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Non-Hermitian quantum systems exhibit fascinating characteristics such as non-Hermitian topological phe-
nomena and skin effects, yet their studies are limited by the intrinsic difficulties associated with their eigenvalue
problems, especially in larger systems and higher dimensions. In Hermitian systems, the semiclassical theory
has played an active role in analyzing spectrum, eigenstate, phase, transport properties, etc. Here we establish a
complex semiclassical theory applicable to non-Hermitian quantum systems by an analytical continuation of the
physical variables such as momentum, position, time, and energy in the equations of motion and quantization
condition to the complex domain. Further, we propose a closed-orbit scheme and physical meaning under such
complex variables. We demonstrate that such a framework straightforwardly yields complex energy spectra and
quantum states, topological phases and transitions, and even the skin effect in non-Hermitian quantum systems,
presenting an unprecedented perspective toward nontrivial non-Hermitian physics, even with larger systems and
higher dimensions.
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I. INTRODUCTION

The non-Hermitian skin effect (NHSE), where most eigen-
states localize at open boundaries, reveals that the physics
of non-Hermitian quantum systems may differ significantly
from their Hermitian counterparts [1–9]. A series of nontrivial
non-Hermitian topological phases have also been established
as generalizations of topological phenomena [10–26]. Further
studies on the non-Hermitian emergence, such as dissi-
pation in quantum optics [27–37], open systems in cold
atom systems [18,38–41], and finite quasiparticle lifetimes in
condensed matters [42–45], etc., have inspired research on
non-Hermitian quantum systems to the recent frontier.

The semiclassical theory [46–48] has offered straightfor-
ward analysis and understanding of physical properties in
Hermitian quantum materials and models, such as spectra,
transport, and topological phenomena. For example, the semi-
classical framework has foreshadowed various experimental
and theoretical conclusions and discoveries for the quantum
Hall effects in two and three dimensions [49–55], as well
as the quantum anomalous [56–58] and quantum spin Hall
effects [59–62], etc. However, despite semiclassical studies
on the Berry curvature [63,64], with only a constant elec-
tric field and no magnetic field [65], or only for real energy
spectra [66], a more comprehensive semiclassical theory for
non-Hermitian quantum systems is still lacking. Given the
intrinsic difficulties and numerical instabilities of eigenvalue
problems in non-Hermitian quantum systems [7,19,67], espe-
cially on relatively larger systems and higher dimensions, such
a semiclassical theory becomes even more compelling.

In this article we develop a semiclassical theory, which
we dub the complex semiclassical theory, for more generic
non-Hermitian quantum systems, including scenarios with
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complex energy spectra and variable electric and magnetic
fields. The equations of motion (EOMs) and quantization
conditions generalize those of the Hermitian quantum sys-
tems; yet, we require analytical continuations of its physical
variables, such as momentum and position, to the complex
domains, where we also establish a straightforward strategy
to search for the vital closed orbits. Further, we explain
the physical meaning of wave-packet complex-valued vari-
ables originating from the biorthogonal basis we work with.
When demonstrated on and applied to various non-Hermitian
quantum systems, even in scenarios far exceeding previous
system-size and dimension thresholds, the complex semiclas-
sical theory provides us with accurate complex energy spectra,
quantum eigenstates, non-Hermitian topological phase dia-
grams, emergence of the non-Hermitian skin effects, and
more.

II. COMPLEX SEMICLASSICAL THEORY

Conventionally, the semiclassical theory begins with the
EOMs of a wave packet’s center of mass (COM) in a quantum
system [48]:

ṙ = ∂ε/∂p − ṗ × �,
(1)

ṗ = E + ṙ × B,

where E = −∂ε/∂r and B are the electric field and magnetic
field, respectively. For a valid quantized energy level, we
require the trajectory to form a closed orbit satisfying the
Bohr-Sommerfeld quantization condition:∮

p · dr = (n + γ )h, n ∈ Z, (2)

where γ = 1/2, and in the absence of the Berry curva-
ture � = 0 [48,63,64]. We study scenarios with the Berry
curvature in Appendix G. As the computations of Eqs. (1) and
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(2) are virtually classical, they offer very efficient evaluations
of the target quantum systems.

Conventionally, the variables in the EOMs, such as r, p,
and ε, take real values, as they are expectation values of
Hermitian observables and correspond to classical quantities.
Interestingly, to generalize the semiclassical theory to non-
Hermitian quantum systems, we analytically continue these
physical variables to the complex domains [68], and hence
the name complex semiclassical theory. Following Eq. (1), we
may obtain trajectories using finite-time steps dt with suffi-
ciently small |dt | to suppress finite-difference errors [69–73].
It is straightforward to see that ε̇ = 0; thus, though complex, ε
is constant [74]. Once we locate a closed orbit, we evaluate its
geometric phase through a complex integral

∮
p · dr; if the

quantization condition Eq. (2) holds, the underlying ε and
complex semiclassical orbit contribute to the spectrum and
eigenstates and offer insights on the physical property of the
non-Hermitian quantum system, as far as the semiclassical va-
lidity holds, e.g., guaranteed by integrability. We will establish
these main conclusions later in the paper.

In practice, however, unlike the straightforward one-
dimensional search in t ∈ R for a closed orbit in the Hermitian
cases, the search for a closed orbit in t ∈ C in the complex
semiclassical theory for non-Hermitian quantum systems may
turn out aimless and challenging [69–73,75–77], especially
since the complex period T is initially unknown and may
differ between ε. To address such problems, we propose a
two-step strategy: (1) we open up a trajectory that some-
what approaches the initial coordinates, then (2) choose the
complex phase of subsequent dt according to ṙ (or ṗ) in
the subsequent steps, so that dr (dp) reduce �r (�p), i.e., the
differences between initial and current coordinates, until they
vanish, and we obtain a closed orbit. As complex integrals
around closed loops do not depend on paths (but on windings
around certain “fixed points”), such makeshift closed orbits
provide equal evaluations of vital physical quantities, such
as the period T and the geometric phase

∮
p · dr. Once T is

available, we may resort to smoother, more aesthetic orbits
along t ‖ T . This approach does not require fine-tuning or
perturbative treatment of the non-Hermitian terms.

III. CONTINUOUS MODEL EXAMPLES

As a first example, let us first consider the following
quadratic model in one dimension (1D) [78]:

Ĥ = αx̂2 + β p̂2 + η(x̂ p̂ + p̂x̂)/2, (3)

where α, β, η ∈ C, and Ĥ are non-Hermitian in general. The
model is exactly solvable with the ladder operators [â, b̂†] = 1:

â = 2αx̂ + (η + iω) p̂

2
√

αω
, b̂† = 2αx̂ + (η − iω) p̂

2
√

αω
. (4)

We set h̄ = 1 here and afterward. The energy spectrum εn =
(n + 1/2)ω, n ∈ Z, ω =

√
4αβ − η2 offers a solid bench-

mark.
Equation (3) is beyond previous semiclassical frame-

works. From the complex semiclassical theory, we start
with the complex energy ε = αx2 + βp2 + ηxp, and the
corresponding EOMs following Eq. (1) yield the following
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FIG. 1. Following the semiclassical EOMs of the model in
Eq. (3), the trajectories form (a) a closed loop for ωt ∈ R, or (b) an
open spiral for t ∈ R. (c) Without knowledge of T , we can still obtain
a closed loop from an open trajectory (step 1) followed by finite-time
steps (step 2) with dt in Eq. (6). (d) The trajectories of different
closed orbits in the complex t plane reach the same complex period
T = 2π/ω. α = 1 + 0.5i, β = 1, and η = 0.7 + 0.3i.

trajectories [79]:

x(t ) = z1eiωt + z2e−iωt ,
(5)

p(t ) = (iω − η)z1

2β
eiωt − (iω + η)z2

2β
e−iωt ,

where z1, z2 ∈ C are determined by the initial conditions.
Equation (B8) forms closed orbits [Fig. 1(a)] with a gener-
ally complex-valued period T = 2π/ω. However, this is a
privilege for solvable trajectories, which otherwise end up as
open spirals [Fig. 1(b)] for generic t , e.g., trajectories from
finite-time steps. Fortunately, we can follow our strategy to
guarantee closed orbits [Fig. 1(c)]. First we choose a trajectory
that, to some degree, circles near the initial point; then we set
dt for the subsequent steps as

dt = [x(0) − x(t )]/ẋ

|[x(0) − x(t )]/ẋ| |dt |, (6)

which ensures that dx = ẋdt = C[x(0) − x(t )], C > 0, and
reduces |x(0) − x(t )|, until x(t ) returns to its initial value x(0)
[80].

