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Magnetic field induces giant nonlinear optical response in Weyl semimetals
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We study the second-order optical response of Weyl semimetals in the presence of a magnetic field. We
consider an idealized model of a perfectly linear Weyl node and use the Kubo formula at zero temperature to
calculate the intrinsic contribution to photocurrent and second harmonic generation conductivity components.
We obtain exact analytical expressions applicable at arbitrary values of frequency, chemical potential, and
magnetic field. Our results show that finite magnetic field significantly enhances the nonlinear optical response
in semimetals, while magnetic resonances lead to divergences in nonlinear conductivity. In realistic systems,
these singularities are regularized by a finite scattering rate but result in pronounced peaks which can be
detected experimentally, provided the system is clean and interactions are weak. We also perform a semiclassical
calculation that complements and confirms our microscopic results at small magnetic fields and frequencies.
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I. INTRODUCTION

Recently, topological semimetals have been proposed as
a promising platform for applications in solar cells and
infrared photodetectors [1,2]. In contrast to traditional semi-
conductors, semimetals possess a gapless spectrum, allowing
them to detect radiation in the terahertz range. Moreover,
the geometry and topology of their band structure, stem-
ming from the nonzero Berry curvature and orbital magnetic
moments of the electrons, greatly increase their nonlinear
optical response. These unique optoelectronic properties make
semimetals strong candidates to outperform existing conven-
tional solar cells and photodetectors.

The mechanism for generating large photocurrents in
semimetals is the bulk photogalvanic effect (PGE). This term
stands for the generation of rectified second-order current
under uniform irradiation of light in materials with bro-
ken inversion symmetry. From the fundamental perspective,
photocurrent and corresponding nonlinear conductivity are
intimately related to the topology and geometry of the band
structure [3–5]. For example, it has been demonstrated that
circular PGE (CPGE), i.e., PGE with the circularly polarized
light, is nearly quantized in Weyl and multi-Weyl materials
and is proportional to the monopole strength of a Weyl node
[6–8]. This connection makes nonlinear optics a powerful
tool to probe band structure topology, motivating intensive
theoretical and experimental study in recent years [9–16].

Depending on the microscopic origin of photocurrent,
one can distinguish intrinsic and extrinsic mechanisms. The
former contribution is associated with photogeneration of
electron-hole pairs and can be calculated directly from the
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Bloch wave functions of a crystal. The latter mechanism,
on the contrary, originates from the scattering processes or
recombination of the electron-hole pairs. It depends on the de-
tails of the electron-electron and electron-phonon interactions
and the nature of disorder.

Inspired by the potential applications of topological Weyl
semimetals, we explore how a finite magnetic field may signif-
icantly enhance their nonlinear optical response [17–20]. To
that end, we analyze a simple model of a linear, nondegenerate
band crossing point in three spatial dimensions, which is valid
when the chemical potential and typical magnetic energy lie
near the Weyl point. We calculate the intrinsic contribution
to nonlinear optical conductivity, which is expected to be
dominant in clean samples where interactions are weak. We
additionally assume the breaking of inversion and all mirror
symmetries since the contributions of topological nodes with
opposite chiralities would otherwise cancel each other out [6].

We apply the Kubo formula to calculate zero-temperature
second-order conductivity tensors for both photocurrent and
second harmonic generation (SHG), which is the response
of the electric current at a double frequency of the incident
electromagnetic wave. As such, we derive the most generic
analytic expressions applicable for any frequency, chemical
potential, and magnetic field, provided all the corresponding
energy scales are smaller than the characteristic cutoff be-
yond which the spectrum cannot be considered as linear any
longer. In the absence of any magnetic field, the second-order
response of an isolated Weyl node is limited to a nonzero
CPGE only, due to high emergent symmetry of a system at low
energies [21]. Finite magnetic field reduces this symmetry,
leading to a nonzero linear PGE (LPGE) and SHG.

We find that even relatively weak fields may signif-
icantly increase nonlinear optical response. We analyze
various limiting cases, particularly examining divergences in
SHG originating from magnetic resonances. In a realistic
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FIG. 1. Schematic picture of a setup considered in this paper.
Weyl semimetal with nodes at different energies is placed under
external static magnetic field B along the z direction. As an example,
photogalvanic effect (PGE) experiment is shown: An electromag-
netic wave with frequency ω propagates toward the sample along the
magnetic field, and its electric field components lie in the x-y plane.
As a result, the photocurrent J flows in the z direction.

experimental setup, these singularities would be smoothed
out by a finite scattering rate; however, they could still sub-
stantially enhance nonlinear conductivity if interactions and
disorder are weak. To corroborate our findings, we also per-
form a semiclassical calculation which agrees with the Kubo
formula result in the limit of low fields and frequencies.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and outline main steps of our
calculation. In Secs. III and IV, we derive the general expres-
sions for the photocurrent and SHG conductivity components,
respectively, and discuss various limiting cases along with
the divergences. The semiclassical calculation is presented in
Sec. V. We wrap up with the discussion in Sec. VI. Tech-
nical details of our calculations are delegated to numerous
Appendixes.

II. MODEL AND KUBO FORMULA

We perform our analysis for the simplest model consisting
of a single Weyl node with linear dispersion. To obtain a
physical result, we must sum up the contributions from all the
nodes located close to the Fermi energy. Assuming magnetic
field B is in the z direction (see Fig. 1) and using the Landau
gauge A = (−yB, 0, 0), we write the Hamiltonian as

Ĥ = ηvF h̄

[(
kx − eB

h̄
y

)
σx − i

∂

∂y
σy + kzσz

]
. (1)

Here, vF is the Fermi velocity near the Weyl point, η = ±1 is
its chirality, σx,y,z are the Pauli matrices, and −e is the electron
charge (we use the convention e > 0, B > 0). In this gauge,
crystal momentum components h̄kx,z remain good quantum
numbers, and the energy levels are given by

En(kz ) =
{

sgn(n)ηh̄
√

v2
F k2

z + ω2
B|n|, n �= 0,

−ηh̄vF kz, n = 0,
(2)

where we introduced characteristic magnetic frequency ω2
B =

2eBv2
F /h̄, and E0(kz ) is a single chiral band with linear disper-

FIG. 2. A schematic picture of Landau levels around a single
Weyl node, Eq. (2). Black dashed line indicates chemical potential
μ, separating filled states (orange) from empty states (blue). Nonzero
βxyz requires that the condition in Eq. (15) is satisfied, choosing
the frequency range where the transitions between level n crossing
chemical potential and levels n ± 1, −n + 1 (with n = 2 in this
figure) are allowed, as indicated by the green arrows. Nonzero βxxz

additionally restricts frequencies according to Eq. (20), which for-
bids the transition between levels n and −n − 1, as shown by the red
arrow. See discussion after Eq. (22) for more details.

sion (see Fig. 2). The eigenfunctions can conventionally be
expressed in terms of the Hermite polynomials; we present
them along with the relevant matrix elements explicitly in
Appendix A.

Such an idealized description is valid if all the relevant
energy scales, such as Fermi energy, magnetic energy, and
frequency of external light, remain much smaller than the
ultraviolet cutoff (of the order of the bandwidth) within which
the dispersion may be approximated as linear. Furthermore, in
Weyl semimetals, the nodes always come in pairs of opposite
chirality. As we demonstrate below, the second-order response
for a single node is proportional to its chirality; hence, the
resulting current may only be nonzero if the nodes of opposite
chirality are located at different energies. To achieve this,
inversion and all mirror symmetries of the crystal must be
broken since these spatial symmetries relate the nodes with
the opposite chiralities [6]. Interestingly, to obtain a nonzero
result, time-reversal symmetry may be preserved. While it
guarantees the existence of another Weyl node at the same
energy located symmetrically in the Brillouin zone, this node
would have the same chirality and, hence, does not cancel out
the total second-order current.

The most generic form of the second-order current is given
in terms of the nonlinear conductivity tensor σαβγ (ω1, ω2)
and reads as

jγ (	) = σαβγ (ω1, ω2)Eα (ω1)Eβ (ω2), (3)

where we defined 	 ≡ ω1 + ω2, Eα (ωi ) are the components
of the electric field at frequency ωi, and the summation
over the repeated indices α, β is implied. To calculate
σαβγ (ω1, ω2), we use the generalization of the Kubo formula
for the higher-order response functions. The diagrammatic
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derivation for the most general system within the Keldysh
formalism can be found, e.g., in Ref. [22]. In this paper,
however, we find it more convenient to use Matsubara for-
malism and follow the steps of Ref. [21]. We express the
second-order conductivity through the three-point correlation
function χαβγ :

σαβγ (iω1, iω2) = χαβγ (iω1, iω2) + χβαγ (iω2, iω1)

ω1ω2
, (4)

where in the zero-temperature limit,

χαβγ (iω1, iω2)

= 1

V

∫
dε

2π
Tr[ ĵαG(iε−iω1) ĵβG(iε−i	) ĵγ G(iε)], (5)

and V is the volume of the system. In this expression, the trace
also implies integration over the intermediate coordinates,
and we introduced the exact Green’s function in the external
uniform magnetic field:

G(iε, r1, r2) =
∑

n,kx,kz

∣∣n,kx,kz (r1)
〉〈
n,kx,kz (r2)

∣∣
iε − En(kz ) + μ

. (6)

Here, |n,kx,kz (r)〉 are the eigenstates of the Hamiltonian in
Eq. (1) with quantum numbers n, kx, and kz, presented in
Appendix A, and μ is the chemical potential calculated with
respect to the position of the node. The current operator is
given by

ĵα = − e

h̄

δHk

δkα
= −ηevF σα, (7)

where Hk is the band Hamiltonian. We stress that all
the higher-order derivatives vanish for a Weyl node,
δ2Hk/δkαδkβ = 0; consequently, Eq. (5) is the only contri-
bution to the second-order conductivity tensor. Finally, the
factor 1/ω1ω2 in Eq. (4) originates from the relation between
the electric field and homogeneous but time/frequency-
dependent part of the vector potential E(ω) = iωA(ω).

When rewritten in momentum space, the trace in Eq. (5)
implies summation over quasimomenta kx and kz in addition to
the matrix trace in pseudospin (σ) space. The summation over
kx merely accounts for the degeneracy of each Landau level
(at any given kz) and results in the factor

∑
kx

→ eBS/2π h̄,
where S is the area of the system in the x-y plane. Integration
over ε can be performed explicitly, resulting in

χαβγ (iω1, iω2) = (evF )3 ηeB

2π h̄

∫ ∞

−∞

dkz

2π

∑
n1,n2,n3

Zαβγ
n1n2n3

1

ih̄ω1 + ε1 − ε3

[
�(ε2) − �(ε1)

ih̄ω2 + ε2 − ε1
− �(ε2) − �(ε3)

ih̄	 + ε2 − ε3

]
, (8)

where �(ε) is the Heaviside step function, and we defined
εi = Eni (kz ) − μ and

Zαβγ
n1n2n3

= 〈n3

∣∣σα
∣∣n1

〉〈
n1

∣∣σβ
∣∣n2

〉〈
n2

∣∣σγ
∣∣n3

〉
. (9)

All the matrix elements entering Eq. (9) are calculated ex-
plicitly in Appendix A. To obtain physical conductivity, we
will perform analytic continuation iω1,2 → ω1,2 + i0 from the
upper complex half-plane to the real frequencies axis.

Equation (8) is the starting point for calculating photocur-
rent and SHG, which we discuss in detail in the following
sections. As a check, we reproduce the exact answer for
χαβγ (iω1, iω2) in the limit B → 0, obtained in Ref. [21], in
Appendix B. We note that, in this limit, only CPGE (with
ω2 = −ω1) remains nonzero for an ideal Weyl node consid-
ered in this paper, while LPGE and SHG (with ω1 = ω2)
vanish. As we demonstrate below, the presence of a finite
magnetic field, which reduces the symmetry of the system,
leads to nonzero LPGE and SHG.

III. PHOTOCURRENT

In this section, we consider the PGE, i.e., generation of
the second-order dc photocurrent under incident light. We
calculate the injection current, which is the dc component that
grows unrestricted with time in the clean noninteracting limit:

d jγ

dt
= βαβγ (ω)Eα (ω)Eβ (−ω). (10)

In realistic systems, the injection current eventually
saturates after scattering time τ to the value jγ ≈
τβαβγ (ω)Eα (ω)Eβ (−ω) [6,23]. However, if the system
is weakly interacting and sufficiently clean, this contribution
is the dominant one, making it the focus of this section.

