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We study a Kondo state that is strongly influenced by its proximity to an ω−1/2 singularity in the metallic host
density of states. This singularity occurs at the bottom of the band of a one-dimensional chain, for example.
We first analyze the noninteracting system: A resonant state εd , located close to the band singularity, suffers
a strong renormalization, such that a bound state (Dirac δ function) is created below the bottom of the band in
addition to a resonance in the continuum. When εd is positioned right at the singularity, the spectral weight of the
bound state is 2

3 , irrespective of its coupling to the conduction electrons. The interacting system is modeled using
the single-impurity Anderson model, which is then solved using the numerical renormalization group method.
We observe that the Hubbard interaction causes the bound state to suffer a series of transformations, including
level splitting, transfer of spectral weight, appearance of a spectral discontinuity, changes in binding energy
(the lowest state moves farther away from the bottom of the band), and development of a finite width. When
εd is away from the singularity and in the intermediate valence regime, the impurity occupancy is lower. As εd

moves closer to the singularity, the system partially recovers Kondo regime properties, i.e., higher occupancy
and lower Kondo temperature TK . The impurity thermodynamic properties show that the local-moment (LM)
fixed point is also strongly affected by the existence of the bound state. When εd is close to the singularity, the
LM fixed point becomes impervious to charge fluctuations (caused by bringing εd close to the Fermi energy), in
contrast to the LM suppression that occurs when εd is away from the singularity. We also discuss an experimental
implementation that shows similar results to the quantum wire if the metallic host of the impurity is an armchair
graphene nanoribbon.
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I. INTRODUCTION

The Kondo effect [1] has been extensively studied, both
theoretically [2] and experimentally [3,4], and it is considered
one of the pillars of many-body physics [5]. It is simu-
lated by a quantum impurity coupled to a noninteracting
Fermi sea, through a model that may include charge fluctua-
tions, resulting in the well-known single-impurity Anderson
model (SIAM) [6], or through a model that accounts only
for the strong-coupling fixed point, where just spin fluctua-
tions are relevant [7]—the so-called Kondo model [8]. The
numerical renormalization group (NRG) method was devel-
oped in the 1970s [2,9–11], and it can uniquely tackle the
Kondo problem. To this day, it is among the most popular
techniques to deal with this fascinating problem. The main
properties of the Kondo state—the quenching of the impurity
magnetic moment, universal temperature scaling, and exis-
tence of renormalization fixed points—are readily obtained
when considering a featureless (flat) density of states (DOS)
of the host around the Fermi energy EF , where most of
the important physics occurs. This may be called a tradi-
tional Kondo effect. Things become more interesting, possibly
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including non-Fermi liquid physics [12], when the host DOS
behaves like ρ(ω) = |ω|r at or near the Fermi energy. For
r > 0, the DOS vanishes at ω = 0, and the band is said to
have a pseudogap. Many theoretical works have analyzed the
Kondo model (no charge fluctuations) for bands presenting a
pseudogap [12–21], while much less work has been devoted
to the r < 0 case, i.e., when there is a divergent DOS (singu-
larity) at the Fermi energy [12,22–24]. Even fewer works have
discussed [25–30] how a singularity close to the Fermi energy,
generating high particle-hole (PH) asymmetry, modifies the
Kondo state. Authors of recent work [31] have discussed a
Kondo state where the impurity orbital level is resonant with
a singularity at the bottom of the band (a situation that oc-
curs for a one-dimensional (1D) lattice, nanotubes [32], and
nanoribbons [33]), while the Fermi energy is slightly above
the singularity, with very interesting results.

In this paper, we revisit a situation like the last system [31],
using the NRG method. To better understand the system here,
we first study the noninteracting regime. In the Appendixes,
we discuss in detail what happens when a noninteracting res-
onant level (RL), generically called an impurity, is placed near
(or at) the ω−1/2 singularity that occurs naturally in a 1D quan-
tum wire host [see Fig. 1(a) for an illustration]. We show that
the noninteracting RL spectral function ρU=0 [green curve in
Fig. 1(a)] exhibits a bound state below the bottom of the band
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FIG. 1. Comparison of noninteracting and interacting results.
(a) The red curve shows host density of states (DOS) with ω−1/2 sin-
gularity at the band bottom, while the green curve presents the DOS
for a noninteracting impurity, showing a well-defined bound state
below the continuum when εd is resonant with the band singularity.
(b) Same as in (a) but now for an interacting impurity (U �= 0). The
bound state acquires a finite width, while a well-developed Kondo
peak appears at the Fermi energy (see Appendix D for a critical
discussion concerning the width of the bound state).

DOS ρband (red curve). The bound state has the properties of
a Dirac δ function (see the Appendixes) and carries a spectral
weight that depends on the coupling of the RL to the band and
its distance to the singularity in ρband [visible as a sharp red
peak in Fig. 1(a)]. Our results show a couple of interesting
features of this deceptively simple noninteracting problem.
First, there is a bound state even when the RL is positioned
close to the center of the band. In that case, the bound state
appears exactly at the edge of the band but carries negligible
spectral weight, even for moderate coupling to the band (see
discussion in Appendix C). Second, if the RL is positioned at
the singularity, the bound state carries a spectral weight that is
exactly 2

3 [34], irrespective of the coupling strength of the RL
to the band.

Once the Hubbard interaction U is turned on [see
Fig. 1(b)], we find that the usual Kondo profile of the im-
purity spectral function [ρNRG, blue curve in Fig. 1(b)] is
modified. Indeed, the singularity strongly distorts the lower
Coulomb blockade peak (CBP) of the impurity, which is
now composed of a broadened bound state and a series of
peaks. In addition, the Kondo temperature and the impurity
occupancy are strongly affected when εd is close to the band
singularity. Both quantities tend to values closer to those fully
in the Kondo regime (higher occupancy and lower TK ) even
when the system is in an intermediate valence regime. This
reentrant Kondo regime can also be observed at tempera-
tures around the local-moment (LM) fixed point. Indeed, the
magnetic susceptibility in the intermediate valence regime
takes values like those in the Kondo regime at tempera-
tures associated with the LM fixed point. This behavior, also
visible in the NRG energy flow, is clearly associated with
the existence of the bound state. We present NRG results
and analysis to explore these interesting regimes in detail
below.

