the accuracy of results without in-
troducing the Trotter error. A generalized variational principle
[60] states that the sum of the energy expectation values of
M orthonormal basis states ψm (m = 0, . . . , M − 1) is always
higher than or equal to the sum of the M-lowest eigenenergies
of the full Hamiltonian:

M−1∑
m=0

〈ψm|H |ψm〉 �
M−1∑
m=0

E ex
m , (32)

where E ex
m is the exact result of the mth lowest eigenenergy of

H . Thus we can define the cost function as

f (A, B,C) =
M−1∑
m=0

〈ψm|H |ψm〉, (33)

where (A, B,C) stands for the left, right, and canonical center
tensors in Eq. (15) or (20).

Equation (33) holds when the orthonormal condition (17)
or (21) is valid. To determine the values of variational pa-
rameters, we should therefore maintain the orthonormality of
ψm in searching for the optimal path that minimizes the cost
function.

In the MPS representation of ψm, Eq. (15), all local tensors,
including Ai, B j , and C, are either left or right canonical-
ized. With proper regrouping of tensor indices, they can all
be represented as column isometric or unitary matrices. For
example, we can convert the left canonical tensor Ai

s,s′ [σ ] into
an isometry by setting (s, σ ) as the row index and s′ as the
column index of an isometric matrix W the matrix elements
of which are defined by

Wsσ,s′ = Ai
s,s′ [σ ]. (34)

The row dimension of W is not less than its column dimen-
sion. Assuming it to be a n × p matrix with n � p, W should
satisfy the constraint

W †W = 1. (35)

When n = p, W is a unitary matrix. For convenience, we call
W isometric no matter whether n > p or n = p. Similarly,
one can convert the right canonical tensor B j

e′,e[σ ] into an
isometric matrix by taking (e, σ ) as the row index and e′ the
column index. The canonical center Cs,e[m] is converted into
an isometric matrix by taking m as the column index and (s, e)
as the row index.

A matrix that satisfies the constraint (35) forms a manifold,
called the Stiefel manifold, which is denoted as St(n, p). This
kind of matrices widely appears in singular value decompo-
sitions [61], image processing [62,63], the linear eigenvalue
problem [64,65], the Kohn-Sham total energy minimization

[66,67], and tensor-network representations of quantum states
[68–71].

A matrix W in the Stiefel manifold remains in that mani-
fold if it is right multiplied by a p × p unitary matrix U :

W̃ = WU . (36)

In the isometric tensor network, such a unitary matrix U
can be interpreted as a gauge transformation on the bond
corresponding to the column of W . It implies that there is a
gauge redundancy in determining an isometric matrix W since
another unitary matrix U †, the product of which with U forms
an identity, can be absorbed into the tensor on the other end of
the bond. We call two matrices, W and W̃ , equivalent if they
are related to each other by a unitary transformation defined
by Eq. (36).

To remove the gauge ambiguity, we introduce the Grass-
mann manifold, which is defined as the quotient manifold of
the Stiefel manifold under the equivalence relation and repre-
sented as Gr(n, p) = St(n, p)/U (p), where U (p) is a unitary
manifold of dimension p. The dimension of the Grassmann
manifold is (n − p)p.

Clearly, minimizing the cost function f (A, B,C) can be
reformulated as an optimization problem that minimizes local
isometric matrices W that satisfy the constraint (35). This
constrained optimization is a highly nonlinear problem. A
promising approach to solving this nonlinear problem is only
to target one local tensor while keeping all other tensors
fixed in the minimization of the cost function and to sweep
over all local tensors iteratively. At each step, on the other
hand, the local tensor is determined by the Riemannian opti-
mization [72]. This approach optimizes a local tensor on the
Riemannian manifold, including the Stiefel manifold as well
as the Grassmann manifold, by retracting the travel vector in
tangent space generated from the cost function to a point on
the manifold [73–75]. A similar approach to optimize a local
tensor by imposing a unitary constraint to target many excited
states was introduced in Ref. [57].

