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Motivated by recent angle-resolved photoemission spectroscopy (ARPES) experiments on doped one-
dimensional (1D) cuprates, we investigate spectral properties of a 1D extended Hubbard model with both on-site
repulsion U and nearest-neighbor interaction V , by employing bosonization analysis and the high-precision
time-dependent variational principle (TDVP) calculations with large scale up to 300 sites. From state-of-the-art
TDVP calculations, we find that the spectral weights of the holon-folding and 3kF branches evolve oppositely
as a function of V , and a moderate attractive V may best fit the experimental results, hinting at the possible
existence of sizable electron-phonon coupling in cuprates. From bosonization analysis, we show that this peculiar
dichotomy of holon-folding and 3kF branches can be explained by a universal relation between the spectral
intensity at arbitrary harmonic branches and the Luttinger parameters. We argue that the relation we establish
can be used for detecting different interactions in various 1D systems.
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I. INTRODUCTION

Understanding two- or three-dimensional strongly cor-
related systems has become one of the central challenges
in condensed matter physics. For instance, there are still
many open questions in cuprates including the mechanism
of high-temperature superconductivity (SC), despite its being
discovered for decades [1–6]. The reason why it’s enormously
hard to fully understand cuprates is twofold. On one hand, due
to the lack of controllable analytical tools, it is almost impos-
sible to exactly solve even simple models in two or higher
dimensions. Although various numerical efforts including
density matrix renormalization group (DMRG) [7–22] and
determinant quantum Monte Carlo (QMC) methods [23–26]
have been made to address the physical properties of the two-
dimensional Hubbard model and closely related t-J models
[27–29], reliably solving such two-dimensional (2D) strongly
correlated problems is extremely challenging from theoretical
side and is currently limited by the width of systems in DMRG
[30] or by the notorious sign problem in QMC [31–37]. On the
other hand, it is also difficult to know whether or not the model
Hamiltonian in a theory under investigation has included all
the necessary ingredients to capture the essential physics of a
realistic system.

One way of avoiding these obstacles is to study one-
dimensional (1D) systems, for which there exist many fruitful
analytical tools and advanced numerical techniques such that
microscopic models can be reliably solved and compared to
experiments, if some 1D material is made available. Indeed, in
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a recent experimental breakthrough [38], the authors success-
fully synthesized 1D cuprates Ba2−xSrxCu O3+δ for various
hole doping. An angle-resolved photoemission spectroscopy
(ARPES) was then performed to investigate the spectral prop-
erties of, e.g., the spinon, holon, holon-folding (hf), and the
3kF branches. Quite surprisingly, the observed spectral fea-
tures, i.e., the spectral weight of 3kF branch vanishes over a
wide range of doping while that of hf branch remains visible
all the time, are qualitatively different from those of the 1D
Hubbard model, but can be best fitted using an extended Hub-
bard model with a nearest-neighbor (NN) attraction included
(see Fig. 1 for details about the hf and 3kF spectral branches).
The NN attraction can be induced by nonlocal Holstein-like
electron-phonon couplings (EPC), as shown in recent varia-
tional non-Gaussian exact diagonalization (NGSED) studies
[39,40], and provides a hint about the potential importance
of EPC in cuprates. However, it still remains unclear how an
NN attraction can enhance the hf branch but suppress the 3kF

branch simultaneously. More generally, how the less singular
3kF or even other higher harmonical branches are affected by
microscopic interactions is not fully investigated.