The paper is organized as follows: In Sec. II, we present
the Hamiltonian for the system to be analyzed, while Sec. III
presents the NRG results. This section is divided into three
parts: Sec. III A presents the dependence of the impurity
spectral function (and charge occupancy) on the proximity of
the impurity orbital level to the singularity at the bottom of
the band. Section III B tracks how the bound state present
in the noninteracting problem (U = 0) is affected by the

introduction of correlations (finite U ). In Sec. III C, we ana-
lyze the impurity susceptibility as well as the impurity entropy
and verify that the correlated states caused by the presence
of the singularity have a strong influence on the impurity
properties close to the LM fixed point. The thermodynamic
results are interpreted through an analysis of the NRG energy
flow. Section IV presents results for an experimentally acces-
sible system, where these effects could be observed, viz., an
N = 3 armchair graphene nanoribbon (AGNR). This system
has two singularities, at the bottom of the conduction and
valence bands, that have an ω−1/2 dependence, equal to that
in a quantum wire system. Section V presents a discussion of
the results and our conclusions. Finally, as mentioned above,
in Appendixes A–C, we analyze in detail the noninteracting
system when the RL is close to the singularity, while in Ap-
pendix D, we study the interacting (NRG) impurity spectral
function to ascertain that the results in Sec. III A do not con-
tain numerical artifacts.

II. MODEL AND HAMILTONIAN

In the following, we analyze the Kondo effect of an impu-
rity coupled to a 1D quantum wire. We start with the quantum
wire Hamiltonian:

Hwire =
∑
k,σ

(−2t cos k − μ)c†
kσ

ckσ , (1)

where c†
kσ

creates an electron with wave vector k and spin
σ =↑,↓, while t = 0.5 is the nearest-neighbor hopping in
the tight-binding chain (thus, D = 1, the half bandwidth, is
our unit of energy), and μ is the chemical potential. The
Fermi energy, for different values of μ, is always set at zero
(EF = 0).

To study the Kondo state in this system, the wire is coupled
to an Anderson impurity, which is modeled as

Himp =
∑

σ

εd nσ + Un↑n↓, (2)

where d†
σ (dσ ) creates (annihilates) an electron with orbital

energy εd and spin σ =↑,↓, nσ = d†
σ dσ , and U represents the

Coulomb repulsion. The hybridization between the impurity
and the conduction electrons is given by

Hhyb =
∑
kσ

(Vkd†
σ ckσ + H.c.), (3)

where we consider the case of Vk ≡ V . The parameter � =
πV 2ρband(EF ) determines the strength of the coupling of the
impurity to the bath, where ρband(EF ) is the DOS of the host
at the Fermi energy. To solve this problem, we use the well-
known NRG Ljubljana open source code [35]. For most of
the calculations, we have used the discretization parameter
	 = 2.0 and kept at least 5000 states at each iteration. We
also employ the so-called z trick [36] (with z = 0.0625, 0.125,
. . ., and 1.0, i.e., Nz = 16) to remove oscillations (artifacts)
in the physical quantities. The Kondo temperature was ob-
tained through Wilson’s criterion [1], namely, the temperature
for which the impurity susceptibility multiplied by the tem-
perature reaches 0.07. The thermodynamic quantities were
calculated using the traditional single-shell approximation,
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while the dynamical quantities (spectral function) were cal-
culated using the density matrix NRG approximation [37].
Finally, the single-particle calculations in the main text (and
in Appendix D) have used an imaginary part η = 10−6 to
regularize the Green’s function.

III. NRG RESULTS

A. Singularity effect on the impurity spectral function
and charge occupancy

As described in the literature [25–30], the Kondo state
for Anderson-type systems [6] and highly asymmetric DOS
(such as when the Fermi energy EF is close to a Van Hove
singularity) strongly depends on model parameters. Indeed,
our detailed analysis of the Kondo state for EF close to the
1D band singularity [38] indicates that the impurity spec-
tral function, impurity charge occupancy, and thermodynamic
properties are very sensitive to the interplay between εd , U ,
V , and EF . In other words, small changes in the parameters,
like the position of EF in relation to the singularity, strongly
affect the Kondo state.

To reveal the most interesting aspects of the Kondo state
when εd is at the singularity (and EF is close to the bottom of
the band), we will contrast it to the Kondo state obtained when
EF is exactly in the middle of the band (μ = 0), keeping all the
other parameters equal. We take εd = −U/2; thus, for μ = 0,
the system is in the PH-symmetric (PHS) point. These results
are shown in Fig. 2. Panels (a) and (b) show the impurity spec-
tral function (green curve for the noninteracting case ρU=0

and blue curve for the interacting case ρNRG) for μ = 0 and
−0.995, respectively. The (red) dashed curves are the band
DOS ρband. Note that all DOS results are normalized so that
their integrals over ω are 1. The parameters, kept fixed for both
calculations, are εd = −0.005, U = 0.01, and � = 6.6667 ×
10−4 (thus U/� = 15). We have used V values for both
calculations (V = 0.026 and 0.0082, for panels (a) and (b),
respectively) such that � does not vary. The only change from
one calculation to the other is the PH asymmetry around EF :
no asymmetry in panel (a) and very strong asymmetry in panel
(b). Comparison of the ρNRG results (blue curves) in panels (a)
and (b) shows how strongly the singularity affects the impurity
spectral density [39]. Indeed, from a traditional PHS Kondo
peak at μ = 0 [panel (a), blue curve], we move to a very rich
impurity DOS when εd is at the singularity, showing a series
of peaks around the Fermi energy (EF = 0.0). The rightmost
peak in ρNRG (the upper CBP), farthest from the singularity,
is the least affected, while the Kondo peak (around ω = 0.0)
acquires slight asymmetry. Notice that the RL results (green
curve, ρU=0) show that the singularity splits the noninteracting
DOS into a Dirac δ-like bound state (below the bottom of the
band) and a broad peak starting at the bottom of the band. As it
turns out, this last peak becomes a superposition of three peaks
in the continuum, while the bound state splits into two features
below the band. One is very sharp, located at the band edge,
and has very small spectral weight. The other, containing most
of the spectral weight, is shifted to lower energy than the
original bound state and acquires a sizable finite width [40].
Thus, the interplay between the singularity and correlations
results in very complex spectral behavior. This will be further
analyzed in the next subsection, Sec. III B.

FIG. 2. Density of states (DOS) comparison and spectral weights
for U = 0 and 0.01. (a) Impurity DOS for U = 0 (ρU=0, green curve)
and for U/� = 15 (ρNRG, blue curve) for μ = 0 (when EF is at the
center of the band, ω = 0.0), U = 0.01 and εd = −U/2 = −0.005
(notice dashed red curve close to the horizontal axis, showing the
band DOS, ρband). (b) Same as in (a) but now with EF very close to
the singularity at the bottom of the band (depicted by the dashed red
curve, ρband), μ = −0.995, εd = −0.005 (right at the singularity).
In (a) and (b), the � value is the same for finite and vanishing U .
(c) Finite U = 0.01 results for the evolution of nd = 〈nd↑ + nd↓〉 as
EF moves from the center of the band (μ = 0, right side) to very near
the singularity (μ = −1.0 − εd , left side), for different values of εd

(the leftmost value of μ places the resonant level (RL) exactly at
the singularity). The lowest (purple hexagons) curve with hexagons
shows the bound state spectral weight Zb (see the Appendixes), for
U = 0 and εd = −0.0001. (d) Zoom of the left side of (c) high-
lighting the abrupt increase in nd . The lowest value of the chemical
potential is μ = −1.0 − εd ; thus, the curves above do not cover the
same μ interval.

