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Spectral properties of the critical (1+1)-dimensional Abelian-Higgs model
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The presence of gauge symmetry in 1+1 dimensions is known to be redundant, since it does not imply the
existence of dynamical gauge bosons. As a consequence, in the continuum, the Abelian-Higgs model (i.e., the
theory of bosonic matter interacting with photons) just possesses a single phase, as the higher-dimensional Higgs
and Coulomb phases are connected via nonperturbative effects. However, recent research published in Phys.
Rev. Lett. 128, 090601 (2022) has revealed an unexpected phase transition when the system is discretized on the
lattice. This transition is described by a conformal field theory with a central charge of c = 3/2. In this paper,
we aim to characterize the two components of this c = 3/2 theory—namely the free Majorana fermionic and
bosonic parts—through equilibrium and out-of-equilibrium spectral analyses.

DOI: 10.1103/PhysRevB.109.045103

I. INTRODUCTION

A physical theory is most often characterized by fixing
its symmetries, the dimensions of space-time on which it
operates, and its field content [1–5]. This concept forms the
basis of the renormalization-group construction and our ef-
forts to categorize its fixed points [6–10]. For instance, in
a four-dimensional space-time, in a system featuring U (1)
gauge-invariance and fermionic matter, we expect the physics
to be described by quantum electrodynamics, where the
fermions correspond to electrons and the gauge bosons cor-
respond to photons [11,12].

Here we analyze a scenario that shows that this simple
picture does not necessarily hold. The lattice discretization
of the Abelian-Higgs model [11–16] (see Refs. [17–25] for
recent discussions on realizing the Abelian-Higgs model in
quantum simulators), defined on one spatial and one time
dimension (1+1D), shares the same dimensionality and field
content with the same in the continuum. However, as shown
recently in Ref. [26], strong correlations induce an emergent
physical theory on the lattice that can be described, at low
energies, as one massless relativistic fermion together with a
massless relativistic boson.

The Abelian-Higgs model is among the simplest U (1)
gauge theories in 1+1D. It contains bosonic matter (the
Higgs part of the model) and constitutes a well-known
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textbook example of gauge theory [11,12,27]. The model
is described by the action [with the metric convention
gμν = diag(−1, 1)]

S =
∫

d2x

(
−1

2
F 01F01 − Dνφ(Dνφ)∗

− m2|φ|2 − λ

2
|φ|4 + θ

2π
qF 01

)
, (1)

where Dν = ∂ν + iqAν is the covariant derivative, with q be-
ing the charge of the scalar matter field described by the
complex-valued field φ. m and λ are the bare mass and self-
interaction of the scalar field, respectively, and θ is a periodic
parameter, −π � θ � π , that controls the background field.

Despite the similarity of the above action with higher-
dimensional Abelian-Higgs models, the physics in 1+1D is
very different [1,27,28]. In higher dimensions, the model
displays two well-known phases, namely a Coulomb phase
described by massless photons interacting with the matter
field, and a Higgs phase where the photons are screened
and acquire mass, and the Higgs field condenses [29,30].
In 1+1D, for positive m2 the scalar matter is confined. Differ-
ently from the higher-dimensional models, instanton effects
lead to confinement also for large and negative m2, destroy-
ing the expected screening caused by the condensation of
the Higgs field [1,27,28]. The only exception to this simple
scenario involving the occurrence of a single gapped phase
in the continuum is at θ = π (see, e.g., [27,31–34]), where
there is a line of first-order transition that culminates in a
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second-order critical point in the Ising universality class (akin
to what happens in the Schwinger model [35,36]).

In recent works [26,37], the same model has been dis-
cretized on the lattice in the Hamiltonian formalism. Having
L sites (with lattice spacing a) and L − 1 bonds, the
corresponding Hamiltonian, at θ = 0, reads

Ĥ =
∑

j

[
L̂2

j + 2x �̂
†
j�̂ j +

(
4x − 2μ2

q2

)
φ̂

†
j φ̂ j

+ λ

q2
(φ̂†

j )2φ̂2
j − 2x(φ̂†

j+1Ûj φ̂ j + H.c.)

]
, (2)

with x = 1/a2q2 and μ2 = −m2. The matter field operators,
{φ̂ j, φ̂

†
j , �̂ j, �̂

†
j}, act on the Hilbert space at site j, while the

gauge-field operators, {L̂ j, Ûj, Û †
j }, act on the Hilbert space

defined on the bond linking sites j and j + 1. The operators
fulfill the standard canonical commutation relations:

[φ̂ j, �̂k] = [φ̂†
j , �̂

†
k] = iδ jk,

[L̂ j, Ûj] = −Ûj, [L̂ j, Û †
j ] = Û †

j . (3)

The usual continuum limit is taken as x → ∞.
Rather than considering the usual continuum limit, x = 2

was fixed in [26], and the phase diagram as a function of λ

and μ was characterized numerically with matrix product state
(MPS) techniques [38,39] (see Refs. [40–50] for recent appli-
cations of MPS techniques in models of lattice gauge theory).
On the lattice, the model presents a rich phase diagram. Even
at θ = 0, there is a first-order phase transition between two
distinct regimes, a confined regime characterized by the sup-
pression of the kinetic term of the Hamiltonian (φ̂†

j+1Ûj φ̂ j +
H.c.) and low entanglement entropy in the ground state, and
a gapped “Higgs” regime, characterized by a larger (but fi-
nite) kinetic energy and entanglement entropy. The first-order
line ends in a second-order critical point. This critical point
is described by a conformal field theory (CFT) with a cen-
tral charge of c = 3/2. This implies that the interplay of
lattice effects and nonperturbative physics can give rise to
new emerging phenomena, whose field theory description is
completely different from the original continuum field theory
discretized to obtain the lattice model.

