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Doping driven metal-insulator transition in disordered graphene
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Controlling the metal-insulator transition in graphene-based material is a crucial topic as it directly impacts
its potential applications. Inspired by recent experiments, we study the effects of doping and bond disorder
on the metal-insulator transition in graphene within the Hubbard model on a honeycomb lattice. By using
the determinant quantum Monte Carlo method, we first conduct tests on the value of 〈sign〉 under various
parameters, such as electron density, on-site interactions, temperature, and lattice size, so as to select the
appropriate parameters to alleviate the impact of the sign problem. Given the knowledge that bond disorder
can lead to a metal-insulator transition, our study has revealed, after ruling out the influence of size effects,
that the critical strength of disorder increases as the electron density decreases while decreasing as the on-site
interactions increase. Furthermore, we compare our results with experimental data and conclude that, in actual
graphene materials, the localization effect induced by doping plays a dominant role, resulting in an insulating
phase.
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I. INTRODUCTION

Since the discovery of graphene, a honeycomb single layer
of sp2-bonded carbon atoms, it has attracted enormous atten-
tion because of its excellent electrical, structural, mechanical,
and optical properties, which have always been the critical
and challenging aspects of the research [1–5]. Due to its
unique semimetal nature, intrinsic graphene cannot provide
sufficient conductivity for desired applications, and doping is
considered an optimal way to tailor the electronic structure of
graphene [6,7], which allows for control of the Fermi level EF

and even pushes the van Hove singularity into the vicinity of
EF and impact on superconducting pairing [8–12]. Moreover,
doping plays an extremely important role in various applica-
tions, such as photodetectors [13], sensors [14], field-effect
transistors [15,16], and so on. In these applications, the regula-
tion of metal-insulator transition (MIT) in graphene materials
is very crucial, as it has a direct impact on further applications
of these materials [17,18]. Therefore, doping-dependent MIT
in graphene is a worthwhile problem to investigate.

In essence, MIT can be driven by various mechanisms,
resulting in different types of insulators: changing the chemi-
cal potential can produce a transition from a metal to a band
insulator [19,20]. Strong correlations can drive metals into
Mott insulators with an energy gap [21], while Anderson
insulators originate from disorder-induced localized insula-
tors, where no gap can be observed in the spectrum [22].
In experimental studies, localization can be determined by
measuring quantities such as magnetoresistance [23]. In nu-
merical calculations, the estimation of the functionalization
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is enabled [24,25]. And scaling theory of localization can
be employed to study the properties of localization [26]. It
is of great importance to tune and control MIT on graphene
for applications [17,27,28]. However, the nature of the MIT
remains elusive despite tremendous effort due to the complex
interaction of doping, chemistry, elastic strain, and other ap-
plied fields [29]. There have been many experimental studies
on MIT in graphene-based systems. As early as 2009, re-
searchers found that dosing atomic hydrogen on the surface
of graphene would cause the system to transition from a
metallic phase to an insulating phase and they discussed this
phenomenon by possible transition to a strongly Anderson
localized ground state [30]. Reports on MIT in nitrogen-
doped and oxygen-doped graphene materials in 2016 further
indicated that doping would transform the material from a
metallic phase into an insulating phase [27]. Recent reports
also suggest the possibility of modulating MIT in graphene
through an externally applied electric field [17,18].

Drawing inspiration from the aforementioned research,
we conducted an investigation on the transport properties of
graphene lattices at MIT. Due to the fact that doping leads to
changes in carrier density and introduces disorder into the sys-
tem at the same time [27,30] while an applied electric field can
also modulate electron density [17,18], we took into account
both disorder and electron density in the system and studied
their interplay and the impact they have on the MIT. Previous
studies have indicated that for graphene and its derivatives,
it is reasonable to consider a low-intermediate correlation
strength of on-site Coulomb interaction, specifically within
the range of 1 < U/t < 2 [31]. Therefore, our focus primarily
lies on the values of U between 1 and 2. Additionally, we have
also explored the case of a larger U value (U = 3), aiming to
explore the importance of interactions on the MIT within such
systems. To investigate strongly correlated problems with
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both disorder and doping, the determinant quantum Monte
Carlo (DQMC) method is a powerful tool [32–35].