To extract injection current and calculate nonlinear conduc-
tivity βαβγ from the general expressions in Eqs. (4) and (8),
we perform analytic continuation iω1 → ω + 	 + i0, iω2 →
−ω + i0, where ω is the frequency of incident light and
	 → 0. The photocurrent linearly growing in time is captured
then by the contribution to σαβγ (ω + 	,−ω) proportional to
1/	. Focusing on this contribution only as the leading one,
we obtain after straightforward calculation

σαβγ (ω + 	,−ω) = i(evF )3

	ω2

ηeB

h̄2

∫ ∞

−∞

dkz

2π

∑
n1,n2

[�(ε1) − �(ε2)]
[
δ(ε2 − ε1 − h̄ω)Zαβγ

n1n2n2
+ δ(ε2 − ε1 + h̄ω)Zβαγ

n1n2n2

]
. (11)

Tensor β(ω) can be found as

βαβγ (ω) = −i	σαβγ (ω + 	,−ω), (12)

with 	 → 0.

The structure of the form factors Zαβγ and correspond-
ing matrix elements from Eqs. (9) and (A6) dictate that the
only nonzero components are those with γ = z, i.e., the di-
rection of the injection current is along the magnetic field.
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Specifically, we find that the nonzero components for an ideal
Weyl node are βxyz = −βyxz and βxxz = βyyz. The latter two
components are nonzero only in the presence of a finite mag-
netic field.

This conclusion seems at first in contradiction with the
exact answer for the B = 0 case, derived in Appendix B,
which is fully isotropic and obviously does not have any pre-
ferred direction. The seeming inconsistency originates from
different orders of limits that do not commute. Indeed, to
derive Eq. (B6) for B = 0, we assumed that ωB ∝ √

B → 0,
while keeping ω1 and ω2 (hence, 	) most generic and finite.
On the contrary, to derive Eq. (11), we performed analytic
continuation and set 	 → 0 first, keeping magnetic field finite

(though possibly small). Hence, the limits ωB → 0 and 	 →
0 do not commute and lead to different answers, depending
on the order. Physically, the order of limits is controlled
by the dimensionless parameter ωBτ . The regime ωBτ → 0
leads to Eq. (B6), while the opposite limit, ωBτ → ∞, corre-
sponds to Eq. (11), with i/	 being replaced by τ . We return
to this issue when discussing semiclassical calculation in
Sec. V.

The presence of the δ function in Eq. (11) allows us to
perform the integration over momentum kz explicitly. After
straightforward but lengthy calculation with the details pre-
sented in Appendix C, we find the most general answer for
the components of tensor β(ω):

βxyz(ω) = −βyxz(ω) = − iηe3

4π h̄2

ω2
Bsgn(ω)∣∣ω4 − ω4

B

∣∣
[
�

(
ω2 + ω2

B − 2

∣∣∣∣ωμ

h̄

∣∣∣∣
)

+ sgn
(
ω2 − ω2

B

)
�

(∣∣ω2 − ω2
B

∣∣− 2

∣∣∣∣ωμ

h̄

∣∣∣∣
)]

×
∞∑

n=0

Re
√(

ω2 − ω2
B

)2 − 4ω2ω2
Bn, (13)

βxxz(ω) = βyyz(ω) = − ηe3

4π h̄2

ω2
Bsgn(μ)∣∣ω4 − ω4

B

∣∣
[
�

(
ω2 + ω2

B − 2

∣∣∣∣ωμ

h̄

∣∣∣∣
)

− �

(∣∣ω2 − ω2
B

∣∣− 2

∣∣∣∣ωμ

h̄

∣∣∣∣
)]

×
∞∑

n=0

Re
√(

ω2 − ω2
B

)2 − 4ω2ω2
Bn. (14)

The dependence of these components on frequency and
magnetic field is illustrated in Figs. 3 and 4 (and Fig. 8). Two
main effects of a finite magnetic field are nonzero components
βxxz = βyyz and a significant enhancement of the photocurrent
in a certain parameter range as compared with the setup with-
out field. Our result agrees with the expression obtained by
Golub and Ivchenko in Ref. [17]. Below, we analyze different
limiting cases in more detail.

First, we consider component βxyz given by Eq. (13). This
component describes CPGE, i.e., the part of the photocurrent
which changes sign upon switching light chirality. It can be
shown from the structure of the step functions that this contri-
bution is nonzero provided∣∣h̄ω2

B − 2ωμ
∣∣ < h̄ω2, (15)

and we focus on the case μ,ω > 0 for simplicity in this
section henceforth.

Typical dependence on frequency and magnetic field (at
fixed chemical potential) is shown in Figs. 3(a) and 4(a). In the
limit of vanishing magnetic field ωB → 0 and finite frequency,
we reproduce the known quantized result [6,21]:

βxyz(ω,ωB = 0) = iβ0�(h̄ω − 2μ),

β0 ≡ − ηe3

12π h̄2 . (16)

We find that, upon finetuning, βxyz exhibits an unsaturated
growth in the low-frequency low-field limit. Indeed, consider
the limit: ∣∣h̄ω2

B − 2ωμ
∣∣ < h̄ω2 
 h̄ω2

B ≈ 2ωμ. (17)

At fixed magnetic field and chemical potential, this limit cor-
responds to the finetuned frequency ω ≈ h̄ω2

B/2μ and implies
the scale separation ω 
 ωB 
 2μ/h̄. We obtain then that, in
this regime, CPGE grows as the frequency and magnetic field
decrease simultaneously:

βxyz(ω) ≈ −i
ηe3

24π h̄2

ω2
B

ω2
≈ −i

ηe3

12π h̄3

μ

ω
= iβ0

μ

h̄ω
. (18)

We emphasize that such a giant photocurrent is possible due
to a finite though small magnetic field. This regime, however,
is only realized in a very narrow window of frequencies:

∣∣∣∣ω − h̄ω2
B

2μ

∣∣∣∣ � ωB

(
h̄ωB

2μ

)3

. (19)

Finally, we comment on the field dependence shown in
Fig. 3. It is calculated for the grand canonical ensemble, i.e.,
under the assumption that the chemical potential remains a
constant. A more physically natural setup, however, implies a
fixed number of particles, with the chemical potential being
a function of the magnetic field μ → μ(B), which must be
determined self-consistently. We do not analyze this case in
detail here since it is very sensitive to a particular model.
Indeed, as we discussed earlier, the Weyl nodes always come
in pairs of different chiralities, and the nonzero second-order
response requires these nodes to be located at different en-
ergies. Node separation introduces at least one additional
energy scale which makes reaching any universal conclusions
problematic. For any specific Weyl material with a particular
location of the nodes and density, however, the dependence
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FIG. 3. The components of the second-order dc conductivities
(a) βxyz and (b) βxxz as a function of magnetic field B, calculated
from Eqs. (13) and (14) at fixed chemical potential μ. Different
curves correspond to the ratio h̄ω/μ = 2.2 (blue), 3.3 (red), and 1.1
(magenta). The component βxyz approaches iβ0 as B → 0, provided
h̄ω > 2μ. The inset in (a) shows quantum oscillations of βxyz at weak
fields at h̄ω > 2μ. The regions where the different components are
nonzero are given by the inequalities in Eqs. (15) and (20). We use
the units β0 ≡ −ηe3/12π h̄2 and B0 ≡ μ2/2eh̄v2

F .

μ(B) can be easily evaluated numerically from the require-
ment of a constant particle number.

Next, we consider LPGE described by Eq. (14). Its depen-
dence on frequency and field is shown in Figs. 3(b) and 4(b).
Unlike CPGE, finite LPGE for an ideal Weyl node necessarily
requires a finite magnetic field. Indeed, we see from Eq. (14)
that βxxz is nonzero only in the parameter range given by∣∣h̄ω2

B − 2ωμ
∣∣ < h̄ω2 < h̄ω2

B + 2ωμ. (20)

In this region, CPGE and LPGE components are related as

βxxz(ω) = −iβxyz(ω). (21)

LPGE demonstrates the same unsaturated growth at small fre-
quencies and fields around ω ≈ h̄ω2

B/2μ. Additionally, in the
limit of a vanishing field ωB → 0, it is nonzero in the narrow
frequency window of the width h̄ω2

B/μ around ω ≈ 2μ/h̄ and
equals

βxxz
(
ωB 
 ω,

μ

h̄

)
≈ β0

2
�

(
ω2

B

ω
−
∣∣∣∣ω − 2

μ

h̄

∣∣∣∣
)

. (22)

FIG. 4. The components of the second-order dc conductivities
(a) βxyz and (b) βxxz as a function of the light frequency ω, calculated
from Eqs. (13) and (14). Different curves correspond to the fixed
ratio B/B0 = h̄2ω2

B/μ2 = 0.7 (blue), 1.5 (red), and 3.5 (magenta).
The blue peak at small frequencies is described by Eqs. (17)–(19).
The blue bump around h̄ω ≈ 2μ is described by Eq. (22). The com-
ponent βxyz approaches iβ0 at high frequencies ω � μ/h̄, ωB in an
oscillatory manner. The units β0 and B0 are the same as in Fig. 3.

The conditions in Eqs. (15) and (20) have clear physical
meaning. Indeed, consider any energy level En(kz ) which
crosses chemical potential μ > 0 (we assume n > 0 for sim-
plicity). Equation En(kn) = μ defines the effective Fermi
momentum kn for the nth Landau level. Consequently, the
inequality in Eq. (15) can be rewritten as a combination of
two requirements:

(1)

h̄ω > En+1(kn) − En(kn)

⇒ h̄ω >

√
μ2 + h̄2ω2

B − μ, (23)

and
(2) one of the two conditions:

h̄ω < En(kn) − En−1(kn)

⇒ h̄ω < μ −
√

μ2 − h̄2ω2
B,
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or

h̄ω > En(kn) − E−n+1(kn)

⇒ h̄ω > μ +
√

μ2 − h̄2ω2
B, (24)

where we defined E−n ≡ −En for n > 0.
As is clear from Fig. 2, these requirements exactly imply

that the frequency range is such that the direct transitions
between the Landau levels n → n + 1 and n → n − 1 or n →
−n + 1 are allowed by Pauli exclusion principle. In contrast,
additional restriction imposed by the inequality in Eq. (20)
ω2 < ω2

B + 2ωμ implies that

h̄ω < En(kn) − E−n−1(kn)

⇒ h̄ω <

√
μ2 + h̄2ω2

B + μ. (25)

This condition, in turn, picks the frequencies which forbid
direct transitions n → −n − 1 due to the Pauli exclusion
principle, see Fig. 2. As we discuss in the next section, the
frequencies at the boundaries of these regions define the reso-
nances which lead to divergences in SHG.

IV. SECOND HARMONIC GENERATION

Another type of the second-order response generically
present in noncentrosymmetric materials is SHG, a frequency
doubling of incident light through its interaction with media.
To calculate the corresponding conductivity components, we
start again with Eqs. (4) and (8) and put ω1 = ω2 = ω. This
time, however, it is more convenient to do the calculation
in Matsubara frequencies directly and perform the analytic
continuation at the last step. The SHG components of con-
ductivity are symmetric in the first two indices because the
two frequencies coincide. Furthermore, we note that, since the
Kubo formula predicts the full response to a given field con-
figuration, the left-hand side of Eq. (4) should be understood
as σαβγ (iω, iω) + σβαγ (iω, iω) = 2σαβγ (iω, iω).

Straightforward but lengthy calculation shows that the
only nonzero SHG components for a Weyl node are σ xxz =
σ yyz, σ zxx = σ xzx = σ zyy = σ yzy, and σ xzy = σ zxy = −σ yzx =
−σ zyx. Below, we consider all these components in detail
separately.

A. σxxz component of SHG

We start by considering the components σ xxz = σ yyz. The
general expression in Matsubara frequencies is derived in
Appendix D 1 and given by

σ xxz(iω) ≡ σ xxz(iω, iω)

= ηe3ω2
B sgn(μ)

32π2h̄2ω2

Nmax∑
n=0

fn(iω), (26)

with

fn(iω) = 1

ian(iω)
ln

[ian(iω) + kn][ian(iω) − kn+1]

[ian(iω) − kn][ian(iω) + kn+1]
. (27)

FIG. 5. Real (blue) and imaginary (red) parts of the second
harmonic generation (SHG) component σ xxz. A small but finite
imaginary part of frequency, which corresponds to a finite scattering
rate, is kept to regularize the divergences. (a) The dependence on
frequency at B = 0.7B0, which demonstrates square-root and loga-
rithmic divergences. Similar divergences but with smaller amplitude
appear at higher frequencies and not shown in the figure. (b) The de-
pendence on magnetic field at h̄ω = 1.85μ. The double logarithmic
plot is used to catch different scales, so the absolute values of the
conductivity components are shown. Quantum oscillations at small
fields develop in a series of power-law and logarithmic divergences at
higher fields. The units are σ0 ≡ ηe3/32π 2 h̄μ and B0 ≡ μ2/2eh̄v2

F .

We have defined the short-hand notations:

Nmax ≡
⌊

μ2

h̄2ω2
B

⌋
, kn ≡ Re

√
μ2

h̄2 − ω2
Bn,

an(iω) ≡
[
ω2

Bn +
(
ω2

B + ω2
)2

4ω2

]1/2

, (28)

such that h̄kn/vF is the momentum at which the chemical
potential μ crosses the nth Landau level and x� is the floor
function, i.e., the greatest integer not exceeding x.

