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Doping dependence of chiral superconductivity in near 45◦ twisted bilayer cuprates

Mathieu Bélanger and David Sénéchal
Département de physique and Institut quantique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Received 8 June 2023; revised 7 December 2023; accepted 18 December 2023; published 5 January 2024)

We study a one-band Hubbard model for a twisted cuprate bilayer with a twist angle of 43.6◦ and a moiré cell
containing 58 sites. We use the variational cluster approximation (VCA), which treats short-range correlations
exactly and leads, in single layers, to a dome of d-wave superconductivity away from half filling from strong
on-site repulsion alone. We find a time-reversal-symmetry (TRS) breaking phase in a small doping interval in
the overdoped region when interlayer tunneling is strong enough. Contrary to expectations, being closer to the
45◦ twist angle does not expand this TRS region compared to a previous study [Lu and Sénéchal, Phys. Rev. B
105, 245127 (2022)] on a 53◦ twist angle. This is attributed to the fact that the two superconducting states in
competition have almost identical nodal structures.
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I. INTRODUCTION

The observation of unconventional superconductivity in
twisted bilayer graphene [1,2] has motivated similar studies
on various van der Waals heterostructures [3], like twisted
boron nitride [4] and transition metal dichalcogenides [5–12].
Those systems offer more degrees of freedom than their
monolayer counterparts due to the twist angle, which can be
changed.

The realization of a two-dimensional monolayer of
Bi2Sr2CaCu2O8+δ (Bi2212) [13,14] has motivated research
on twistronics in cuprates [15–19]. It has been predicted
that a fully gapped, time-reversal symmetry (TRS) breaking
dx2−y2 + idxy superconducting phase will emerge in systems
with twist angles close to 45◦ [15]. This superconduct-
ing phase is predicted to be topologically nontrivial. Chiral
topological superconductivity is also predicted in twisted mul-
tilayer nodal superconductors [20].

The bilayer cuprate systems are natural Josephson junc-
tions. Realizing those junctions in the laboratory is challeng-
ing due to disorder that may be introduced while preparing
the sample [21,22]. An early study of a c-axis twisted cuprate
Josephson junction did not show the expected d-wave behav-
ior [23]. New processes have been proposed to create those
junctions and offer evidence that the Josephson current is
reduced close to 45◦ due to a mismatch between the d-wave
states of the two layers [21,22,24]. The critical current might
remain finite at 45◦, pointing to a state with TRS breaking
[25]. Such behavior was predicted using simple models de-
scribing twisted bilayer cuprates [26,27].

Previous theoretical work based on the Bogoliubov–de
Gennes mean-field theory lacks the effect of strong correla-
tion, which is important in cuprates. Moreover, the physics of
cuprates is strongly doping dependent, being affected by the
pseudogap phenomenon below optimal doping [28]. A twisted
t-J model of cuprates within slave-boson mean-field theory
predicts that the range of twist angle around 45◦ which allows
TRS breaking is narrow [29]. To address the effect of the
strong correlation and the effect of doping, a Hubbard model

for a system with a twist angle of θ = 53.13◦ has been studied
with the variational cluster approximation (VCA) and cluster
dynamical mean-field theory [17]. TRS breaking was ob-
served near optimal doping when strong interlayer tunneling
was considered. It was conjectured that at a twist angle closer
to 45◦, the mixed state could be more stable as a function of
doping. The number of orbitals per unit cell in systems close
to 45◦ makes them challenging to study using quantum cluster
methods.

In this paper we take a step further into studying systems
close to 45◦ by considering a Hubbard model for bilayer
cuprates at a twist angle θ = 43.60◦, corresponding to a unit
cell of 58 copper sites. We use the VCA to probe the stability
of the TRS-breaking superconducting phase against doping.
We follow the methodology proposed in Ref. [17] and show
that a TRS-breaking phase occurs again in a narrow doping
range, which can be explained by the band structure limiting
the energy gained from combining the two superconducting
states in competition. Thus, moving closer to a 45◦ twist angle
does not necessarily stabilize the TRS-breaking phase, which
is counterintuitive.