The Riemannian optimization starts with a vector X in the
tangent space of the Grassmann manifold. To ensure the re-
sulting matrix after a move along that direction, i.e., W + εX
with ε a moving step parameter, to remain isometric to the
first order in ε, it is simple to show that X should satisfy the
equation

X = W Q + W⊥R, (37)

where Q is an anti-Hermitian matrix, Q = −Q†, W⊥ is a
unitary complement of W satisfying the equation

WW † + W⊥W †
⊥ = 1, (38)

and R is an arbitrary (n − p) × p matrix. Furthermore, if W is
a point in the Grassmann manifold, a unitary gauge transfor-
mation can be imposed to ensure Q = 0. This yields

X = W⊥R. (39)

To determine the optimal vector on the tangent space of
the Grassmann manifold, we first calculate the derivative of
the cost function without considering the constraint (35), D =
∂W f (W ). However, this derivative contains both the compo-
nents on and those not on the tangent space of the Grassmann
manifold of W . Using Eq. (39) and the properties of the
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tangent vectors, it can be shown that the components of D
on the tangent space of the Grassmann manifold are given by

G = (1 − WW †)D. (40)

This vector represents the direction of a local optimization
path, and here we adopt the Euclidean metric

R(X,Y ) = Re Tr(X †Y ). (41)

The Riemannian optimization finds the optimal W by gen-
erating a sequential path using the tangent vectors obtained
with Eq. (40). Let us assume Wk and gk to be a point in
the Grassmann manifold and a vector in tangent space along
which Wk is updated at the kth step according to the formula

Wk+1 = Wk + εkgk, (42)

where εk is the kth step parameter. In the steepest descent
method, gk equals the minus of the tangent vector Gk of
Wk that is determined by Eq. (40), hence gk = −Gk . How-
ever, Wk+1 may not automatically fall onto the Grassmann
manifold. A retraction should be done to map it back to the
Grassmann manifold.

There are several approaches to retract Wk+1 back to the
Grassmann manifold [72,73,76]. The approach we adopt is

Wk+1 =
{

eεkQkWk, p � n/2

Wk + εkUk
1

I−Mk,2
Mk,1, p < n/2

, (43)

where

Qk = gkW
†

k − Wkg†
k,

Uk = [gk,Wk],

Vk = [Wk,−gk],

Mk,1 = V †
k Wk,

Mk,2 = εk

2
V †

k Uk, (44)

In calculating the second expression in Eq. (43), one can
use the Sherman-Morrison Woodbury formula [73,77,78]
to reduce the computational complexity from O(n3) to
O(np2 + p3).

However, the steepest descent may not be the best approach
in optimization. If, instead, the conjugate gradient method is
used, the searching direction of the (k + 1) step should depend
on the searching direction of one step before, hence

gk+1 = −Gk+1 + βk+1gk, (45)

and g0 = −G0. This conjugate approach, unfortunately, does
not work because the two terms on the right-hand side of
Eq. (45) belong to two different tangent spaces. More specifi-
cally, gk is not on the tangent space of Wk+1. Nevertheless, this
problem can be removed by introducing a vector transport T
to map gk onto the tangent space of Wk+1, which yields

gk+1 = −Gk+1 + βk+1T (gk ), (46)

where the vector transport T is taken as the differentiation of
the retraction

T (gk ) =
⎧⎨
⎩

eεkQk gk, p � n/2

Uk

[
Mk,1 + 2−Mk,2

I−Mk,2
Mk,3

]
, p < n/2

, (47)

where

Mk,3 = Mk,2(I − Mk,2)−1Mk,1. (48)

We determine the step parameters, εk and βk , using the
traditional Fletcher-Reeves algorithm [79], but the inner prod-
ucts are replaced by the metrics of the Grassmann manifold
[80]. Particularly, βk is determined by the formula

βk = R(Gk, Gk )

R(Gk−1, Gk−1)
. (49)

There are some flexibilities in determining another parameter,
εk . But it should satisfy the strong Wolfe conditions

f (Wk+1) � f (Wk ) + c1εkR(Gk, gk ), (50)

|R(Gk+1, T (gk ))| � c2|R(Gk, gk )|, (51)

with 0 < c1 < c2 < 1. An optimal εk can be determined by
the line search algorithm discussed in Ref. [81].