Figure 2(c) shows how the impurity occupancy nd =
〈nd↑ + nd↓〉 (for U = 0.01 and U/� = 15) varies when the
Fermi energy moves from the center of the band (μ = 0) to
close to the bottom of the band (μ = −1.0 − εd ), for different
values of εd (−0.005 � εd � −0.0001). Figure 2(d) shows a
zoom of the results in panel (c) close to the lowest values of μ.
Notice that the red-squares curve at the top for εd = −0.005
is at the PHS point for μ = 0, and the occupancy is pinned
at nd = 1 even as μ moves away from PHS. As expected,
the average value of nd decreases (from nd ≈ 1.0 to 0.45)
as εd increases, from εd = −U/2 = −0.005 (red squares) to
very close to the Fermi energy εd = −0.0001 (light green
left triangles), moving the system from deep into the Kondo
regime to an intermediate valence regime, even for μ = 0.
However, as the Fermi energy approaches the bottom of the
band (μ ≈ −1.0 − εd ), nd increases abruptly, with a faster
rate the closer εd is to zero.

The variation of the bound state spectral weight Zb [41]
[purple hexagons curve in Fig. 2(c)] with μ, for the nonin-
teracting case, indicates that once the system moves to the
intermediate valence regime (larger values of εd ), the pres-
ence of the bound state below the bottom of the band, with
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FIG. 3. (a) Color map of the Kondo temperature TK for all the
points in Fig. 2(c). The sudden drop of TK at the bottom left corner
indicates that the bound state near EF moves the system back to the
Kondo regime, which has a lower TK than in the intermediate valence
regime (bottom right corner). (b) Comparison of TK vs μ results for
εd = −1 × 10−4 (magenta triangles, intermediate valence regime),
εd = −1 × 10−3 (orange squares, border between Kondo and inter-
mediate valence regimes), and εd = −5 × 10−3 (blue circles, deep
into Kondo regime). (c) Zoom of the results in (b) close to the bottom
of the band.

stronger spectral weight, strongly increases the charging of
the impurity. This effect is negligible if the system is well into
the Kondo regime (εd = −0.005, red squares) or close to it
(εd � −0.003).

As nd tends to approach its Kondo value of nd ≈ 1.0,
despite εd approaching the intermediate valence regime, close
to the bottom of the band, it is reasonable to expect that the
Kondo temperature TK will be strongly affected. We expect
TK will tend to return to its Kondo value when we approach
the bottom of the band in the intermediate valence regime.
Indeed, this can be seen in Fig. 3(a), showing a color map
of the Kondo temperature TK for all the points in Fig. 2(c).
Focusing on the right side of the figure (μ = 0, EF at the
center of the band), we see the usual increase in TK as we
move from top to bottom (from the Kondo to the intermedi-
ate valence regime). However, looking at the bottom of the
figure, moving from right to left (from center to bottom of
the band), we see that TK decreases abruptly as we approach
the bottom of the band, tending back to its low Kondo-regime
value. Figure 3(b) shows a comparison of results for TK vs
μ for different εd = −1 × 10−4 (magenta triangles, inter-
mediate valence regime), εd = −1 × 10−3 (orange squares,
border between Kondo and intermediate valence regimes),
and εd = −5 × 10−3 (blue circles, Kondo regime), highlight-
ing the sharp drop in TK as μ approaches the singularity, when
the system is in the intermediate valence regime (magenta
triangles) or in a region in between Kondo and intermediate
valence [42] (orange squares). This contrasts the stable behav-
ior of TK when the system is deep into the Kondo regime (blue
circles). Figure 3(c) shows a zoom of the results close to the
singularity. Indeed, the formation of the bound state close to
the Fermi energy seems to bring the system back to a Kondo
regime [43].

B. Evolution of the bound state with correlations

With the objective of understanding the origin of the split
peaks around the singularity visible in Fig. 2(b), we present in
Fig. 4 the evolution of the interacting impurity spectral func-
tion as U decreases, keeping � = 8.334 × 10−4, εd = −U/2,
and varying μ so that, for all panels, εd is at the singularity

FIG. 4. Evolution of the interacting impurity spectral density
ρNRG (blue curves), for � = 8.34 × 10−4, εd = −U/2, and μ =
−1.0 − εd , as U varies from (a) U/� = 12 to (f) 0.001. The value of
μ places εd at the singularity in all panels. The dashed green curve
in (f) is the noninteracting ρU=0 spectral function, showing excellent
agreement with the U ≈ 0 numerical renormalization group (NRG)
result. The peaks P0 and P1 are associated with the bound state seen
in ρU=0 (see text).

(μ = −1 − εd ). Panels (a)–(f) show results for U/� = 12.0,
9.0, 6.0, 3.0, 0.5, and 0.001, respectively (as indicated in each
panel). With decreasing U , the upper CBP moves to lower en-
ergy, eventually merging with a considerably broader Kondo
peak [panel (c)], resulting from the system having entered an
intermediate valence regime [43]. We now focus our attention
on the two peaks below the bottom of the band, whose position
and spectral weight can be followed more accurately [peaks
P0 and P1]. For decreasing U/�, the leftmost peak P0 transfers
its spectral weight to peak P1, located at the bottom of the
band. Indeed, for U/� � 0.5 [panel (e)], P0 has transferred
almost all of its spectral weight to P1, while in the interval
3 � U/� � 6, peak P0 splits into two peaks. For U/� ≈ 9.0,
P1 detaches from the bottom of the band, moving away from
it for smaller U , while its spectral weight increases at the
expense of P0. Panel (f), for U/� = 0.001, has a comparison
of the NRG (blue curve) and U = 0 results [44] (dashed
green curve), showing that they are virtually the same. This
demonstrates that the NRG spectral function results reproduce
faithfully the evolution of the many-body processes that give
origin to the split peaks around the singularity, deep into the
Kondo regime [panel (a), U/� = 12].