As a result, in the continuum we have two completely
different models emerging from the same microscopic model.
A gapped model of confined bosonic charges is obtained by
taking x → ∞ in any region of the phase diagram on the
lattice model whose physics is well known and described
in textbooks [11,12,27]. At the critical point on the lattice,
however, we can take a different continuum limit at fixed
x and obtain a gapless conformal field theory with c = 3/2
that originates from the same microscopic model—relativistic
bosons interacting with a U (1) gauge field. This continuum
theory is less understood.

In this work, we proceed to better characterize this lattice
microscopic model. We start by solving some of the puzzles
presented in Ref. [26]. In particular, we show that all Renyi
entropies, differently from what was claimed originally, scale
as expected from the conformal field theory predictions once
the subleading corrections are taken into account.

We then extract the sound velocity and the dispersion
relation of the system via real-time dynamics, and we com-
bine those with an accurate finite-size-scaling analysis of the
Hamiltonian spectrum. From those, we identify the presence
of a charge gap, and the portion of the low-energy spectrum
that is responsible for critical behavior. Since the model is
gauge-invariant, we can target different background charge
sectors. In the zero background charge sector, we only find
the Majorana fermionic or Ising part of the spectrum. On the
other hand, using the known relation about the fluctuations of
the charges, we also identify the value of the Luttinger liquid
parameter of the bosonic sector of the theory.

The resulting picture is thus much clearer than before but
still incomplete. The critical point of the discretized Abelian
Higgs model in 1+1D provides an example of a relativistic
CFT where a discrepancy between the scaling of entangle-
ment and the low-energy spectrum is observed.

We thus extend our analysis to the other sectors of back-
ground charges, where we find many low-energy excitations
that should encode the bosonic part of the spectrum. However,
with our current tools we have limited precision in extracting
the spectra in the other background charge sectors to properly
identify all of them. Thus we are still not able to completely
identify the full low-energy spectrum, something we plan to
do in the future.

II. A BRIEF RECAP: THE SYSTEM

The Abelian-Higgs model in 1+1D is described by the
Hamiltonian (2). We can then define creation and annihila-
tion operators for particles “a” and antiparticles “b” as â j

and b̂ j , fulfilling [â j, â†
k] = [b̂ j, b̂†

k] = δ jk The operators are
defined as

φ̂ j = 1√
2

(â j + b̂†
j ), �̂ j = i√

2
(â†

j − b̂ j ),

φ̂
†
j = 1√

2
(â†

j + b̂ j ), �̂
†
j = i√

2
(b̂†

j − â j ),

as discussed in, e.g., [37].

A. Gauge invariance and Gauss law generators

In the absence of external charges, the local U (1) symme-
try implies that all physical states |
〉 satisfy the Gauss law
Ĝ j |
〉 = 0, ∀ j, where the generators are [37]

Ĝ j = L̂ j − L̂ j−1 − Q̂ j, (4)

with Q̂ j = â†
j â j − b̂†

j b̂ j describing the dynamical charge. Us-
ing the Gauss law, we can integrate out the gauge fields in a
chain with open boundary conditions by the nonlocal transfor-
mations⎛

⎝∏
l� j

Û j

⎞
⎠φ̂ j → φ̂ j,

⎛
⎝∏

l� j

Û †
j

⎞
⎠�̂ j → �̂ j, L̂ j =

∑
l� j

Q̂l .

(5)
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FIG. 1. Diagrammatic depictions of the MPO [panels (a) and (c)]
and MPS [panels (b) and (d)] representations used in this paper. Pan-
els (a) and (b) correspond to the long-range matter-only description
of Eq. (6), while (c) and (d) presents the same for the matter-gauge
picture of Eq. (2).

This introduces a long-range potential for the matter fields
[51] as follows:

Ĥ =
∑

j

[⎛
⎝∑

l� j

Q̂l

⎞
⎠

2

+ 2x �̂
†
j�̂ j +

(
4x − 2μ2

q2

)
φ̂

†
j φ̂ j

+ λ

q2
(φ̂†

j )2φ̂2
j − 2x(φ̂†

j+1φ̂ j + H.c.)

]
. (6)

In the rest of the paper, unless explicitly stated other-
wise, we shall consider Eq. (6) as the system Hamiltonian
that respects global U (1) symmetry corresponding to the
conservation of the total dynamical charge Q̂ = ∑

j Q̂ j .
[It should be noted that since the mapping in Eq. (5) is exact,
the long-range Hamiltonian (6) describes the same physics as
that of the short-range matter-gauge Hamiltonian (2). We ver-
ify this numerically in Appendix B.] We use the density matrix
renormalization group (DMRG) algorithm [38,39,52–55]
in the framework of the matrix product states (MPSs) to find
the ground state or low-lying excited states of the Hamilto-
nian (6). The diagrammatic depictions of the matrix product
operator (MPO) for the Hamiltonian (6) and the correspond-
ing MPSs are given in Figs. 1(a) and 1(b), respectively. In
Figs. 1(c) and 1(d), we also present the same for the short-
range matter-gauge description of Eq. (2), where we also
impose global U (1) symmetry to conserve the total dynam-
ical charge Q̂. For time-evolution, we use the MPS-based
time-dependent variational principle (TDVP) [56–59] concen-
trating only on the long-range description.

B. The phase diagram

The phase diagram of the Abelian-Higgs model in 1+1D
on a discrete lattice has been studied recently in [26].
Here we present a different characterization leading to the
same phase-diagram. In continuum, the phase diagram of
the Abelian-Higgs model is somewhat uninteresting as there
exists only one gapped confined phase without any phase
transition in the absence of a background field. However, the
lattice discretization unveils a rich landscape of phase tran-
sitions between the confined and the Higgs phase. At weak
coupling (i.e., at small λ/q2) these two phases are separated
by a line of first-order quantum phase transitions (FOQPTs)
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FIG. 2. Phase diagram of the Abelian-Higgs model in 1+1D (6)
in the (μ2/q2, λ/q2)-plane for a system of size L = 60. The left panel
shows the behavior of the expectation value 〈φ̂†φ̂〉, while the right
panel is for the variance σ 2(L̂). Both quantities are averaged over
lattice sites/bonds.

that ends at a critical second-order quantum phase transition
(SOQPT). Above this SOQPT point, these two phases are
smoothly connected by a crossover. In Fig. 2, we depict the
phase diagram of the system in the (μ2/q2, λ/q2)-plane.