In the context of QMC simulations, various interesting
MIT phenomena have been reported in the honeycomb lat-
tice [36–38]. For example, a disorder-induced nonmagnetic
insulating phase is found to emerge from the zero-temperature
quantum critical point, separating a semimetal from a Mott
insulator at half filling [39]. Furthermore, recent QMC sim-
ulations on a bilayer honeycomb lattice have identified a
potential deconfined quantum critical point in interacting
Dirac fermions as a new area of study for investigating the
MIT [40]. Localization due to the on-site Coulomb interaction
and disorder can also induce an insulating transition [33].

In this paper, we completed our simulations by the DQMC
method for cases with different electron densities and bond
disorder strengths to investigate the MIT in doped graphene
with a disordered Hubbard model. Our main focus is on
the impact of electron density, on-site Coulomb interaction,
and bond disorder on the conductivity σdc. We analyzed the
interplay between these three factors and found that doping
increases conductivity, which is favorable for the formation
of metallic phases, while disorder has the opposite effect.
The impact of the on-site Coulomb interaction on σdc de-
pends on the particle-hole symmetry: at half filling, the on-site
Coulomb interaction suppresses conductivity, while deviating
from half filling can promote conductivity. Our study ex-
pands the understanding of MIT in honeycomb lattice through
doping and disorder and may provide some inspiration for
modulating MIT in experiments.

II. MODEL AND METHODS

The Hamiltonian for disordered Hubbard model on a hon-
eycomb lattice is defined as

Ĥ = −
∑
〈i,j〉,σ

tij(ĉ
†
iσ ĉjσ + ĉ†

jσ ĉiσ ) − μ
∑

iσ

n̂iσ

+U
∑

i

n̂i↑n̂i↓, (1)

where tij represent the hopping amplitude between two
nearest-neighbor sites i and j, ĉ†

iσ (ĉjσ ) is the creation (anni-
hilation) operator of a spin-σ electron at site i(j), and n̂iσ =
ĉ†

iσ ĉjσ is the number operator, denoting the number of spin-σ
electrons at site i. The chemical potential μ determines the
density of the system, and when μ = U

2 , n = 1, the system is
half filled, indicating the particle-hole symmetry. Here U > 0
represents the on-site repulsive interaction. Bond disorder is
induced by modifying the matrix element tij of the hopping
matrix, which is chosen from tij ∈ [t − �/2, t + �/2] and
zero otherwise with a probability P(tij) = 1/�. We set t = 1
as the energy scale. The strength of disorder can be character-
ized by �, which represents the magnitude of the modification
of matrix elements tij in the hopping matrix. In the presence
of disorder, reliable results are obtained by taking an average
of 20 disorder simulations, as it has been demonstrated to
effectively avoid errors introduced by randomness [33,34].

The DQMC method is employed to complete simulations
on a disordered Hubbard model of doped honeycomb lattice
at finite temperature with periodic boundary conditions. In

DQMC, the partition function Z = Tre−βH is represented as
an integral over the configuration space of a set of inter-
acting fermions on a lattice and the integral is completed
by the Monte Carlo sampling. The imaginary time interval
(0, β ) is discretely divided into M slices of interval �τ ,
which is chosen as small as 0.1 to control the Trotter er-
rors. The diagonalization of two-operator products can be
achieved with simplicity; however, the same cannot be said for
on-site interaction involving four-operator products, as they
need to be decoupled into quadratic terms before computation
by a discrete Hubbard-Stratonovich field. Then, by analyti-
cally integrating the Hamiltonian quadratic term, the partition
function can be converted into the product of two fermion
determinants, where one is spin up and the other is spin down.
The value of the fermion determinant is not always positive
in calculations, except for a few exceptional cases, and this
will cause sign problems. We calculated the average fermion
sign 〈sign〉, which is the ratio of the integral of the product of
up and down spin determinants to the integral of the absolute
value of the product [41]

〈S〉 =
∑

X detM↑(X ) detM↓(X )∑
X | detM↑(X ) detM↓(X ) | (2)

to measure the severity of the sign problem. 〈sign〉 = 1 indi-
cates the absence of sign problem.