In this paper, we employ both bosonization and time-
dependent variational principle (TDVP) to study the 1D
extended Hubbard model, with emphasis on understanding
how the spectral peaks vary with NN interaction V as well
as doping x. From large-scale TDVP calculations with up to
300 sites, we obtained the spectral function for various values
of V and x. Our TDVP results showed that an attractive V can
enhance the hf branch but suppress the 3kF branch while a
moderate repulsive V reverses the trend (Figs. 1 and 2), which
are qualitatively consistent with [38–40]. This again hints at
the presence of sizable EPC in cuprates. From bosonization,
we establish a universal relation between the singular behavior
of the spectral function at higher harmonical branches with the
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FIG. 1. Spectral functions calculated by TDVP for the extended
Hubbard model [Eq. (1)] with doping x = 14% and U = 8 for var-
ious values of V between 1 and −1.7. For V = 0 in (b), the two
yellow dashed lines depict the dispersions for spinon and holon. The
holon folding (hf) and 3kF branches are also marked. In (c) and
(d), when the NN interaction V is tuned to the attractive side, we
find that the 3kF branch becomes more extinguished, in contrast to
a sharper hf branch, which becomes more visible with sufficiently
large V = −1.7.

Luttinger parameters determined by microscopic interactions.
This relation explains the dichotomy of 3kF spectral intensity
between repulsive and attractive V , and can be used to detect
different interactions for 1D systems by comparing the spec-
tral functions.

II. SPECTRAL FUNCTION FROM TDVP

We begin with the Hamiltonian of 1D extended Hubbard
model, which is given by

H = − t
∑
〈i j〉,σ

c†
iσ c jσ + U

∑
i

ni↑ni↓ + V
∑
〈i j〉

nin j, (1)

where 〈i j〉 denotes NN sites, σ =↑ / ↓, niσ = c†
iσ ciσ , and

ni = ni↑ + ni↓. In the 1D cuprate, t � 0.6 eV and U � 8t
[38,41]. Hereafter for simplicity we fix U = 8t [42] and set
t = 1 as the unit of energy. For electrons with Coulomb in-
teractions, one naturally expects that the NN interaction V
is repulsive. However, electron-phonon coupling (EPC) can
generate an effective attractive NN interaction with retarda-
tion. Thus, we consider both cases of positive and negative
V in our calculations. Thanks to the particle-hole symmetry
of the extended Hubbard model, we only need to focus on
the case of hole doping. The number of sites, electrons, and
doping concentration are denoted by L, N , and x = 1 − N/L,
respectively.

Over the past few years, much progress has been made
in developing controllable numeric methods based on tensor-
network states [43–47]. Among others, the time-dependent
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FIG. 2. Spectral functions of the U = 8. (a) MDCs under differ-
ent V with doping concentration x = 0.14. The energy cuts ω0 for
different V range from −0.7 to −2.5 to match the major peak mo-
menta. (b) MDCs of V = −1 at different doping x. The energy cuts
are taken from −0.4 to −1.1 for the same reason in (a). (c) MDCs
of V = −1.7 at different doping x. (d) hf and 3kF peak intensities
relative to the major peak as a function of V . The peak intensities
are extracted from (a). (e), (f) hf and 3kF peak relative intensities as
a function of x. The peak intensities are extracted from (b) and (c),
respectively.

variational principle (TDVP) is currently a state-of-the-art
approach to calculate dynamic correlations in one dimension,
thus being widely used to compute the spectral function in
strongly correlated 1D systems [48–59]. The basic idea of
TDVP is to project the time evolution of the wave function
to the tangent space of the matrix product state (MPS) sub-
manifold and offers the optimal way of the truncation step.
According to the entanglement structure in 1D correlated
systems, the MPS methods are generally more reliable than
perturbation methods; the leading error of the first comes from
the truncation error, which can be overcome by increasing
bond dimensions. Here we implement the finite-size TDVP
algorithm to calculate the retarded Green’s function of elec-
trons GR(x, t ) and then obtain the spectral function A(k, ω)
by performing a double Fourier transform. We analyze the
finite-size effect to ensure the robustness of our numerics and
the details can be found in the Supplementary Material (SM).