In the Higgs phase, since the gauge field becomes mas-
sive, its quantum fluctuations as measured by the variance
σ 2(L̂ j ) = 〈L̂2

j 〉 − 〈L̂ j〉2
becomes nonzero, while it remains

vanishingly small in the confined region. In contrast, since
the matter field attains a finite expectation value in the Higgs
phase, 〈φ̂†

j φ̂ j〉 becomes large, as seen in Fig. 2.
The SOQPT point has been located precisely to be

[λc/q2 = 0.0565(1), μ2
c/q2 = 0.447(1)] in [26] using pre-

dictions about scaling of entanglement entropy for a CFT.
There it was also shown that the entanglement entropy and
the kinetic term in the Hamiltonian could be used to illustrate
the phase diagram, as we have done here with the fluctuation
of the electric field and the on-site occupation of the bosons.

The analysis of Ref. [26] using the well-established ma-
chinery of CFT predicted the existence of a direct sum of two
critical theories—free Majorana fermion and free boson—at
the critical point. In this work, we complement the previous
work with a proper characterization of these two gapless
modes.

C. Sound velocity at criticality

To verify that the critical point (μ2
c/q2 = 0.447, λc/q2 =

0.0565) displays Lorentz invariance in its low-energy descrip-
tion, we calculate the sound velocity vs at the critical point
from the scaling of ground-state energy—recapitulating the
result presented in the supplemental material of Ref. [26]. For
a Lorentz invariant system exhibiting a linear dispersion at
low energies, the ground-state energy E0, under open bound-
ary conditions, scales with the system size L according to
[60–62]

E0(L) = ε∞
0 L + ε∞

1 − πcvs

24L
, (7)

where ε∞
0 is the ground-state energy density in the bulk, ε∞

1
is the surface free energy in the thermodynamic limit, c is the
central charge of the corresponding CFT, and vs is the sound
velocity. It should be noted that vs vanishes for Lorentz nonin-
variant critical points characterized by a quadratic dispersion.
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FIG. 3. Finite-size scaling of the ground-state energy E0 at the
critical point according to Eq. (7), which gives cvs 	 6, where c is
the central charge and vs is the sound velocity.

To estimate vs, we perform the finite-size scaling of the
ground-state energy according to Eq. (7) at the critical point
(for a similar scaling analysis, see [63–66]). The finite-size
scaling (Fig. 3) reveals

cvs = 6.02 ± 0.08, (8)

confirming the Lorentz invariance of the critical point
(μ2

c/q2 = 0.447, λc/q2 = 0.0565) and the applicability of the
CFT framework.

III. NUMERICAL RESULTS

Here we describe our numerical results that contribute to
clarifying the nature of the field theory emerging at the critical
point of the lattice model. For this, we set λ/q2 = 0.0565 and
μ2/q2 = 0.447 in the rest of the paper.

To reiterate, we employ DMRG simulations to extract the
low-lying spectrum of the Hamiltonian (6) with U (1) symmet-
ric MPS [67,68]. The MPS bond dimension used in our study
is up to χ = 600, sufficient for convergence up to system
sizes 120. Each of the bosonic species, a and b, has been
truncated to 11 levels, leading to the physical dimension of
121 for the MPS tensors. Furthermore, in Sec. III B 1, we also
simulate the full matter-gauge Hamiltonian (2). In that case,
the MPS ansatz contains alternating tensors for matter and
gauge degrees of freedom (see Fig. 1). The gauge fields are
then truncated to up to 15 levels in the electric basis. Details
about the MPS-based numerical calculations are presented in
Appendix A.

For the out-of-equilibrium analysis presented in Sec. III D,
we use TDVP algorithms as described in [37]. To reduce
the computational complexity of TDVP runs, we truncate the
bosonic species up to eight levels, and the maximum MPS
bond dimension is restricted up to χ = 400.

A. The scaling of Renyi entanglement entropy

The Renyi entanglement entropy of order n for a block of l
sites is defined as

Sn(l ) = 1

1 − n
log

(
Trρn

l

)
, (9)

FIG. 4. (a) The variation of the von Neumann entanglement en-
tropy S = Sn→1 and the entanglement ground-state energy ε = Sn→∞
as a function of the chord length W according to Eq. (10) at the
critical SOQPT point. (b) The extracted values of the central charge
after fitting the Renyi entropy data to Eq. (10). The bluish shade
describes the error-bars in fitted values of ceff(n). For these plots, we
have analyzed the data for system-sizes L ∈ [40, 60, 80, 100, 120] at
the critical point (λc/q2 = 0.0565, μ2

c/q2 = 0.447).

where ρl = Trl+1,l+2,...,L |ψ〉 〈ψ | is the reduced density ma-
trix after tracing out the rest of the system. As limiting
cases of the Renyi entropy, we get the von Neumann entropy
as S = limn→1 Sn and the entanglement ground-state energy
ε0 = limn→∞ Sn, where ε0 is the lowest eigenvalue of the en-
tanglement Hamiltonian Hl = − log(ρl ), i.e., ε0 = − log λ0,
where λ0 is the smallest eigenvalue of the density matrix ρl .
It should be noted that since we are integrating out the gauge
fields, the resulting Hilbert space of matter has a well-defined
tensor-product structure and there are no ambiguities in defin-
ing the bipartitions associated with the gauge invariance
(cf., [69–71]).