Finally, we evaluate physical quantities over the closed
orbits: ε = z1z2ω

2/β and
∮

p · dx = 2πz1z2ω/β. Thus the
quantization condition dictates z1z2 = (n + 1/2)β/ω, and in
turn, the energy spectrum to quantize as εn = (n + 1/2)ω,
consistent with the benchmark. We also examine continuous
model examples with higher-order terms in Appendix B.

Derivation and interpretation. The semiclassical theory is
based upon a wave-packet representation of quantum states.
Given the center-of-mass (COM) position rc and momentum
pc of a wave packet, we define a corresponding quantum
state |rc, pc〉 = Ŵ (rc, pc)|0〉, where Ŵ (rc, pc) = exp[i(pc ·
r̂ − rc · p̂)] is a translation operator and |0〉 is a wave packet
centered at zero position and momentum. We can also obtain
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rc and pc from |rc, pc〉 through its expectation values:

〈rc, pc|r̂|rc, pc〉 = rc, 〈rc, pc|p̂|rc, pc〉 = pc, (7)

thus establishing a mapping between a wave packet |rc, pc〉
and its physical variables rc and pc.

For the complex semiclassical theory, we can generalize
rc, pc ∈ C, which, however, will require the biorthogonal ba-
sis with 〈rc, pc| = 〈0|Ŵ (−rc,−pc), generally different from
〈0|Ŵ (rc, pc)†. Likewise, an observable Ô’s expectation value
evolves as

〈Ô〉(t ) = 〈rc, pc|U −1(t )ÔU (t )|rc, pc〉, (8)

where U (t ) = exp(−iĤt ). Note on the bra side, we have
employed the inverse 〈rc, pc|U −1(t ) instead of the Hermitian
conjugate 〈rc, pc|U †(t ). Such a biorthogonal basis 〈nL|mR〉 =
δnm [81] is advantageous in keeping the normalization con-
stant 〈rc, pc|U −1(t ) · 1 · U (t )|rc, pc〉 = 1 and the operator
evolution ˙̂O = −i[Ô, Ĥ ] in the Heisenberg picture meaning-
ful. However, there is a tradeoff: even for a Hermitian Ô,
˙̂O is no longer necessarily Hermitian under a non-Hermitian

Ĥ , and hence the analytical continuation of the expectation
values, e.g., Eq. (8), and the physical variables to the complex
domains. Our biorthogonal-basis convention differs from its
common alternative, i.e., 〈�|U †(t )ÔU (t )|�〉, which keeps
expectation values real-valued and focuses on solely one set
of (right) eigenstates, thus being suitable for analyzing their
properties and quantum dynamics [82]. These two conven-
tions coincide for a Hermitian Ĥ .

Next we analyze the evolution of such complex vari-
ables, following the wave packet |rc(t + τ ), pc(t + τ )〉 =
e−iĤτ |rc(t ), pc(t )〉 after a short time step τ → 0:

ṙc(t ) = [rc(t + τ ) − rc(t )]/τ

= 〈rc(t ), pc(t )|eiĤτ r̂e−iĤτ − r̂|rc(t ), pc(t )〉/τ
= −i〈0|Ŵ ( − rc(t ),−pc(t ))[r̂, Ĥ ]Ŵ (rc(t ), pc(t ))|0〉

= 〈0|∂Ĥ

∂p̂
(r̂ + rc(t ), p̂ + pc(t ))|0〉

≈ ∂ε(pc, rc)/∂pc, (9)

which yields the EOM for the complex variable rc in Eq. (1).
Similarly, we obtain the EOM for pc as well as the case with
� (Appendixes A and G). For the last step we have kept only
the m = n = 0 term in the Taylor expansion (equivalent to
replacing operators r̂ and p̂ in ∂Ĥ/∂p with complex variables
rc and pc):

∂Ĥ

∂p̂
(r̂ + rc(t ), p̂ + pc(t ))

=
∑
mn

r̂np̂m

n!m!

∂Ĥ

∂nr̂∂m+1p̂
(rc(t ), pc(t )). (10)

The higher-order terms are negligible because (1) the first-
order terms, i.e., 〈0|r̂|0〉 and 〈0|p̂|0〉, vanish due to the COM
definition of wave packet |0〉, and (2) the second- and higher-
order terms are negligible in comparison with their classical
counterparts, e.g., 〈0|r̂2|0〉 versus r2

c , as the extent of the wave
packet is small in comparison with the orbit, a prerequisite

TABLE I. The lowest nonorthogonal eigenstates of the non-
Hermitian quantum system in Eq. (3) obtained via quantum and
semiclassical approaches compare consistently; see details in Ap-
pendix D. For clarity we have employed the orthonormal basis |m〉0

of a Hermitian, isotropic harmonic oscillator: a†
0a0|m〉0 = m|m〉0,

â0 = (x̂ + i p̂)/
√

2. 2α = ω − iη, 2β = ω + iη, κ = η/iω.

n Quantum Semiclassical Outcome

0 |0〉0 |0〉0 |0〉0

1 (â†
0 + κ â0 )|0〉0 â†

0|0〉0 |1〉0

2 (â†
0 + κ â0)2|0〉0 [(â†

0 )2 + κ]|0〉0

√
2|2〉0 + κ|0〉0

3 (â†
0 + κ â0)3|0〉0 [(â†

0 )3 + 3κ â†
0]|0〉0

√
6|3〉0 + 3κ|1〉0

for the semiclassical approximation that holds at large quan-
tum numbers. Further, the approximation becomes exact for a
quadratic Ĥ , where higher-order terms vanish. We also show
scenarios where such an approximation becomes mediocre
in the quantum limit and with influential higher orders in
Appendix B.

What is the physical meaning of such a wave packet with
complex variables? To demonstrate, we define x′

c = 
(xc)
and x′′

c = �(xc)[p′
c = 
(pc) and p′′

c = �(pc)] as the real and
imaginary parts of xc (pc) in 1D, then |xc, pc〉:

W (xc, pc)|0〉 = A(xc, pc)W (xr, pr )|0〉 = A(xc, pc)|xr, pr〉
(11)

is essentially a wave packet with real-valued COM position
xr = x′

c − p′′
c ∈ R and momentum pr = p′

c + x′′
c ∈ R, yet with

an extra factor:

A(xc, pc) = exp

(
x2

r + p2
r − x2

c − p2
c

4

)
∈ C. (12)

Indeed, given the nonunitary evolution in non-Hermitian
quantum systems, it is natural to encompass variable ampli-
tudes (and phases).

We can also convert the real-valued COM xr, pr ∈ R and
overall factor A ∈ C into xc, pc ∈ C, as both parametriza-
tions employ four real numbers. Similarly, upon changes of
A → A · �A, we obtain different xc, pc ∈ C descriptions for
the wave packets and orbits, implying redundancies similar
to gauge conventions. Nevertheless, the orbits following dif-
ferent conventions describe physics consistently, map to each
other straightforwardly, and converge within similar steps and
computational costs given the same period; see Appendix E.