In Fig. 2 we show the calculated A(k, ω) from TDVP
for the extended Hubbard model with various V and doping
concentration x on system size L = 100. Figure 2(a) shows
the momentum distribution curves (MDCs), i.e., A(k, ω) at
some specific ω = ω0, of the extended Hubbard model with
different V (we plot V > 0 and V < 0 cases in different
colors). For the pure Hubbard model with V = 0, the energy
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cut is taken as ω0 = −1.3 measured from the Fermi energy.
For the other values of V , we gradually shift ω0 such that the
hf and the 3kF branches are most visible at momenta k � 2
and k � 2.9, respectively. The smallest value of V = −1.7
is close to the critical boundary and for V � −1.8 phase
separation starts to appear in the ground state of the EHM.

It is clear from Fig. 2(a) that as V decreases from 1 to
−1, the hf spectral weight stays almost intact; as V decreases
further, the increases of hf become evident. Meanwhile, the
3kF holon weight decreases monotonically. For V > 1, as
V increases, the hf weight changes insignificantly, while the
3kF weights suddenly drop at V ≈ V ∗ ≡ −U/[2 cos(2kF )]
(see SM for a detailed discussion). To clearly characterize
the variation of these two weights, we extract the relative
peak intensity, defined as the hf or 3kF peak intensities di-
vided by the major intensity, in Fig. 2(d). Here we do not
use the Lorentzian peak fitting, but directly use the spectral
weight. Both proper repulsive and attractive V can largely
suppress 3kF weight, but hf weight decays monotonically as V
increases.

The dichotomous feature of kF holon-folding and 3kF

holon spectral weight in the presence of V can be used to
diagnose the interaction nature in 1D cuprates. In accord with
the spectral behaviors reported in Ref. [38], the observed
spectral weight of hf is fully evident, but that of the 3kF branch
disappears, which leads the authors to conclude that some NN
attraction must exist in 1D BSCO material. Although both
proper repulsive and attractive V can largely suppress 3kF

weight, repulsive V � 4.4 is usually regarded as unrealistic in
doped cuprates since the Coulomb repulsion is screened and
becomes quite local. Our results show that at least for U = 8t ,
V = −1.7 yields the result consistent with the experiment’s
features.

We show the doping dependent MDCs with U = 8 at two
different values of V = −1 and −1.7 in Figs. 2(b) and 2(c)
and the corresponding peak relative intensities are shown in
Figs. 2(e) and 2(f). The cases of U = 8,V = −1 at different
doping were discussed in Ref. [38]. For V = −1 we find that
the intensities of hf and 3kF are comparable. However, for
V = −1.7, the 3kF intensity gets totally smeared out, and the
hf weight decays more rapidly over increasing doping, which
is consistent with the recent experimental results.

III. PHENOMENOLOGICAL BOSONIZATION

Bosonization is a powerful and reliable method for an-
alyzing low-energy properties of 1D correlated models. In
the low-energy limit, the linearized 1D dispersion allows for
an exact identity relating the original fermion operators with
bosonized field operators [60–63], and the interacting system
of fermions may be turned into a free theory of bosons.
However, in the higher-energy scale, the nonlinearity of the
dispersion turns on interactions between bosons [64], which
impedes our way of obtaining fermion properties by bringing
about additional complexities in evaluating the expectation of
boson field exponentials in an interacting bosonic theory.

Here we follow the seminal work by Haldane and adopt his
phenomenological bosonization [65]. We start with the den-
sity operator, ρs(x) = ∑

i δ(x − xi ) = ∑
n |∇φs(x)|δ[φs(x) −

2πn], where φs(x) is a monotonically increasing function

of position, which takes the value φs(xi ) = 2π i at the posi-
tion of the ith electron with spin polarization s = ±. Here
φs(x) is connected with the boson field �s(x) by φs(x) =
πρ0x − �s(x) where ρ0 is the average density of electrons per
spin polarization and �s(x) = [�ρ (x) + s�σ (x)]/