We now analyze ρNRG in more detail in panels (a) and
(b), where we still have strong correlations. In both panels,
a well-formed Kondo peak and an upper CBP are clearly
visible. For U/� = 9, at energies below the Kondo peak
(but still inside the continuum), a structure with two fea-
tures is clearly visible. For U/� = 12, the Kondo peak and
the upper CBP are clearly consolidated, and further struc-
ture (a third smooth feature) emerges between the Kondo
peak and the bottom of the band. In Appendix D, we show
that all these features (including P0 and P1) are not NRG
artifacts.

Figure 5 presents the spectral weight [panel (a)] and po-
sition [panel (b)], in relation to the bottom of the band,
of peaks P0 and P1 for different values in the interval
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FIG. 5. (a) Spectral weight, as a function of U/�, for peak P0

(red right triangles) and peak P1 (green squares), as defined in the
discussion of Fig. 4. The inset shows P1 spectral weight in a log scale,
highlighting the 2

3 plateau for vanishing U . (b) Energy position, in
relation to the bottom of the band, of P0 (red right triangles), P1 (green
squares), and the noninteracting bound state (blue circles). The inset
shows the exact agreement between P1 and the bound-state positions
for the smallest values of U . Note that the noninteracting (U = 0)
bound-state results (blue circles) are dependent on −εd/� (upper
horizontal axes in the main panel and its inset), with εd = −U/2,
where the U and V values are defined by the numerical renormaliza-
tion group (NRG) results.

0.001 � U/� � 12.0. In panel (b), we also plot the position
of the noninteracting bound state (blue circles), for U = 0
and the same εd and V values used in the NRG calculations
(note that the noninteracting results depend on −εd/�, which
labels the upper horizontal axes in panel (b) and its inset).
Following the spectral weight curves for peaks P0 (green
squares) and P1 (red right triangles), in Fig. 5(a), we see that,
when U/� decreases from 12 to 0.5, the spectral weight of
P0 is almost all transferred to P1 (although part of the spectral
weight of P0 is also transferred to the continuum and then,
with further decrease of U/�, to peak P1). In the interval
0.5 � U/� � 0.001, P1 quickly acquires spectral weight
from inside the continuum, reaching ≈ 2

3 for very small values
of U/�, as expected. The inset in Fig. 5(a) shows the spectral
weight of P1 in a log scale to emphasize the formation of a 2

3
plateau as U → 0.

Figure 5(b) shows the evolution of the position of P0 (red
right triangle) and P1 (green squares), measured in relation
to the bottom of the band. Their variation in position is
contrasted to that of the noninteracting bound state (blue
circles). Starting from U/� = 12, P1 (green squares) moves
away from the bottom of the band as U/� decreases, until,
at U/� ≈ 1, it reverses course and starts to approach the
bottom of the band again. The position of P1, the dominant
peak for small values of U , progressively approaches the
position of the bound state, until they coincide for the two
smallest values of U , as emphasized in the inset. Peak P0,
on the other hand, monotonically approaches the bottom of
the band as U/� decreases, initially linearly, but then, around
the same region where P1 reverses course, starts to show a
faster rate of approach to the bottom of the band as a function

FIG. 6. Impurity magnetic susceptibility χ (as a function of tem-
perature, in units of D, half bandwidth), for some of the εd values in
Fig. 2(d). (a) The Fermi energy is fixed at the center of the band and,
as εd gradually increases, the system moves into the intermediate
valence regime. Note that, for εd = −0.005, the system is in the
particle-hole-symmetric (PHS) point. (b) Same as in (a) but now the
chemical potential is such that εd remains fixed at the singularity, and
it is the Fermi energy that moves closer to the bottom of the band;
thus, μ = −1.0 − εd . The values of � and U are the same as in Fig. 2
for all calculations.

of U/�. Note that, to simplify the presentation, even after
P0 split into two peaks, we are considering it a single peak
and taking a point halfway between the split peaks as the
position of P0.

Finally, the results for the position of P1 [red right triangles
in panel (b)] can be interpreted in the following way. As
U decreases at fixed �, the Fermi energy approaches the
bottom of the band since εd = −U/2 is at the singularity.
Since the Kondo peak becomes broader (as U/� decreases),
P1 is initially slowly forced away from the bottom of the
band. However, for very small U values (U/� � 1), the Fermi
energy gets very close to the singularity, and since � = πρ0V 2

is fixed, V decreases (since ρ0 increases), and P1, which has
become the bound state (check comparison with blue circles
curve in the inset), approaches the bottom of the band again
(check also εb in Fig. 15).

C. Thermodynamic properties: Fractional LM

Figure 6 shows the impurity magnetic susceptibility for
four values of εd (−0.005, −0.002, −0.0005, and −0.0001).
In panel (a), the Fermi energy is fixed at the center of the
band (μ = 0), and the system stays in a more standard Kondo
regime. In contrast, in panel (b), μ = −1.0 − εd , EF is located
close to the bottom of the band, such that εd is at the sin-
gularity for all cases. Starting at the PHS point εd = −0.005
[red curve, panel (a)], the system progressively moves into the
intermediate valence regime as εd increases (εd approaches
the Fermi level). As expected, the broad peak around T ≈
0.001 
 U = 0.01, seen in the red curve, is indicative of
the LM fixed point. As εd moves closer to the Fermi energy,
charge fluctuations become more prominent, suppressing the
formation of a LM at the impurity (cyan curve). On panel
(b), however, where εd is at the singularity, and the Fermi
energy progressively approaches it, the picture that emerges
is substantially different. Although there is little difference
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FIG. 7. Numerical renormalization group (NRG) energy flow (for odd values of N) for the same parameters as in Fig. 6. The εd values,
from left to right, are −0.005, −0.002, −0.0005, and −0.0001. Top panels correspond to the Fermi energy at the center of the band; lower
panels correspond to a Fermi energy close to the bottom of the band (with εd at the singularity). Q is the charge in the system, measured in
relation to half-filling, while S indicates the total spin (see Ref. [11] for details). The parameter values for U and � are the same as in Fig. 6.
For these NRG calculations specifically, we have used 	 = 2.5.

between both panels for εd = −0.005 (red curves), once the
Fermi energy approaches εd , the suppression of the LM peak
seems to be arrested in panel (b). The LM peak in χ stays
pinned close to the 2

3 × 1
4 value, indicative of the presence

of the bound state with spectral weight Zb = 2
3 (see the Ap-

pendixes), even as εd changes by an order of magnitude.
The behavior of χ shown in Fig. 6(b) suggests that the ex-

istence of the bound state makes the LM impervious to charge
fluctuations. This is corroborated by the NRG energy flows, as
shown in Fig. 7, for the same parameters as in Fig. 6. It is well
known that the three SIAM fixed points are associated with
energy plateaus in the spectra as the number of NRG iterations
varies. The free-orbital, LM, and strong-coupling fixed points
are successively approached as N increases (which corre-
sponds to a decrease in temperature or energy scale behavior).
This can be easily spotted in Fig. 7(a), corresponding to the
PHS point, see Refs. [2,11] for comparison. In the upper-row
panels (Fermi energy at the center of the band, μ = 0), we see
that the plateaus starting at approximately N = 10 [Fig. 7(b)]
are gradually erased as charge fluctuations increase [panels
(c), (e), and (g)]. For example, in Fig. 7(g), the lowest energy
state with Q = 1 and S = 0 (dashed blue curve) transitions
directly (around N = 10) from a high- to a low-temperature
value without going through an intermediate stage. This does
not happen for the lower-row panels (EF close to the bottom of
the band). The plateau present in Fig. 7(b) (between N = 10
and 30) is still present in panel (h) (although it now finishes
at around N = 20). This is consistent with the results for a ro-
bust Kondo state seen in the impurity magnetic susceptibility
in Fig. 6.