In a CFT, the finite-size scaling of the Renyi entanglement
entropy of the bipartition of size l in a chain with open bound-
ary conditions and length L is [72–74]

Sn(l, L) = c

12

(
1 + 1

n

)
W + b′

n, (10)

where c is the central charge of the corresponding CFT, b′
n is a

nonuniversal constant, and W , the chord length, is a function
of both L and l:

W (l, L) = log

[
2L

π
sin(π l/L)

]
. (11)

In Ref. [26], using the above scaling of von Neumann
entropy at the critical point, a central charge of c = 3/2 [c =
1.49(1) to be precise] has been extracted [see Fig. 4(a)]. It has
been argued in [26] that this value of the central charge can be
explained as the sum of two different minimal models, each
contributing to a piece of the total central charge, a c f = 1/2
for a free Majorana fermion (the Ising sector) and a cb = 1 for
a free boson.

However, performing the same scaling for the entangle-
ment ground-state energy ε0, the effective central charge
comes out to be ceff(n → ∞) = 1.20(1) [see Fig. 4(a)], which
contradicts the value c = 3/2. Moreover, upon closer inspec-
tion, we find that the values of central charge obtained by
fitting the entropy data to Eq. (10) are heavily dependent on
the order n as seen in Fig. 4(b).

Nevertheless, the analyses in Sec. II C and in the following
Sec. III D suggest that the central charge of the system is
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FIG. 5. (a) The exponent βn in the finite-size correction to the
entanglement entropy scaling [see Eq. (12)] as a function of the
Renyi order n. Here we fix c = 3/2 (see the text). The bluish shade
describes the error bars in fitted values of βn. Note that the error in
the fitting is large when ceff ∼ 3/2 as the curve-fitting becomes ill-
formed with redundant parameters within that regime. (b) The fitting
of von Neumann entanglement entropy S = S1 and the entanglement
ground-state energy ε = Sn→∞ including the correction term as in
Eq. (12). Note that the entropic data (symbols) are exactly the same
as in Fig. 4(b)—the difference lies in the use of Eq. (12) in fitting
these data. All other descriptions are the same as those in Fig. 4.

indeed compatible with c = 3/2. In Sec. II C, by utilizing the
finite-size scaling of ground-state energy, we have shown that
cvs 	 6, whereas using the out-of-equilibrium local quench
spectroscopy in the following Sec. III D we verify that the
sound velocity is consistent with vs = 4, thereby leaving
c = 3/2 as the only possibility. These results are obviously
independent of the entropy scaling.

Here, we try to explain the discrepancies in the scaling
of different Renyi entropies by finite-size corrections in the
scaling law of Eq. (10). Specifically, it has been shown in [75]
that due to irrelevant and marginally irrelevant bulk operators
in the Hamiltonian, the Renyi entropies can attain corrections
in finite systems, where the correction terms can depend on
n and on the scaling dimensions of such bulk operators (see
also [76,77]). Since the numerical determination of the scaling
dimensions of such irrelevant (or marginally irrelevant) bulk
operators can be very nontrivial, here we consider a generic
correction term, having the same form as in [75], to the scaling
formula of Eq. (10) as follows:

Sn(l, L) = c

12

(
1 + 1

n

)
W + b′

n + dn[exp(W )]−βn , (12)

where dn and βn are n-dependent quantities to be determined.
It should be noted that since Eq. (12) has four independent
parameters, the curve-fitting process is under constraint for
the given entropic data, leading to unfaithful extraction of
these parameters. Because of this, we fix the central charge to
c = 3/2, verified independently from the ground-state energy
scaling in Sec. II C [see Eq. (8)] and the local quench spec-
troscopy in Sec. III D, when fitting Eq. (12) to the entropic
data.

The variation of the exponent βn as a function of the order
n is shown in Fig. 5(a) along with its errors for fixed c = 3/2.
For small n, corrections to the original formula are small (the
corresponding error is not informative as such a term does not
contribute to the fit). Oppositely, for large n, where we ob-
serve ceff ≈ 3/2 [Fig. 4(b)], corrections are indeed strong and
the coefficient βn is essentially n-independent. This strongly
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FIG. 6. The scalings of (a) the neutral gap �EN and (b) the
charge gap �EC with the system-size L at the critical SOQPT point.
The neutral gap decays to zero in the thermodynamic limit as ∼1/L,
while the charge gap remains finite and its thermodynamic value
[5.104(4)] is extracted by fitting a quadratic function in 1/L.

confirms the fact that extracting the central charge from such
large-n Renyi entropies is not reliable using the original scal-
ing relation when finite-size effects are strong. Figure 5(b)
shows the actual entropy scalings for the von Neumann en-
tanglement entropy S = S1 and the entanglement ground-state
energy ε = Sn→∞ according to Eq. (12) with fixed c = 3/2.

B. Spectral analysis at equilibrium

To detect and characterize the Majorana fermionic and the
bosonic part of the theory, we first analyze the energies of the
ground state and low-lying excited states and their finite-size
scaling at the critical point (λc/q2 = 0.0565, μ2

c/q2 = 0.447)
obtained from DMRG simulations.

1. The neutral gap and the charge gap

We calculate the neutral gap (�EN ) and the charge gap
(�EC) at the critical point. The gaps are defined as

�EN = E1(Q = 0) − E0(Q = 0),

�EC = E0(Q = 1) + E0(Q = −1) − 2E0(Q = 0), (13)

where En(Q) represents the nth energy eigenvalue at the Q =
〈Q̂〉 quantum sector extracted by means of the excited-state
DMRG.

As expected, the neutral gap �EN decays to zero in the
thermodynamic limit as ∼1/L [see Fig. 6(a)]. On the other
hand, quite interestingly, the charge gap �EC saturates to a
finite value �EC = 5.104(4) in the thermodynamic limit [see
Fig. 6(b)]. This happens due to the gauge invariance of the
system, as a single charge excitation must be accompanied by
a string of electric fields (semi-infinite in the thermodynamic
limit) whose energy cannot vanish.