√
2 with

the subscripts ρ and σ labeling the charge and spin sector.
Using the Poisson summation formula, the density operator
can be rewritten as

ρs(x) =
[
ρ0 − 1

π
∇�s(x)

] ∑
m∈Z

exp {2im[πρ0x − �s(x)]}. (2)

The fermion fields are followed by taking the square root
of ρ(x), and introducing another field 	(x, t ) to ensure the
fermion anticommutation rule. Explicitly we have


s(x, t )∼
∑
m∈Z

{exp(icmkF x)

× exp[−i	ρ (x, t )/
√

2] × exp[icm�ρ (x, t )/
√

2]

× exp[−is	σ (x, t )/
√

2]× exp[iscm�σ (x, t )/
√

2]},
(3)

where kF is the Fermi momentum, cm = 2m + 1 with m
an integer. The leading harmonics is given by cm = ±1,
representing the right and left movers at ±kF , respectively. If
only these two are kept, we arrive at the exact bosonization
formula, for which the Hamiltonian is given by H0 =
1
L

∑
ν,k ( πuνKν

2 �ν (k)�ν (−k) + uν

2πKν
k2�ν (k)�ν (−k)) with

�ν (x) = ∂x	ν (x)/π [66]. Here Kν is the Luttinger parameter
and vν is the velocity for the ν-sector. Upon including
higher harmonics, interacting terms between boson fields
are effectively generated. However, we can assume that
these interactions are weak, i.e., the nonlinearity of the
original fermion dispersion is small as long as we are
still in a low-energy scale. Then we can evaluate the
single-particle Green’s function using H0. For instance, the
retarded Green’s function for the spin-up fermions is given
by GR

↑(x, t ; x′, t ′) ≡ −iθ (t − t ′)〈{
↑(x, t ), 
†
↑(x′, t ′)}〉H0 . A

straightforward derivation shows that for the space-time trans-
lation invariant system GR

↑(x, t ; 0, 0) = ∑
m GR

↑,(2m+1)kF
(x, t ),

where

GR
↑,(2m+1)kF

(x, t ) ∼ −θ (t )eicmkF xRe
∏

ν=ρ,σ

1

[α + i(uνt − x)]cm/2

×
[

α2

(α + iuνt )2 + x2

]γν,m

, (4)

where α is a cutoff with the scale of the lattice constant. The
power index γν,m is given by

γν,m = 1

8

(
c2

mKν + 1

Kν

− 2cm

)
, (5)

where Kν=σ,ρ are the Luttinger parameters that can be both
estimated by either analytical g-ology [67] or more accurate
numerical calculations (see below). For m = 0, the Green’s
function reduces to the well-documented results of the kF

branch [68–71], including the structure of spinon, holon,
holon-folding, and antispinon, with different velocity ±uρ/σ .
The Green’s function of the 3kF branch also reproduces
the earlier analysis [72] with Kρ = 1/2. As an example, in
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FIG. 3. (a) The exponent γρ,m as function of Kρ . (b) Kρ as a
function of V , obtained from DMRG calculation, and the bare K (0)

ρ

obtained from Eq. (8). (c)Kρ as a function of EPC strength g in
Hubbard-Holstein-like model, obtained from DMRG calculation.
Model parameters: U = 8t, ω = 0.5t, g′ = g/

√
5, and doping con-

centration x = 0.14.

Fig. 3(a) we show γρ,0 and γρ,1 as a function of Kρ . We
see that γρ,0 is a monotonically decaying function of Kρ ,
while γρ,1 is nonmonotonic, and at Kρ > 1/3, γρ,1 increases
with Kρ .