Just like in conventional semiclassical theory, we can de-
rive quantum eigenstates, i.e., wave functions, from the orbits
of the complex semiclassical theory. We achieve such goals
by applying Eq. (11), which maps the wave packet with
rc, pc ∈ C at each instance to our familiar form with rr, pr ∈
R, and incorporating the extra factor A upon the summa-
tion along the orbit. For instance, the resulting eigenstates
of Eq. (3) from benchmarks and the complex semiclassical
theory compare fully consistently in Table I; we have also
confirmed establishing quantum eigenstates of lattice models
based on the complex semiclassical theory; see Appendix D
for further results and details. We also note that the single-
valuedness of such wave functions, together with the geomet-
ric phase, complex yet still in the form of

∫
pc · drc following

045110-3



YANG, LI, FU, WANG, AND ZHANG PHYSICAL REVIEW B 109, 045110 (2024)

-1 0 1

-8

-6

-4

-2

0

p||

Re(ε)
Im(ε)
n = 0

-7.194

0

0 5 10 15

-7.2

-7.15

-7.1

-7.05

-0.1

-0.05

-0

0.05

Re(ε)
Im(ε)
p|| = 0

n

(c) (d)

(a) (b)

FIG. 2. For each complex energy ε, we determine the satis-
fiability of the quantization condition through the (a) real and
(b) imaginary parts of

∮
p · dr over the closed orbits. The translu-

cent planes denote (2n + 1)π , n ∈ Z for the real part and zero for
the imaginary part, which pinpoints semiclassical εn in excellent
consistency with the quantum spectrum (red dots). For simpler com-
parisons, we have shifted the red dots vertically. V = 1.0, η = 0.1i,
and B = 0.02. Similarly, (c) and (d) show the complex spectra of
a three-dimensional lattice model with a generic magnetic field
through the complex semiclassical theory; see details in Appendix C.
p‖ is the momentum along the magnetic field.

generalized translations Ŵ (rc, pc), require the discrete quan-
tization condition in Eq. (2) for a periodic orbit.

IV. LATTICE MODEL EXAMPLES

The complex semiclassical theory also applies to lattice
models. For example, we consider the following non-
Hermitian 2D model:

Ĥ =
∑

r

ηc†
r+x̂+ŷcr − c†

r+x̂cr − c†
r−x̂cr − V c†

r+ŷcr − V c†
r−ŷcr,

(13)

with an external magnetic field Bẑ, beyond the non-Bloch
band theory [1,3,5] and previous semiclassical theory frame-
works.

Through the complex semiclassical theory, we establish the
EOMs as

ε = −2 cos(px ) − 2V cos(py) + ηei(px+py ),

ṗ = ṙ × Bẑ = ∂ε/∂p × Bẑ,

ṗx = B∂ε/∂ py = B[2V sin(py) + iηei(px+py )],

ṗy = −B∂ε/∂ px = −B[2 sin(px ) + iηei(px+py )]. (14)

We track the trajectories in the complex p space via finite-time
steps and evaluate

∮
p · dr over the closed orbits, which we

summarize in Figs. 2(a) and 2(b). The real and imaginary parts
of the quantization condition

∮
p · dr = 2π (n + 1/2) offer

two constraints and thus a discrete series of energies εn on the
complex ε plane. Such analysis generalizes straightforwardly
to higher dimensions, e.g., the spectra of three-dimensional
lattice models in magnetic fields such as Figs. 2(c) and 2(d),

FIG. 3. The complex semiclassical theory characterizes the
phases (bright green and pink regions) and phase boundary (black
curve) for the non-Hermitian lattice model in Eq. (13) based on
the orbits’ connectivity. The dots and their color scales denote the
quantum energy spectrum εn and each eigenstate’s ratio of IPRs
upon doubling the system size, a measure of localization. The insets
illustrate the two phases’ schematic orbits. V = 0.3, η = 0.1i.

far beyond the capacity of previous approaches. We include
further details and examples in Appendix C.

The complex semiclassical theory also offers straight-
forward recipes for analyzing phases and transitions in
non-Hermitian quantum systems. For example, the interplay
between the quantum Hall effect and the NHSE has received
much recent attention [66,83]. The complex semiclassical
theory separates these two phases by a Lifshitz transition:
the former cases possess closed orbits p(T ) = p(0), thus
accompanied by discrete Landau levels and localized quan-
tum Hall states; in contrast, the latter case instead obtains
orbits satisfying p(T ) = p(0) + G, where G �= 0 is a recip-
rocal lattice vector. Accordingly, we summarize the phases
of the non-Hermitian lattice model in Eq. (13) with V = 0.3
in Fig. 3, which indicates a mobility edge in the complex ε

space with G = 2π ŷ on the right-hand side. Consequently, the
wave packet receives a nontrivial displacement within each
period: �r = − ∮

dp × ẑ/B = −2π x̂/B, a clear signature of
delocalization along the x̂ direction and paving the road for the
NHSE, providing unique insights on transport and localization
properties from the complex semiclassical theory.

For comparison, we calculate the quantum eigenstates’
inverse participation ratio (IPR): (

∑
x |ψ (x)|4)−1 [84]. In and

only in the quantum Hall phase, the IPRs remain robust upon
enlarging the system and signal localization, consistent with
the complex semiclassical theory. Sharp kinks also appear in
the complex spectra, implicating transitions near the semiclas-
sically predicted boundary. We note that the diagonalization
of non-Hermitian Hamiltonians suffers accumulated error
[7,19,67], especially for delocalized states on large systems,
which caused the IPRs’ instability on the right-hand side in
Fig. 3. In comparison, the complex semiclassical theory excels
at small magnetic fields, where the magnetic unit cells are
large. Further, with a soft potential V (x) characterizing bound-
aries, the NHSE emerges naturally as a position-dependent A
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factor from the complex semiclassical theory, demonstrated in
Appendix C.

V. DISCUSSIONS

We have established a complex semiclassical theory more
generally applicable to non-Hermitian quantum systems with
an analytical continuation of physical variables. We have also
provided a strategy to locate closed orbits and eigenstates.
We demonstrate our framework’s applicability, accuracy, and
efficiency on various continuous and lattice models, generally
unattainable by previous ansatzes due to system sizes, dimen-
sions, potentials, magnetic fields, and complex spectra.

There are several interesting directions for further gener-
alizations. We discuss the introduction of multiple bands and
the Berry curvature � in Appendix G. On the other hand, we
may consider the analytical continuation of the remaining two
physical quantities in the EOMs, the Berry curvature [63,64],
and the magnetic field to the complex domains. Indeed, the
physics of the model in Eq. (13) in a complex-valued mag-
netic field B can be satisfactorily captured by the complex
semiclassical theory (Fig. 3 and Appendix C). The complex
semiclassical theory may also apply beyond the framework
of non-Hermitian Hamiltonians. For example, it is straightfor-
ward to incorporate dissipative friction, such as Fμ = −μp,
into the EOMs, which forbids closed orbits for t ∈ R; the
complex semiclassical theory opens up the possibility of t ∈
C, and thus potential approaches and insights for dissipative
or driven quantum systems; see Appendix F.
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APPENDIX A: THE EQUATION OF MOTION FOR pc

In the main text we have established the semiclassical
equation of motion (EOM) for the complex variable rc; in
this section we derive the second line of Eq. (1) in the main
text, the EOM for pc. Similar to the main text, we begin
with the evolution of the wave packet |rc(t + τ ), pc(t + τ )〉 =
e−iĤτ |rc(t ), pc(t )〉 after a short time step τ → 0:

ṗc(t ) = [pc(t + τ ) − pc(t )]/τ

= 〈rc(t ), pc(t )|eiĤτ p̂e−iĤτ − p̂|rc(t ), pc(t )〉/τ
= −i〈0|Ŵ ( − rc(t ),−pc(t ))

[
p̂, Ĥ

]
Ŵ (rc(t ), pc(t ))|0〉

= 〈0|
(

−∂Ĥ

∂ r̂
+ ∂Ĥ

∂p̂
× B

)
(r̂ + rc(t ), p̂ + pc(t ))|0〉,

(A1)

where for the last line we note that in addition to [ri, p j] =
iδi j , we have [pi, p j] = iεi jkBk in the presence of a magnetic
field. For reasons we have stated in the main text, we only

need to keep the m = n = 0 term in the Taylor expansions:

∂Ĥ

∂ r̂
(r̂ + rc(t ), p̂ + pc(t ))=

∑
mn

r̂np̂m

n!m!