To study the MIT of the system, we computed the T -
dependent dc conductivity from calculating the momentum
q− and imaginary time τ -dependent current-current correla-
tion function �xx(q, τ ),

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
, (3)

where �xx(q, τ )=〈 ĵx(q, τ ) ĵx(−q, 0)〉, β=1/T , and ĵx(q, τ )
is the Fourier transform of time-dependent current operator
ĵx(r, τ ) in the x direction,

ĵx(r, τ ) = eHτ ĵx(r)e−Hτ , (4)

where ĵx(r) is the electronic current density operator, defined
in Eq. (5):

ĵx(r) = i
∑

σ

ti+x̂,i × (c+
i+x̂,σ ciσ − c+

iσ ci+x̂,σ ) (5)

Equation (3) has been used for MIT in the Hubbard model in
many studies [32–35,42–45].

III. RESULTS AND DISCUSSION

As the system is doped away from half filled, the particle-
hole symmetry no longer exists, resulting in a sign problem.
We have known that 〈sign〉 ∼ e−βNsγ , where γ relies on the
values of n and U . In the case of a given fixed n value, γ

is a monotonic function of U ; whereas, with respect to a
designated U value, γ is relatively small at certain specific
values of n. To ensure the reliability of the data, the value
of the average sign 〈sign〉, given by Eq. (2), was calculated
and the corresponding results are presented in Fig. 1. We
present the average sign 〈sign〉 as a function of the electron
density n for different values of (a) disorder strength, (b)
on-site interaction, (c) temperature, and (d) lattice size. Our
studies were conducted in the region of n � 0.85, with the
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FIG. 1. 〈sign〉 as a function of the electron density n for different
values of (a) disorder, (b) on-site interaction, (c) temperature, and
(d) lattice size. The dashed line indicates the case of n = 0.85.

dashed line indicating the case of n = 0.85. Obviously, when
the system is doped, the average sign deviates from 1 and
starts to decrease rapidly. The sign problem becomes more
severe as the inverse temperature, interaction strength, and
lattice size increase, while introducing disorder can alleviate
the sign problem to some extent. This is consistent with the
preceding investigations [41].

Figure 1(a) shows the variation of average sign with respect
to n for different disorder strengths � at L = 12, U = 3.0, and
β = 10. It can be observed that in the clean limit, � = 0.0,
the sign problem is severe and the calculation is almost im-
possible even with minor doping. However, the introduction
of disorder partially alleviates the sign problem, and in the
regime � � 1.0, which is of our primary interest, the sign
problem is effectively suppressed. Figure 1(b) exhibits the
influence of on-site interaction on the sign problem when
L = 12, � = 1.5 and β = 10, implying that a larger U greatly
exacerbates the sign problem. Moreover, it is observable that
when U < 2.5, 〈sign〉 ∼ 1, making the impact of the sign
problem almost negligible. A similar consequence is also
evident in Fig. 1(c): when β < 6, the sign problem has a
minimal impact; however, as β increases and the tempera-
ture decreases, the sign problem becomes increasingly severe.
Figure 1(d) displays the effect of lattice size L on the sign
problem: as the lattice size increases, 〈sign〉 decreases and the
sign problem becomes dire.

Given the significance of the sign problem, along with
the computational processing time considerations, we opt to
utilize a lattice size of L = 12 as the primary subject of in-
quiry in this paper, building upon the conclusion presented
in Fig. 1. In Fig. 2, the dc conductivity is shown as a func-
tion of the temperature T for several values of the disorder
strength �. The values are computed on the L = 12 lattice
with coupling strength U = 2.0. Figures 2(a)–2(d) represent

FIG. 2. dc conductivity σdc as a function of temperature T cal-
culated on the N = 2 × L2 = 288 lattice with U = 2.0 for various
disorder strength �. (a)–(d) represent different electron densities of
n = 1.00, 0.95, 0.90, 0.85, respectively.