Therefore, by imposing the Gauss law, we are throwing
away a large chunk of the low-energy spectrum. This is illus-
trated in Fig. 7, where we show that there are indeed many
low-lying states that come from other gauge sectors (i.e.,
nonzero background fields) by performing the excited-state
DMRG calculations for the matter-gauge Hamiltonian (2).
It should be noted that since gauge invariance cannot be bro-
ken spontaneously, the excited-state DMRG cannot scan all
possible low-lying gauge sectors, and its reliability in itera-
tively finding excited states one after another degrades very
quickly when we do not impose the Gauss law.
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FIG. 7. Energy gaps of a few excited states obtained from the
excited-state DMRG when we do not enforce the Gauss law by
integrating out the gauge fields, and instead treat the Hamiltonian
(2) as it is with conserved total charge Q = 0. Here, we truncate the
gauge fields to 15 electric levels. The x-axis,

∑L
j=1 | 〈Ĝ j〉 |, denotes

the deviation from the Gauss law 〈Ĝ j〉 = 0 for all j = 1, . . . , L. The
red circle demarcates the first neutral excitations that obey the Gauss
law. Note here that the excited-state DMRG is unable to find all the
low-lying states coming from different gauge sectors, specifically
when

∑L
j=1 | 〈Ĝ j〉 | = 0. Nevertheless, we can see the existence of

many low-lying states coming from different gauge sectors in the
low-energy spectrum.

2. Conformal towers

Here, we analyze the excitation spectra of the system at
a critical point using the predictions of CFT by using the
excited-state DMRG. The excited-state energies vary with the
system-size as

En(L) = E0(L) + xn
πvs

L
, (14)

where xn are boundary scaling dimensions, organized in
conformal towers [78,79]. In Fig. 8, we plot xn = (En −
E0)L/πvs for the first nine excited states along with their
degeneracies obtained from the excited-state DMRG calcula-
tions. The boundary exponents that we get from Fig. 8 are
xn = [2, 3, 4, 5, 6, . . . ] with degeneracies [1, 1, 2, 2, 3, . . . ].
These values of the boundary exponents and corresponding
degeneracies match with the CFT prediction for the critical
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FIG. 8. First few boundary scaling dimensions xn = (En −
E0 )L/πvs in the conformal tower of the critical point using the
excited-state DMRG.
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FIG. 9. (a) The graphical representation of the midchain effective
Hamiltonian constructed from the MPO and MPS tensors to target
the ground state of the Hamiltonian (6). (b) The excitation spectra of
the effective Hamiltonian depicted in (a) at the critical point.

Ising model with a fixed boundary condition [66,80,81]. This
structure of the conformal tower confirms the Ising or free
Majorana fermion part of the critical point. On the other hand,
we completely miss the bosonic part of the spectrum at the
critical point. However, we can make an educated guess based
on the results of Sec. III B 1 (specifically, of Fig. 7) that the
bosonic excitations, which carry charges, might be hidden in
other gauge sectors.

To validate this result further, we analyze the spectra of
the effective Hamiltonian constructed to target the ground
states of the Hamiltonian (6) during DMRG sweeps [see
Fig. 9(a)]. In Ref. [66], it has been shown that at the critical
point, the low-lying eigenstates of the effective Hamiltonian,
within the framework of the standard ground-state algorithm,
give correct excitation spectra of the original Hamiltonian. In
Fig. 9(b) we show the first few eigenstates of the effective
Hamiltonian at the critical point. Once again, the extracted
boundary exponents and corresponding degeneracies match
with the Ising CFT.

C. Determination of the Luttinger parameter

Since we could not characterize the bosonic part of the
critical theory from the low-energy excitation spectrum, we
take the route of determining the Luttinger parameter K as-
sociated with the free bosonic part that is described by the
Tomonaga-Luttinger liquid theory [82,83]. Here, we extract
K from the scaling of the bipartite fluctuations as described
in Refs. [84–86], under the assumption that charge excitations
are indeed those responsible for the emergence of the cb = 1
sector of theory. It has been shown that in a Tomonaga-
Luttinger liquid, for a global U (1) conserved quantity O, the
local fluctuations

Fl (O) =
〈⎛
⎝∑

j�l

O j

⎞
⎠

2〉
−

〈∑
j�l

O j

〉2

(15)

obey the scaling of the form

Fl (O) = K

2π2
W (l, L) + const. (16)

In the present scenario, the global conserved quantity is the
total dynamical charge Q̂. Using the local gauge invariance,
we can also rewrite the local fluctuations of the dynamical
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FIG. 10. The scaling of local fluctuations Fl (Q̂) in relation to
the chord length W (l, L). (a) The pattern of local fluctuations with
respect to the bipartition size for different system sizes is plotted
and indicated in the figure. (b) The fit performed with the data
for L ∈ [40, 60, 80, 100, 120], based on Eq. (16), suggests that the
Luttinger parameter is K = 2.11(2). The inset shows the negligible
dependence of K on the system size. To estimate the Luttinger pa-
rameter K at the thermodynamic limit, we extrapolate the extracted
values of K for different system-sizes L ∈ [60, 120] using a linear fit
in 1/L, yielding K = 2.10(1).

charge as

Fl (Q̂) = 〈
L̂2

l

〉 − 〈L̂l〉2, (17)

where we have used the fact that L̂l = ∑
j�l Q̂ j . In Fig. 10, we

present the variations of local fluctuations as a function of both
bipartition and system size. This figure provides evidence that
the Luttinger parameter is K = 2.10(1), which characterizes
the existence of a strongly interacting bosonic component in
the theory.