∂Ĥ

∂n+1r̂∂mp̂
(rc(t ), pc(t )),

∂Ĥ

∂p̂
(r̂ + rc(t ), p̂ + pc(t ))=

∑
mn

r̂np̂m

n!m!

∂Ĥ

∂nr̂∂m+1p̂
(rc(t ), pc(t )),

(A2)

equivalent to replacing operators r̂ and p̂ in ∂Ĥ/∂r and
∂Ĥ/∂p with the complex variables rc and pc:

ṗc(t ) ≈ −∂ε(pc, rc)

∂rc
+ ∂ε(pc, rc)

∂pc
× B

≈ E + ṙc(t ) × B. (A3)

APPENDIX B: CONTINUOUS MODEL EXAMPLES

1. Closed orbits of non-Hermitian harmonic oscillators
from a quantum perspective

The closed orbits in Eq. (5) in the main text are solvable
through the EOMs, which are linear differential equations in
the current case. In this section we study the quantum evo-
lution of the wave packets under the Hamiltonian in Eq. (3)
in the main text, which offers an alternative perspective of
the orbits. As shown in the main text, we can reexpress the
Hamiltonian as

Ĥ = ω(b†a + 1/2), â = 2αx̂ + (η + iω) p̂

2
√

αω
,

b̂† = 2αx̂ + (η − iω) p̂

2
√

αω
, (B1)

where ω =
√

4αβ − η2 is generally complex. Although b̂† �=
â†, we can still make use of the commutation relation [â, b̂†] =
1 to obtain the ladder algebra:

b̂†|n〉 = √
n + 1|n + 1〉,

â|n〉 = √
n|n − 1〉,

b̂†â|n〉 = n|n〉,
where â|0〉 = 0. Therefore |n〉 and εn = (n + 1/2)ω are the
(right) eigenstates and energy eigenvalues of Ĥ , respectively,
and n ∈ Z.

We now start from a wave-packet state |z0〉 =
e−|z0|2/2ez0 b̂† |0〉, z0 ∈ C, whose evolution under Ĥ is
e−iωt/2|zt 〉, where zt = e−iωt z0. Consequently, the wave
packet’s center of mass (COM) exhibits the following time
dependence:

〈x̂〉(t ) = 〈0|e−zt b̂†
e|zt |2/2x̂e−|zt |2/2ezt b̂† |0〉

= 〈0|x̂ − zt [b̂
†, x̂]|0〉

= (ω + iη)zt

2
√

αω
= z2e−iωt ,

(B2)
〈p̂〉(t ) = 〈0|e−zt b̂†

e|zt |2/2 p̂e−|zt |2/2ezt b̂† |0〉
= 〈0| p̂ − zt [b̂

†, p̂]|0〉
= −2iαzt

2
√

αω
= − (iω + η)

2β
z2e−iωt ,

045110-5



YANG, LI, FU, WANG, AND ZHANG PHYSICAL REVIEW B 109, 045110 (2024)

where we have set z2 = (ω + iη)z0/2
√

αω. We have used the
facts that 〈0|x̂|0〉 = 0 and 〈0| p̂|0〉 = 0, guaranteed by parity
symmetry, or more generally, the COM definition of wave
packet |0〉. These results are consistent with the z2 terms in
Eq. (5) in the main text obtained via semiclassical equations of
motion (EOMs). Note that we have employed the biorthogo-
nal basis, and thus inverse instead of Hermitian conjugate, in
the expectation values 〈x̂〉(t ) and 〈p̂〉(t ), which can take on
complex values.

To obtain the z1 terms, on the other hand, we may start
with a different basis of ladder states: b̂†|0〉′ = 0, â|n〉′ =√

n + 1|n + 1〉′. The corresponding wave-packet state evolves
with an eiωt factor independently from the z2 terms.

2. Continuous model examples with higher-order terms

In this section we examine additional continuous mod-
els. We first consider a non-Hermitian quantum model with
higher-order x̂:

Ĥ = β x̂4 + γ p̂2 + αâ2, (B3)

where α, β, γ ∈ C. With x̂ = 1√
2
(â + â†) and p̂ = i√

2
(â† −

â) in terms of the ladder operators, we can reexpress the
Hamiltonian as

Ĥ = β

4
[â4 + (â†)4 + 4â†â3 + 4(â†)3â + 6(â†)2 + 6â2

+ 6n2 + 6n + 3] − γ

2
[(â†)2 + â2 − 2n − 1] + αâ2,

(B4)

which we diagonalize in the occupation number basis n̂|n〉 =
n|n〉 numerically (with a truncation at sufficiently large n) for
benchmark spectra.

Using complex semiclassical theory, we begin with the
energy relation ε = βx4 + γ p2 + α(x + ip)2/2. The resulting
EOMs are

ẋ = iαx + (2γ − α)p,
(B5)

ṗ = −4βx3 − αx − iαp,

which we employ to search for the closed orbits. The strategy
of dt phase adjustment we mentioned in the main text is
especially helpful in the process; see illustrations in Fig. 4. In
particular, the complex energies with qualified quantization
conditions are consistent with the quantum benchmarks; see
examples in Table II.

More generally, the complex semiclassical theory applies
to non-Hermitian quantum systems with potential and kinetic
terms beyond quadratic order. For instance, we consider the
following continuous model:

Ĥ = β p̂4 + γ x̂4 + αâ2, (B6)

where α, β, γ ∈ C. In terms of the ladder operators, the
Hamiltonian becomes

Ĥ = β

4
[â4 + (â†)4 + 4â†â3 + 4(â†)3â + 6(â†)2 + 6â2

+ 6n2 + 6n + 3] + γ

4
[â4 + (â†)4 − 4â†â3 − 4(â†)3â

− 6(â†)2 − 6â2 + 6n2 + 6n + 3] + αâ2, (B7)
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FIG. 4. Following the EOMs, the semiclassical trajectories of the
model in Eq. (B3) form (a) closed loops along the t/T ∈ R direction
and end up in (b) open paths along the t ∈ R direction. Without
knowing T , we may still obtain (c) closed loops by strategically ad-
justing dt . (d) The corresponding trajectories in the complex t plane
show the equivalence between different closed orbits reaching the
complex period T . α = 0.3 + 0.5i, β = 1.0 + 0.1i, γ = 1.0 − 0.1i,
and

∮
p · dx = 5π , indicating the complex energy ε = 7.04 + 1.24i

qualifies for a quantized energy level.

which we also diagonalize numerically for the benchmark
spectra.

Semiclassically, the EOMs following energy relation are

ẋ = 4γ p3 − αp + iαx,
(B8)

ṗ = −4βx3 − αx − iαp,

which we use to establish closed orbits (Fig. 5). We also
evaluate the integral

∮
p · dx over the closed orbits, which

determines their quantization conditions. We demonstrate sev-
eral examples in Table III. Interestingly, although relatively
small, there are noticeable departures of the qualified orbits’∮

p · dx from the exact half-integer values of 2π , especially at
small n: 9.903 versus 9.425 for n = 1, 16.010 versus 15.708
for n = 2. Such differences contrast sharply with previous
examples of continuous models, where we have at least four

TABLE II. The real and imaginary parts of the energies and
geometric phases of closed orbits following the complex semiclassi-
cal EOMs are consistent with the quantization condition

∮
p · dx =

(2n + 1)π for quantized, complex energy eigenvalues for the model
in Eq. (B3). The parameters are α = 0.3 + 0.5i, β = 1.0 + 0.1i, and
γ = 1.0 − 0.1i.

n 1 2 5 6.39+0.89i

Re[εn] 3.622 7.037 19.861 10
Im[εn] –0.558 –1.240 –3.936 0
Re[

∮
p · dx] 9.518 15.774 34.588 20.075

Im[
∮

p · dx] 0.005 –0.001 0.001 2.781
Quantum Yes Yes Yes No
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FIG. 5. Following the EOMs, the semiclassical trajectories of
the quartic model in Eq. (B6) form (a) closed loops along the
t/T ∈ R direction and end up in (b) open paths along the t ∈ R
direction. Without knowing T , we may still obtain (c) closed loops
by strategically adjusting dt . (d) The corresponding trajectories in the
complex t plane show the equivalence between different closed orbits
reaching the complex period T . α = 0.5 + 0.3i, β = 1.0 + 0.1i, and
γ = 1.0 + 0.1i. The trajectories’ energy is ε = 18.65 + 1.87i with a
geometric phase

∮
p · dx = 16.0101 + 0.0002i ≈ 5π .

or five digits of accuracy. Physically, the model in Eq. (B6)
deviates drastically from the quadratic form; thus the semi-
classical approximation suffers at small n, where the wave
packets’ scale and shape become relatively important and
non-negligible. Indeed, such deviations vanish asymptotically
at larger n, e.g., n � 5.