Once the variational parameters become converged, we can
again determine the lowest M eigenenergies and eigenstates
by diagonalizing the matrix Hm,n defined by Eq. (31). Clearly,
the cost of this variational optimization scales linearly with
the system size. If the maximum virtual bond dimension is D
and the physical bond dimension is d , then the computational
cost of MTU scales as O(M2D3d3). The computational cost
of VRO, on the other hand, scales as O(D3d3) for each left
or right canonical tensor while it scales as O(M2D2d ) for the
canonical center. Per optimization step, the cost of VRO scales
better than MTU. However, VRO optimization typically needs
significantly more optimization steps, and its cumulative cost
is generally higher than that of MTU.

C. Initialization

In an MTU calculation, the multitarget MPS can be initial-
ized as a product state of internal bond dimensions all set to 1.
Taking a few TEBD steps without any basis truncations can el-
evate the bond dimensions to a value equal to or surpassing the
desired value, D. This multitarget MPS can be canonicalized
to obtain the initial left, right, and central canonical tensors.
To circumvent the potential of the final solution becoming
trapped in local minima, one can start with a relatively large
M and progressively diminish it to the intended number of
eigenstates in the early stages of TEBD sweeps. This trick of
gradually reducing M can also be applied to VRO.

In VRO calculations, the MTU solution can serve as an
initial input for the multitarget MPS. If such a solution is un-
available, initiating with a random canonicalized multitarget
MPS is an option. While convergence is still expected via
VRO, this often requires more computational time.

IV. RESULTS

We benchmark the two algorithms introduced in the pre-
ceding section using the transverse-field Ising model on a
finite one-dimensional lattice with open boundary conditions:

H =
∑
i=1

( − JSz
i Sz

i+1 + hSx
i

)
(52)
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FIG. 1. Comparison of the low-energy eigenspectra (red dots)
obtained by MTU with the exact solutions (blue lines) for the
transverse-field Ising chain at three representative fields with M =
30, L = 100, and D = 200. For clarity in comparison, a break is
applied to the first excited energy gap when the field is away from the
critical point, and the degenerate eigenenergies obtained with MTU
are separately depicted.

where Sx,z
i are the S = 1/2 spin operators. Without loss

of generality, we set J = 1. This model undergoes a con-
tinuous transition from a paramagnetic phase to a ferro-
magnetic ordered phase at a critical field hc = 1/2 at zero
temperature.

The one-dimensional transverse-field Ising model can be
converted to a noninteracting fermion model by taking the
Jordan-Wigner transformation. It allows us to solve this model
and calculate the full spectra exactly [82]. Therefore, we can
make a quantitative comparison between our numerical results
and the exact ones.

Figure 1 shows the low-energy eigenspectra obtained by
MTU for the transverse-field Ising model on a lattice size L =
100 with M = 30 and D = 200 in three representative field
points. We used the same parameters as those used by Chepiga
and Mila in their DMRG calculation [83]. Our methods can
accurately and efficiently calculate low-energy eigenspectra
in the gapped phases as well as at the critical point. By
comparison, we find that our results agree excellently with the
exact ones and are systematically more accurate than those
published in Ref. [83]. Furthermore, we find that the errors
in the eigenenergies in the gapped phase are smaller than that
at the critical point. This differs from the observation made
by Chepiga and Mila, but matches the physical expectation
because a critical state bears more entanglement than a gapped
state.

To obtain the results shown in Fig. 1, we start with a rela-
tively large τ = 5 to avoid being trapped at a local minimum
of the cost function. We then gradually reduce the value of τ

several times by taking roughly half of its value after several
sweeps. We stop the iteration when τ reaches the order of
10−5–10−7, and the truncation error does not show significant
change by further reducing the value of τ .