II. MODEL AND METHOD

A. Model

We use the tight-binding Hubbard model proposed in
Ref. [17], in which each layer is described by a one-band
Hubbard model, each site corresponding to a copper atom.
The Hamiltonian can be separated as

H = H (1) + H (2) + H⊥, (1)

where the intralayer Hamiltonian H (l ) is

H (l ) =
∑

r,r′∈l,σ

trr′c†
r,l,σ cr′,l,σ + U

∑

r

nr,l,↑nr,l,↓

− μ
∑

r,σ

nr,l,σ , (2)
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where cr,l,σ (c†
r,l,σ ) is the annihilation (creation) operator of

an electron at site r on layer l (l = 1, 2) with spin σ =↑,↓
and nr,l,σ is the number operator. r and r′ are the site indices
of a square lattice for each layer. U is the on-site repulsion
between electrons, and trr′ is the hopping matrix that includes
nearest-neighbor hopping t and next-nearest-neighbor hop-
ping t ′. No extended interaction terms were considered since
strongly correlated superconductivity can be driven by local
repulsion alone and has been shown to be resilient to extended
Coulomb repulsion at intermediate to strong coupling [30]. In
Bi2212, the nearest-neighbor hopping is t = 126 meV [31],
but here we use t as the energy unit. To describe Bi2212 we
use the set of parameters t = 1, t ′ = −0.3, and U = 8 [17,31].
We also test other parameter sets (Sec. III B) to assess the
robustness of our results.

The effect of the twist angle comes from the interlayer
tunneling given by

H⊥ =
7∑

n=1

Vn

∑

〈r,r′〉⊥,n,σ

[c†
r,1,σ cr′,2,σ + H.c.], (3)

with 〈r, r′〉⊥,n,σ representing the set of sites r on layer 1 and
r′ on layer 2 such that their projections on the plane are nth
neighbors. We will explain below why we consider interlayer
hopping up to seventh interlayer neighbors. The strength of
the tunneling is given by

Vn = Ve−λ(|dn|−dz )/a, (4)

where |dn| = |r − r′| is the three-dimensional distance be-
tween the two sites corresponding to the nth neighbors on
different layers, dz is the distance between the two layers,
and a is the lattice constant of the square lattice. V is the
interlayer tunneling of sites that are on top of each other. λ

is a damping parameter. To have a set of parameters similar
to the one used in Ref. [17], we chose dz = a and λ = 11.13
with two different values of V : 0.2 and 0.4.

This model is a simplification of the real situation in bi-
layer cuprates. The effect of the rare-earth layers intercalated
between CuO2 planes is doubtless more complex. The model
also neglects the fact that each monolayer of Bi2212 contains
two CuO2 planes. The values of the interlayer tunneling pa-
rameters chosen here are very strong and should be lower in
order to better describe real twisted bilayers. Indeed, local-
density approximation calculations [31] for bulk Bi2212 point
to an interlayer hopping tz/t ≈ 0.1, smaller than our V = 0.2
or 0.4. These strong values of V are needed to observe TRS
breaking in our system [17]. For interlayer hopping between
sites that are not directly superimposed, adopting the exponen-
tial model (4) is both practical and reasonable since it allows
comparisons between different twist angles while keeping the
hopping parameters fixed. Overall, the effective model used
here allows us to roughly delimit the range of parameters
needed for chiral superconductivity to exist and to conclude
whether that phase is within or beyond the reach of experi-
ments on Bi2212 bilayers.

In this work we consider a system with a twist angle θ =
43.60◦ in order to probe TRS breaking close to the optimal
twist angle. Only a few twist angles correspond to commen-
surate systems with a reasonably small unit cell allowing for
a microscopic description based on the Hubbard model [15].