For completeness, Fig. 8 shows the impurity entropy as a
function of T/D, for the same parameters as in Fig. 6. We note
in panel (a) (EF at the center of the band), for εd = −0.005
(red curve), the usual evolution. As temperature decreases,
the impurity entropy goes from the free-orbital (ln 4) plateau

to the LM (ln 2) plateau, until it reaches the strong-coupling
(ln 1) Kondo limit. Panel (b) shows the corresponding results
when the Fermi energy is close to the bottom of the band, with
εd at the singularity, as in Fig. 6. We notice again a pinning
tendency around the LM plateau as εd increases, especially for
εd = −0.002 (green curve), whose oscillation, also observed
in the corresponding result in Fig. 6, may be ascribed to
the many-body states that appear between the Kondo peak
and the singularity [see Fig. 2(b)]. It is important to note
the nonuniversal low-temperature behavior of the cyan curve
in panel (b), which shows the impurity entropy being nega-
tive in the range 10−5 � T/D � 10−4. This behavior (which
accompanies the nonmonotonic behavior of the cyan curve
in T χ , Fig. 6) is reminiscent of the behavior seen in other
Kondo problems in the presence of a sharp singularity or

FIG. 8. Impurity entropy (as a function of temperature) for the
same parameters as in Fig. 6. See text for discussion of the negative
values in the cyan curve in (b).
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FIG. 9. (a) Armchair graphene nanoribbon made by three carbon
rows (3-AGNR) density of states (DOS), showing the very symmet-
ric valence (purple curve) and conduction (cyan) bands. The vertical
black dashed lines indicate the approximate position of the Fermi
energy for the calculations in (c) and (d). (b) Comparison of the
quantum wire singularity (w

band, dashed red curve) with the 3-AGNR
valence (v

band, dashed purple) and conduction (c
band, dashed cyan)

hybridization functions lower singularities, showing they are identi-
cal. The inset shows a sketch of the 3-AGNR system. (c) Impurity
DOS (blue curve, ρNRG) when εd is at the singularity at the bottom
of the conduction band. The result is very similar to Fig. 2(b), for
the quantum wire singularity. (d) Same as in (c) but now εd is at the
valence band singularity. Also like (c). Parameter values (except for
μ) are as in Fig. 2(b).

discontinuity in the DOS [25,26,45] and is clearly most promi-
nent here when the RL is closest to the band singularity.

IV. RESULTS FOR AN AGNR

We now discuss a possible physical implementation of the
model NRG results presented in the previous sections. We
study the Kondo states associated with band-edge singularities
present in the DOS of an AGNR made by three carbon rows
(3-AGNR), which is known to be a semiconductor [46,47].
Such nanoribbons can be fabricated from molecular precur-
sors [48], for example, and have been used to study Kondo
resonances in experiments [49]. One interesting recent study
is that of subgap states in the Kondo regime [50]. Figure 9(a)
shows the DOS of an undoped 3-AGNR with symmetric
valence and conduction bands. The Fermi energy can, in
principle, be gated down until it is close to the bottom sin-
gularity of the valence band (leftmost vertical dashed line),
or we may gate-dope it with slightly more electrons and
bring the Fermi energy just above the bottom singularity of
the conduction band (rightmost vertical dashed line). Both
cases reproduce the situation studied in the previous sections
for the quantum wire. Figure 9(b) compares the ω depen-
dence of these two singularities with that of the quantum
wire, showing that they are virtually the same. Notice that
panel (b) shows the hybridization function (ω) = πV 2ρ(ω),
such that � = πV 2ρ(0) is the same for all three cases [51].
These results in Fig. 9(b) imply that the NRG results for

the 3-AGNR and the quantum wire should be very similar.
Indeed, the finite-U impurity spectral function [same param-
eters as in Fig. 2(b)], shown in Fig. 9(c), for the conduction
band singularity, is quantitatively similar to the quantum wire
results in Fig. 2(b). The same occurs for the valence band
singularity [Fig. 9(d)] [52].

V. SUMMARY, DISCUSSION, AND CONCLUSIONS

We have analyzed the effect of Van Hove singularities
near the Fermi energy and a magnetic impurity on the Kondo
effect. Such singularities are present at the band edges of
a quantum wire and of different AGNRs. The singularities
present at the bottom of the valence and conduction bands of
a 3-AGNR result in effective hybridization functions (at fixed
�) with an ω−1/2 dependence. Thus, the spectral functions
of the magnetic impurity are quantitatively similar to those
obtained for a quantum wire and provide a convenient physi-
cal implementation of our model calculations [48,49,53]. The
main results we obtained are as follows. For a noninteracting
impurity, we have characterized a Dirac δ bound state below
the band minimum, with properties that depend on the near
resonance of εd with the singularity, and on the coupling of
the impurity to the band. As expected, the larger the cou-
pling and the closer εd is to the singularity, the larger the
spectral weight Zb of the bound state and the farther it is
below the band minimum. The spectral weight Zb is van-
ishingly small if εd is not close to the singularity, while it
quickly increases as it approaches, reaching the value Zb = 2

3
at resonance, in agreement with previous work [31], where
the singularity is due to spin-orbit interaction (SOI). In ad-
dition, the impurity level εd is slightly renormalized upward
due to its interaction with the singularity (see Fig. 15 and
Appendix C).

Once the Hubbard U is present, we see several interesting
effects. First, starting with the Fermi energy at the PHS point
in the middle of the band [Fig. 2(a)] and then moving to the
bottom of the band [Fig. 2(b)], at fixed U and �, we see that
the noninteracting bound state acquires a finite width [40] and
moves further away from the bottom of the band; in addition,
a discontinuity appears in the impurity DOS at the band edge.
Additional structure in the spectral function appears between
this discontinuity and the Kondo peak which, aside from ac-
quiring some asymmetry, is barely affected. An analysis of
the evolution of the impurity DOS as U decreases, at fixed
�, from U/� = 12 to 10−3 (see Fig. 4) allows us to follow
the evolution of these many-body-related features, until the
U/� = 10−3 results match perfectly the U/� = 0 results.