To obtain the spectral function A(k, ω), one needs to per-
form a 2D Fourier transformation on the retarded Green’s
function (4), which is, unfortunately, a rather involved task
given the complexity of the function structure. Here, we focus
on the singular behavior of A(k, ω) since they dominantly
characterize the excitations. The spectral function of the kF

branch (m = 0) was studied in previous work [73–75]. A
straightforward generalization to m �= 0 leads to the singular
spectral weight near the excitation dispersion

Am(cmkF + q, ω) ∼|ω − uρq|2γσ,m+γρ,m−1/2

× |ω − uσ q|2γρ,m+γσ,m−1/2

× |ω + uρq|γρ,m+2γσ,m .

(6)

The spectral functions here have either power-law divergence
or cusp-singularity, similar to those at the kF branch [66].

Now we apply Eq. (6) to the microscopic models. Since the
model preserves the spin SU(2) symmetry, we have Kσ = 1
and hence γσ,m remains constant. The only chance that V af-
fects the spectral function is through Kρ , or γρ,m equivalently.
We then focus on the contributions related to γρ,m. The hf and
3kF branches are given by

holon-folding: A0(kF + q, ω) ∼ |ω + uρq|γρ,0 ,

3kF : A1(3kF + q, ω) ∼ |ω − uρq|γρ,1 .
(7)

To connect the above results with the microscopic interac-
tions, we need to determine Kρ from our extended Hubbard
model. A simple calculation of Kρ at the bare level in the
weak-coupling limit gives

K (0)
ρ =

√
πvF + V cos(2kF )

πvF + U + 4V − V cos(2kF )
. (8)

Going beyond the bare level, it acquires the renormalization
from the sine-Gordon term g 1

2n
cos[n

√
8�ρ (x)] at commen-

surate doping level p/n [67]. Here, we deploy the density
matrix renormalization group (DMRG) calculation to extract
renormalized Kρ via the charge structure factor accurately. In a
charge gapless phase, the charge structure factor has the form
of Sc(k) = Kρk/π [76]. We show the results in Fig. 3(b). It
is clear that the renormalization effect only reduces the bare
K (0)

ρ , but does not change the overall trend as a function of
V : as V goes from positive to negative, Kρ increases. Con-
sequently, γρ,0 decreases while γρ,1 increases, as shown in
Fig. 3(a). According to Eq. (7), a typical weight of the hf
or 3kF branch scales as wγ , with w being a small derivation
from the excitation center (ω = ±uρq) and a larger γ yields
a smaller weight. It then explains why with some attractive V
(and hence larger Kρ) the 3kF weight gets suppressed while
the hf branch gets enhanced. This is consistent with our pre-
vious numeric observations.

Complementary to the extended-Hubbard model, we also
studied a Hubbard-Holstein model which includes both onsite
and NN EPC [39]

HEPC = g
∑

i

ni(a
†
i + ai ) + g′ ∑

〈i, j〉
ni(a

†
j + a j ), (9)

where a†
i , ai are phonon creation and annihilation operators.

By fixing U = 8t, ω = 0.5t , the doping level x = 0.14, and
g′ = g/

√
5, we show the DMRG calculated g-dependent Lut-

tinger parameter Kρ in Fig. 3(c). As g arises from 0 to 0.6,
Kρ increases to around 1, and according to our bosonization
analysis above, will enhance the intensity of hf and suppress
that of 3kF , which exhibits similar effects of NN attraction V .
We note that further increasing g will drive the system into the
phase separation.

IV. SUMMARY AND DISCUSSION

In this study, we investigated the spectral properties of the
1D extended Hubbard model, partly inspired by the recent
ARPES experiment on the 1D cuprate BSCO [38] which
shows a peculiar dichotomy between the holon-folding and
the 3kF spectra. We provide both analytical and accurate nu-
merical evidence of how the holon-folding and 3kF spectral
weights vary with the NN density interaction V and doping x.
Particularly, we found a relation between the spectral weight
at higher harmonic branches and Luttinger parameters. When
applied to 1D cuprates, this relation directly shows why in-
troducing a sizable NN attraction is necessary to explain the
experimental and numerical data, and also hints the noticeable
presence of EPC in cuprates. We argue that it can also be
applied in future studies on new 1D materials to establish
microscopic models and analyze the nature of different inter-
actions.
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APPENDIX A: NUMERIC CALCULATION
OF SINGLE-PARTICLE SPECTRAL FUNCTION