To extract physical response, we analytically continue
Eq. (26) to real frequencies iω → ω + i0. The result as a
function of frequency and magnetic field is shown in Fig. 5
(and in Fig. 9). Unlike photocurrent, SHG components have
both real and imaginary parts. To regularize the divergences
that we discuss in more detail below, we keep small but
finite imaginary part of frequency, which physically repre-
sents finite single-particle scattering rate. We emphasize again
that we neglect the dependence of chemical potential μ on B in
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Fig. 5(b), which corresponds to the great canonical ensemble
and must be modified if the density of particles is fixed.

The analytic continuation in Eq. (26) can be performed
explicitly; however, since the resulting expressions are rather
cumbersome, we present them in Appendix D. Instead, here,
we discuss the divergences and most interesting limiting
cases.

We start with the case of sufficiently large magnetic field
h̄ωB > |μ|. In this quantum limit, only the n = 0 term in
Eq. (26) contributes, and we find

σ xxz(ω) = ηe3

16π2h̄2

ω2
B

ω
(
ω2

B − ω2
)
{

ln

∣∣∣∣∣2μω − h̄
(
ω2

B − ω2
)

2μω + h̄
(
ω2

B − ω2
)
∣∣∣∣∣

− π i sgn(μ)�
(
2|ωμ| − h̄

∣∣ω2
B − ω2

∣∣)}. (29)

We see that the real part diverges logarithmically at
h̄ω̃1 = ±(

√
h̄2ω2

B + μ2 ± μ), while the imaginary part has
power-law divergence at ω = ±ωB. The real part also exhibits
divergence at ω = ±ωB if small but finite scattering rate is
taken into account [which is absent in Eq. (29)].

In the opposite limit of vanishing field B → 0 (ωB → 0),
the summation in Eq. (26) can be approximated by an integral,
leading to

σ xxz(ω) ≈ ηe3ω2
B

16π2h̄ω2

×
{

4μ

4μ2−h̄2ω2
+π iδ(h̄|ω|−2|μ|) sgn(ωμ)

}
. (30)

This expression is valid provided h̄2ω2
B 
 h̄2ω2, μ2, |h̄2ω2 −

4μ2|. We emphasize that its real part has more sophisticated
behavior in the vicinity of h̄|ω| ≈ 2|μ|, while the width of the
δ function is proportional to the magnetic field.

In the low-frequency limit ω → 0, we may simply Taylor
expand Eq. (26) and obtain

σ xxz(ω) ≈ − ηe3μ

4π2 h̄3ω2
B

. (31)

We see that this component grows unlimited if additionally
magnetic field approaches zero.

Now we discuss the divergences of SHG components. The
first set of logarithmic divergences in Re σ xxz occurs at

h̄|ω̃±
1 | =

√
h̄2ω2

B + μ2 ± μ, (32)

discussed earlier in the context of the quantum limit. Fur-
thermore, away from the quantum limit, at h̄ωB < |μ|, it has
additional set of logarithmic divergences at

h̄|ω̃±
2 | = |μ| ±

√
μ2 − h̄2ω2

B. (33)

These resonant frequencies exactly correspond to the bound-
aries of the frequency range defined by the inequalities in
Eqs. (15) and (20) or (23)–(25), where the injection current
is nonzero. They equal the energy differences between the
adjacent Landau levels (or their opposite energy copies from
a different band) at wave vectors kz = kn/vF where they cross
the chemical potential, see Fig. 2 and Eq. (28). Finally, both

Re σ xxz and Im σ xxz have one-sided power-law (square-root)

FIG. 6. Real (blue) and imaginary (red) parts of the second
harmonic generation (SHG) component σ xzx . A small but finite
imaginary part of frequency, which corresponds to a finite scattering
rate, is kept to regularize the divergences. (a) The dependence on
frequency at B = 0.7B0. The main qualitative features are the same as
for the σ xzx component, see Fig. 5. (b) The dependence on magnetic
field at h̄ω = 2.1μ. The double logarithmic plot is used to catch dif-
ferent scales. The units are σ0 ≡ ηe3/32π 2 h̄μ and B0 ≡ μ2/2eh̄v2

F .

divergences at

|ω̃±
3 | = ωB(

√
Nmax + 1 ±

√
Nmax), (34)

where Nmax is given by Eq. (28). These are the res-
onant frequencies that equal the energy difference be-
tween the lowest empty and the highest partially filled
Landau levels (or its opposite energy copies) at momen-
tum kz = 0. Formally, they are obtained from ω̃1 by the
substitute μ2 → h̄2ω2

Bμ2/(h̄ωB)2�. We note that, in the
quantum limit, h̄ωB > |μ|, Im σ xxz has stronger power-
law divergence at ω̃3, while Re σ xxz remains finite at this
frequency in the limit of vanishing scattering rate (the
divergence reappears, however, when small but finite scatter-
ing rate is included).

At low fields h̄ωB 
 |μ|, the resonant frequencies become

h̄|ω̃−
i | ≈ h̄2ω2

B

2|μ| , h̄
∣∣ω̃+

i

∣∣ ≈ 2|μ|, i = 1, 2, 3. (35)

Equations (31) and (35) indicate that a giant SHG can be
achieved even at low magnetic fields and low frequencies,
provided the scattering rate is sufficiently small. We discuss
the asymptotic behavior in the vicinity of the divergences in
more detail in Appendix D 1.
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B. σxzx component of SHG

Next, we consider components σ xzx = σ zxx = σ zyy = σ yzy. The general expression is derived in Appendix D 2 and
given by

σ xzx(iω) ≡ σ xzx(iω, iω) = ηe3

32π2h̄2

ω2
B

ω2

sgn(μ)

4ω4 − ω4
B

Nmax∑
n=0

[(
ω2

B + 2ω2
)(

ω2
B + 4ω2

)+ 12ω2ω2
Bn
]

fn(2iω)

− [2(ω2
B + ω2)(ω2

B + 2ω2)+ 12ω2ω2
Bn
]

fn(iω), (36)

where fn(iω) and Nmax are defined in Eqs. (27) and (28). The dependence on frequency and magnetic field after analytic
continuation is shown in Fig. 6, while the corresponding analytic expressions are presented in Appendix D 2.

In the quantum limit, h̄ωB > |μ|, only the n = 0 term contributes, and we find

σ xzx(ω) = ηe3

8π2h̄2

ω2
B sgn(μ)

ω
(
ω2

B + 2ω2
){ ln

∣∣∣∣∣2|μ|ω − h̄
(
ω2

B − ω2
)

2|μ|ω + h̄
(
ω2

B − ω2
) 4|μ|ω + h̄

(
ω2

B − 4ω2
)

4|μ|ω − h̄
(
ω2

B − 4ω2
)
∣∣∣∣∣

+ π i
[
�
(
4|ωμ| − h̄

∣∣ω2
B − 4ω2

∣∣)− �
(
2|ωμ| − h̄

∣∣ω2
B − ω2

∣∣)]}. (37)

The real part of this expression has logarithmical divergences at ω = ω̃±
1 and ω = ω̃±

1 /2, where ω̃±
1 is defined in Eq. (32), while

its imaginary part is free of divergences.
At small magnetic fields h̄2ω2

B 
 h̄2ω2, μ2, |h̄2ω2 − 4μ2|, we find

σ xzx(ω)≈− ηe3ω2
B

32π2h̄ω2
×
{

4μ

4μ2−h̄2ω2
+π iδ(h̄|ω|−2|μ|)sgn(ωμ)

}
. (38)

At low frequencies, ω → 0, we obtain

σ xzx(ω) ≈ ηe3μ

2π2h̄3ω2
B

. (39)

Away from the quantum limit, at h̄ωB < |μ|, the divergences occur at ω = ω̃±
i and ω = ω̃±

i /2, i = 1, 2, 3, where all ω̃±
i are

defined in Eqs. (32)–(34). The character of these divergences is the same as for the σ xxz component.

C. σxzy component of SHG

Finally, we present the result for the components σ xzy = σ zxy = −σ yzx = −σ zyx. The general expression looks much more
complicated than all the other components, so we find it convenient to subtract the contribution at zero chemical potential μ = 0.
This extra term cancels out upon summation over the nodes with the opposite chiralities, which is required to get the physically
measurable result (we assume that these nodes have the same Fermi velocity vF ). We obtain

σ xzy(iω,μ) ≡ σ xzy(iω, iω,μ) − σ xzy(iω, iω, 0)

= ηe3

8π2h̄2

ω2
B

ω(ω2
B − 2ω2)

ln

[
k0
(
ω2

B + ω2
)+ k1

(
ω2

B − ω2
)

k0
(
ω2

B + ω2
)− k1

(
ω2

B − ω2
) k0
(
ω2

B + 4ω2
)− k1

(
ω2

B − 4ω2
)

k0
(
ω2

B + 4ω2
)+ k1

(
ω2

B − 4ω2
) h̄2a2

0(iω) + μ2

h̄2a2
0(2iω) + μ2

a2
0(2iω)

a2
0(iω)

]

+ 3ηe3

16π2 h̄2

ω2
B

ω2
(
ω4

B − 4ω4
) Nmax∑

n=1

{
8nω2

Bω2√
4nω2

B + ω2
ln

√
4nω2

B + ω2k0 −ωkn√
4nω2

B + ω2k0 +ωkn

+
(
ω2

B + ω2
)(

ω2
B + 2ω2

)+ 6ω2ω2
Bn

3
gn(iω)

−
(
ω2

B + 2ω2
)(

ω2
B + 4ω2

)+ 12ω2ω2
Bn

6
gn(2iω)

}
, (40)

with

gn(iω) = 1

an(iω)
ln

[
2ωan(iω)k0 + kn+1

(
ω2

B − ω2
)

2ωan(iω)k0 − kn+1
(
ω2

B − ω2
) 2ωan(iω)k0 − kn

(
ω2

B + ω2
)

2ωan(iω)k0 + kn
(
ω2

B + ω2
)
]
, (41)

while an(iω), kn, and Nmax are defined in Eq. (28) (we note that k0 = |μ|/h̄). The dependence on frequency and magnetic
field after analytic continuation is shown in Fig. 7, while the corresponding analytic expressions and details of calculation are
presented in Appendix D 3.
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In the quantum limit, h̄ωB > |μ|, we find after analytic continuation

σ xzy(ω) = − iηe3

8π2h̄2

ω2
B

ω
(
2ω2 + ω2

B

)
{

ln

∣∣∣∣∣ h̄
2
(
ω2

B − 4ω2
)2 − 16ω2μ2

h̄2
(
ω2

B − ω2
)2 − 4ω2μ2

(
ω2

B − ω2
)2(

ω2
B − 4ω2

)2
∣∣∣∣∣

− π i sgn(ω)
[
�
(
4|ωμ| − h̄

∣∣ω2
B − 4ω2

∣∣)sgn
(
ω2

B − 4ω2
)− �

(
2|ωμ| − h̄

∣∣ω2
B − ω2

∣∣)sgn
(
ω2

B − ω2
)]}

. (42)

At small fields ωB → 0, we use the Euler-Maclaurin formula to find

σ xzy(ω) ≈ 3iηe3h̄

8π2

ω3
B|μ|

ω(μ2 − h̄2ω2)(4μ2 − h̄2ω2)
ζ

(
−1

2
,

μ2

h̄2ω2
B

−
⌊

μ2

h̄2ω2
B

⌋)

− iηe3

64π2h̄2

ω4
B

ω5

{
5h̄4ω4 − 16h̄2ω2μ2 + 48μ4

(4μ2 − h̄2ω2)2
+ 2

3
ln

26ω6μ6|μ2 − h̄2ω2|
ω6

B(4μ2 − h̄2ω2)4

}

− ηe3

16π

ω3
B

ω2|μ|ζ
(

−1

2
,

μ2

h̄2ω2
B

−
⌊

μ2

h̄2ω2
B

⌋)
{δ(h̄|ω| − |μ|) − δ(h̄|ω| − 2|μ|)}

+ ηe3

96π h̄2

ω4
B

|ω|5 {�(μ2 − h̄2ω2) − 4�(4μ2 − h̄2ω2) + 6μ2δ′(h̄|ω| − 2|μ|) − 6|μ|δ(h̄|ω| − 2|μ|)}, (43)

where ζ (s, x) is the Hurwitz ζ function, and x� is the floor function. The presence of the Hurwitz ζ function results in
pronounced quantum oscillations even at small fields. Unlike other components, this one is proportional to ω3

B at the smallest
fields. We also note that the term proportional to ω4

B quickly takes over upon increasing field; hence, we keep it in the asymptotic
expansion as well.