These results show that within the limits of validity, our
complex semiclassical theory generally applies to continuous
models of non-Hermitian quantum systems.

APPENDIX C: LATTICE MODEL EXAMPLES

1. Complex spectra of a three-dimensional non-Hermitian
lattice model in generic magnetic field

In this section we use the complex semiclassical theory to
showcase the straightforward derivation of complex spectra,

TABLE III. The real and imaginary parts of the energies and
geometric phases of closed orbits following the complex semiclas-
sical EOMs are nearly consistent with the quantization condition∮

p · dx = (2n + 1)π for quantized, complex energy eigenvalues for
the model in Eq. (B6), especially for relatively larger values of n. The
parameters are α = 0.5 + 0.3i, β = 1.0 + 0.1i, and γ = 1.0 + 0.1i.

n 1 2 5 10 3.72–0.19i

Re[εn] 7.137 18.645 87.540 317.226 10
Im[εn] 0.721 1.871 8.760 31.729 0
Re[

∮
p · dx] 9.903 16.010 34.694 66.047 11.680

Im[
∮

p · dx] 0.001 0.000 1 × 10−4 3 × 10−5 –0.586
Quantum Yes Yes Yes Yes No

e.g., Figs. 2(c) and 2(d) in the main text, for a non-Hermitian
lattice model with a generic magnetic field in three spatial di-
mensions, which are beyond the reach of previous approaches.

In particular, we consider the following non-Hermitian
three-dimensional lattice model:

Ĥ = −t ′ ∑
r,δ

c†
r+δ̂

cr −
∑

r

[(1 + η)(c†
r+x̂ + c†

r+ŷ + c†
r+ẑ)

+ (1 − η)(c†
r−x̂ + c†

r−ŷ + c†
r−ẑ)]cr, (C1)

where δ = ±x̂ ± ŷ,±x̂ ± ẑ,±ŷ ± ẑ, t ′ = 0.1, and η = 0.1.
We also include a magnetic field B along a generic direc-
tion (0.48, 0.64,0.6) with amplitude B = |B| = 0.02 (0.02/2π

magnetic flux quantum per plaquette).
Before analyzing the model with the complex semiclassi-

cal theory, we perform an orthogonal transformation to the
(p1, p2, p‖) coordinates, where p‖ ‖ B is along the magnetic
field. Then we establish the EOMs following Eq. (1) and
ṗ = (∂ε/∂p) × B in the main text:

ṗ1 = B
∂ε

∂ p2
= B

(
∂ε

∂ px

∂ px

∂ p2
+ ∂ε

∂ py

∂ py

∂ p2
+ ∂ε

∂ pz

∂ pz

∂ p2

)
, (C2)

ṗ2 = −B
∂ε

∂ p1
= −B

(
∂ε

∂ px

∂ px

∂ p1
+ ∂ε

∂ py

∂ py

∂ p1
+ ∂ε

∂ pz

∂ pz

∂ p1

)
,

ṗ‖ = 0, (C3)

where ε(p) is the energy dispersion of Eq. (C1). We are
interested in p‖ ∈ R and p1, p2 ∈ C, whose physics describes
a nondivergent plane wave along the B direction and a wave
packet in the perpendicular plane.

Finally, for each value of p‖ and complex ε, we attain
closed orbits following the EOMs in Eq. (C2) and the strategy
we outlined in the main text and determine whether they sat-
isfy the quantization condition and contribute to the physical
spectra. The calculations are relatively straightforward and
nowhere costly. The results for the given B and model in
Eq. (C1) are summarized in Figs. 2(c) and 2(d) in the main
text.

2. The non-Hermitian skin effect and generalized
WKB approximation

In this section we apply the complex semiclassical theory
to the well-known non-Hermitian Hatano-Nelson model on a
1D lattice:

Ĥ =
∑

x

(t + γ )c†
x+1cx +

∑
x

(t − γ )c†
xcx+1

=
∑

k

[2t cos(p) − 2iγ sin(p)]c†
kck, (C4)

where we set t = 1 and γ = ±0.1 without loss of generality.
In particular, as a soft boundary condition we introduce the
following confining potential:

V (x) = U [eα(x−L/2) + e−α(x+L/2)], (C5)

whose profile with U = 0.2, α = 0.1, and L = 60 is in
Fig. 6(a). Note that instead of the common, hard-wall open
boundary conditions, we have employed smoother boundaries
to suit a semiclassical theory better.
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FIG. 6. (a) The profile of the confining potential in Eq. (C5)
introduces two soft boundaries. The red dashed lines show the set-
ting for L = 60, beyond which the potential increases more rapidly.
(b) The closed orbit following EOMs in Eq. (C6) retains a real-valued
x and a constant Im(p) = ∓0.1003 for γ = ±0.1, respectively. The
arrows mark the direction of the cyclotron motion. (c) The amplitude-
modification factor of the wave packet leads to the emergence of the
NHSE. Note the log scale in the vertical direction.

We start with the following energy relation and EOMs for
the complex semiclassical theory:

ε = 2t cos(p) + 2iγ sin(p) + V (x),

ẋ = ∂ε/∂ p = −2t sin(p) − 2iγ cos(p),

ṗ = −∂ε/∂x = αU [e−α(x+L/2) − eα(x−L/2)]. (C6)

Interestingly, we can keep x, t ∈ R with an initialization that
satisfies

Im(x) = 0, Im(p) = 1

2
ln

t − γ

t + γ
. (C7)

Then, following the EOMs in Eq. (C6), ṗ becomes purely real,
which keeps Im(p) constant with t ∈ R, and in turn, ẋ remains
purely real, Eq. (C7) further holds, and so on and so forth.
Subsequently, we can obtain a closed orbit; see Fig. 6(b) for
example.

Such a closed orbit with real-valued x ∈ R in the com-
plex semiclassical theory is intimately connected with the
WKB approximation. In the conventional WKB approxima-
tion, the position x remains real, while the momentum p
becomes purely real or imaginary depending on E > V (x) or
E < V (x), respectively. The semiclassical orbits in Eq. (C7)
and Fig. 6(b) are slightly more general, as they concern a
fully complex p. In addition, the continuous condition of the
(generalized) WKB approximation requires the boundary con-
ditions

∫
p · dx = 2πn + γ , where n ∈ Z and γ = mπ/2 =

π for m = 2 turning points along the ±x directions, consistent
with the quantization condition for the complex semiclassical
theory in Eq. (2) in the main text.

Notably, the non-Hermitian skin effect (NHSE) emerges
naturally from the complex semiclassical theory and the gen-
eralized WKB theory. Although the closed-orbit ventures
across the entire length of the system [Fig. 6(b)], the con-
tribution of the wave packets to the target wave function
receives an extra factor exp[− ∫

Im(p)dx] contributed by the
complex-valued geometrical phase—an exponential weight
amplification (attenuation) to the right (left)—a signature of
the NHSE [Fig. 6(c)]. The tendency reverses with a sign
change of γ . Similarly, this factor corresponds to A in Eq. (12)
of the main text in the complex semiclassical theory. Indeed,
Im(p) given by Eq. (C7) contributes a universal factor:

exp

(
− 0.5x ln

t − γ

t + γ

)
=

(
t + γ

t − γ

)x/2

, (C8)

at position x, which is consistent with the similarity-
transformation embodiment of the NHSE [26].