We implement the finite-size TDVP to calculate the single-
particle retarded Green’s function, which is defined as

GR
σσ ′ (x, t ; x′, t ′) ≡ −iθ (t − t ′)〈{cσ (x, t ), c†

σ ′ (x′, t ′)}〉, (A1)

where {A, B} = AB + BA is the anticommutator. After that,
a double Fourier transform is applied to find the Green’s
function in momentum-frequency space GR

σ,σ ′ (k, ω). The
single-particle spectral function is followed by the imaginary
part of the Green’s function, namely,

A(k, ω) = − 1

π

∑
σ,σ ′

ImGR
σ,σ ′ (k, ω). (A2)

In practice, the TDVP code is imposed with the total par-
ticle number and total spin Sz conservation. When calculating
the retarded Green’s function, the Fermion operator at time
slice t = 0 is fixed on the middle of the chain, by assum-
ing the translation invariance [51]. The bond dimensions of
MPS are retained D = 500–2000, which gives the truncation
error magnitudes about 10−7. We take open boundary con-
ditions in accordance with the MPS’ preference. The step
size τ = 0.02–0.03, and the maximum time tmax = 40–90.
The step error of such small τ can be neglected, and such
a long time of correlation supports us to obtain the spectral
functions brute-force, without any kind of extrapolation. In
addition, when performing the Fourier transform t → ω, we
multiply a Gaussian window e−αt2

on the integral, with α’s
magnitude about 0.01. The aforestated parameters support a
reliable dynamic simulation with high resolution.

As mentioned above, we assume the translation invariance
and fix the Fermion operator at t = 0 in the middle of the
chain, which significantly reduces the computational cost of
simulations. However, the assumption only comes to be true
in the thermodynamic limit L → ∞. To plug up the loophole,
we perform calculations of the spectral function on various
system sizes and examine the finite-size scaling behavior.
Figure 1(b) shows the momentum distribution curves (MDCs)
at ω − μ = −1 of the Hubbard model, with parameters
U = 6 and x = 0.14. The MDCs obtained from different sizes
collapse onto each other, appearing indistinguishable to the
naked eye. Based on this observation, we select a system
size of L = 100 for the majority of calculations, treating the
obtained data as representative of the thermodynamic limit.

We also carefully checked the convergence of the spec-
tral functions obtained from simulation with different bond
dimensions. In Fig. 4(c) we show the calculated spectral
functions of the L = 200 system with two different bond
dimensions D = 500 and 1000. The two curves of spectral
functions from different bond dimensions almost overlap,
indicating the negligible truncation error and the excellent
convergence of our TDVP results.

APPENDIX B: PHENOMENOLOGICAL BOSONIZATION
CALCULATION OF THE GREEN’S FUNCTION

There are various ways to obtain the single-particle corre-
lation functions. A very convenient way is utilizing the boson
coherent path integral. However, such an approach has to be
supplemented by analytic continuation. Here we evaluate the
correlation function directly in real-time space, and below are
the explicit steps to obtain (4). The first step is to diagonalize
the Hamiltonian H0 = ∑

ν Hν using Bogoliubov transforma-
tion. After Fourier transformation into momentum space, we
have

Hν = 1

L

∑
k

(
πuνKν

2
�ν (k)�ν (−k) + uνk2

2πKν

�ν (k)�ν (−k)

)
.