At low frequencies ω → 0, we obtain

σ xzy(ω) ≈ 3iηe3

4π2h̄2

ω

ω2
B

(
2μ2

ω2
Bh̄2 + h̄

|μ|
Nmax∑
n=1

kn

)
, (44)

which vanishes as frequency approaches 0.
Finally, we note that this component exhibits more divergences than all other components. Indeed, apart from the familiar

divergences at ω = ω̃±
i and ω = ω̃±

i /2, i = 1, 2, 3, defined in Eqs. (32)–(34), we also find logarithmical divergences at |ω| = ωB,
ωB/2, 2|μ|/h̄ and power-law divergences at |ω| = 2ωB

√
n, ωB(

√
n + 1 + √

n), ωB(
√

n + 1 + √
n)/2, with n = 1, . . . , Nmax.

V. SEMICLASSICAL DESCRIPTION

In this section, we complement our microscopic result
with the semiclassical calculation. We neglect the inter-
band and internodal transitions, focusing on a single band
where the Fermi energy resides. This approach is justified
provided h̄ω 
 |μ|. Furthermore, we perform our analytic
calculation to the linear order in small magnetic field B
only, which requires additionally ωB 
 ω. For large magnetic
fields, a different approach is required, see, e.g., Ref. [24] for
details.

The calculation scheme we implement is similar to that of
Refs. [25,26], though we point out certain differences in the
results. The semiclassical equations of motion for an electron
in a solid have the form [27]:

h̄ṙ = ∇kεk − h̄k̇ × �k,

h̄k̇ = −eE − eṙ × B, (45)

where

�k = i〈∇kuk| × ∇kuk〉 (46)

is the Berry curvature and |uk〉 is the periodic part of the Bloch
wave function. The quasiparticle energy dispersion is modi-

fied according to εk = ε0
k − mk · B, where ε0

k is the bare band
energy at B = 0, Hk|uk〉 = ε0

k|uk〉, and the orbital magnetic
moment is given by

mk = −i
e

2h̄
〈∇kuk| × (Hk − ε0

k

)|∇kuk〉. (47)

These equations can be readily resolved to give

ṙ = 1

h̄Dk

{
∇kεk + eE × �k + e

h̄
B(�k · ∇kεk )

}
,

k̇ = 1

h̄Dk

{
−eE − e

h̄
∇kεk × B − e2

h̄
(E · B)�k

}
, (48)

where Dk = 1 + (e/h̄)(B · �k ) is the phase-space volume
correction due to a finite Berry curvature [28].

In the case of the uniform electric and magnetic fields,
the kinetic equation for the distribution function f in τ

approximation is given by

∂ f

∂t
+ k̇∇k f = − f − f0

τ
, (49)

where we assume for simplicity that the scattering time τ

is a constant. The zero-temperature equilibrium distribution
function is given by f0 = �(μ − εk ), where, again, �(x) is
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FIG. 7. Real (red) and imaginary (blue) parts of the second
harmonic generation (SHG) component σ xzy. A small but finite imag-
inary part of frequency is kept to regularize the divergences. (a) The
dependence on frequency at B = 0.7B0. The main qualitative fea-
tures are the same as for other components, see Figs. 5 and 6. (b) The
dependence on magnetic field at h̄ω = 2.1µ. The double logarithmic
plot is used to catch different scales. The units are σ0 ≡ ηe3/32π 2 h̄μ

and B0 ≡ μ2/2eh̄v2
F .

the Heaviside step function and μ is the chemical potential.
The electrical current is then expressed as

j = −e
∫

d3k

(2π )3
Dkṙ f . (50)

A monochromatic electric field with frequency ω is
given by

E(t ) = Eωe−iωt + E∗
ωeiωt , (51)

while the distribution function can be expanded in powers of
small electric field, each corresponding to different harmon-
ics:

f (t ) ≈ f0 + δ f0 + ( f1e−iωt + f ∗
1 eiωt )

+ ( f2e−2iωt + f ∗
2 e2iωt ). (52)

In the expression above, f1 ∝ E and f2, δ f0 ∝ E2, where E =
|Eω|, and we only keep the terms up to order O(E2).

The iterative solution of the kinetic equation in powers of E
is straightforward but rather lengthy and cumbersome. Indeed,
an algebraic mistake in solving the kinetic equation is what
led to a disagreement in numerical coefficients for the semi-
classical field-induced conductivity obtained in Secs. III–V of
Ref. [25]. We defer all the technical details of the calculation
to Appendix E, and here, we only present the final result for

the second-order conductivity components for a single Weyl
node. In the vicinity of the node with the chirality η = ±1, the
Berry curvature and the orbital magnetic moment are given by
the expressions

�k = − ζη

2k3
k, mk = −η

evF

2k2
k, (53)

while the band energy at zero field equals

ε0
k = ζvF h̄k, (54)

where ζ = +1/ − 1 corresponds to the conduction/valence
band, respectively.

Assuming the magnetic field B = Bẑ is weak and keeping
the terms linear in B only (of the order of ω2

B), we find for the
nonzero components of dc conductivity

σ xxz
dc = σ

yyz
dc = − ηe3ω2

B

6π2h̄μ

τ 2

(1 + ω2τ 2)2
,

σ xzx
dc = σ

yzy
dc = (σ zxx

dc

)∗ = (σ zyy
dc

)∗
= ηe3ω2

B

24π2 h̄μ

τ 2

(1 + ω2τ 2)2

[
2 + iωτ

(
1 − ω2τ 2

)]
, (55)

and for SHG conductivity

σ xzx
2ω = σ zxx

2ω = σ
yzy
2ω = σ

zyy
2ω = −σ xxz

2ω

2
= −σ

yyz
2ω

2

= ηe3ω2
B

48π2h̄μ

τ 2(2 − 3iωτ )

(1 − iωτ )2(1 − 2iωτ )
, (56)

while all other components equal 0. We emphasize that
these semiclassical results are only valid provided ωB 
 ω 

|μ|/h̄.

In the clean limit ωτ → ∞, the nonvanishing components
equal

σ xzx
2ω = σ zxx

2ω = σ
yzy
2ω = σ

zyy
2ω = −σ xxz

2ω

2
= −σ

yyz
2ω

2

≈ − ηe3ω2
B

32π2h̄ω2μ
,

σ xzx
dc = σ

yzy
dc = (σ zxx

dc

)∗ = (σ zyy
dc

)∗ ≈ 4

3
iσ xzx

2ω ωτ. (57)

The SHG components are consistent with the low-field mi-
croscopic calculation in Sec. IV, particularly with Eqs. (30)
and (38) at h̄ω 
 |μ|. The nonzero components of the dc
conductivity proportional to τ , on the other hand, seem at
first to contradict our Kubo formula results. Indeed, these
components imply nonzero injection currents in the x and
y directions, while the calculation in Sec. III indicates
nonzero current in the z direction only. The resolution of
this seeming contradiction is hidden in the different order
of noncommuting limits used in the two approaches. The
microscopic calculation of Sec. III implies taking the limit
	 → 0 first (equivalently, τ → ∞), before setting ωB → 0.
On the contrary, the semiclassical calculation of the present
section assumes taking ωB → 0 first, which leads to Eqs. (55)
and (56), and only after that, the additional condition τ → ∞
results in Eq. (57). While the order of limits is not important
for the SHG components, it is crucial for calculating injection
current, indicating that the latter depends sensitively on the
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parameter ωBτ . This can be seen directly from the solution of
the kinetic equation presented in detail in Appendix E. Similar
seeming inconsistency originating from noncommuting limits
was noticed when reproducing the fully isotropic B = 0 result,
see discussion in Sec. III and Appendix B.

VI. DISCUSSION

In summary, we studied the second-order optical response
of a model with an ideal Weyl node in the presence of a
magnetic field. Applying the Kubo formula, we calculated
the intrinsic contribution to the conductivity components
of photocurrent and SHG at arbitrary frequency, chemical
potential, and magnetic field. Our results showed that the
magnetic field significantly enhances the nonlinear response
in general, while tuning the frequency (or magnetic field)
to certain resonant values results in an unsaturated growth
in magnitude. Although this growth would be eventually
saturated in realistic systems due to disorder and interactions,
in this paper, we suggest a method to realize photocurrents of
extremely large magnitude.

Our results can be applied to Weyl materials with low crys-
tal symmetry, such as SrSi2 [29], RhSi [8], and TaAs [13,30]
under strain, as well as other recently predicted topological
semimetals [31,32]. While our exact analytical expressions
were derived for type-I Weyl semimetals with linear disper-
sion, we expect qualitatively similar results (including diver-
gences at resonant frequencies and magnetic fields) for other
types of Weyl materials and topological band touching points.

The nodes with different chiralities contribute oppositely to
photocurrent and SHG, so they must be separated in energy to
produce nonzero net current. This is only possible if inversion
and all mirror symmetries are broken [6]. This conclusion fol-
lows directly from the transformation properties of the Berry
curvature which imply that the spatial symmetries relate the
nodes with the opposite chiralities. The same logic dictates
that time-reversal symmetry can be preserved since it relates
the nodes with the same chirality.

We emphasize again that the physically measurable
response is obtained after summing up our analytical ex-
pressions over all the nodes with different chiralities. Since
these nodes are located at different energies, they effectively
experience different chemical potentials (with respect to the
node location), thus leading to nonzero second-order current.
The resulting expressions depend sensitively on the energy
separation between the nodes and the position of the actual
chemical potential, which itself depends on the magnetic field.
We can comment, however, on two limiting cases which admit
simple analytical interpretation. The first case is the nearly
compensated semimetal with identical nodes (i.e., having the
same velocity), such that the chemical potential is located
almost exactly in between the nodes. In this case, the effective

chemical potentials experienced by different nodes will have
the same magnitude but opposite signs. This implies that
the components with the even dependence on μ (i.e., CPGE
component βxyz, SHG component σ xzy, and those related by
symmetry) will cancel out upon summation, while the com-
ponents having odd dependence on μ (i.e., LPGE component
βxxz, SHG components σ xxz and σ xzx, and those related by
symmetry) will enhance each other, merely multiplying our
analytical expressions for a single node by the total number
of the nodes. The second limiting case which can be easily
analyzed is if the chemical potential nearly coincides with the
position of one of the nodes, i.e., its distance to the node is
much smaller than other energy scales dictated by frequency
and magnetic field. In this case, we can set μ ≈ 0 for one
of the nodes, which immediately nullifies its contribution to
all the components except for the CPGE component βxyz. It
means that only nodes located away from chemical potential
will contribute to the final result, except for βxyz and other
components related by symmetry.

Naturally, the overall second-order response in actual crys-
tals may differ substantially from our analytical predictions
derived for an idealized model [13,14]. The main sources of
discrepancy (apart from disorder and interactions) are possible
tilt of the nodes, nonlinear corrections to the band dispersion,
and the presence of higher-energy bands. We hope, however,
that our results may guide experimental efforts to maximize
the nonlinear response in topological materials.

As a potential future direction, we find it interesting to
explore second-order responses in Weyl semimetals in the
presence of pseudomagnetic fields originating from, e.g., ex-
ternal strain [33–36]. The key difference from the physical
magnetic field is that its coupling to Weyl electrons is chiral,
which implies a substantially different result after summation
over the nodes with the opposite chiralities. We leave a de-
tailed analysis of this effect for future work.

Finally, we note that the method of Green’s functions used
in this paper can be easily extended to study the effects of
interactions or disorder as well as applied to other types of
nodal points. In the absence of a magnetic field, the effect
of Coulomb and short-ranged interactions on photocurrent
was studied in Ref. [21], while the role of impurities was
investigated by the means of the kinetic equation in, e.g.,
Ref. [23]. The interplay between these factors and a magnetic
field and particularly their effect on singularities discussed in
this paper are open questions which we also leave for future
study.
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APPENDIX A: LANDAU LEVELS IN A WEYL SEMIMETAL AND MATRIX ELEMENTS

The Hamiltonian for a Weyl fermion in magnetic field along the z direction in Landau gauge A = (−yB, 0, 0) is given by

Ĥ = ηvF h̄

[(
kx − eB

h̄
y

)
σx − i

∂

∂y
σy + kzσz

]
, (A1)
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where vF is the Fermi velocity, η = ±1 is the chirality of the node, σ is the vector of Pauli matrices, −e is the electron charge,
and we assume e > 0, B > 0.