the situations under different densities: (a) n = 1.00, (b) n =
0.95, (c) n = 0.90, and (d) n = 0.85. We have known that the
system behaves as a metal in the clean limit at half filling with
the coupling strength U = 2.0 [33], which means that in the
low-temperature regime, dσdc/dT < 0 and σdc diverges as the
temperature is further decreased to the limit T → 0. Then,
considering the situations with bond disorder, the system will
transfer from the metallic to insulating phase, indicated by
dσdc/dT > 0 at low T , with increasing value of �, as shown
in Fig. 2(a). At this condition, the critical disorder strength for
MIT �c is currently between 1.5 and 2.0. When the system
deviates from half filling, as is shown in Figs. 2(b)–2(d), dis-
tinct insulation behavior is only observed for � > 1.5. From
this, we may draw the conclusion that in disordered systems,
doping will increase the critical disorder strength �c required
for MIT. The impact of electron density n on MIT will
be further discussed in Fig. 4. The exponential decrease of
conductivity with decreasing temperature is a characteristic
of localization. In experimental studies, a clear manifestation
of the MIT has been observed on graphene with hydrogen
adsorption, accompanied by strong localization behavior [27].
This indicates the occurrence of strong localization phenom-
ena in the system when � is relatively large.

To exclude the influence of system size being smaller than
the localization length on insulation, we compute the finite-
size effect. Figure 3 exhibits the response of the conductivity
σ to the lattice size L = 9, 12, 15, with respect to different on-
site Coulomb interactions and electron densities (a) U = 2,
n = 0.95, (b) U = 1, n = 0.85, and varying values of disorder
(a) � = 1.5, 2.0, and (b) � = 0.5, 2.5. Upon comparison,
it is evident that both the metallic and insulating phases are
minimally affected by system size in terms of conductivity.
Additionally, Fig. 3(a) illustrates that the critical disorder
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FIG. 3. dc conductivity σdc as a function of temperature T for dif-
ferent disorder strengths � at for (a) U = 2, n = 0.95 and (b) U = 1,
n = 0.85. The lattice scaling is L = 9, 12, 15, respectively. (c) Lo-
calization length ξ as a function of energy for different disorder
strengths at L = 36, U = 0.

strength values remain consistent across varying lattice di-
mensions of L = 9, 12, 15.

In addition, we calculate the Anderson localization length,
ξ , for a sufficiently large lattice L = 36 and U = 0. In disor-
dered physical systems, the eigenstates exhibit local behavior
and decay exponentially in space like 
(x) ≈ e−x/ξ , with ξ

defined as the Anderson localization length in terms of the
lattice length. When U = 0, we can obtain the eigenstates
of the system for different disorder strengths by solving the
Hamiltonian and performing exponential fitting to determine
the localization length ξ . The results are presented in Fig. 3(c).
It can be seen that the localization length decreases rapidly as
the disorder strength increases. When � � 1, ξ < 3, which
indicates that our calculations for the finite system with L =
12 are logical and reliable.

In Fig. 4, we further investigate the impact of electron
densities n on the MIT. We first considered the case of low
on-site Coulomb interaction strength U = 1.0. Figures 4(a)
and 4(b), respectively, demonstrate the effect of n on the
σdc − T curve for L = 12, U = 1.0, and the disorder strengths
(a) � = 1.5 and (b) � = 2.0: When � = 1.5, as shown in
Fig. 4(a), at n = 1.00, the system exhibits an insulating phase
due to hopping disorder, while deviating away from half
filling, the conductivity σdc increases with decreasing tem-
perature, indicating metallic behavior, thus demonstrating a
MIT induced by doping; When � = 2.0, however, as shown
in Fig. 4(b), the system will always remain in an insulating
phase irrespective of the variation in n. A similar situation can
be observed at intermediate on-site Coulomb interaction U =
2.0, as shown in Fig. 4(c): L = 12, U = 2.0, � = 1.5 and
4(d): L = 12, U = 2.0, � = 2.0. Doping induces a transition

FIG. 4. dc conductivity σdc as a function of temperature T calcu-
lated on the N = 2 × L2 = 288 lattice in the case of fixed disorder
strength (a), (c) � = 1.5 and (b), (d) � = 2.0 under different values
of electron density n = 1.00, 0.95, 0.90, 0.85. Top panel is about
U = 1.0 and lower panel is about U = 2.0.

from an insulating to a metallic phase at � = 1.5, whereas
there is no metallic phase observed in the range of n � 0.85
when � = 2.0. We have also included the σdc − T curve for
n = 0.7, which reveals that within our measurement range,
doping will not induce a MIT when the disorder strength
� = 2.0.