(B1)
Introducing

γk = 1√
2

⎛
⎝

√
|k|

πKν

�ν (k) + i

√
πKν

|k| �ν (k)

⎞
⎠,

γ
†
k = 1√

2

⎛
⎝

√
|k|

πKν

�ν (−k) − i

√
πKν

|k| �ν (−k)

⎞
⎠,

(B2)

it is easy to verify that these two operators obey [γk, γ
†
k′ ] =

δk,k′ . The inverse transformation is also easy to obtain

�ν (k) =
√

πKν

2|k| (γk + γ
†
−k ),

�ν (k) = −i

√
|k|

2πKν

(γk − γ
†
−k ). (B3)

Substitute Eq. (B3) to Eq. (B1), the diagonalized Hamiltonian
is obtained

Hν = uν

∑
k

|k|γ †
k γk. (B4)

Under this Hamiltonian, the time evolution of the free operator
γk is simple, namely, γk (t ) = γke−iuν |k|t .

Next, we evaluate the Green’s function using the diago-
nalized Hamiltonian (B4). Notice that the charge and spin
sectors are decoupled, this fact enables us to write G>(x, t ) =
〈
†

+,↑(x, t )
+,↑(0, 0)〉 as a product of charge and spin
contributions

G>(x, t ) =
∏
ν

〈
exp

( −i√
2

[cm�ν (x, t ) − 	ν (x, t )]

)

× exp

(
i√
2

[cm�ν (0, 0) − 	ν (0, 0)]

)〉
Hν

(B5)
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FIG. 4. (a) The colorscale plot of the spectral function of the Hubbard model at U = 8, length L = 100, and doping level x = 0.14.
Only half of the Brillouin zone is drawn considering the parity symmetry. The white dashed line denotes the Fermi energy as a guide. The
dash-dotted lines are the guides for the dispersion of low-energy excitations, including the spinon, holon, hf, and 3kF branches. (b) The MDCs
finite-size scaling of the Hubbard with U = 6 and doping x = 0.14, at energy cut ω − μ = −1. The curves of different sizes collapse well
so that L = 100 is sufficiently large to represent the thermodynamic limit behavior. (c) The bond dimension convergence of the MDCs. The
MDCs are calculated at U = 6, x = 14% Hubbard model on the L = 200 system. The energy cut is taken at ω − μ = −7/6. We see the MDCs
calculated on D = 500 and 1000 collapse very well, which indicates the truncation errors in our calculation are negligible.

where the subscript Hν means average under Hν . For free boson Hamiltonians like Eq. (B1), the boson field is bilinear (Gaussian),
and one can make use of the fact that the second-order cumulant expansion is exact, thus we evaluate the average using
〈eiAe−iB〉 = exp(− 1

2 〈A2〉 − 1
2 〈B2〉 + 〈AB〉). For the charge contribution, we have

G>
ρ (x, t ) = exp

[
1
2 〈[cm�ρ (x, t ) − 	ρ (x, t )][cm�ρ (0, 0) − 	ρ (0, 0)]〉 − 1

2 〈[cm�ρ (0, 0) − 	ρ (0, 0)]2〉]. (B6)

In the exponential there are two parts, but we can skip the calculation of the second term since it can be obtained from the first
term by taking the limit of (x, t ) → (0, 0). The operators in the first term, when written in momentum space are

〈[cm�ρ (x, t ) − 	ρ (x, t )][cm�ρ (0, 0) − 	ρ (0, 0)]〉

= 1

L2

∑
k,k′

eikx

〈(
cm�ρ (k, t ) − π�ρ (k, t )

ik

)(
cm�ρ (−k′) + π�ρ (−k′)

ik′

)〉

= π

L2

∑
k,k′

eikx

〈[
cm

√
Kρ

2|k| (γk + γ
†
−k ) +

√
|k|

2Kρ

1

k
(γk − γ

†
−k )

][
cm

√
Kρ

2|k′| (γ−k′ + γ
†
k′ ) −

√
|k′|
2Kρ

1

k′ (γ−k′ − γ
†
k′ )