This Hamiltonian can be easily reduced to the harmonic oscillator problem. The eigenstates are

n,kx,kz (r) = exp(ikxx + ikzz)

√
1

2LxLz

⎛
⎜⎝

√
1 − E0

En
f|n|−1

{√
eB
h̄ [y − y0(kx )]

}
−sgn(n)

√
1 + E0

En
f|n|
{√

eB
h̄ [y − y0(kx )]

}
⎞
⎟⎠, n �= 0,

0,kx,kz (r) = exp(ikxx + ikzz)

√
1

LxLz

⎛
⎝ 0

− f0

{√
eB
h̄ [y − y0(kx )]

}
⎞
⎠, (A2)

where

En = sgn(n)ηh̄vF

√
k2

z + 2eB

h̄
|n|, n �= 0,

E0 = −ηh̄vF kz (A3)

is the energy spectrum, y0(kx ) = h̄kx/eB determines the center (position) of the wave function with momentum kx, and Lx and Lz

are linear dimensions of the system in the x and z directions, correspondingly. We have introduced properly normalized harmonic
oscillator eigenfunctions:

fn(ξ ) =
(

eB

π h̄

)1/4 1√
2nn!

exp

(
−ξ 2

2

)
Hn(ξ ), n = 0, 1, 2, . . . (A4)

with the Hermite polynomials:

Hn(ξ ) ≡ (−1)n exp(ξ 2)
dn exp(−ξ 2)

dξ n
. (A5)

Using orthogonality of the Hermite polynomials, we find for the matrix elements

〈n|σx|m〉 = −sgn(m)δ|m|,|n|−1

√
En − E0

2En

√
Em + E0

2Em
− sgn(n)δ|n|,|m|−1

√
En + E0

2En

√
Em − E0

2Em
,

〈n|σy|m〉 = i sgn(m)δ|m|,|n|−1

√
En − E0

2En

√
Em + E0

2Em
− i sgn(n)δ|n|,|m|−1

√
En + E0

2En

√
Em − E0

2Em
,

〈n|σz|m〉 = −E0

En
δn,m +

√
E2

n − E2
0

E2
n

δn,−m, (A6)

where the wave functions m and n have the same quantum numbers kx and kz, and we adopted the convention with sgn(0) = 1.

APPENDIX B: SECOND-ORDER RESPONSE IN THE LIMIT B → 0

In this Appendix, we reproduce the most general result for the second-order (three-current) correlation function for a Weyl
node at B = 0, obtained in Ref. [21], from Eq. (8). It is straightforward to check that, in the limit B → 0, only terms proportional
to εαβγ are nonzero, where εαβγ is the fully antisymmetric Levi-Civita tensor. For concreteness, we consider the χ xyz component.
First, we find that

Zxyz
n1n2n3

= i

4En1 E2
n2

{
δn2,n3 E0[δ|n2|,|n1|−1(En1 − E0)(En2 + E0) − δ|n2|,|n1|+1(En1 + E0)(En2 − E0)]

+ δn2,−n3

(
E2

n2
− E2

0

)
[δ|n2|,|n1|−1(En1 − E0) + δ|n2|,|n1|+1(En1 + E0)]

}
, (B1)

where we dropped argument kz in Eni (kz ) for brevity. In the limit B → 0, one may write δ|n2|,|n1|±1 ≈ δ|n2|,|n1|, and we obtain

Zxyz
n1n2n3

≈ iδ|n1|,|n2|
2En1 E2

n2

{
δn2,n3 E2

0 (En1 − En2 ) + δn2,−n3 En1

(
E2

n2
− E2

0

)}
. (B2)
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Next, we plug this expression into Eq. (8). Utilizing δ symbols and ignoring the contribution of the n = 0 Landau level (which
is negligible in the limit B → 0), we obtain

χ xyz(iω1, iω2) ≈ iηe4v3
F B

4π2h̄

∞∑
n=−∞

∫ ∞

0
dkz

�(εn) − �(ε−n)

E2
n

×
{

2E2
0

(ih̄ω1 − 2En)(ih̄ω2 + 2En)
− E2

n − E2
0

(ih̄ω1 + 2En)(ih̄	 + 2En)
+ E2

n − E2
0

(ih̄ω2 + 2En)(ih̄	 + 2En)

}

≈ −ηe4v3
F B(ω1 − ω2)

π2

∞∑
n=1

∫ ∞

0
dkz

�(εn) − �(ε−n)

En

× E2
n

[
4E2

n − h̄2ω1	 − h̄2(	 + ω1)ω2
]+ E2

0

[−12E2
n − 2h̄2	2 + h̄2	ω1 + h̄2(	 + ω1)ω2

]
(
4E2

n + h̄2	2
)(

4E2
n + h̄2ω2

1

)(
4E2

n + h̄2ω2
2

) , (B3)

where we defined εn ≡ En(kz ) − μ, ε−n ≡ E−n(kz ) − μ = −En(kz ) − μ (since we excluded n = 0), and 	 ≡ ω1 + ω2.
The limit B → 0 allows us to change the summation over n with an integral. Furthermore, we find it convenient to introduce

new variables ρ ∈ (0,∞) and ϕ ∈ (0, π/2), such that

h̄vF kz = ρ cos ϕ

h̄ωB
√

n = ρ sin ϕ
⇒ En �=0 = ηρ

|E0| = ρ cos ϕ
and dkzdn = ρ2 sin ϕdρdϕ

h̄2ev3
F B

. (B4)

Using these variables, the integral can be easily calculated:

χ xyz(iω1, iω2) = −ηe3(ω1 − ω2)

π2h̄2

∫ ∞

|μ|
ρ3dρ

∫ π/2

0
dϕ

× sin ϕ
4ρ2 − h̄2ω1	 − h̄2(	 + ω1)ω2 + cos2 ϕ(−12ρ2 − 2h̄2	2 + h̄2	ω1 + h̄2(	 + ω1)ω2)

(4ρ2 + h̄2	2)
(
4ρ2 + h̄2ω2

1

)(
4ρ2 + h̄2ω2

2

)
= ηe3

48π2h̄2

	3(ω1 − ω2) ln(4μ2 + h̄2	2) + ω3
2(	 + ω1) ln(4μ2 + h̄2ω2

2 ) − ω3
1(	 + ω2) ln

(
4μ2 + h̄2ω2

1

)
ω1ω2	

.

(B5)

All other nonzero components of χαβγ can be calculated absolutely analogously. Collecting them all together, we find that,
in the limit B → 0, the correlation function is given by

χαβγ (iω1, iω2) = ηe3εαβγ

48π2 h̄2

	3(ω1 − ω2) ln(4μ2 + h̄2	2) + ω3
2(	 + ω1) ln

(
4μ2 + h̄2ω2

2

)− ω3
1(	 + ω2) ln

(
4μ2 + h̄2ω2

1

)
ω1ω2	

,

(B6)

in full agreement with Ref. [21].

APPENDIX C: INJECTION CURRENT

The starting point for calculating the injection current is Eqs. (11) and (12). The form of the matrix elements entering this
expression Zαβγ

n1n2n2 and Zβαγ
n1n2n2 dictates that only components with γ = z are possibly nonzero, as follows from Eqs. (9) and (A6).

Indeed, we find that the only nonvanishing components of the injection current are βxyz = −βyxz and βxxz = βyyz, and we discuss
them in more detail below.

1. CPGE component βxyz

After substituting Eq. (A6) into Eq. (9), we find that

Zxyz
n1n2n2

= −Zyxz
n1n2n2

= iE0

4En1 E2
n2

{
δ|n2|,|n1|−1

(
En1 − E0

)(
En2 + E0

)− δ|n2|,|n1|+1
(
En1 + E0

)(
En2 − E0

)}
. (C1)

Plugging this into Eq. (11), we obtain

σ xyz(ω + 	,−ω) = ηe4v3
F B

8π h̄2	ω2

∫ ∞

−∞
dkz

∞∑
n1,n2=−∞

[�(ε1) − �(ε2)]δ(ε2 − ε1 − h̄ω)
E0
(
En1 − En2

)
E2

n1
E2

n2

× [δ|n1|,|n2|−1
(
En2 − E0

)(
En1 + E0

)− δ|n1|,|n2|+1
(
En1 − E0

)(
En2 + E0

)]
, (C2)
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FIG. 8. Density plot of the (a) circular photogalvanic effect (CPGE) component βxyz and (b) linear photogalvanic effect (LPGE) component
βxxz, given by Eqs. (13) and (14), as a function of frequency and magnetic field. The black dotted lines indicate the boundaries of the regions
where the corresponding components are nonzero, see Eqs. (15) and (20). A characteristic Landau fan indicates fields at which higher Landau
levels become partially populated. The units are β0 ≡ −ηe3/12π h̄2 and B0 ≡ μ2/2eh̄v2

F .

where, again, we defined ε1,2 ≡ En1,2 (kz ) − μ. It is straightforward to check that this expression is even with respect to chemical
potential μ and odd with respect to frequency ω.

The Kronecker δ is used to perform summation over one of the Landau indices (positive, negative, and zero Landau levels
should be considered separately), and the integration over kz is straightforward due to the δ function. Carefully collecting all the
contributions, simplifying the resulting expression, and using Eq. (12), we arrive at Eq. (13). The density plot of this component
as a function of frequency and magnetic field as well as the parameter range where it is nonzero are shown in Fig. 8(a). We
see that the photocurrent is enhanced around the line B/B0 = 2h̄ω/μ at small frequencies, where B0 ≡ μ2/2eh̄v2

F , in agreement
with Eqs. (17)–(19).

At vanishing field and fixed frequency and chemical potential ωB 
 |ω|, |μ|/h̄, we may change the summation over Landau
levels with integration and get

βxyz(ω) ≈ − iηe3

2π h̄2

ω2
Bsgn(ω)

ω4
�(h̄|ω| − 2|μ|)

∫ ω2/4ω2
B

0
dn
√

ω4 − 4ω2ω2
Bn

= − iηe3

12π h̄2 sgn(ω)�(h̄|ω| − 2|μ|)

= iβ0sgn(ω)�(h̄|ω| − 2|μ|), with β0 ≡ − ηe3

12π h̄2 , (C3)

in full agreement with Refs. [6,21], as well as Eq. (B6) in the limit 	 → 0. We note, however, that the corresponding current
only flows in the z direction (along magnetic field), unlike Eq. (B6), since we took the limit 	 → 0 before setting ωB → 0.

In the low-frequency and low-field limit |ω| 
 ωB 
 2|μ|/h̄, the system can be tuned to the resonance frequency |ω| ≈
h̄ω2

B/2|μ|, where the current is significantly enhanced. Indeed, in the regime:∣∣h̄ω2
B − 2|ωμ|∣∣ < h̄ω2 
 h̄ω2

B ≈ 2|ωμ|, (C4)

we find that �(h̄(ω2 + ω2
B) − 2|ωμ|) = 1, �(h̄|ω2 − ω2

B| − 2|ωμ|) = 0, while Eq. (13) leads to

βxyz(ω) ≈ − iηe3

4π h̄2

sgn(ω)

ω2
B

∫ ω2
B/4ω2

0
dn
√

ω4
B − 4ω2ω2

Bn

≈ −i
ηe3

24π h̄2

ω2
B

ω2
sgn(ω) ≈ iβ0

|μ|
h̄ω

, |βxyz(ω)| � |β0|, (C5)

where, again, we changed the summation with the integral.
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2. LPGE component βxxz

The whole procedure for calculating βxxz = βyyz is analogous to that for CPGE components. The relevant matrix elements
are now given by

Zxxz
n1n2n2

= Zyyz
n1n2n2

= − E0

4En1 E2
n2

{
δ|n2|,|n1|−1

(
En1 − E0

)(
En2 + E0

)+ δ|n2|,|n1|+1
(
En1 + E0

)(
En2 − E0

)}
. (C6)

In combination with Eq. (11), this gives

σ xxz(ω + 	,−ω) = −i
ηe4v3

F B

8π h̄2	ω2

∫ ∞

−∞
dkz

∞∑
n1,n2=−∞

[�(ε1) − �(ε2)]δ(ε2 − ε1 − h̄ω)
E0
(
En1 − En2

)
E2

n1
E2

n2

× [δ|n1|,|n2|−1
(
En2 − E0

)(
En1 + E0

)+ δ|n1|,|n2|+1
(
En1 − E0

)(
En2 + E0

)]
, (C7)

which after integration over kz and summation over Landau indices leads to Eq. (14). The density plot for this component is shown
in Fig. 8(b). The structure of step functions dictates that this component is nonzero only provided h̄(ω2 + ω2

B) − 2|ωμ| > 0 and
h̄|ω2 − ω2

B| − 2|ωμ| < 0. In this parameter range, which is shown in Fig. 8(b) by the black dotted lines, different components
are related according to

βxxz(ω) = −iβxyz(ω)sgn(ωμ). (C8)

Finally, in the low-field limit ωB 
 |ω|, |μ|/h̄, the two step functions can be combined into a single one, and we obtain

βxxz(ω) ≈ − ηe3

4π h̄2

ω2
Bsgn(μ)

ω4
�

(
ω2

B

|ω| −
∣∣∣∣|ω| − 2

|μ|
h̄

∣∣∣∣
) ∫ ω2/4ω2

B

0
dn
√

ω4 − 4ω2ω2
Bn

= β0

2
sgn(μ)�

(
ω2

B

|ω| −
∣∣∣∣|ω| − 2

|μ|
h̄

∣∣∣∣
)

, with β0 ≡ − ηe3

12π h̄2 . (C9)

This expression is nonzero only in the narrow frequency range of the width 2ω2
B/|ω| ≈ h̄ω2

B/|μ| near h̄|ω| = 2|μ|.