D. Spectral analysis from out-of-equilibrium dynamics

We now analyze the critical point by considering the re-
sponse of the system to a local quench as suggested in [87,88].
For that, we create a local excitation at the middle of the chain
using the operator

M̂Q = φ̂
†
L/2φ̂L/2+1 (18)

that will create Q = ±1 dynamical charges at sites L/2 and
L/2 + 1, respectively, on top of the ground state |�〉, such
that our initial state becomes

|ψQ〉 (t = 0) = NM̂ |�〉 , (19)

where N is a normalization constant. Since the operator M̂Q

is a local element of the Hamiltonian (6), we can expect
that the overlaps of |ψQ〉 with low-lying excited states are
nonvanishing.

For any local observable Ô j , we analyze the spectral prop-
erties by means of the (discrete) Fourier transform:

FO(k, ω) = 2π

LT
δt

L∑
j=1

e−ik( j− L
2 )

tN∑
n=0

e−iωtn (〈Oj〉 (tn) − 〈Oj〉�),

(20)

where tn = nδt is the discrete time-steps, T = tNδt is the total
time of the evolution, and 〈Oj〉� defines the expectation value
of Ô j with respect to the ground state |�〉 (see [59] for details).

Since the neutral gap vanishes while the charge gap
remains finite at the critical point, we expect that for
neutral operators such as φ̂

†
j φ̂ j , �̂

†
j�̂ j , or L̂2

j = (
∑

l� j Q̂l )2

FIG. 11. The dispersion relations from the Fourier transform
[Eq. (20)] of the local operators (a) �̂†

j�̂ j and (b) L̂ j at the critical
point for the initial state (19) for a system of size L = 60. Here we
apply the operator M̂Q [see Eq. (18)] to excite the ground state.

the Fourier transform will provide a gapless dispersion with
ω(k) ≈ vs|k| for k � 1, and for any charge carrying operators
like Q̂ j or L̂ j = ∑

l� j Q̂l , the FO(k, ω) will give a gapped
spectrum [87,88].

From the Fourier transform of the neutral operators, e.g.,
F〈�̂†

j�̂ j〉(k, ω) in Fig. 11(a), we are getting the gapless spec-

trum as expected. The signal in the Fourier transform matches
with vs ≈ 4 [red dashed line in Fig. 11(a)] extracted from
the scaling of ground-state energy (see Sec. II C). Upon care-
ful inspection, we find another faint signal corresponding to
vs ≈ 2.4. However, this value of the sound velocity is not
consistent with earlier equilibrium analysis coming from the
scaling of ground-state energy [Eq. (8)]. This faint signal
might be a spurious effect coming from numerical errors, as
also seen in [59]. There is also a possibility that this might
come from the dispersion in Q = ±1 sectors as the excitation
performed by the operator M̂Q couples these sectors to the
present Q = 0 one. On the other hand, in Fig. 11(b), we see
that the dispersion relation from F〈L̂ j〉(k, ω) is gapped and the
gap is exactly the same as the charge gap �EC .

To be sure that there is only one sound velocity at vs = 4,
we perform two other forms of time-evolution in such a way
that the local excitation now does not create any dynamical
charges so that we can solely examine the neutral excitations.
Specifically, we excite the ground state |�〉 with the neutral
operators

M̂1 = φ̂
†
L/2φ̂L/2φ̂

†
L/2+1φ̂L/2+1, (21)

M̂2 = φ̂
†
L/2φ̂L/2 + φ̂

†
L/2+1φ̂L/2+1, (22)

and then perform a similar Fourier analysis as before.
In Fig. 12, we show the Fourier transforms of �̂

†
j�̂ j for

such initial states. Clearly, there is only one sound velocity of
vs = 4 that we can observe.

IV. CONCLUSIONS

In this article, we presented an in-depth analysis of the
critical properties of the 1+1D Abelian-Higgs model on a
discretized lattice. Our approach provides a comprehensive
understanding of the model’s behavior, including its bosonic
and fermionic components.

First, we addressed the ambiguity surrounding the value
of the central charge at the critical point. We confirmed that
the central charge is c = 3/2, which can be interpreted as
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FIG. 12. Same as in Fig. 11(a) but for the initial states excited
with the operators given in (a) Eq. (21) and (b) Eq. (22).

a direct sum of gapless compactified bosons with cb = 1
and critical Majorana fermions with c f = 1/2. We indepen-
dently corroborated this value from both equilibrium and
out-of-equilibrium analysis. Our results also reveal that the
discrepancy in extracting the central charge from different
Renyi entropies can be attributed to finite-size effects coming
from irrelevant or marginally irrelevant bulk operators.

To identify the bosonic and fermionic components of the
model, we have used a twofold approach. First, we find
that the excitation spectrum of the model is identical to that
of the critical Ising chain with fixed boundary conditions,
i.e., the c = 1/2 free fermionic part. Quite interestingly, we
find no sign of the bosonic excitations in the gauge-invariant
spectrum. Our examination of the excitation spectrum in dif-
ferent superselection sectors leads us to make an informed
guess that the bosonic excitation spectrum may be “hidden”
in other gauge sectors. We have then determined the Lut-
tinger parameter, which confirms the existence of a gapless
Tomonaga-Luttinger liquid with a value of Luttinger parame-
ter K ≈ 2.1.

The fact that the bosonic spectrum that contributes to the
entanglement entropy at the critical point could be hidden in
different superselection sectors suggests that a better under-
standing of the boundary CFT involved with the computation
of the entanglement entropy here could be necessary. Also,
some further hints could be obtained from the analysis of
the symmetry-resolved entanglement spectrum that will be
performed elsewhere.