To obtain a more accurate determination of the critical
disorder strength for the MIT, we plot the variation of con-
ductivity σdc with disorder strength � at the three lowest
temperatures β = 6, 8, 10 in Figs. 5(a)–5(c). When � < �c,
the σdc increases with decreasing temperature, exhibiting
metallic behavior, while for � > �c, the σdc decreases with
decreasing temperature, exhibiting insulating behavior. The
three curves in each subplot of Fig. 5 intersect nicely at a point
where the conductivity σdc becomes temperature independent,
marking the critical point of MIT. Here, (a) corresponds to
L = 12,U = 2.0, n = 0.95; (b) corresponds to L = 12,U =
2.0, n = 0.90; and (c) corresponds to L = 12,U = 1.0, n =
0.85. We have conducted extensive calculations to obtain the
values of �c for different parameters and plot the variation of
�c with on-site Coulomb interaction U for electron densities
n = 1.00 and n = 0.85 in Fig. 5(d), where the curves above
denote the insulating phase and the curves below denote the
metallic phase. An interesting phenomenon can be observed:
as n = 1.00 and the system is half filled, the critical disorder
strength �c of MIT decreases with an increase in U , indicat-
ing a suppressing effect of U on the metallic state; whereas
when n = 0.85 and the system deviates from half filling, �c

increases with an increase in U , signifying a promoting effect
of U on the metallic state.

Next we move on to the role of U in the MIT for half-filled
and doped cases. Figure 5(d) demonstrates that at n = 1.0
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FIG. 5. dc conductivity σdc as a function of disorder strength �

for three lowest temperature β = 6, 8, 10. (a) L = 12,U = 2.0, n =
0.95, (b) L = 12,U = 2.0, n = 0.90 and (c) L = 12,U = 1.0, n =
0.85. (d) critical disorder strength �c as a function of U at different
n, segmenting the image into two parts: metal and insulator.

and � = 1.5, an increase in U drives the system from a
metallic state to an insulating state, whereas at n = 0.85 and
� = 2.0, an increase in U leads the system from an insulating
state to a metallic state. We set n = 1.00, 0.95, 0.90, 0.85 in
Figs. 6(a)–6(d). To observe the phase transition, we set the

FIG. 6. dc conductivity σdc as a function of temperature T for dif-
ferent on-site interactions U at densities (a) n = 1.00, (b) n = 0.95,
(c) n = 0.90, and (d) n = 0.85. Disorder strengths � = 1.5 in (a) and
� = 2.0 in (b)–(d).

FIG. 7. Dependence of the antiferromagnetic structure factor
with the inverse temperature β for (a) U = 1.0 and (b) U = 2.0.

disorder strength to � = 1.5 for half filling and � = 2.0 for
deviations from half filling, respectively. Furthermore, we set
the minimum temperature parameter to β = 14. Although this
approach incurs a significant degree of error, it still yields
valuable information. We then proceed to calculate the tem-
perature dependence of the conductivity σ at different on-site
Coulomb interactions U = 1.0, 2.0, 3.0. Figure 6(a) shows
the transition of the system from a metallic state to an insulat-
ing state as the on-site Coulomb interaction U increases, while
Figs. 6(b)–6(d) show the transition in the opposite direction.
At U = 1.0, 2.0, the system shows insulating phases and at
U = 3.0, the system exhibits metallic phase. Overall, Fig. 6
demonstrates that in half-filled systems, U has a suppressing
effect on the metallic state, while in doped systems, U has a
promoting effect on the metallic state.