APPENDIX D: SECOND HARMONIC GENERATION

For an ideal Weyl node, the only nonzero SHG components are σ xxz = σ yyz, σ zxx = σ xzx = σ zyy = σ yzy, and σ xzy = σ zxy =
−σ yzx = −σ zyx. It is straightforward to see from the structure of Zαβγ

n1n2n3 factors, Eq. (9), that they equal zero if the number of
z components is even. Furthermore, SHG components σ xyz = σ yxz = 0 vanish due to the identity Zxyz

n1n2n3 + Zyxz
n1n2n3 = 0, and the

component σ zzz = 0 becomes zero after integration over kz. Below, we consider the derivation and limiting cases for all the
nonzero components in more detail.

1. σxxz component of SHG

We start with the simplest nonzero component σ xxz(iω) = χ xxz(iω, iω)/ω2. We note that there is only one term in this
expression, which merely accounts for the fact that both electric field components in this case have the same frequency and
polarization and are physically indistinguishable.

The starting point for the calculation is Eq. (8). The corresponding form factor equals

Zxxz
n1n2n3

= − E0

4En1 E2
n2

δn2,n3

[
δ|n1|,|n2|−1

(
En1 + E0

)(
En2 − E0

)+ δ|n2|,|n1|−1
(
En2 + E0

)(
En1 − E0

)]

− E2
n2

− E2
0

4En1 E2
n2

δn2,−n3

[
δ|n2|,|n1|−1

(
En1 − E0

)− δ|n1|,|n2|−1
(
En1 + E0

)]
. (D1)

Plugging this expression into Eq. (8) and performing summation over one of the Landau indices, we obtain

σ xxz(iω) = − ηe4v3
F B

16π2 h̄ω2

∫ ∞

−∞
dkz

∑
n1,n2

�(ε1) − �(ε2)

h̄2ω2 + (En1 − En2

)2 E0

En1 E2
n2

× [δ|n1|,|n2|−1
(
En1 + E0

)(
En2 − E0

)+ δ|n2|,|n1|−1
(
En2 + E0

)(
En1 − E0

)]
+ 1

ih̄ω + En1 + En2

[
�(ε2) − �(ε1)

ih̄ω + En2 − En1

− �(ε2) − �(ε−2)

2ih̄ω + 2En2

]
E2

n2
− E2

0

En1 E2
n2

× [δ|n2|,|n1|−1
(
En1 − E0

)− δ|n1|,|n2|−1
(
En1 + E0

)]
, (D2)

where εi = Eni (kz ) − μ and ε−i = −Eni (kz ) − μ. We find it convenient to further split this expression into the quantum
contribution σ xxz

q , involving n = 0 Landau level, and the nonquantum part σ xxz
nq , with n1,2 �= 0 only. After some simplification,
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the former is given by

σ xxz
q = − ηe4v3

F B

16π2 h̄ω2
v.p.

∫ ∞

−∞
dkz

2

E0E1

{
[�(ε−1) − �(ε0)]

(E0 + E1)2

h̄2ω2 + (E0 + E1)2
− [�(ε1) − �(ε0)]

(E0 − E1)2

h̄2ω2 + (E0 − E1)2

}
, (D3)

where v.p. stands for the Cauchy principal value and ε±1 = ±E1(kz ) − μ refers to the first Landau level in this particular
equation, while the latter equals

σ xxz
nq = − ηe4v3

F B

16π2 h̄ω2

∑
n1,n2 �=0

∫ ∞

0
dkz

�(ε2) − �(ε1)

En1 En2

(
En2 − En1

)2
h̄2ω2 + (En2 − En1

)2 (δ|n2|,|n1|−1 − δ|n1|,|n2|−1
)
. (D4)

It is straightforward to check that both quantum and nonquantum components are odd functions of chemical potential μ and
node chirality η. Focusing on μ > 0 and η = +1 for simplicity, one may perform the summation over one of the Landau
indices explicitly (again, positive and negative Landau levels should be considered separately). Upon simplifying the resulting
expressions, we obtain

σ xxz(iω) = σ xxz
q + σ xxz

nq = − e4v3
F B

2π2h̄3

∞∑
n=0

∫ ∞

0
dkz

�(εn+1) − �(εn)(
ω2 + ω2

B

)2 + 4ω2
(
ω2

Bn + v2
F k2

z

) , (D5)

where n = 0 term exactly corresponds to the quantum contribution. Integration over kz can now be performed explicitly leading
to Eqs. (26) and (27), where we restored generic η and μ. We note that this expression is purely real and, in principle, could be
rewritten through arctan function. However, we keep logarithms for the purpose of analytic continuation that we discuss next.

The analytic continuation iω → ω + i0 can be performed either from Eq. (27) or directly from integral in Eq. (D5). The result
reads as

Re σ xxz(ω) = ηe3ω2
B sgn(μ)

32π2h̄2ω2

⎧⎨
⎩

N0(ω)∑
n=0

1

|an(ω)| ln

∣∣∣∣ (kn − |an(ω)|)(kn+1 + |an(ω)|)
(kn + |an(ω)|)(kn+1 − |an(ω)|)

∣∣∣∣+
Nmax∑

n=N0(ω)+1

2

an(ω)
arctan

[
an(ω)(kn − kn+1)

knkn+1 + a2
n(ω)

]⎫⎬
⎭,

Im σ xxz(ω) = −ηe3ω2
B sgn

[
μω
(
ω2

B − ω2
)]

32π h̄2ω2

N0(ω)∑
n=0

�[(kn − |an(ω)|)(|an(ω)| − kn+1)]

|an(ω)| , (D6)

where we defined

Nmax ≡
⌊

μ2

h̄2ω2
B

⌋
, N0(ω) = min

{⌊(
ω2

B − ω2
)2

4ω2ω2
B

⌋
, Nmax

}
,

kn ≡ Re

√
μ2

h̄2 − ω2
Bn, an(ω) ≡

√
ω2

Bn −
(
ω2

B − ω2
)2

4ω2
, (D7)

in accordance with Eq. (28). We note that an(ω) is purely imaginary for 0 � n � N0(ω) (such that |an(ω)| = [(ω2
B − ω2)

2
/4ω2 −

ω2
Bn]1/2) and purely real for N0(ω) + 1 � n � Nmax (provided Nmax > N0(ω)). To derive this result, we used analytic continuation

of functions fn(iω) from Eq. (27):

fn(iω) �⇒ f +
n (ω) ≡ − 2

an(ω)
arctan

[
an(ω)(kn − kn+1)

knkn+1 + a2
n(ω)

]
, for n >

(
ω2

B − ω2
)2

4ω2
Bω2

,

fn(iω) �⇒ f −
n (ω) ≡ 1

|an(ω)| ln

∣∣∣∣ (kn + |an(ω)|)(kn+1 − |an(ω)|)
(kn − |an(ω)|)(kn+1 + |an(ω)|)

∣∣∣∣+ π i sgn
[
ω
(
ω2

B − ω2
)]

|an(ω)| �[(kn − |an(ω)|)(|an(ω)| − kn+1)],

for n <

(
ω2

B − ω2
)2

4ω2
Bω2

. (D8)

We present the density plot of both real and imaginary parts of σ xxz(ω) as a function of frequency and magnetic field in Fig. 9.
A small but finite imaginary part of frequency is added to mimic the effect of a finite scattering rate. It can be shown that the
region with nonzero Im σ xxz exactly corresponds to the region with nonzero LPGE component βxxz, which is given by Eq. (20).
The boundaries of this region are accompanied with some of the divergences of Re σ xxz, Eqs. (32) and (33), which we discuss
in more detail below. The line B = B0 indicates the boundary of the quantum limit, i.e., the first nonchiral Landau level starts
populating below this field.

Equation (D6) is convenient for analyzing various limiting cases and divergences. We find that, at h̄ωB < |μ| (away from the
quantum limit), divergences take place at frequencies given by Eqs. (32)–(34), while corresponding asymptotic expressions in
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FIG. 9. Density plot of (a) real and (b) imaginary parts of σ xxz as a function of frequency and magnetic field, described by Eq. (D6). We
keep small but finite imaginary part of frequencies to mimic the effect of a finite scattering rate. Black dotted lines indicate the positions of the
divergences given by Eqs. (32)–(34). White regions around the divergences imply that the conductivity components reach values (both positive
and negative) larger than those shown in the figure legend. The units are σ0 ≡ ηe3/32π 2 h̄μ and B0 ≡ μ2/2eh̄v2

F .

their vicinity take the form (we focus on ω, μ > 0 for simplicity here):

σ xxz(ω) ≈ ηe3

32π2h̄2

(
ωB

ω̃±
1

)2
(

Nmax∑
n=0

1

kn

)
ln |ω − ω̃±

1 | near h̄|ω̃±
1 | =

√
h̄2ω2

B + μ2 ± μ,

σ xxz(ω) ≈ ηe3

32π2h̄2

(
ωB

ω̃±
2

)2
(

Nmax∑
n=1

1

kn

)
ln

1

|ω − ω̃±
2 | near h̄|ω̃±

2 | = |μ| ±
√

μ2 − h̄2ω2
B,

σ xxz(ω) ≈ ηe3

32
√

2π h̄2

1

(
√

Nmax + 1 ± √
Nmax)3/2

[
1

Nmax(Nmax + 1)

]1/4
�[∓(ω − ω̃±

3 )] ± i�[±(ω − ω̃±
3 )]√

ωB|ω − ω̃±
3 |

near |ω̃±
3 | = ωB(

√
Nmax + 1 ±

√
Nmax). (D9)

These divergences are indicated by black dotted lines in Fig. 9. The white regions around the divergences imply strong
enhancement of σ xxz, where it goes beyond the values shown in the plot legend. We see, in particular, that this component
becomes very large even at small frequencies and magnetic fields around the line h̄ω/μ = B/2B0 (equivalently, ω = h̄ω2

B/2μ),
see Eq. (35).

In the quantum limit, h̄ωB > |μ|, only the n = 0 term contributes in Eq. (D6), and we obtain Eq. (29).
In the limit of vanishing magnetic field ωB → 0, it is more convenient to start with the general expression in Matsubara

frequencies given by Eqs. (26)–(28). In this limit, one may write

Nmax ≈ μ2

h̄2ω2
B

, an(iω) ≈
√

ω2
Bn + ω2

4
,

fn(iω) ≈ − 4ωB

4ω2
BNmax + ω2

1√
Nmax − n

. (D10)

The summation over n can then be replaced with integration, and we find

σ xxz(iω) ≈ − ηe3ω3
B sgn(μ)

8π2h̄2ω2
(
4ω2

BNmax + ω2
) ∫ Nmax

0

dn√
Nmax − n

= − ηe3ω2
Bμ

4π2 h̄ω2(4μ2 + h̄2ω2)
. (D11)

When performing analytic continuation, we use the identity:

1

4μ2 + h̄2ω2
−→ 1

4μ2 + h̄2(−iω + 0)2
= 1

4μ2 − h̄2ω2
+ π i sgn(ωμ)

4μ
δ(h̄|ω| − 2|μ|), (D12)

and obtain Eq. (30). We note that this asymptotic expression is valid provided not only ωB 
 |ω|, |μ|/h̄, but also ωB 
√
|ω2 − 4μ2/h̄2|. To obtain accurate behavior in the vicinity of h̄|ω| ≈ 2|μ|, one may use the Euler-Maclaurin formula.
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Finally, in the low-frequency limit |ω| 
 min{ωB, |μ|/h̄, h̄ω2
B/|μ|}, we perform Taylor expansion and find that

fn(iω) ≈ 8(kn+1 − kn)ω2

ω4
B

. (D13)

After plugging this expression into Eq. (26) we reproduce Eq. (31).

2. σxzx component of SHG

We continue our analysis with the component σ xzx(iω) = σ zxx(iω) = [χ xzx(iω, iω) + χ zxx(iω, iω)]/2ω2. The extra factor of
2 comes from the observation that the Kubo formula calculates the total contribution to jx(2ω) from fields Ex(ω) and Ez(ω)
in Eq. (3), i.e., the left-hand side of Eq. (4) should be understood in this case as σ xzx + σ zxx, and similarly for other SHG
components. The whole calculation then is absolutely analogous to the previous section, even though lengthier, so we only
highlight the key distinctive features.