An analysis of how the impurity is discharged as εd moves
closer to the Fermi energy, starting at the PHS point, shows
that there is a great difference in the results for εd being far
from or close to the singularity. We see in Fig. 2(c) that the
approach of εd to the singularity recharges the impurity, with
the effect being more dramatic as it moves into the intermedi-
ate valence regime. This unusual behavior is clearly associated
with the existence of the bound state. The Kondo temperature
TK [see Fig. 3(a)], for the same set of parameters, suffers a
sizable decrease (if in the intermediate valence regime, with
EF at the center of the band) when EF moves closer to the
singularity at the bottom of the band. Both results, on the
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occupancy of the impurity and its TK value, show that the
system partially recovers its strong coupling regime proper-
ties, i.e., higher occupancy and lower TK , once the presence of
the singularity is felt at the intermediate valence regime. This
occurs because of the formation of the bound state.

In addition, the magnetic susceptibility shows that, for
Fermi energy near the bottom of the band and in the inter-
mediate valence regime, the LM fixed point is more resilient,
as the impurity suppresses charge fluctuations. Figure 6(b)
shows that the LM plateau is somewhat restored around the
2
3 × 1

4 value, indicating the influence of the bound state. This
evolution is corroborated by an analysis of the NRG energy
flow, shown in Fig. 7, as well as the impurity entropy (Fig. 8).
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APPENDIX A: RL IN THE BAND CONTINUUM

We wish to understand how the proximity of a RL (an
impurity with U = 0) to the singularity at the bottom of the
1D band affects the RL spectral function. We show that the
main effect of the singularity is the formation of a bound state
out of the continuum, and then we analyze its properties.

We note that Ref. [31] discusses a bound state out of the
continuum in three dimensions (3D). There, however, it is
necessary to add SOI, while we show that this is not the case
in 1D. Thus, we add SOI to the Hamiltonian presented in the
main text, Eq. (1), by rewriting it as

Hwire = ∑
k �

†
kHwire(k)�k, (A1)

where �
†
k = (c†

k↑, c†
k↓), c†

kσ
creates an electron with wave vec-

tor k and spin σ =↑,↓, andHwire(k) is given by

Hwire(k) = (−2t cos k − μ)σ0 + (βσx + ασy)2 sin k, (A2)

where β and α are the Dresselhaus [54] and Rashba [55] SOIs,
respectively, while σx and σy are spin-Pauli matrices, and σ0 is
the 2 × 2 identity matrix. It can be shown [56] that the energy
dispersion associated with this Hamiltonian may be written as

εkσ = −2
√

t2 + |γ |2 cos (k − σϕ) − μ, (A3)

where γ = β + iα, ϕ = tan−1(|γ |/t ), and σ = ±. The band
structure and the DOS for this Hamiltonian are studied in the
next Appendix.

FIG. 10. Band structure for (a) |γ | = 0.0 and (b) |γ | = 6.0. Cor-
responding band density of states (DOS) for the same values of |γ |,
in (c) and (d), respectively. Notice how the singularity for |γ | = 6.0
in (d) carries a considerably smaller spectral weight than the corre-
sponding singularity for |γ | = 0.0 in (c). Note that the range in the
vertical axes in (c) and (d) are the same, with the integral of ρband

equal to 1 in both cases.

APPENDIX B: BAND STRUCTURE AND SPECTRAL
FUNCTION IN 1D WITH SOI

In this Appendix, we show that the inclusion of SOI in 1D
(which already has a singularity at the bottom of the band
without SOI) decreases the spectral weight of the bound state.
Figure 10 shows the band structure in panels (a) (|γ | = 0.0)
and (b) (|γ | = 6.0), with the corresponding DOS in panels (c)
(|γ | = 0.0) and (d) (|γ | = 6.0). It is clear that SOI decreases
the spectral weight carried by the singularity at the bottom
of the band. This happens because a finite SOI increases
the bandwidth [compare the range in the horizontal axes in
Figs. 10(c) and 10(d)].

We show next that this implies a loss of spectral weight of
the bound state associated with the singularity.

We calculate the RL Green’s function Ĝimp(ω), given by

Ĝimp(ω) = [(ω − εd )σ0 − �̂(0)(ω) + iη]−1, (B1)

where �̂(0)(ω) = ∑
k V̂ Ĝwire(k, ω)V̂ † is the hybridization

self-energy, with V̂ = V σ0, Ĝwire(k, ω) = [ωσ0 −Hwire(k)]−1

is the quantum wire Green’s function, while V is defined right
after Eq. (3) in the main text. The RL spectral function, i.e.,
its DOS, is calculated through (notation as in the main text)
ρU=0(ω) = − 1

π
Im Tr Ĝimp(ω).

A comparison of both the 1D lattice DOS (red curves) and
the RL DOS (green curves) is shown in Fig. 11 for |γ | = 0.0
and |γ | = 1.0, panels (a) and (b), respectively, where we have
set εd = ωsing + δ (where δ = 0.05, and ωsing is the energy at
the bottom of the band, with the band being symmetric around
ω = 0.0), and V = 0.25. A comparison of the RL DOS in
both panels shows that a finite SOI decreases the spectral
weight of the bound state [thus, the area of the DOS inside
the continuum in panel (b) is clearly larger than in panel (a)].
This is further detailed in what follows.
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FIG. 11. Band density of states (DOS) ρband (red dashed curves)
and the resonant level (RL) DOS ρU=0 (green curves) for (a) |γ | =
0.0 and (b) |γ | = 1.0. The RL orbital energy εd = ωsing + δ is placed
at δ = 0.05 above the bottom of the band ωsing, in both cases. In (a),
Zb = 0.554, while in (b), Zb = 0.415, showing that the increase of
spin-orbit interaction (SOI) makes the bound state less bound and
with a weaker spectral weight Zb. See text for a definition of Zb.

In Fig. 12, we show results for Zb, which is defined as

Zb =
∫ ωsing

−∞
ρU=0(ω)dω, (B2)

for the interval 0.0 � |γ | � 0.5, where ωsing is the position
of the singularity. It clearly shows that Zb decreases mono-
tonically with |γ |. This can be understood by analyzing the
ρband results in Fig. 10, where we can easily see that, for
|γ | = 6.0, there is considerably less spectral weight at the
bottom of the band than for |γ | = 0. Indeed, integrating ρband

from ωsing to ωsing + 0.05 we obtain ≈0.09 for |γ | = 0 and
0.04 for |γ | = 6.0. Thus, one expects that the RL will be less
affected by the singularity for finite SOI. Again, this occurs
because a finite SOI increases the bandwidth.