Finally, we analyzed the local quenched dynamics of
the critical system. By performing spectroscopy via discrete
Fourier transform, we extract the dispersion relations for the
interacting system. Our analysis reveals that there exists only
one speed of sound in this gauge-invariant system, which is
consistent with our equilibrium analysis.
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APPENDIX A: DETAILS ABOUT
THE MATRIX PRODUCT STATES SIMULATIONS

In this paper, we use matrix product states (MPSs) [38,39]
based tensor network simulations to obtain the results. Specif-
ically, to extract the ground state and low-lying excited states,
we use a strictly single-site variant of the density matrix
renormalization group (DMRG) algorithm [52–55] with sub-
space expansion [91]. For the out-of-equilibrium real-time
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FIG. 13. (a) The convergence of ground-state energy density
with respect to the maximum bosonic occupancy n0 for a system of
size L = 120 at the critical point. Here we plot the relative errors
in the energy density �E0/L, where �E0 = |E0(n0) − E0(n0 + 1)|.
(b) The profile of the von Neumann entanglement entropy S = S1

with respect to the cord length W = ln( 2L
π

sin(π l/L)) at the critical
point for L ∈ [40, 120] and for different values of n0.

dynamics, we employ the time-dependent variational princi-
ple (TDVP) method [56–59].

In our MPS representation, we truncate the Hilbert spaces
of both the bosonic species, a and b, up to the maximum
occupancy of n0 = 10 (i.e., 11 levels of each type of bosonic
matter), which results in the physical dimension of 121 for
the MPS tensors on the matter sites. To verify the conver-
gence with respect to this cutoff, we vary the maximum
bosonic occupancy n0 in the range [4, 15], and we check for
convergence of different observables (see Fig. 13). Specifi-
cally, we show in Fig. 13(a) that for n0 = 10 the error in
the ground-state energy density for system-size L = 120 falls
below 10−7 at the critical point. Moreover, the entropy profile
for n0 = 10 is essentially identical to the one with n0 = 15,
capturing the proper entropy scaling with respect to the cord
length [Fig. 13(b)]. For the simulating short-range matter-
gauge Hamiltonian (2), we truncate the gauge field Hilbert
spaces to 15 levels in electric basis (see Appendix B).

For the DMRG simulations, the MPS bond dimension is
truncated up to χ = 600. Figure 14(a) shows the convergence

FIG. 14. The convergence of (a) the energy density (�E0/L) and
(b) the half-chain von Neumann entanglement entropy (�SL/2) and
the half-chain entanglement ground-state energy (�εL/2) with respect
to the maximum bond dimension used in the simulation, respectively,
χ ∈ {100, 200, 300, 400, 500, 600}. Here we plot relative errors in
the quantities as �O = |Oχ − Oχ+100|. In (a) we choose three points
in the phase diagram, namely (1) a point in the confined phase
(μ2/q2 = 0.2), (2) the critical point (μ2/q2 = 0.447), and (3) a point
in the Higgs phase (μ2/q2 = 0.6) for the system-size L = 120. In
(b) we show the convergence of the entropic quantities as a function
of the bond dimension at the critical point.

of the ground-state energy density with respect to the bond
dimension χ � 600 for systems of sizes L � 120. The energy
density converges close to machine precision within χ � 500
in the gapped regions—confined (μ2/q2 = 0.2) and Higgs
(μ2/q2). On the other hand, as expected, the convergence is
slower at the critical point due to the diverging correlation
length. However, as shown in Fig. 14(b), the precision attained

FIG. 15. (a) In the presence of gauge fields at the links between
two nearest-neighbor sites, there are two options to take bipartition
at a given link, i.e., cut-1 and cut-2 depicted in the figure, for
the calculation of entanglement entropies. The entropies, however,
remain the same between these two options since gauge fields in
1+1D are not dynamical variables. (b) The comparison between
von Neumann entropy S = S1 and the entanglement ground-state
energy ε0 = Sn→∞ calculated from the long-range Hamiltonian after
integrating-out the gauge fields and from the original local matter-
gauge Hamiltonian for system-size L = 100 at the critical point.
For the local gauge theory Hamiltonian, we truncate the gauge-field
Hilbert spaces up to dtruc = 21 electric states. (c) We plot the absolute
differences in ground-state energy densities and in the midchain
von Neumann entanglement entropies between the truncated local
matter-gauge Hamiltonian with respect to the long-range system as a
function of the truncated gauge-field Hilbert-space dimension dtrunc.
Here we consider the system size L = 60. The differences reduce
to the numerical accuracy attained with the MPS bond dimension
χ = 600 at the truncation level dtrunc = 17.
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at the critical point for χ = 500, 600 is sufficient to perform
the precise scaling analysis reported here. To confirm the
convergence of the DMRG sweeps, we continue the DMRG
iterations until the energy difference in subsequent sweeps
falls below 10−13.

In the case of out-of-equilibrium simulations with TDVP,
we truncate the bosonic species up to the maximum oc-
cupancy of n0 = 7 (i.e., eight levels), and we restrict the
maximum MPS bond up to χ = 400.

APPENDIX B: NUMERICAL COMPARISONS BETWEEN
THE LOCAL MATTER-GAUGE AND THE MATTER-ONLY

LONG-RANGE DESCRIPTIONS OF THE SYSTEM

In the main text, we have favored the long-range Hamil-
tonian (6) after integrating-out the gauge fields by an exact
mapping utilizing the Gauss law. This is because of the advan-
tage in the long-range formulation, where we avoid dealing
with extra degrees of freedom corresponding to the gauge
fields. Moreover, since the Hilbert spaces of the gauge fields
are formally infinite-dimensional, they need to be truncated to
a finite-dimensional subspace in the short-range formulation
of Eq. (2), thereby introducing an extra source of approxima-
tion that needs to be accurately controlled (see, e.g., [42]).

Here, we show that the short-range Hamiltonian, with suffi-
ciently large truncated gauge-field Hilbert spaces, gives the
exact same results as that of the long-range Hamiltonian dis-
cussed in the main text.