The sum of the form factors for this component equals

Zxzx
n1n2n3

+ Zzxx
n1n2n3

= − E0

4E2
n1

En3

δn1,n2

[
δ|n3|,|n2|−1(En3 + E0)

(
En2 − E0

)+ δ|n2|,|n3|−1
(
En2 + E0

)
(En3 − E0)

]

− E2
n1

− E2
0

4E2
n1

En3

δn1,−n2

[
δ|n2|,|n3|−1(En3 − E0) − δ|n3|,|n2|−1(En3 + E0)

]

− E0

4E2
n1

En2

δn1,n3

[
δ|n2|,|n3|−1

(
En2 + E0

)
(En3 − E0) + δ|n3|,|n2|−1(En3 + E0)

(
En2 − E0

)]

− E2
n1

− E2
0

4E2
n1

En2

δn1,−n3

[
δ|n3|,|n2|−1

(
En2 − E0

)− δ|n2|,|n3|−1
(
En2 + E0

)]
. (D14)

Plugging this into Eq. (8), we obtain after some simplification

σ xzx(iω) = − ηe4v3
F B

32π2 h̄ω2

∫ ∞

−∞
dkz

∑
n1,n2

�(ε2) − �(ε1)(
En2 − En1 + ih̄ω

)(
En2 − En1 + 2ih̄ω

) E0
(
En2 − En1

)
E2

n1
E2

n2

× [δ|n1|,|n2|−1
(
En1 + E0

)(
En2 − E0

)+ δ|n2|,|n1|−1
(
En2 + E0

)(
En1 − E0

)]
+ [�(ε2) − �(ε1)]

[
1(

En2 + En1 − ih̄ω
)(

En2 − En1 + 2ih̄ω
) + 1(

En2 + En1 + ih̄ω
)(

En2 − En1 − 2ih̄ω
)
]

× E2
n2

− E2
0

En1 E2
n2

[
δ|n2|,|n1|−1

(
En1 − E0

)− δ|n1|,|n2|−1
(
En1 + E0

)]
. (D15)

This component is also an odd function of μ and η. Following the steps outlined in the previous section, we end up with Eq. (36)
and all the limiting cases following from it.

After analytic continuation, the result reads as

σ xzx(ω) = ηe3

32π2h̄2

ω2
B

ω2

sgn(μ)

ω4
B − 4ω4

⎧⎨
⎩

N0(2ω)∑
n=0

[(
ω2

B − 2ω2
)(

ω2
B − 4ω2

)− 12ω2ω2
Bn
]

f −
n (2ω)

+
Nmax∑

n=N0(2ω)+1

[(
ω2

B − 2ω2
)(

ω2
B − 4ω2

)− 12ω2ω2
Bn
]

f +
n (2ω)

−
N0(ω)∑
n=0

[
2
(
ω2

B − ω2)(ω2
B − 2ω2)− 12ω2ω2

Bn
]

f −
n (ω)

−
Nmax∑

n=N0(ω)+1

[
2
(
ω2

B − ω2
)(

ω2
B − 2ω2

)− 12ω2ω2
Bn
]

f +
n (ω)

⎫⎬
⎭, (D16)

where N0(ω) and Nmax are defined in Eq. (D7), and f ±
n (ω) are defined in Eq. (D8).
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3. σxzy component of SHG

Finally, we calculate the components σ xzy(iω) = σ zxy(iω). While the basic approach for calculating these components is like
the previous ones, certain technical details are rather nontrivial, so we discuss them in more detail.

We find it more convenient to subtract the corresponding contribution at zero chemical potential, i.e., we define

σ xzy(iω) ≡ χ xzy(iω, iω,μ) + χ zxy(iω, iω,μ) − χ xzy(iω, iω, 0) − χ zxy(iω, iω, 0)

2ω2
. (D17)

This extra contribution, obviously, does not depend on μ; consequently, it cancels out after summation over the nodes with
opposite chiralities (since each component is proportional to the chirality of the node).

The sum of the form factors for this component equals

Zxzy
n1n2n3

+ Zzxy
n1n2n3

= iE0

4E2
n1

En3

δn1,n2

[
δ|n3|,|n2|−1

(
En3 + E0

)(
En2 − E0

)− δ|n2|,|n3|−1
(
En2 + E0

)
(En3 − E0)

]

− i
E2

n1
− E2

0

4E2
n1

En3

δn1,−n2

[
δ|n2|,|n3|−1

(
En3 − E0

)+ δ|n3|,|n2|−1
(
En3 + E0

)]

+ iE0

4E2
n1

En2

δn1,n3

[
δ|n3|,|n2|−1

(
En3 + E0

)(
En2 − E0

)− δ|n2|,|n3|−1
(
En2 + E0

)(
En3 − E0

)]

+ i
E2

n1
− E2

0

4E2
n1

En2

δn1,−n3

[
δ|n3|,|n2|−1

(
En2 − E0

)+ δ|n2|,|n3|−1
(
En2 + E0

)]
. (D18)

The derivation then is lengthy but straightforward, and we arrive at Eq. (40). This component is an even function of μ and odd
function of η.

The analytic continuation, however, requires extra care and better be performed directly in integrals from which Eq. (40) was
derived, rather than from Eq. (40) itself. Below, we calculate the corresponding integrals in Matsubara frequencies and perform
their analytic continuations explicitly.

(1)

F1,n(iω) =
∫ kn

0

dk√
k2 + ω2

Bn

1

k2 + ω2
Bn + ω2

4

= 2

ω

√
ω2 + 4ω2

Bn
ln

k0

√
ω2 + 4ω2

Bn + ωkn

k0

√
ω2 + 4ω2

Bn − ωkn

. (D19)

This component is well defined for n � 1, and we used kn =
√

(μ/h̄)2 − ω2
Bn for n � Nmax to simplify the answer (we note that

k0 = |μ|/h̄). Upon analytic continuation iω → ω + i0, this component becomes

F1,n(iω) �⇒ F+
1,n(ω) ≡ 4

ω

√
4ω2

Bn − ω2
arctan

⎡
⎢⎣ knω

k0

√
4ω2

Bn − ω2

⎤
⎥⎦, for n >

ω2

4ω2
B

,

F1,n(iω) �⇒ F−
1,n(ω) ≡ 2

ω

√
ω2 − 4ω2

Bn

⎛
⎜⎝ln

∣∣∣∣∣∣∣
k0

√
ω2 − 4ω2

Bn − ωkn

k0

√
ω2 − 4ω2

Bn + ωkn

∣∣∣∣∣∣∣+ π i�(2k0 − |ω|)

⎞
⎟⎠, for n <

ω2

4ω2
B

. (D20)

(2)

F2,n(iω) =
∫ kn

0

dk√
k2 + ω2

Bn

1

k2 + a2
n(iω)

= ω

an(iω)
(
ω2 + ω2

B

) ln
2ωk0an(iω) + kn

(
ω2 + ω2

B

)
2ωk0an(iω) − kn

(
ω2 + ω2

B

) , (D21)

which is, again, well defined for n � 1. The analytic continuation reads

F2,n(iω) �⇒ F+
2,n(ω) ≡ 2ω

an(ω)
(
ω2

B − ω2
) arctan

[
kn
(
ω2

B − ω2
)

2k0ωan(ω)

]
, for n >

(
ω2

B − ω2
)2

4ω2
Bω2

,

F2,n(iω) �⇒ F−
2,n(ω) ≡ ω

|an(ω)|(ω2
B − ω2

) ln

∣∣∣∣∣2ωk0|an(ω)| − kn
(
ω2

B − ω2
)

2ωk0|an(ω)| + kn
(
ω2

B − ω2
)
∣∣∣∣∣

− π iω

|an(ω)|(ω2
B − ω2

)�(2k0|ω| − |ω2
B − ω2|), for n <

(
ω2

B − ω2
)2

4ω2
Bω2

. (D22)
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Here,

an(ω) =
√

ω2
Bn −

(
ω2

B − ω2
)2

4ω2
, (D23)

which is purely real for n > (ω2
B − ω2)

2
/4ω2ω2

B, and

|an(ω)| =
√(

ω2
B − ω2

)2
4ω2

− ω2
B, n (D24)

for n < (ω2
B − ω2)

2
/4ω2ω2

B.
(3)

F3,n(iω) =
∫ kn+1

0

dk√
k2 + ω2

B(n + 1)

1

k2 + a2
n(iω)

= ω

an(iω)
(
ω2 − ω2

B

) ln
2ωk0an(iω) + kn+1

(
ω2 − ω2

B

)
2ωk0an(iω) − kn+1

(
ω2 − ω2

B

) , (D25)

for all n � 0. The analytic continuation reads

F3,n(iω) �⇒ F+
3,n(ω) ≡ 2ω

an(ω)
(
ω2

B + ω2
) arctan

[
kn+1

(
ω2

B + ω2
)

2k0ωan(ω)

]
, for n >

(
ω2

B − ω2
)2

4ω2
Bω2

,

F3,n(iω) �⇒ F−
3,n(ω) ≡ ω

|an(ω)|(ω2
B + ω2

) ln

∣∣∣∣∣2ωk0|an(ω)| − kn+1
(
ω2

B + ω2
)

2ωk0|an(ω)| + kn+1
(
ω2

B + ω2
)
∣∣∣∣∣

− π iω sgn
(
ω2

B − ω2
)

|an(ω)|(ω2
B + ω2

) �
(
2k0|ω| − ∣∣ω2

B + ω2
∣∣), for n <

(
ω2

B − ω2
)2

4ω2
Bω2

. (D26)

(4) Finally, we have

∫ μ2

0

dx

x + h̄2a2
0(iω)

= ln
μ2 + h̄2a2

0(iω)

h̄2a2
0(iω)

�⇒ ln

∣∣∣∣∣ h̄
2|a0(ω)|2 − μ2

h̄2|a0(ω)|2

∣∣∣∣∣− π isgn
[
ω
(
ω2

B − ω2
)]

�

[
μ2

h̄2 − |a0(ω)|2
]
, (D27)

with |a0(ω)| = |ω2
B − ω2|/2|ω|.

Noticing that

gn(iω) =
(
ω2

B − ω2
)

ω
F3,n(iω) −

(
ω2

B + ω2
)

ω
F2,n(iω), (D28)

where gn(iω) is defined in Eq. (41), and collecting everything together, we obtain

σ xzy(ω) = i
ηe3

8π2h̄2

ω2
B

ω
(
2ω2 + ω2

B

)
{

ln

∣∣∣∣∣
(
ω2

B − ω2
)2 − 4ω2k2

0(
ω2

B − 4ω2
)2 − 16ω2k2

0

(
ω2

B − 4ω2
)2(

ω2
B − ω2

)2 k0
(
ω2

B − ω2
)+ k1

(
ω2

B + ω2
)

k0
(
ω2

B − ω2
)− k1

(
ω2

B + ω2
)
∣∣∣∣∣

+ ln

∣∣∣∣∣k0
(
ω2

B − 4ω2
)− k1

(
ω2

B + 4ω2
)

k0
(
ω2

B − 4ω2
)+ k1

(
ω2

B + 4ω2
)
∣∣∣∣∣+ π i sgn(ω)

[
sgn
(
ω2

B − 4ω2
)
�
(
4|ω|k0 − ∣∣ω2

B − 4ω2
∣∣)

− �
(
4|ω|k0 − ∣∣ω2

B + 4ω2
∣∣)− sgn

(
ω2

B − ω2
)
�
(
2|ω|k0 − ∣∣ω2

B − ω2
∣∣)+ �

(
2|ω|k0 − ∣∣ω2

B + ω2
∣∣)]}

− i
3ηe3

16π2h̄2

ω2
B

ω
(
4ω4 − ω4

B

) Nmax∑
n=1

{
4nω2

Bω2F1,n(ω) −
(
ω2

B − ω2
)(

ω2
B − 2ω2

)− 6ω2ω2
Bn

3ω2

× [(
ω2

B + ω2
)
F3,n(ω) − (ω2

B − ω2
)
F2,n(ω)

]+
(
ω2

B − 2ω2
)(

ω2
B − 4ω2

)− 12ω2ω2
Bn

12ω2

× [(
ω2

B + 4ω2
)
F3,n(2ω) − (ω2

B − 4ω2
)
F2,n(2ω)

]}
. (D29)
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In this expression, summation over n should be understood in the following sense:

Nmax∑
n=1

nF1,n(ω) =
Ñ0(ω)∑
n=1

nF−
1,n(ω) +

Nmax∑
n=Ñ0(ω)+1

nF+
1,n(ω), Ñ0(ω) = min

{⌊
ω2

4ω2
B

⌋
, Nmax

}
,

Nmax∑
n=1

F(2,3),n(ω) =
N0(ω)∑
n=1

F−
(2,3),n(ω) +

Nmax∑
n=N0(ω)+1

F+
(2,3),n(ω),

Nmax∑
n=1

nF(2,3),n(ω) =
N0(ω)∑
n=1

nF−
(2,3),n(ω) +

Nmax∑
n=N0(ω)+1

nF+
(2,3),n(ω),

Nmax∑
n=1

F(2,3),n(2ω) =
N0(2ω)∑

n=1

F−
(2,3),n(2ω) +

Nmax∑
n=N0(2ω)+1

F+
(2,3),n(2ω),

Nmax∑
n=1

nF(2,3),n(2ω) =
N0(2ω)∑

n=1

nF−
(2,3),n(2ω) +

Nmax∑
n=N0(2ω)+1

nF+
(2,3),n(2ω), (D30)

where N0(ω) and Nmax are defined in Eq. (D7).
In the quantum limit, ωB > k0, Nmax = 0, so only n = 0 term contributes. Furthermore, since k1 = 0 in this limit, we find that