This drastically limits the twist angles that can be studied. In
Ref. [17], a 10-site unit cell with a twist angle of θ = 53.13◦
was used. The next simplest case is the one studied here, a
58-site unit cell with a twist angle of θ = 43.60◦. The next
simpler case would correspond to a twist angle of θ = 45.24◦
with 338 sites in the unit cell, quite beyond our computing
capacity. Our goal is not to investigate all possible twist an-
gles, but to see whether inching closer to a 45◦ twist changes
the doping range over which a TRS-breaking superconducting
state can be found.

B. Method

To probe the superconducting state in this model, we
use the VCA [32,33] with an exact diagonalization solver
at zero temperature. This is a variational approach on the
electron self-energy which allows broken symmetries while
treating short-range dynamical correlations exactly. It has
been applied to magnetic phases [33–35] and superconduc-
tivity [12,36,37] in various systems. For a detailed review
of the method, see Refs. [38,39]. The VCA is based on a
cluster decomposition of the system: the infinite lattice is
tiled with identical clusters small enough for the model to be
solved exactly on each of them. Each cluster’s Hamiltonian
is basically a restriction of the lattice Hamiltonian to the
cluster, plus one or more Weiss fields, whose role is to ap-
proximately represent the effect of the cluster’s environment
(the rest of the lattice) on the cluster’s self-energy. The VCA
proceeds by optimizing the Potthoff self-energy functional as
a function of these Weiss fields. The optimal self-energy is
subsequently applied to the whole lattice, and this provides
an expression for the Green’s function of the lattice problem,
which can be used to compute the average of any one-body
or anomalous operator. We use a restricted Nambu formal-
ism to describe superconductivity, in which a particle-hole
transformation was applied to the spin-down operators c†

r,l,↓,
allowing hopping terms and pairing terms to be treated on the
same footing.

The use of exact diagonalization limits the total number of
orbitals in a cluster to about 12 because of the computational
resources needed to compute the Green’s function. Consider-
ing this, we need to separate the 58-site unit cell in clusters of
smaller sizes. We partitioned the unit cell into six clusters,
as shown in Fig. 1: one cluster of 2 sites (labeled C), one
cluster of 8 sites (labeled B), and four clusters of 12 sites each
(labeled A). The basic approximation of cluster methods is
to neglect the components �i j (ω) of the self-energy matrix
for which sites i and j belong to different clusters. The self-
energy matrix �(ω) is thus block diagonal, with each block
being associated with a cluster. In the partition chosen here,
blocks associated with clusters A, B, and C are of size 24, 16,
and 4, respectively (there is a factor of 2 compared to cluster
size because of the spin/Nambu degree of freedom).

The specific partition illustrated in Fig. 1 is not the only one
possible, but it is one in which every cluster but C contains
full 2 × 2 plaquettes in each layer. A successful description
of strongly correlated superconductivity in the single-layer
Hubbard model with cluster methods minimally requires a
2 × 2 plaquette [36,40]. Other partitions without this property
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FIG. 1. Unit cell of the twisted cuprate system at θ = 43.60◦. It
contains 58 sites between the two layers (green and yellow). The
four Ai clusters contain 12 sites (6 from each layer), the B cluster
contains 8 sites, and the C cluster contains only 2 sites that are on top
of each other. The interlayer hopping amplitudes kept in our analysis
are shown in red. The largest one (V ) occurs between superimposed
sites (cluster C). The interlayer amplitudes in cluster B are 0.24V
(shorter bond) and 0.2V (longer bond), with our choice of λ [see
Eq. (4)].

were tried but were problematic within the VCA, for instance,
leading to discontinuities in the Potthoff functional, etc.