In the study of MIT, magnetism serves as a significant in-
dicator. Previous investigations on half-filled honeycomb lat-
tices have already revealed a paramagnetic-antiferromagnetic
phase transition at Uc ≈ 3.8, where bond disorder suppresses
the antiferromagnetic order [33]. We further explore the influ-
ence of doping and disorder on the antiferromagnetic order.
The antiferromagnetic spin structure factor SAFM is given
by SAFM = 1

Nc
〈〈(∑r∈A Ŝz

r ) − ∑
r∈B Ŝz

r )〉〉�. Figure 7 illustrates
the variation of SAFM with temperature for different elec-
tron densities and disorder strengths at (a) U = 1.0 and (b)
U = 2.0. The solid lines represent � = 1.0, while the dashed
lines represent � = 2.0. It can be observed that both doping
and disorder have suppression effects on the antiferromag-
netic order, while doping exhibiting a greater influence than
disorder. Furthermore, at lower temperatures, we observe the

FIG. 8. dc conductivity σdc as a function of temperature T at n =
0.95 for different diagonal disorder strengths �μ at (a) U = 1.0 and
(b) U = 2.0.
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FIG. 9. dc conductivity σdc as a function of temperature T
for different dilutions x at U = 4.5, n = 1.00 for (a) �t = 0.5,
(b) �t = 1.5.

saturation of SAFM, indicating that the temperature in our study
is sufficiently low, approaching the ground-state physics.

Considering the introduction of both diagonal and off-
diagonal disorder during substitutional doping, we investigate
the impact of diagonal disorder on the MIT. We modify the
Hamiltonian in Eq. (1) as

Ĥ = −
∑
〈i,j〉,σ

t (ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ ) − μij

∑
iσ

n̂iσ

+U
∑

i

n̂i↑n̂i↓, (6)

where μij is chosen from μij ∈ [μ − �μ/2, μ + �μ/2]. We
consider a slightly doped system with n = 0.95 and present
the conductivity as a function of temperature for different �μ

values at (a) U = 1.0 and (b) U = 2.0 in Fig. 8. It can be
observed that diagonal disorder, similar to off-diagonal dis-
order, suppresses the σdc. However, within our measurement
range, no qualitative changes in transport properties are found.
Therefore, in this paper, we primarily focus on the investiga-
tion of off-diagonal disorder, i.e., the hopping disorder.

In diluted cases, the Coulomb interactions at each lattice
site may also vary. Previous studies have indicated that dilu-
tion can transform a Mott insulator into a metallic state [12].
Inspired by previous research, we selected a strong correlation
parameter U = 4.5 to investigate the impact of dilution, with
the results shown in Fig. 9. The results indicate that when the
system is in a Mott insulating state, dilution leads to a tran-
sition to metallic state. However, when the transition disorder
is significant and the effect of Anderson localization is more
pronounced, our system’s transition to metal through dilution
becomes significantly challenging. This suggests that dilution

has a strong inhibitory effect on Mott insulators, while its
inhibitory effect on Anderson insulators is less apparent.

IV. CONCLUSION

In summary, we employed the DQMC method to inves-
tigate the regulatory effects of doping and disorder on the
MIT process in graphene materials. We discussed the factors
affecting the MIT, including doping, temperature, lattice size,
and on-site Coulomb interactions by carrying out calculations
for variations of the dc conductivity σdc with temperature
under different values, utilizing the reciprocal of the variation
of σdc with temperature T to determine the metallic or insu-
lating phase of the system. Through our calculations, we have
reached the conclusion that doping increases conductivity and
induces a transition from insulator to metal phase, while dis-
order has the opposite effect.

These findings suggest that disorder and doping have sim-
ilar effects on the MIT across different lattice structures
[34,35]. In particular, in this paper on honeycomb lattices,
we hope that our computational findings will be helpful in
experimental research on graphene materials. Therefore, our
paper primarily concentrates on the vicinity of half-filling
rather than being distant from it, thereby distinguishing it from
prior investigations. Although the graphene lattice is metallic
at half filling in most cases, the presence of disorder may
transform it into an insulating phase, while doping changes
the system back to a metallic phase.

In experiments, substitutional doping or adsorbate doping
often simultaneously alters the carrier density and introduces
disorder, thus making the competition between doping and
disorder important in the study of MIT in graphene materials.
Our calculations show that when doping and disorder coexist,
a larger disorder strength may cause the system to transition
from the metal phase to the insulating phase. This finding is
consistent with the MIT phenomenon observed in hydrogen,
nitrogen, and oxygen substitutional doped graphene materials
in experiments [27,30]. Our research contributes to a deeper
understanding of the mechanisms underlying the metal-
insulator transition in graphene materials, and may be helpful
in the development of applications for graphene materials.
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