One can use VRO to improve the accuracy of the
eigenenergies further. This is because VRO does not involve

10-11

10-10

10-9

10-8

10-7

0 5 10 15 20 25 30

10-7

10-6

10-5

10-4

h = 0.3

(b)

(a)

h = 0.5

δE
m

δE
m

m

FIG. 2. Absolute errors of low-energy eigenspectra obtained
with MTU (red dots) and VRO (blue squares) for the transverse-field
Ising model at two fields with M = 30, L = 100, and D = 200. The
errors of the system with h = 0.7 behave similarly to the h = 0.3
case.

a truncation step and the error comes purely from the
approximation in the MPS representations of low-energy
eigenstates. Furthermore, VRO can also be applied to a
model with an arbitrary long-range interaction. In a VRO
calculation, one can set up the initial local tensors with
random numbers. However, as the computational cost for
updating the local tensors using VRO is much higher than
using MTU, starting a VRO calculation with an MPS first
optimized by MTU whenever possible is better.

0 5 10 15 20 25 30
10-11

10-10

10-9

10-8

10-7

10-6

m

h = 0.3
0.5

0.7

 2

FIG. 3. Variances in the eigenenergies of the transverse-field
Ising model obtained by VRO with L = 100, M = 30, and D = 200.
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FIG. 4. Absolute errors of the cost function δ f as a function of
the virtual bond dimension D for the transverse-field Ising model
obtained by VRO. The lattice size L = 100 and M = 30 states are
targeted.

Figure 2 compares the errors of the eigenenergies obtained
with the two methods:

δEm = ∣∣E ex
m − Em

∣∣, (53)

where E ex
m is the exact result of the eigenenergy. The calcula-

tion shows that the absolute errors of eigenenergies obtained
by VRO are two to three orders of magnitude smaller than
those obtained by MTU. They are also one to two orders
of magnitude smaller than those obtained based on the op-
timization on the unitary manifold [57]. The errors of the
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δΕ
m

δΕ
m
 (×

10
−8

)

m

FIG. 5. Absolute errors in the eigenenergies of the transverse-
field Ising model, computed using MTU for four distinct values of
M. Parameters used are L = 100 and D = 200.
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FIG. 6. Entanglement entropy as a function of the lattice size L
for the transverse-field Ising model obtained by MTU. The horizontal
axis is in linear scale for h = 0.3 (upper panel) and logarithmic scale
for h = 0.5 (lower panel), respectively. The other parameters used
are D = 500 and M = 30.

eigenenergies at the critical point are higher than at the field
away from the critical point.

As revealed by Fig. 2, the errors in the eigenenergies are
nearly independent of m in the noncritical phases, indicating
that the VRO results of the eigenenergies are uniformly con-
verged [84]. It further suggests that the errors in the difference
between two neighboring energy levels

�m = Em − Em−1 (54)

can be smaller than the errors in the eigenenergies in the
noncritical phase. This is indeed what we find. However, this
uniform convergence in the eigenenergies is not observed at
the critical point.

The variance in the energy for each eigenstate

σ 2 = 〈H2〉 − 〈H〉2 (55)

provides another measure to probe the accuracy of the re-
sults. Figure 3 shows the energy variance of the eigenstates
calculated by VRO for the transverse-field Ising model. As
expected, the variance is smaller at the noncritical points than
at the critical point.

Figure 4 illustrates how the cost function, which equals the
total energy of the first M = 30 eigenstates, converges to the
exact result with the increase of the bond dimension D for
the transverse-field Ising model. For the three cases shown in
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FIG. 7. The entanglement entropy for the lowest M = 30 eigen-
states of the transverse-field Ising model obtained by MTU. Other
parameters used are L = 60 and D = 500.

the figure, the errors in the cost function, δ f = f − f ex with
f ex the exact result, drop exponentially with D.

Figure 5 shows how the absolute error of each state
changes with the number of targeted states M while keeping
the bond dimension fixed at D = 200. At a noncritical field of
h = 0.3, the errors remain almost unchanged for not too large
M. However, they show a trend of exponential growth with m
when h is at the critical point.