Eq. (D29) reduces to Eq. (42).
To derive the asymptotic behavior at small magnetic fields ωB 
 |ω|, k0,

√
|ω2 − 4k2

0 |,
√

|ω2 − k2
0 |, we employ the Euler-

Maclaurin formula and switch from summation to integration:

n∑
i=m

f (i) =
∫ n

m
f (x)dx + f (m) + f (n)

2
+ 1

6

f ′(n) − f ′(m)

2!
+ · · · (D31)

Treating the terms n = 0 and n = Nmax separately, we apply Eq. (D31) to the rest of the terms in Eq. (40), n = 1, . . . , Nmax − 1.
Carefully collecting all the contributions of the order ω3

B and ω4
B, we find

σ xzy(iω) ≈ 3ηe3

8π2h̄2

h̄3ω3
B|μ|

ω(h̄2ω2 + μ2)(h̄2ω2 + 4μ2)
ζ

(
−1

2
,

μ2

h̄2ω2
B

−
⌊

μ2

h̄2ω2
B

⌋)

− ηe3

64π2h̄2

ω4
B

ω5

[
5h̄4ω4 + 16h̄2ω2μ2 + 48μ4

(h̄2ω2 + 4μ2)2
+ 2

3
ln

26ω6μ6(h̄2ω2 + μ2)

ω6
B(h̄2ω2 + 4μ2)4

]
, (D32)

where ζ (− 1
2 , x) is the Hurwitz ζ function defined through the identity:

N∑
n=0

√
n + x = ζ

(
−1

2
, x

)
− ζ

(
−1

2
, x + N + 1

)
. (D33)

At vanishing field, the first term ∝ ω3
B is formally the dominant one, and the Hurwitz ζ function leads to pronounced oscillations.

However, the second term, which is of the order of O(ω4
B), quickly becomes important as the magnetic field increases, so we

keep it as well.
We note that the series in Eq. (D31) is the asymptotic one, so we cut it neglecting the boundary terms with higher derivatives,

which are formally ∝ ω4
B/ω5. We checked, however, that the contribution of these terms is numerically negligible; furthermore,

since these terms do not depend on the chemical potential μ, they cancel out after summation over the nodes with opposite
chiralities.

After performing analytic continuation, we obtain Eq. (43). The analytic continuation of the logarithm is more conveniently
performed from the corresponding integral representations, analogously to how it has been done when deriving Eq. (D29), i.e.,

ln
h̄6ω6(h̄2ω2 + μ2)

(h̄2ω2 + 4μ2)4
=
∫ μ2

0

dx

x + h̄2ω2
− 4

∫ 4μ2

0

dx

x + h̄2ω2
�⇒

∫ μ2

0

dx

x − h̄2(ω + i0)2
− 4

∫ 4μ2

0

dx

x − h̄2(ω + i0)2

= ln

∣∣∣∣∣ h̄
6ω6(h̄2ω2 − μ2)

(h̄2ω2 − 4μ2)4

∣∣∣∣∣+ π i sgn(ω)[�(μ2 − h̄2ω2) − 4�(4μ2 − h̄2ω2)]. (D34)
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We also used the identities:

1

(μ2 + h̄2ω2)2
= − ∂

∂μ2

(
1

μ2 + h̄2ω2

)
�⇒ − ∂

∂μ2

[
1

μ2 − h̄2ω2
+ π i sgn(ω)δ(μ2 − h̄2ω2)

]

= 1

(μ2 − h̄2ω2)2
− π i sgn(ω)δ′(μ2 − h̄2ω2), (5h̄4ω4 − 16h̄2ω2μ2 + 48μ4)δ′(4μ2 − h̄2ω2)

= −4μ2

[
δ′(h̄|ω| − 2|μ|) − δ(h̄|ω| − 2|μ|)

|μ|
]
. (D35)

To derive low-frequency behavior ω → 0, we expand Eq. (40) to the first nonvanishing (linear) power of ω, focusing on the
case h̄ωB < |μ| first. When doing so, we consider terms n = 0 and n = Nmax separately and obtain

σ xzy(iω) ≈ − 3ηe3ω|μ|
2π2h̄2ω2

B(|μ| + h̄k1)
− 3ηe3ω

4π2h̄3ω4
B|μ|

Nmax−1∑
n=1

[
h̄2ω2

Bkn + 2μ2(kn − kn+1)
]− 3ηe3ωkNmax

(
2μ2 + ω2

Bh̄2
)

4π2h̄3ω4
B|μ|

= − 3ηe3ω

4π2 h̄2ω2
B

(
2μ2

h̄2ω2
B

+ h̄

|μ|
Nmax∑
n=1

kn

)
, (D36)

which after analytic continuation reproduces Eq. (44). Finally, applying low-frequency expansion to the quantum limit (h̄ωB >

|μ|) expression given by Eq. (42), we find that Eqs. (44) and (D36) are valid in this case as well.

APPENDIX E: SEMICLASSICAL CALCULATION

We start the analysis in this Appendix with the semiclassical equations of motion which have the form:

h̄ṙ = ∇kεk − h̄k̇ × �k,

h̄k̇ = −eE − eṙ × B, (E1)

where �k = i〈∇kuk| × ∇kuk〉 is the Berry curvature. In the presence of external magnetic field B, the quasiparticle energy
dispersion is modified according to

εk = ε0
k − mk · B, (E2)

where ε0
k is the bare band energy at B = 0, Hk|uk〉 = ε0

k|uk〉, and the orbital magnetic moment is given by

mk = −i
e

2h̄
〈∇kuk| × (Hk − ε0

k

)|∇kuk〉. (E3)

These equations can be readily resolved to give

ṙ = 1

h̄Dk

{
∇kεk + eE × �k + e

h̄
B(�k · ∇kεk )

}
,

k̇ = 1

h̄Dk

{
−eE − e

h̄
∇kεk × B − e2

h̄
(E · B)�k

}
, (E4)

where we have also introduced the phase-space correction factor Dk = 1 + (e/h̄)(B · �k ).
The contribution of the magnetization current −e

∫
k ∇r × mk · f can be neglected in the case of a uniform system. Then the

overall current density is given by

j = −e
∫

d3k

(2π )3
Dkṙ f = − e

h̄

∫
d3k

(2π )3

[
∇kεk + eE × �k + e

h̄
B(∇kεk · �k )

]
f . (E5)

The distribution function f satisfies the conventional kinetic equation, which for the uniform system, in the relaxation time
approximation, takes the form:

∂ f

∂t
+ k̇∇k f = − f − f0

τ
, (E6)

where k̇ is given by Eq. (E4), τ is the relaxation time, and f0 = f0(εk ) is the equilibrium Fermi-Dirac distribution (as a function
of εk, not ε0

k), which at zero temperature takes the form f0 = �(μ − εk ). In the case of a periodic electric field,

E(t ) = Eωe−iωt + E∗
ωeiωt , (E7)

the steady-state distribution function admits the expansion:

f (t ) = f0 + δ f0 + ( f1e−iωt + f ∗
1 eiωt ) + ( f2e−2iωt + f ∗

2 e2iωt ) + · · · , (E8)
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where f1 ∝ E = |Eω|, f2 ∝ E2, etc. The time-independent correction δ f0 ∝ E2 appears due to the second-order optical transi-
tions and contributes to PGE (second-order dc current). The reality condition requires that E−ω = E∗

ω. Expanding the kinetic
equation into different harmonics, we find a set of coupled equations:

Dk

(
iω − 1

τ

)
f1 = − e

h̄

[
Eω + e

h̄
(Eω · B)�

]
· ∇k f0 − e

h̄2 ∇k f1 · ∇kεk × B,

Dk

(
2iω − 1

τ

)
f2 = − e

h̄

[
Eω + e

h̄
(Eω · B)�

]
· ∇k f1 − e

h̄2 ∇k f2 · ∇kεk × B,

−Dk
1

τ
δ f0 = − e

h̄

[
E∗

ω + e

h̄
(E∗

ω · B)�

]
· ∇k f1 − e

2h̄2 ∇kδ f0 · ∇kεk × B + c.c. (E9)

Generically, this is a complicated system of differential equations. However, it admits a straightforward iterative solution in
the case of a small magnetic field. Up to the linear order in B, the solution reads

f1 = eτ

h̄Dk(1 − iωτ )

{[
Eω + e

h̄
(Eω · B)�k

]
· ∇k f0 + eτ

h̄2(1 − iωτ )
[∇kεk × B] · ∇k(Eω · ∇k f0)

}
,

f2 = eτ

h̄Dk(1 − 2iωτ )

{[
Eω + e

h̄
(Eω · B)�k

]
· ∇k f1 + eτ

h̄2(1 − 2iωτ )
[∇kεk × B] · ∇k(Eω · ∇k f1)

}
,

δ f0 = eτ

h̄Dk

{[
E∗

ω + e

h̄
(E∗

ω · B)�k

]
· ∇k f1 + eτ

h̄2 [∇kεk × B] · ∇k
(
E∗

ω · ∇k f1
)}+ c.c. (E10)

We stress here that the equations determining f1 and f2 are well defined in the limit τ → ∞ and lead to the solutions which are
still described by Eq. (E10), i.e., the limits B → 0 and τ → ∞ commute for these harmonics. On the contrary, the equation for
δ f0 becomes much more complicated if we set τ → ∞ from the beginning, and it does not allow for a solution then which
is simply an expansion in powers of B. This implies that Eq. (E10) is not applicable for δ f0 in the limit τ → ∞ any longer,
indicating that the most general solution depends sensitively on the parameter ωBτ .

Having solved for the distribution function in the limit B → 0 (at fixed finite τ ), we plug the solution given by Eq. (E10) into
Eq. (E5) to calculate the nonlinear current. Its quadratic part is given by the sum of the dc current jdc

2 (photocurrent) and the SHG
current j2ω

2 e−2iωt + c.c.:

jdc
2 = − e

h̄

∫
d3k

(2π )3

{[
∇kεk + e

h̄
(∇kεk · �k )B

]
δ f0 + eEω × �k f ∗

1 + eE∗
ω × �k f1

}
,

j2ω
2 = − e

h̄

∫
d3k

(2π )3

{[
∇kεk + e

h̄
(∇kεk · �k )B

]
f2 + eEω × �k f1

}
. (E11)

Finally, we apply these general equations to the case of a Weyl node, which is characterized by

ε0
k = ζvF h̄k, �k = − ζη

2k3
k, mk = −η

evF

2k2
k, (E12)

where η = ±1 is the chirality of the node and ζ = +1/ − 1 corresponds to the conduction/valence band. We assume that the
electric and magnetic fields are given by Eω = (Ex, Ey, Ez )T and B = (0, 0, B)T , correspondingly. Expanding Eq. (E11) up to
linear order in B (recall that f0 depends on εk = ε0

k − mk · B rather than on ε0
k), we evaluate integrals over k and find

j2ω
2 ≈ ηe4Bv2

F

12π2h̄2μ

τ 2(2 − 3iωτ )

(1 − iωτ )2(1 − 2iωτ )

⎡
⎢⎣

ExEz

EyEz

−(E2
x + E2

y

)
⎤
⎥⎦,

jdc
2 ≈ i

ηe3

6π2h̄2

τ 2ω

1 + ω2τ 2
Eω × E∗

ω

+ ηe4Bv2
F

12π2h̄2μ

τ 2

(1 + ω2τ 2)2

⎧⎪⎨
⎪⎩
⎡
⎢⎣

2(ExE∗
z + E∗

x Ez )

2(EyE∗
z + E∗

y Ez )

−4(|Ex|2 + |Ey|2)

⎤
⎥⎦− iωτ (1 − ω2τ 2)

⎛
⎜⎝

EzE∗
x − E∗

z Ex

EzE∗
y − E∗

z Ey

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭. (E13)

The part linear in B exactly corresponds to Eqs. (55) and (56). The contribution to photocurrent independent of B, surprisingly,
does not follow from our exact microscopic result at B = 0, Eq. (B6). This observation poses a separate question about the origin
of the discrepancy in the answers obtained within different approaches. One possible resolution could be the proper gauge choice
for the electric field. Indeed, since this term does not depend on chemical potential, it necessarily cancels out after summation
over the nodes with the opposite chiralities and, consequently, does not contribute to the physical answer. Another opportunity
might be the inclusion of both conduction and valence bands into semiclassical calculation and accounting for the interband
transitions. We leave the detailed analysis of this issue to future work.
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