We keep interlayer hopping up to seventh interlayer neigh-
bors in order to ensure that every cluster contains interlayer
hopping. This also allows comparison with Ref. [17]. Note
that the corresponding lateral physical distances are still
smaller than the nearest-neighbor distance within each layer.
For the sake of illustration, the exponential hopping model
(4) leads to an interlayer hopping amplitude between adjacent
sites of cluster B in the range 0.2V to 0.24V .

C. Superconducting order parameter

The superconducting gap in single-layer or bulk cuprates
has dx2−y2 symmetry. This is well understood in theoretical
studies of the doped, square-lattice Hubbard model, using
many theoretical methods, including VCA [36]. A mini-
mal, nearest-neighbor d-wave pairing operator on layer l is
defined as

�̂(l ) =
∑

r∈l

cr,l,↑cr+x(l ),l,↓ − cr,l,↓cr+x(l ),l,↑

− cr,l,↑cr+y(l ),l,↓ + cr,l,↓cr+y(l ),l,↑, (5)

where x(l ) and y(l ) are the lattice vectors on layer l . The
operators �̂(1,2) have dx2−y2 symmetry within their own layer
in terms of the local axes. However, they do not belong
to irreducible representations of the D4 point group of the
bilayer. That point group contains π rotations with respect

FIG. 2. Schematics of the pairing operators associated with the
B1 and B2 representations around the pivotal sites (cluster C from
Fig. 1). The green (yellow) sites correspond to the top (bottom) layer.
Positive (negative) pairing is represented by blue (orange) segments.
In the B1 representation, the links with the same sign are separated by
the larger angle (46.4◦). In the B2 representation, they are separated
by the smaller angle (43.6◦).

to axes lying in the plane, exchanging the two layers (see
Fig. 2 or Ref. [17]). Under these rotations, the operators �̂(1,2)

are interchanged (with phases). We should therefore focus
our attention on eigenoperators of the symmetry operations,
which fall into the B1 or B2 representation of the D4 point
group, defined as

B̂1 = �̂(1) + �̂(2), B̂2 = �̂(1) − �̂(2). (6)

These pairing operators are schematically illustrated in Fig. 2.
We use the convention from Ref. [17], in which the links with
the same sign in the B1 representation are separated by the
large angle (here corresponding to the complementary angle
90◦ − θ = 46.4◦). In the B2 representation, the links with the
same sign are separated by the smaller angle (43.6◦). At 45◦,
the two representations are equivalent and should correspond
to degenerate states. The same is true if the interlayer hopping
V vanishes.

A complex order parameter ψa is defined as the average of
the pairing operator per site,

ψa = 1

L
〈B̂a〉 = ψ ′

a + iψ ′′
a (a = 1, 2), (7)

where ψ ′
a and ψ ′′

a are real and L = 58 is the number of sites
in the unit cell. Both the B1 and B2 states may turn up as valid
VCA solutions, but one of them will have a lower energy,
depending on doping. If only one of ψ1,2 is nonzero, then its
phase has no impact and can be set to zero (ψ ′′

a = 0) without
loss of generality. However, in the TRS-breaking phase, the
two states are close in energy, and the two order parameters
may coexist in order to lower the energy further. Since the
B1,2 states are symmetry eigenstates, the order parameters
ψ1,2 occur as scalars in the mean-field dispersion relation
(the gap function), and the gap is evidently maximized when
the two states are in quadrature, i.e., when the two order
parameters have a π/2 phase difference. Since we have the
freedom to set ψ ′′

1 = 0, this phase difference implies ψ ′
2 =

0, and the full gap is then |ψ ′
1 + iψ ′′

2 | = √
(ψ ′

1)2 + (ψ ′′
2 )2.