In the presence of the gauge fields in the short-range for-
mulation, we have two options to take bipartitions at each
link—one before the gauge field (cut-1) and another after
the gauge field (cut-2)—for the calculation of entanglement
entropies as seen in Fig. 15(a). In Figs. 15(b) and 15(c),
we compare the results between the truncated short-range
matter-gauge Hamiltonian (2) and the long-range Hamilto-
nian (6). First, we can observe that in the case of local
gauge theory, entropies calculated at cut-1 or cut-2 are the
same, which is expected since the gauge fields are not dy-
namical variables in 1+1D; see Fig. 15(b). Moreover, with
sufficiently large gauge-field Hilbert space dimension (dtrunc),
local and long-range Hamiltonians give exactly the same re-
sult [up to a numerical accuracy; see Fig. 15(c)]. This is
understandable as in 1+1D, integrating-out the gauge fields
using the Gauss law is exact. Specifically, Fig. 15(c) shows
that the differences between the results coming from the
truncated local gauge theory Hamiltonian and those from
the long-range Hamiltonian reduce to the numerical ac-
curacy (attained with the MPS bond dimension χ = 600)
for dtrunc � 17.
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S.-J. Ran, M. Rizzi, G. Sierra, L. Tagliacozzo, E. Tirrito, T. V.
Zache, J. Zakrzewski et al., and Philos. Trans. R. Soc. A 380
(2021).

[51] J. Schwinger, Phys. Rev. 82, 664 (1951).
[52] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[53] S. R. White, Phys. Rev. B 48, 10345 (1993).
[54] S. R. White, Phys. Rev. B 72, 180403(R) (2005).
[55] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[56] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde,

and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011).
[57] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F.

Verstraete, Phys. Rev. B 94, 165116 (2016).
[58] T. Koffel, M. Lewenstein, and L. Tagliacozzo, Phys. Rev. Lett.

109, 267203 (2012).
[59] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.

Schollwöck, and C. Hubig, Ann. Phys. 411, 167998 (2019).
[60] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev.

Lett. 56, 742 (1986).
[61] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[62] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A 22,

511 (1989).

[63] K. Hallberg, X. Q. G. Wang, P. Horsch, and A. Moreo, Phys.
Rev. Lett. 76, 4955 (1996).

[64] J. C. Xavier, Phys. Rev. B 81, 224404 (2010).
[65] M. Dalmonte, E. Ercolessi, and L. Taddia, Phys. Rev. B 85,

165112 (2012).
[66] N. Chepiga and F. Mila, Phys. Rev. B 96, 054425 (2017).
[67] S. Singh, R. N. C. Pfeifer, and G. Vidal, Phys. Rev. A 82,

050301(R) (2010).
[68] S. Singh, R. N. C. Pfeifer, and G. Vidal, Phys. Rev. B 83,

115125 (2011).
[69] H. Casini, M. Huerta, and J. A. Rosabal, Phys. Rev. D 89,

085012 (2014).
[70] S. Ghosh, R. M. Soni, and S. P. Trivedi, J. High Energy Phys.

09 (2015) 069.
[71] R. M. Soni and S. P. Trivedi, J. High Energy Phys. 01 (2016)

136.
[72] C. Callan and F. Wilczek, Phys. Lett. B 333, 55 (1994).
[73] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 (2003).
[74] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[75] J. Cardy and P. Calabrese, J. Stat. Mech. (2010) P04023.
[76] E. Eriksson and H. Johannesson, J. Stat. Mech.

(2011) P02008.
[77] N. Laflorencie, E. S. Sørensen, M.-S. Chang, and I. Affleck,

Phys. Rev. Lett. 96, 100603 (2006).
[78] J. L. Cardy, Nucl. Phys. B 275, 200 (1986).
[79] J. L. Cardy, Nucl. Phys. B 270, 186 (1986).
[80] A. Rocha-Caridi, Mathematical Sciences Research Institute

Publications (Springer, US, 1985), pp. 451–473.
[81] G. Evenbly and G. Vidal, J. Stat. Phys. 157, 931 (2014).
[82] T. Giamarchi, Quantum Physics in One Dimension, Interna-

tional Series of Monographs on Physics (Oxford University
Press, Oxford, 2003).

[83] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-
tion and Strongly Correlated Systems (Cambridge University
Press, Cambridge, England, 2004).

[84] H. F. Song, S. Rachel, and K. Le Hur, Phys. Rev. B 82, 012405
(2010).

[85] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and K.
Le Hur, Phys. Rev. B 85, 035409 (2012).

[86] S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Phys. Rev.
Lett. 108, 116401 (2012).

[87] L. Villa, J. Despres, and L. Sanchez-Palencia, Phys. Rev. A 100,
063632 (2019).

[88] L. Villa, J. Despres, S. J. Thomson, and L. Sanchez-Palencia,
Phys. Rev. A 102, 033337 (2020).

[89] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost Phys.
Codebases 4 (2022).

[90] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost Phys.
Codebases 4-r0.3 (2022).

[91] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, Phys.
Rev. B 91, 155115 (2015).

045103-11

https://doi.org/10.1103/PhysRevLett.124.180602
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1103/PhysRevLett.113.091601
https://doi.org/10.1103/PhysRevA.90.042305
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevX.6.011023
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.22331/q-2020-06-15-281
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1098/rsta.2021.0064
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.72.180403
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevLett.109.267203
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1103/PhysRevLett.76.4955
https://doi.org/10.1103/PhysRevB.81.224404
https://doi.org/10.1103/PhysRevB.85.165112
https://doi.org/10.1103/PhysRevB.96.054425
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1103/PhysRevD.89.085012
https://doi.org/10.1007/JHEP09(2015)069
https://doi.org/10.1007/JHEP01(2016)136
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1742-5468/2010/04/P04023
https://doi.org/10.1088/1742-5468/2011/02/P02008
https://doi.org/10.1103/PhysRevLett.96.100603
https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1103/PhysRevB.82.012405
https://doi.org/10.1103/PhysRevB.85.035409
https://doi.org/10.1103/PhysRevLett.108.116401
https://doi.org/10.1103/PhysRevA.100.063632
https://doi.org/10.1103/PhysRevA.102.033337
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.1103/PhysRevB.91.155115