3. The lattice model with a complex magnetic field B

The complex semiclassical theory allows us to locate
interesting quantum physics and phenomena from a novel per-
spective. For instance, we can reexpress the EOMs in Eq. (14)
in the main text with three complex variables px, py, and Bt :

∂ px/∂Bt = 2V sin py + iηei(px+py ),

∂ py/∂Bt = −[2 sin px + iηei(px+py )]. (C9)

Since px, py, t ∈ C are complex variables, it is natural to
analytically continue B to the complex domain.

Inserting complex B into the lattice model in Eq. (13) in
the main text, we obtain the energy spectra and eigenstates
via exact diagonalization. Further, we determine the localiza-
tion properties and phases via the inverse participation ratios
(IPRs), which remain consistent with the complex semiclas-
sical theory, as shown in Fig. 3 in the main text as well as
Fig. 7.

The physics of such a complex magnetic field deserves
further study. While a regular, real-valued magnetic field
introduces a geometric phase for any path encircling its
magnetic flux, a complex magnetic field allows amplifica-
tion and attenuation—a “geometric amplitude” effect. Even
by itself this effect is nonunitary, offering a new origin
for non-Hermitian quantum physics, potentially realizable in
circuit-model simulators with directional dampers and ampli-
fiers [85–87].
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FIG. 7. The spectra of the non-Hermitian lattice model in
Eq. (13) in the main text follow the quantization condition

∮
p · dr =

2π (n + 1/2). V = 0.3, η = 0.1i. By varying a magnetic field B ∈ R,
the changes to the geometric phase

∮
p · dr are real-valued, altering

the spacing between the energy levels yet keeping the overall enve-
lope curve in the complex ε space. In comparison, a change of B to
the complex domain alters the quantization conditions in a nontrivial
way that completely shifts the curve and, thus, the whole spectrum.

Such a geometric effect also poses direct and nontrivial
consequences on the quantization conditions; see the arrows
in Fig. 7. When we vary a real-valued magnetic field B, it
alters

∮
p · dr ∈ R, and thus the spacings between and loca-

tions of the quantum levels along the original curve in the
complex ε space. In comparison, however, a complex B ∈ C
can alter the imaginary part of

∮
p · dr, thus shifting the entire

curve elsewhere and completely recasting the spectrum. Such
impacts are explicit in the current model example, where∮

p · dr = B−1
∮

px · d (py) ∝ B−1.

APPENDIX D: WAVE FUNCTIONS FROM THE COMPLEX
SEMICLASSICAL THEORY

1. Geometric phase under complex variables

Conventionally, the semiclassical theory can provide not
only the energy spectrum but also approximate wave func-
tions. Among the contributions over the semiclassical orbit,
the geometric phase

∫
p · dr plays a vital role [88].

Despite the generalization to the complex domains, the ge-
ometric phase in the complex semiclassical theory remains in
the form of

∮
p · dr along a closed orbit. To see this, we con-

sider a loop around an infinitesimal plaquette |δpc|, |δrc| →
0:

W (0,−δpc)W (−δrc, 0)W (0, δpc)W (δrc, 0)

= e−ix̂·δpc eip̂·δrc eix̂·δpc e−i p̂·δrc = e−[p̂,x̂]δpc·δrc

= eiδpc·δrc , (D1)

which follows from Glauber’s theorem. Note we have ap-
plied the minus signs instead of the Hermitian conjugates for
the inverses, consistent with the biorthogonal convention for
generic rc, pc ∈ C. The action’s result is a geometric phase
equaling the (complex) volume of the encircled phase space.
We can also decompose larger loops from the smaller, more
fundamental loops, whose overall geometric phases contribute

additively as the total volume
∮

pc · drc of the encircled phase
space. We note that the geometric phase from (rc, pc) to
(rc + δrc, pc + δpc) is obtainable through the trajectory

〈rc + δrc, pc + δpc|W (δrc, δpc)|rc, pc〉
= 〈0|W (−rc − δrc,−pc − δpc)W (δrc, δpc)W (rc, pc)|0〉.

(D2)

We can obtain the wave functions with such geometric
phases augmenting the wave packets, as we demonstrate
in the following sections. As we have defined |rc, pc〉 =
W (rc, pc)|0〉, the states we obtain are the right eigenstates.
For the left eigenstates we need to start from 〈rc, pc| =
〈0|W (−rc,−pc), instead of simple Hermitian conjugation, for
non-Hermitian quantum systems.

In addition, the single-valuedness of the wave function
constrains the geometric phase

∮
p · dr along a closed or-

bit, and hence the quantization condition. For scenarios with
p ∈ C and r ∈ R, we have γ = 1/2 by counting the turning
points in a generalized WKB approximation (Sec. III B), each
contributing a π/2 phase. In the complex semiclassical theory
over more generic scenarios r, p ∈ C, the definition of turn-
ing points may become obscure, yet we may still locate the
value for γ following the duality transformation r → p and
p → −r, which contributes a π/4 phase each and totals π

around a closed orbit [88].

2. Analytical derivations of eigenstates of continuous models

In this section we demonstrate the complex semiclassical
theory on the derivation of the quantum eigenstates for the
non-Hermitian continuous model in Eq. (3) in the main text.
Such a model is exactly solvable with the ladder operators
in Eq. (4) in the main text, and without loss of generality,
we set 2α = ω − iη, 2β = ω + iη, κ = η/iω for simpler ex-
pressions. Subsequently, â ∝ â0, b̂† ∝ â†

0 + κ â0, and the right
eigenstates â|0〉 = 0, and |n + 1〉 ∝ b̂†|n〉 attain the expres-
sions

|0〉 = |0〉0, |n〉 ∝ (a†
0 + κ â0)n|0〉0, (D3)

which serve as our benchmarks. Here, â0 = (x̂ + i p̂)/
√

2 and
a†

0a0|m〉0 = m|m〉0 are based upon a Hermitian, isotropic har-
monic oscillator.

We now turn to the complex semiclassical theory, whose
closed orbits for the non-Hermitian quantum model are Eq. (5)
in the main text. As we show in the Sec. V A, the complex
variables have redundancy in their conventions, and orbits
that differ by a mapping z′

1 = z1�z, z′
2 = z2/�z have the

same physical properties and are equivalent to each other. We
thus focus on the limit z1 → 0, where the subsequent orbit
x(t ) = z2e−iωt , p(t ) = z2e−iωtα/iβ becomes large |z2| → ∞
and highly isotropic. The symmetry allows us to distribute the
geometric phase along the orbit evenly and regard the shape of
the wave packet as isotropic: |0〉0. Further, the wave packet’s
COM location (momentum) and A factor evolve as

xr (t ) + ipr (t ) =
(

1 + α

β

)
z2e−iωt ,

A(t ) ∝ exp

[(
α2

β2
− 1

)
z2

2e−i2ωt

]
, (D4)
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following Eqs. (11) and (12) in the main text [89].
Summing over the wave packet A(t )|xr (t ), pr (t )〉 with the

geometric phase exp(inωt ) over the closed orbits, we obtain

|n〉 ∝
∫ T

0
dt exp(inωt )A(t )W (xr (t ), pr (t ))|0〉0

∝
∮

dz(z−n−1) exp

[
z2

4

(
α2

β2
− 1

)
+ z√

2

(
1 + α

β

)
â†

0

]
|0〉0

∝
∮

dz(z−n−1)eκz2/2+zâ†
0 |0〉0, (D5)

where z = z2e−iωt . We have renormalized (1 + α/β )z/
√

2 →
z in the third line. Note κ = (α − β )/(α + β ) = η/iω in
our setting. Following the residual theorem, the contour in-
tegral returns the zn’s coefficient in the series expansion
of exp(xâ† + κx2/2), which compares consistently with the
benchmarks in Eq. (D3) as Table I in the main text.