We have established that the presence of SOI in 1D weak-
ens both the band-edge singularity and the resulting bound

FIG. 12. Variation of the bound state spectral weight Zb with |γ |
for V = 0.1.

FIG. 13. Resonant level (RL) density of states (DOS) ρU=0

(green curve) for three different positions of the RL: (a) εd = 0.0,
(b) εd = −0.5, and (c) εd = −0.8. Notice the large increase of the
spectral weight of the peak at the band singularity (red curve) as εd

approaches the bottom of the band. V = 0.15 in all panels.

state. This is in contrast to the 3D system in Ref. [31] that
requires SOI to create a singular DOS. In what follows, we
analyze the properties of the 1D system without SOI.

APPENDIX C: BOUND STATE PROPERTIES

1. Bound state and coupling to the band

First, we find that, no matter what the energy of the RL
is in relation to the singularity, there is always a bound state
located either at the singularity or below it [44]. The latter
occurs when the coupling of the RL to the band is strong or if
the RL is close to the singularity. In Fig. 13, we show the RL
DOS ρU=0 for three different positions of the RL in relation
to the bottom of the band. In panel (a), the RL is located at the
center of the band εd = 0, and the singularity is at ω = −1.0.
We notice a vanishingly narrow DOS peak at the singularity.
In panel (b), the RL is located at εd = −0.5, midway be-
tween the center of the band and the singularity. The DOS
peak at the singularity has increased considerably. Finally,
when the RL is just 0.2 above the singularity, εd = −0.8, the
bound state spectral weight at the singularity has increased
drastically. If the coupling increases and/or the RL ap-
proaches the singularity even more, the bound state detaches
from the band continuum and moves to lower energies, as
shown below.

Figure 14(a) shows the RL DOS as we vary its coupling to
the band in the range 0.005 � V � 0.2, while keeping εd =
ωsing + 0.05. For the smallest V = 0.005 (green curve), a
bound state at the singularity is not visible (vanishingly small
spectral weight). For V = 0.05 (blue curve), a very sharp
peak at the singularity is already visible (with Zb = 0.044),
while for V = 0.1 (cyan curve), the bound state has detached
from the bottom of the band and moved to lower energies. Its
spectral weight has also increased to Zb = 0.1566. This trend
continues as V increases. Figure 14(b) shows the Zb increase
with V , reaching more than half of the total spectral weight
for V = 0.25.

Now we analyze the data in Fig. 14 in more detail. Fig-
ure 15 shows how the splitting of the RL εd (green circles)
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FIG. 14. (a) Variation of the resonant level (RL) density of states
(DOS) ρU=0 with the coupling to the band in the interval 0.005 �
V � 0.2, for |γ | = 0.0 and δ = 0.05. (b) The variation of Zb for
0.01 � V � 0.25.

into two parts—one, a renormalized peak εr
d (blue up trian-

gles) inside the continuum, and the bound state εb (magenta
down triangles), below the bottom of the band—progresses
as one increases V . The red squares mark the bottom of
the band.

2. Bound state and distance to singularity

Now we analyze how the bound state varies as we move the
RL εd closer to the singularity. We set εd = ωsing + δ, where
ωsing marks the bottom of the band, and vary 0.0 � δ � 0.04

FIG. 15. Analysis of the formation of the bound state in the res-
onant level (RL) spectral function ρU=0, as a function of V [obtained
from the results in Fig. 14(a)]. Red curve shows the bottom of the
band (position of the singularity), the green curve shows the position
of εd , the blue curve shows εr

d , the renormalized position of the RL
orbital energy, while the cyan curve shows the position of the bound
state εb.

FIG. 16. Variation of ρU=0 with δ (εd offset from the bottom
of the band) for two different intervals: (a) 0.005 � δ � 0.04 and
(b) 0.0005 � δ � 0.004. (a) results show that, starting from δ = 0.08
(dark blue curve), up to δ = 0.016 (blue curve), changes in Zb and
peak positions are considerable, while (b) results show that further
approaching εd from the bottom of the band (δ � 0.01) has limited
effects. Results obtained for |γ | = 0.0 and V = 0.25.

(we fix V = 0.1). The results are shown in Figs. 16(a) and
16(b). Once εd approaches ωsing (δ tends to zero), the variation
is very small, i.e., εb and Zb tend to a fixed value.

The variation of Zb with δ may be seen in Fig. 17. We see
that δ → 0.0 implies Zb → 2

3 , in agreement with the results
obtained in Ref. [31]. This shows the very interesting phe-
nomenon that the Zb = 2

3 result does not depend on the details
of the band, such as spatial dimensionality (3D vs 1D) and

FIG. 17. Variation of the bound state spectral weight Zb as a
function of δ in the interval 0.001 � δ � 0.08. Results obtained from
both panels in Fig. 16. The inset shows the same results but with
a log scale in the δ axis, highlighting the approach to the Zb = 2

3
value.
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FIG. 18. Similar results as in Fig. 15 but now for the variation of
δ. The results shown are just for Fig. 16(a).

presence vs absence of SOI. The inset, with a log scale in the
δ axis, emphasizes the gradual approach to the Zb = 2

3 value.
Figure 18 shows details of the results in Fig. 16(a), as done

in Fig. 15 for the results in Fig. 14(a).
Figure 19 shows what happens when we place εd out of

the continuum, i.e., εd = ωsing − δ and 0.0 � δ � 0.05, with
V = 0.1. Panel (b) shows that Zb takes values above 2

3 , in-
creasing with δ. The DOS inside the continuum, as can be
seen in panel (b), tends to accumulate at the bottom of the
band as δ increases.

Finally, Fig. 20 shows details of the results in Fig. 19(a).

APPENDIX D: STUDY OF THE IMPURITY
SPECTRAL FUNCTION

In this section, we follow Ref. [57] and do a step-by-step
analysis of the results in Figs. 2 and 4 to show that the NRG

FIG. 19. Similar results as in Fig. 16 but now when the impurity
is placed below the bottom of the band (note that εd = ωsing − δ) and
V = 0.1. (a) Results for ρU=0, for 0.0 � δ � 0.1, showing again the
peak splitting. (b) Spectral weight Zb of the bound state, now > 2

3 .