Figure 6 shows how the entanglement entropy of the mth
eigenstate obtained by MTU

Sm = −
D∑

i=1

λ2
m,i ln λ2

m,i (56)

varies with the lattice size L. Here λm,i is the ith singular value
of the mth energy eigenfunction obtained by diagonalizing the
Hamiltonian matrix (31). At the field away from the critical
point, the entanglement entropy of the low-energy eigenstates
(m = 0, 10) converges quickly with the increase of L. How-
ever, for the m = 20 eigenstate, Sm oscillates severely in the
small L and converges when L is larger than 35. In general, the
entanglement entropy becomes more and more sensitive to D
with the increase of m. At critical point h = 0.5, Sm scales log-
arithmically with L, Sm ∼ ln L, for all the M = 30 eigenstates,
which is consistent with the conformal field theory.

Figure 7 shows the entanglement entropy as a function of
m for the first M = 30 eigenstates obtained by MTU. Again
the results agree accurately with the exact ones, but the errors
grow with the increase of m. The entanglement entropies are
twofold degenerate for all the eigenstates in the case of h =
0.3. The entanglement entropies of the excited states alternate
between two values, with a periodicity of four eigenstates.

10-7

10-5

10-3

1

(a)

(b)

0-1

0 5 10 15 20 25 30
10-5

10-4

10-3

10-2

10-1

h = 0.3

h = 0.5

δΕ
m

δΕ
m

m

FIG. 8. Comparison of the absolute errors obtained with MTU
(red dot) with those obtained with the block TT format (blue square)
for the transverse Ising model with (a) h = 0.3 and (b) h = 0.5. The
other parameters used are L = 100, ε = 10−3, and M = 30.

The entanglement entropy at the critical point does not show
a regular pattern with particular periodicity or degeneracy.

Finally, we compare the results achieved using MTU and
the block TT format. In the latter approach, the computation
of excited states involves minimizing the block Rayleigh
quotient at each step, as outlined in Ref. [34]. It is worth
noting that, in our calculations, we keep the truncation error ε

constant during the lower-rank approximation of the singular
value decomposition, instead of the bond dimension, to align
with the methodology described in Ref. [34].

Figure 8 compares the absolute errors obtained by these
two approaches for the transverse-field Ising model. Notably,
the absolute errors produced by the block TT format exhibit
significant oscillations, whereas the MTU results display a
consistent and uniform convergence. At h = 0.3, where each
energy level is doubly degenerate, the block TT format ex-
hibits higher accuracy for one energy level but substantially
lower accuracy for the other, resulting in pronounced oscil-
lations. At the critical point, this irregular oscillatory pattern
persists.

V. SUMMARY

We show that the wave functions of the multiple target
states determined by DMRG can be represented by a mul-
titarget MPS. Leveraging this representation, we introduce
two algorithms, MTU and VRO, for efficiently and accurately
determining low-energy eigenspectra of quantum lattice mod-
els. MTU extends the commonly used TEBD method, which
evaluates the ground state of a quantum system by applying
a projection operator onto the multitarget MPS to filter out
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the high-energy subspace. In an MTU calculation, the errors
result from both the Trotter-Suzuki decomposition and the
basis truncation. Reducing the value of τ can minimize the
Trotter error and ensure that the truncation error, which is
determined by the number of states retained, is the primary
source of errors. On the other hand, VRO is a variational
method that maintains the canonical form of the multitarget
MPS and implements global optimization, resulting in highly
accurate eigenspectra calculations. While MTU and VRO can
operate independently in the study of a quantum lattice model
with short-range interactions, VRO can combine with MTU
to further improve the accuracy of low-energy eigenspectra.

Using the one-dimensional transverse-field Ising model,
we demonstrate the stability and accuracy of the proposed
methods. In particular, our methods yield much more accurate

and uniformly convergent results than DMRG [83], not only
at the critical point but also in noncritical phases.
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