3. Numerical derivation of wave functions of lattice models

More generally, however, we cannot attain the wave func-
tions analytically as in the last section, e.g., due to the absence
of a solvable orbit expression or subsequent integration. Con-
sequently, we need to resort to numerical calculations. In
this section we derive the wave functions, i.e., ψn(x) in the
real space, from the complex semiclassical theory for the
non-Hermitian lattice model in Eq. (13) in the main text. By
choosing the Landau gauge Ax = 0, Ay = Bx, the Hamiltonian
in x̂ (for each decoupled ky) takes the form

Ĥ =
∑

x

(ηeiBx − 1)c†
x+1cx − c†

xcx+1 − 2V cos(Bx)c†
xcx,

(D6)

which we diagonalize for its energy eigenvalues and eigen-
states. We set B = 0.005, V = 0.3. Without loss of generality,
we choose its n = 3 eigenstate as a benchmark, which is suf-
ficiently localized, and the non-Hermitian error accumulation
does not pose a severe issue.

From the complex semiclassical theory, on the other hand,
we begin with a closed orbit, xc(t ) and pc(t ), with the quanti-
zation condition

∮
pcdxc = 7π = 2π (n + 1/2). We illustrate

the orbit in the complex x and p spaces in the inset of Fig. 8. Its
energy ε3 = −2.5905 + 0.0959i is consistent with the quan-
tum benchmark.

Similar to Eq. (D5), we obtain the target wave function as

ψ3(x) ∝
∫ T

0
dt exp(6π it/T )A(t ) φxc (t )+ipc (t )(x), (D7)

where A(t ) and xc(t ) + ipc(t ) = xr (t ) + ipr (t ) are the mul-
tiplying factor and COM position xr (t ) [momentum pr (t )].
We obtain φxc (t )+ipc (t )(x) approximately by translating the
ground-state wave packet φ0(x). After numerical integration,
the real-space wave function ψ3(x) compares qualitatively
consistently with the quantum benchmark (Fig. 8).

We note that given the orbits in the complex semiclassical
theory, the analytical and numerical approaches for quantum
eigenstates and wave functions are straightforwardly general-
izable to other non-Hermitian quantum systems.

FIG. 8. The wave function ψ3(x) from the complex semiclassical
theory for the non-Hermitian model in Eq. (D6) and the correspond-
ing quantum eigenstate compare qualitatively well. B = 0.005 and
V = 0.3. The energy eigenvalue ε3 = −2.5905 + 0.0959i is con-
sistent between the complex semiclassical theory and the quantum
benchmark. The insets show the orbit in the complex x and p spaces.

APPENDIX E: COMPLEX-VARIABLE AND
BIORTHOGONAL CONVENTIONS IN THE COMPLEX

SEMICLASSICAL THEORY

1. Complex-variable convention and redundancy

In Eqs. (11) and (12) of the main text, we have established
the connection between the complex variables xc, pc ∈ C and
the wave packet A|xr, pr〉 with real variables xr, pr ∈ R and
an additional factor A ∈ C. Therefore, even for the same
xr, pr ∈ R, there exists a redundancy in xc, pc that follows
the equality xr + ipr = xc + ipc and differs by their A fac-
tors, which can be attributed to quantum states’ normalization
and phase conventions. In this section we demonstrate that
the multiple orbits under different conventions A → A · �A
describe physics consistently.

For example, we consider the continuous model in Eq. (3)
in the main text and map out the trajectories following var-
ious initializations that correspond to the same xr, pr ∈ R
with identical energy ε ∈ C. Their subsequent evolution is
universal and consistent with each other, see Fig. 9, differing
merely in their conventions; the ratios �A between their A
factors remain constant through their entire orbits. The results

FIG. 9. We initialize two semiclassical orbits with x = 2, p = 1
and x′ = 2.3 + 0.3i, p′ = 0.7 + 0.3i, which correspond to the same
xr, pr ∈ R, and (left) their wave-packet COMs evolve consistently,
while (right) the ratio �A between their A factors remains constant,
therefore constituting merely a difference in their conventions.
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and conclusions generalize to other models and A conven-
tions straightforwardly. Thus the redundancy over complex
variables does not lead to self-contradiction in the complex
semiclassical theory.

2. Biorthogonal convention and expectation value
in non-Hermitian quantum systems

We can diagonalize a non-Hermitian Hamiltonian as Ĥ =∑
n εn|nR〉〈nL|, where |nR〉 (〈nL|) is the right (left) eigenstate

with respect to the energy eigenvalue εn. Correspondingly, the
time evolution operator is

U (t ) = exp (−iĤt ) =
∑

n

exp (−iεnt )|nR〉〈nL|. (E1)

Alternatively, we can write the diagonalized Ĥ in a more
compact matrix form as � = V −1ĤV , where the nth column
(row) of V (V −1) is exactly |nR〉 (〈nL|). εn, on the diagonal �,
is the biorthogonal expectation value of Ĥ : εn = 〈nL|Ĥ |nR〉.
Consistently, it is natural to deduce that the expectation value
of an operator Ô is the biorthogonal counterpart, 〈Ô〉n =
〈nL|Ô|nR〉, or more generally, 〈Ô〉nm = 〈nL|Ô|mR〉.

Given an initial quantum state |�(0)〉, we can decompose
it in the biorthogonal basis |�(0)〉 = ∑

n |nR〉〈nL|�(0)〉. It
evolves in time as

|�(t )〉 = U (t )|�(0)〉
=

∑
nm

exp (−iEnt )|nR〉〈nL|mR〉〈mL|�(0)〉

=
∑

n

exp (−iEnt )|nR〉〈nL|�(0)〉, (E2)

where we have used the property 〈nL|mR〉 = δnm of the
biorthogonal basis. Similarly, we have its bra 〈�(0)|’s time
evolution as

〈�(t )| = 〈�(0)|U −1(t )

=
∑

n

exp (iEnt )〈�(0)|nR〉〈nL|, (E3)

whereas the Hermitian conjugation of |�(t )〉 is different:

〈�′(t )| =
∑

n

exp (iE∗
n t )〈�(0)|nL〉〈nR|, (E4)

as directly follows from Eq. (E2).
Thus the amplitude of 〈�(t )|�(t )〉 is conserved, while that

of 〈�′(t )|�(t )〉 grows or decays exponentially with respect to
t :

〈�(t )|�(t )〉 = 〈�(0)|U −1(t )U (t )|�(0)〉 = 1,

〈�′(t )|�(t )〉 = 〈�(0)|U †(t )U (t )|�(0)〉
=

∑
mn

exp [i(E∗
m − En)t]〈�(0)|mL〉

× 〈mR|nR〉〈nL|�(0)〉. (E5)

Therefore the former convention is more convenient for ana-
lyzing inner products and expectation values in non-Hermitian
quantum systems.

Employing the biorthogonal convention, we define and
evaluate the time evolution of observable Ô’s expectation

value as

〈Ô(t )〉 = 〈�(t )|Ô|�(t )〉 = 〈�(0)|U −1(t )ÔU (t )|�(0)〉,
(E6)

which converts back to the common definition in Hermitian
systems:

〈Ô(t )〉 = 〈�(0)|U −1(t )ÔU (t )|�(0)〉
= 〈�(0)|U †(t )ÔU (t )|�(0)〉
= 〈�(t )|Ô|�(t )〉. (E7)

Whether the expectation value in non-Hermitian quantum
systems should be defined and calculated within the biorthog-
onal basis or merely the right eigenstates remains a subtle
matter. When we speak of the NHSE, the focus is solely
on (the amplitude of) the right eigenstates: 〈ψ ′(x)|ψ (x)〉; in
contrast, however, the NHSE disappears when we employ
the biorthogonal basis: 〈ψ (x)|ψ (x)〉. Even when it comes
to many-body non-Hermitian quantum systems, these two
views are both present in the literature: the spatial density of
an n-fermion state |�μ〉 is calculated via 〈� ′

μ|n̂x|�μ〉 with
the right eigenstates in Ref. [90], while the non-Hermitian
many-body bulk polarization PLR takes the biorthogonal
form [91].

APPENDIX F: COMPLEX SEMICLASSICAL THEORY
FOR DISSIPATIVE SYSTEM WITH FRICTION

In this section we apply the complex semiclassical theory
to a damped harmonic oscillator in 1D with V (x) = x2:

ẋ = p,
(F1)

ṗ = −x − μp,

where the coefficient μ characterizes a friction Fμ = −μp.
The quantum theory of such a dissipative system has been in
continual investigation and controversy for decades and com-
monly requires external reservoirs to handle the dissipation
properly [92].