FIG. 20. Similar results as in Fig. 18 but now εd (green curve)
is placed below the bottom of the band. Larger peak separations are
obtained this way.

spectral function features discussed in Secs. III A and III B
are not numerical artifacts. There are quite a few aspects that
should be considered to root out NRG artifacts in the impu-
rity spectral function ρNRG. According to Žitko and Pruschke
[57], overbroadenig effects reduce energy resolution at higher
energies and wash out spectral features with small spectral
weight (like P1, in Figs. 2 and 4, for the larger values of
U/�). The so-called interleaved method (or z averaging) [36]
allows for the use of narrower broadening functions, mitigat-
ing overbroadening and removing oscillatory features in the
impurity spectral function. The method consists of perform-
ing several (Nz) NRG calculations for different logarithmic
discretization meshes and then taking their average to obtain
the final impurity spectral function. However, one must check
that convergence has been attained before trying to root out ar-
tifacts. Figure 21 shows the evolution of ρNRG with increasing
Nz in the interval 4 � Nz � 128. It is clear that Nz = 4 (green
curve) is not nearly enough; however, for Nz � 16, ρNRG has
converged. It is interesting to note that P1 is the last feature to
converge. Indeed, the largest difference (which occurs around
P1, as shown in the inset) between Nz = 16 and 8 is ≈4.1%,
while it is ≈1.5% for the difference between Nz = 32 and 16.
This value falls to ≈0.4% for Nz = 64 (in relation to 32), and
to ≈0.08% for Nz = 128 (in relation to 64). Thus, for the
purpose of exposing numerical artifacts [57] (see next step),
all spectral function features are well converged for Nz = 32.

The next step, once Nz convergence of all ρNRG features
has been ensured, is to analyze its dependence with 	 (dis-
cretization parameter). Indeed, artifacts will shift (and change
form) substantially when 	 varies, while real features will
change very little [57]. Usually, the detection of artifacts is
more effectively done when one studies the approach to the
continuum limit (	 → 1). Thus, we decreased the discretiza-
tion parameter below the standard 	 = 2 value (down to 1.6).
Figure 22 shows ρNRG results for the same parameters as in
Fig. 2(b) (except that now Nz = 32), for the interval 1.6 �
	 � 2 (varying in steps of 0.1). It is clear that peaks P0 and P1,
which were discussed in detail in Sec. III B, suffer marginal
changes, indicating that they are not numerical artifacts.
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FIG. 21. Analysis of the ρNRG dependence on Nz (interleaving
parameter [57]) for the results in Fig. 2(b), in the interval 4 � Nz �
128. The inset shows a zoom in the region where the curves (except
for Nz = 4) vary the most (around P1). Taking the peak-height change
as a measure of the overall variation in this region, we obtain that
the variation between Nz = 16 and 8, Nz = 32 and 16, Nz = 64 and
32, and Nz = 128 and 64 is 4.1, 1.5, 0.4, and 0.08%, respectively.
Thus, for the purpose of presentation, the results are already well
converged for Nz = 16 (value used in this paper). As to exposing
numerical artifacts, good convergence has been achieved for Nz = 32
(see text).

One last step consists of applying the so-called self-energy
trick [58] (dubbed �-t, for short, in Fig. 23), which is a
very efficient method to reduce overbroadening effects [57].
This trick consists of calculating the impurity self-energy as
the ratio of two correlation functions and then using it to
obtain the impurity Green’s function, whose imaginary part is

FIG. 22. Analysis of the 	 dependence of the ρNRG results in
Fig. 2(b) in the interval 1.6 � 	 � 2. As shown in Ref. [57], nu-
merical renormalization group (NRG) discretization artifacts should
shift position and change form significantly with decreasing 	. Note
that we use the well-converged Nz = 32 results for this analysis.

FIG. 23. Reproduction of the results in Fig. 4, comparing the
impurity spectral function ρNRG calculated using the so-called self-
energy trick [58] (blue curves) with the results obtained without
its use (red curves). The inset in (f) zooms in on the bound state,
showing that the self-energy trick removes the overbroadening and
produces the exact result (dashed green curve).

proportional to the impurity spectral function. It is important
to remark that all our spectral function results in this paper
were obtained by using �-t. In Fig. 23, we compare our results
for Fig. 4 (obtained through �-t, blue curves) with the results
obtained without the use of �-t (red curves). There are some
interesting points to stress. First, in all panels, the use of �-t
results in the narrowing of some features, most notably of P1,
mainly in panels (a) and (b), where P1 is barely noticeable
without �-t [especially in panel (a)]. In addition, we want
to call special attention to the result in panel (f), where the
use of �-t (blue curve) has narrowed the non-�-t result (red
curve) almost perfectly into the exact noninteracting (U = 0)
result (dashed green curve). This is emphasized in the inset
of panel (f). Since there is no reason for the accuracy of the
�-t spectral function to be reduced for finite U [58], we can
have confidence in the accuracy of the spectral function results
presented in Figs. 2 and 4.

The NRG package used here (NRG Ljubljana [35]) has the
so-called patching procedure [59] fully implemented, and it
was used in all spectral function calculations done here. It
is well known that the NRG is an iterative procedure which

FIG. 24. (a) Variation of ρNRG—same parameters as in
Fig. 4(a) but now for Nz = 128 instead of 16—with the
numerical renormalization group (NRG) broadening parameter
0.005 � α � 0.1. (b) Half-width at half-height WP0 of the P0 peak in
(a) as a function of α. The inset shows a zoom of P0.
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solves consecutive so-called Wilson chains with increasing
sizes N . The energy window being analyzed, at each specific
stage of the iterative procedure, logarithmically approaches
the ground-state region of the spectra for two consecutive
iterations. One must carefully join (patch) the spectral infor-
mation acquired at iterations N + 2 and N . This procedure
results in a smooth spectral function across energy windows
at different energy scales.

Finally, to analyze if the finite width of P0, observed in
Fig. 4, is caused by NRG overbroadening, we present, in
Fig. 24(a), ρNRG for the same parameters as in Fig. 4(a) but
now for Nz = 128 (instead of 16) and varying values of the

broadening NRG parameter 0.005 � α � 0.1 [60]. As shown
in Fig. 21, the result for α = 0.1 (green curve) [same α as
used in Fig. 4(a)] changes very little when we increase Nz, in
this case, from Nz = 16 [Fig. 4(a), blue curve] to Nz = 128
[Fig. 24(a), green curve]. For decreasing α values, we see
that the largest changes in ρNRG occur for P0 [a zoom of P0

is shown in the inset in Fig. 24(b)]. As shown in panel (b),
the P0 half-width at half-height, denoted WP0 , decreases by
67% (from 5.5 × 10−4 to 1.8 × 10−4), while α decreases 20
times (from 0.1 to 0.05). However, one cannot rule out the
possibility that the peak width will extrapolate to zero. Thus,
NRG cannot conclusively resolve this issue.
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