However, the phase difference φ between 〈�̂(1)〉 and 〈�̂(2)〉,
i.e., the phase considered in the Josephson description
of the bilayer, is different. Since �̂(1,2) = (B̂1 ± B̂2)/2,
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FIG. 3. (a) Norm of the order parameters ψ1 and ψ2 obtained
from the VCA procedure with a Weiss field belonging, respectively,
to the B1 or B2 representation for an interlayer hopping of V = 0.4
as a function of electron density n. (b) Free energy difference ��

between the two states (in units of t). When �� > 0 (�� < 0) the
B1 (B2) state is energetically favored. The gray region highlights the
density range where TRS breaking is observed (see text).

then

φ = arg
ψ1 − ψ2

ψ1 + ψ2
= arg

ψ ′
1 − iψ ′′

2

ψ ′
1 + iψ ′′

2

= 2 arg(ψ ′
1 − iψ ′′

2 ) = −2 arctan
ψ ′′

2

ψ ′
1

. (8)

A value of φ = 0 (φ = π ) corresponds to a pure B1 (B2) case.
TRS breaking occurs when φ �= 0 or π .

To probe the TRS-breaking superconducting phase in the
VCA, we simultaneously use as Weiss fields the Hermitian
operators B̂1 + B̂†

1 and i(B̂†
2 − B̂2) and look for regions of

doping where both are nonzero in the VCA solution. This
corresponds then to the B1 + iB2 state. The Weiss fields used
in the VCA procedure are taken to be the same on all clusters
(except on cluster C, where it is not defined). Using different
Weiss fields on different clusters was tested; it did not im-
prove the results significantly and dramatically increased the
computational resources needed.

Interlayer pairing operators can also be defined. They were
not used as Weiss fields (see Sec. IV of Ref. [17] for an
explanation). Nevertheless, interlayer pairing occurs in the
sense that the average value of the interlayer pairing operators
is nonzero. This pairing propagates from the intralayer pairing
through interlayer hopping.

III. RESULT AND DISCUSSION

A. TRS-breaking phase

In this section we consider the parameter describing
Bi2212. We start by probing the superconducting phase in
model (1) with θ = 43.60◦ for types B1 and B2 separately. We
can compare the energies of the two states and find a doping
region where TRS breaking is likely to occur.

FIG. 4. Relative phase φ [Eq. (8)] as a function of n. We can
observe a transition from B1 to B2 when doping is increased. For
V = 0.4, a finite region of doping with φ between 0 and π is ob-
served, indicating a TRS-breaking phase. For V = 0.2, the width of
this region, if it exists, is too small to resolve.

In Fig. 3(a), we show the superconducting order parameter
for the B1 and B2 states for V = 0.4. The two states have very
similar superconducting domes. The order parameter vanishes
around half filling in both cases. That the order parameter does
not vanish exactly at n = 1 can be attributed to the error on the
electron density typical of VCA when the chemical potential
within the cluster is not treated as an additional variational
parameter.

We can use the optimal value of the Potthoff functional
in each state, �B1 and �B2 , as a measure of the free energy
of the system [32]. In Fig. 3(b), we show the difference
�� = �B2 − �B1 . When �� is positive (negative), the B1

(B2) representation is energetically favored.
As shown in Fig. 3(b), the difference �� for θ = 43.60◦

is of the order of 10−4 (in units of the nearest-neighbor
hopping t). For θ = 53.13◦, the difference is more of the order
of 10−3 [17]. This is expected since at 45◦ the two representa-
tions should have the same energy. The closer the twist angle
is to 45◦, the closer in energy states B1 and B2 should be,
and TRS breaking should be more likely. For V = 0.2, we
obtained similar results with an even smaller ��, owing to
the smaller interlayer tunneling.

We then probed the superconducting phase when the B1

and B2 states are simultaneously allowed. The two represen-
tations can now compete against each other or combine into
a quadrature B1 + iB2, whichever is energetically favorable.
Figure 4 shows the relative phase φ computed using Eq. (8)
as a function of the density n in a narrow range of density.
For V = 0.2, it is possible to see an abrupt transition from
the B1 state to the B2 state. The TRS-breaking region is too
narrow to see with our method. The three data points with
nonzero φ around n = 0.880 may be an artifact caused by,
e.g., the minimization procedure or the simplified Weiss field
configuration used, with the same Weiss field on all clusters.