The EOMs in Eq. (F1) are linear differential equations and
exactly solvable:

x(t ) = z1e−c1t + z2e−c2t ,
(F2)

p(t ) = −z1c1e−c1t − z2c2e−c2t ,

where c1/2 = (μ ±
√

μ2 − 4)/2, and z1 and z2 are constants
determined by the initial conditions. When μ < 2, c1/2 are
partially imaginary, and the system remains underdamped and
residual oscillatory; when μ > 2, c1/2 is fully real, and the
system becomes overdamped.

Setting μ < 2 and z1 = z2 = x0/2, we obtain the familiar
classical behavior of a damped oscillator:

x(t ) = x0e−μt/2 cos(ωt ),

p(t ) = −x0e−μt/2[ω sin(ωt ) + μ cos(ωt )/2], (F3)

where ω =
√

1 − μ2/4. Due to the extra damping factor
e−μt/2, the absence of closed orbit in real t ∈ R is apparent;
see Fig. 10(b).

In the complex semiclassical theory, on the other hand, the
variables z1, z2, x, p, and, importantly, t may take on complex
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FIG. 10. Following the EOMs, the semiclassical trajectories of
the model in Eq. (F1) with a friction coefficient μ = 0.2 form closed
loops (a) along the t/T ∈ R direction and end up in open spirals
(b) along the t ∈ R direction in the complex a plane, a = x + ip.
Without knowing T , we may still attain a(T ) = a(0) by strategically
adjusting dt , and the resulting trajectory is in (c). (d) The correspond-
ing trajectories in the complex t plane show the equivalence between
different closed orbits reaching the same complex period T . μ = 0.2
and T = 6.28 + 0.63i ≈ 2π i/[(μ +

√
μ2 − 4)/2].

values: t ∈ C. Consequently, we can establish closed orbits
in the complex time domain, e.g., t ‖ T and ic1t ∈ R; see
Fig. 10(a). More generally, we can obtain closed orbits nu-
merically via finite-time steps following the EOMs in Eq. (F1)
and the strategy we propose in the main text; see Fig. 10(c). As
long as the winding is identical, closed orbits are equivalent,
e.g., with the same period T ≈ 2π i/c1 [Fig. 10(d)].

Unlike the aforementioned dissipationless models in the
main text and the Supplemental Materials, the EOMs in
Eq. (F1) introduce energy losses and, in general, cannot return
both x and p to their initial values. Instead, we demand a(T ) =
a(0), a = x + ip = xr + ipr return to its initial value, so that
the real-valued COM position and momentum of the wave
packet xr, pr ∈ R return to their initial values. Nevertheless,
the additional factor A augmenting the wave packet, as in
Eq. (12) in the main text, differs in general. Accordingly, we
need to modify the quantization condition so that the geomet-
ric phase

∮
p · dr upon cycling around the orbit compensates

for the difference. Further studies are fascinating yet beyond
the scope of the current work, and we leave them for future
research.

APPENDIX G: COMPLEX SEMICLASSICAL THEORY
WITH BERRY CURVATURE

In the main text we have established the semiclassical
equation of motion (EOM) for the complex variable rc in the
absence of the Berry curvature �, whose effects we analyze
here. Similar to the main text, we begin with the evolution of
the wave packet |rc(t + τ ), pc(t + τ )〉 = e−iĤτ |rc(t ), pc(t )〉

after a short time step τ → 0:

ṙc(t ) = [rc(t + τ ) − rc(t )]/τ

= 〈rc(t ), pc(t )|eiĤτ r̂e−iĤτ − r̂|rc(t ), pc(t )〉/τ
= −i〈0|Ŵ ( − rc(t ),−pc(t ))[r̂, Ĥ ]Ŵ (rc(t ), pc(t ))|0〉

= 〈0|
(

∂Ĥ

∂p̂
+ ∂Ĥ

∂ r̂
× �

)
(r̂ + rc(t ), p̂ + pc(t ))|0〉,

(G1)

where for the last line we note that in addition to [ri, p j] =
iδi j , we have [ri, r j] = iεi jk�k with the Berry curvature �k =
iεi jk (∂ki〈ψ |∂k j |ψ〉 − ∂k j 〈ψ |∂ki |ψ〉). For reasons we have stated
in the main text and Sec. I, we can replace operators r̂ and p̂
in ∂Ĥ/∂r and ∂Ĥ/∂p with the complex variables rc and pc:

ṙc(t ) ≈ ∂ε(pc, rc)

∂pc
+ ∂ε(pc, rc)

∂rc
× �

≈ ∂ε(pc, rc)

∂pc
− ṗc × �, (G2)

which yields the EOM for the complex variable rc in Eq. (1)
in the main text in the presence of �.

As an example of the complex semiclassical theory in the
presence of multiple bands and the Berry phase, we consider
the following non-Hermitian quantum model:

Ĥ = ασ x p̂x + βσ y p̂y, (G3)

in the presence of a magnetic field Bz. α, β ∈ C and σ x, σ y, σ z

are the Pauli matrices. Quantum mechanically, we have

Ĥ2 = α2 p̂2
x + β2 p̂2

y − αβBzσ
z

= ω(2b̂†â + 1 − σ z )/2, (G4)

where â = (α p̂x + iβ p̂y)/
√

ω and b̂† = (α p̂x − iβ p̂y)/
√

ω

are ladder operators similar to the main text. ω = 2αβBz.
Consequently, the spectrum is εn = ±√

ωn, n ∈ Z, and n � 0,
which serves as our benchmark for the complex semiclassical
theory.

The semiclassical equations of motion in the presence of
the Berry curvature �(p) are given by [48]

ṙ = ∂ε/∂p − ṗ × �(p), ṗ = E + ṙ × B, (G5)

where E = −∂ε/∂r. As mentioned in the main text, the
complex semiclassical theory amounts to generalizing the
variables to the complex domains. For the non-Hermitian
quantum system in Eq. (G3), we obtain ε = ±

√
α2 p2

x + β2 p2
y .

With E = 0 and the Berry curvature �(p) ∝ p, the corre-
sponding complex EOMs give

ṗ = (∂ε/∂p) × Bzẑ,

ṗx = Bz∂ε/∂ py = β2 pyBz/ε, (G6)

ṗy = −Bz∂ε/∂ px = −α2 pxBz/ε,

whose solution is

px = z1eiω′t + z2e−iω′t ,

py = (z1eiω′t − z2e−iω′t )(iα/β ), (G7)

ε2 = 4α2z1z2,
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where ω′ = αβBz/ε. z1 and z2 are determined by the initial
conditions.

Next we calculate the Berry phase along the orbit. We
obtain the left and right spinor states with ε > 0 at time t from

H (t ) = z1eiω′t (σ x + iσ y) + z2e−iω′t (σ x − iσ y)

= 2α

(
z1eiω′t

z2e−iω′t

)
, (G8)

and evaluate the accumulated Berry phase via integrating over
the connection:∫ 2π

ω′

0
dt[i(

√
z1z2, z1eiω′t )∂t ]

( √
z1z2

z2e−iω′t

)
/2z1z2 = π. (G9)

Note that we have employed the biorthogonal convention for
expectation values; see Sec. V B. 2z1z2 is a normalization.

Consequently, the quantization condition demands∮
p · dr =

∮
−p × dp · ẑ/Bz = 2πz1z2 · 2α/βBz,

= 2π (n + 1/2) − π = 2πn, n ∈ Z, (G10)

where we have made use of dp = dr × Bzẑ from the EOMs
for the first equality. Putting Eq. (G10) and Eq. (G7) together,
we establish the energy spectrum from the complex semiclas-
sical theory:

ε =
√

2αβBzn = √
ωn, (G11)

and similarly for the ε < 0 states. Overall, the results based on
the complex semiclassical theory in the presence of the Berry
phase are fully consistent with the quantum benchmark.
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