For V = 0.4, the relative phase shows a continuous tran-
sition from B1 to B2 upon increasing hole doping. We obtain
a TRS-breaking state between n ≈ 0.873 and n ≈ 0.881. The
interlayer tunneling amplitude is the most important parame-
ter controlling the mixing of the two representations, as noted
previously [17].
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FIG. 5. Band structure of model (1) with U = 0 and a supercon-
ducting mean field biB̂i. (a) Band structure along the diagonal of
the first quadrant of the Brillouin zone for b1 = 0.2. The nodes are
located around k = (π/2, π/2). (b) Close-up of the region around
the nodes for b1 = 0.2 (blue) and b2 = 0.2 (red). The nodes are,
in fact, slightly gapped for both representations and very close to
each other.

The gray area in Fig. 3 highlights the region where TRS
breaking is seen in Fig. 4 for V = 0.4. It is well beyond
optimal doping and corresponds to the range of doping where
�� is close to zero.

Our results are similar to those of Ref. [17], where a twist
angle of θ = 53.13◦ was applied. A TRS-breaking phase near
optimal doping was also observed in the strong interlayer
regime. The TRS-breaking phase observed with θ = 43.60◦
occurs within a smaller doping range, in the overdoped region.
It was expected that, closer to 45◦, the TRS-breaking phase
would occur in a wider doping range. That is not what we
observe here.

To explain this, we turn to a simpler approach and consider,
at U = 0, the effect of a mean field associated with each of the
superconducting states, B1 and B2, for θ = 43.60◦. Usually,
we expect an energy gain when combining superconducting
states from the same system if the nodes of each state are
located at very different positions in the Brillouin zone (BZ).
One example of this is the triplet state px + ipy. That is not
the case in twisted cuprates. One might think that combining
a d-wave state from one layer with a d wave from a sec-
ond layer with a different orientation would effectively do
the trick, but in fact, that amounts to combining equivalent
representations of two different systems instead of combining
two different representations of the same system. In real-
ity, the representations B1 and B2 have nodes in the same
place.

In Fig. 5(a) we show the band structure of model (1)
along the diagonal of the BZ for a nonzero B1 mean field
(b1B̂1, b1 = 0.2). For a twist angle of θ = 43.60◦ there are
58 bands, and the BZ is folded 29 times. There are nodes
in the vicinity of k = (π/2, π/2) [same for the B2 state,
not shown in Fig. 5(a)]. In Fig. 5(b), we compare the band
structures with B1 and B2 mean fields around the node (note
the enlarged scale). The nodes are not perfect and are, in
fact, already gapped for both states: no linear combination
B1 + iB2 is needed to generate the gap. Indeed, when a system
has multiple orbitals, the nodes are not necessarily fixed by

FIG. 6. Relative phase φ [Eq. (8)] as a function of n for three
parameter sets. In all cases, t = 1, and V = 0.4. We can observe a
finite region of doping with φ between 0 and π , indicating a TRS-
breaking phase. For t ′ = −0.25, there is no transition between the
two possible states: when hole doping is increased, the system starts
from a B1 state, then goes into a TRS-breaking phase, then back to the
B1 state; the doping range is increased when compared to the other
data sets. For U = 0.7, the behavior is closer to the U = 8 case: there
is a transition from the B1 state to B2 as hole doping is increased. The
data for U = 8 are the same as those shown in Fig. 4.

symmetry [41]. Following this argument, the energy gained
by a complex combination B1 + iB2 can remain small even
close to 45◦. Hence, the twist angle should not be the only
parameter affecting the extent of the TRS-breaking phase or,
indeed, the most important one. Other parameters, like doping
(discussed in this work) and disorder [42], play a key role.

B. Effect of U and t ′

The value of the second-neighbor hopping (t ′ = −0.3)
used in the previous section was chosen to describe Bi2212
and to offer a comparison with previous work. We also ap-
plied our method to t ′ = −0.25 and t ′ = −0.2, with other
parameters staying the same (t = 1, U = 8, V = 0.4). The
results for t ′ = −0.25 are shown in Fig. 6 (blue curve). In that
case the TRS-breaking phase also appears, but rather as an
insertion within the B1 phase instead of an intermediate state
between B1 and B2. The doping range over which it appears
is also wider (about 3%) but remains small compared to the
one observed at θ = 53.13◦ in Ref. [17]. At t ′ = −0.2, the B1

phase always has a lower energy than the B2 phase, and the
TRS-breaking phase does not appear at all. Hence, a larger
value of |t ′|, which entails greater frustration of antiferromag-
netic fluctuations, is beneficial to the TRS phase.

We also looked at the effect of the local repulsion U .
The green curve in Fig. 6 shows the phase difference φ for
t = 1, t ′ = −0.3, U = 7, and V = 0.4 (same parameters as
in the previous section, but with U = 7 instead of U = 8).
In that case the TRS-breaking phase also occurs but is
slightly shifted towards higher doping compared to U = 8
(the original parameter set, shown in orange). Additional
computations at U = 10 also revealed a TRS-breaking
solution (not shown here).

Hence, the existence of a TRS-breaking phase is ro-
bust with respect to small changes in the model parameters.
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However, the precise location of the TRS-breaking phase is
affected by the parameters of the single-layer model, more so
by the band parameters t ′ than by the interaction U . In all
cases the TRS phase is fragile: the associated energy gain at
the twist angle considered here is of the order of 10−4t , which
puts us in the subkelvin range.

IV. CONCLUSION

We used a one-band Hubbard model for twisted bilayer
cuprates at θ = 43.60◦ with VCA to search for a possible
TRS-breaking superconducting phase. In the twisted bilayer,
superconductivity is expected away from half filling in ei-
ther the B1 or B2 representation of the D4 point group. For
a set of parameters chosen to describe Bi2212, we found
a phase transition from the B1 state to the B2 state when
doping is increased. A region where the complex combi-
nation B1 + iB2 is stable, thus breaking TRS, occurs in a
small range of doping when the interlayer doping is strong
enough. Our results are in accord with previous work on the
53.13◦ system, in which the observation of TRS breaking
needed a strong interlayer tunneling [17]. We also showed
that the two states B1 and B2 are closer in energy when the
twist angle approaches 45◦, where they are expected to be
equivalent.

The energy difference between the two states being smaller
as the twist angle approaches 45◦ makes it harder to probe
TRS breaking. With a simple mean-field argument, we
showed that the nodes of the B1 and B2 states are very
close, making the energy gain from combining them very
small. Hence, the twist angle cannot be the only parameter
controlling the TRS breaking. The doping level needs to be

considered, alongside the twist angle and probably disorder
level, to create a robust TRS-breaking state.

We also looked at the effect of the model parameters. We
found that the TRS-breaking phase is robust against small
variations of t ′ and U but that it is negatively impacted by
smaller values of |t ′|, i.e., by smaller AF frustration. At the
same time, the TRS phase occurs on only the overdoped
side of the dome, i.e., in the more weakly correlated region
of the phase diagram. These two observations go in the
same direction; that is, strongly correlated superconductivity
mediated by antiferromagnetic fluctuations is more hindrance
than help to the TRS-breaking phase. The TRS phase also
requires a large interlayer hopping amplitude, larger than
what can be expected in real materials, to be present in a
significant doping range.

The system studied here is made of two layers of the
same cuprate model, with the same doping. Taking inspira-
tion from the heterobilayer transition metal dichalcogenides
[5,11], layers of different cuprates might be used to stabilize
the TRS-breaking state. The difference in doping and structure
might lead to a change in the TRS-breaking region. We will
address this question in a future work.
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