]〉

= 1

2

∫ ∞

0
dk

eikx

2k

(
c2

mKρ + 1

Kρ

+ 2cm

)
e−ivc|k|t + 1

2

∫ ∞

0
dk

e−ikx

2k

(
c2

mKρ + 1

Kρ

− 2cm

)
e−ivc|k|t . (B7)

To obtain the last line, we used the fact that at T = 0, the Bose distribution function 〈γ †
k γk〉 vanishes. The remaining integrals

over k run from 0 to ∞. As we put in the main text that there exists an energy cutoff beyond which the bosonization procedure
fails, thus for consistency the upper limit of the momentum integral cannot be taken formally as ∞. The cutoff is made by hand,
and this can be done by introducing an exponentially decaying factor e−αk into the integrand and the small parameter α has the
same order of lattice constant. Collecting the results in Eq. (B7), the exponential in Eq. (B6) becomes

− 1

4

[(
c2

mKν + 1

Kν

)∫ ∞

0
dk · e−αk 1 − cos(kx)e−iuν |k|t

k
− i2cm

∫ ∞

0
dk · e−αk sin(kx)

k
e−iuν |k|t

]

= 1

8

[(
c2

mKν + 1

Kν

)
ln

α2

(α + iuνt )2 + x2
− 2cm ln

α + i(uνt − x)

α + i(uνt + x)

]
, (B8)

which, in combination with G<(x, t ), immediately gives Eq. (4).

APPENDIX C: MICROSCOPIC ORIGIN OF 3kF BRANCH

We see from above that the 3kF spectral weight can also
be suppressed with a large repulsive V . Below we show that
this peculiar behavior is closely related to the origin of the
3kF branch. To address this issue, we note that the low-energy
excitation modes are closely related to a singular behavior
in the charge density distribution nk = ∑

s=↑,↓ c†
k,sck,s. For

example, the holon/spinon excitation around kF gives rise to
a dip of nk at the Fermi momentum kF . Similarly, the 3kF

mode contributes to a hump structure in nk at k = 2π − 3kF .
In Fig. 5(a), the blue curve shows these behaviors of nk ob-
tained by performing DMRG calculations for the Hubbard
model with U = 8 and V = 0 at doping x = 14%. Note that
the singularity behaviors of nk are directly connected to the
spectral function via an integral.
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FIG. 5. (a) The charge density distribution nk of EHM under
two different V = 0 and V = V ∗ � 4.4207. We choose U = 8 and
doping level x = 14%. The black arrows point to singularities asso-
ciated with excitation modes emanating from different momenta. A
hump around k = 2π − 3kF appearing at V = 0 corresponds to the
3kF excitation. Under this special value of V = V ∗, the singularity
at k = 2π − 3kF disappears, implying the elimination of the 3kF

excitation. (b). The illustration of the umklapp g3,⊥ process. The
black curve is the dispersion and the blue dashed line is the Fermi
energy. two right-moving particles (the green arrows) with opposite
spin polarization around the Fermi surface are scattered to the left-
moving side, one of which acquires momentum k = 3kF − 2π .

It may be contrary to common sense why the particle
number does not monotonically decrease as the band energy
increases in the sense that the particles usually prefer lower
energy states. The hump in high energy implies it may come
from a gapped process, i.e., the umklapp scattering in the
Hubbard model away from half-filling, which can be written
as

H3 =
∫

dx
∑

σ=↑,↓,s=L,R

g3,⊥
†
s,σ 


†
s,−σ 
−s,−σ 
−s,σ , (C1)

where the argument x of the fermion field operators 
s,σ (x) is
omitted for brevity. The process g3,⊥ is schematically shown
in Fig. 5(b). Obviously, the scattering transfers the particles
around the Fermi surfaces to high-energy states with mo-
mentum 3kF , resulting in the singular hump in the particle

number distribution nk at 3kF . We numerically verified the
above interpretation of origination of 3kF in the EHM model,
where g3,⊥ = U + 2V cos(2kF ). By increasing V to a critical
value V ∗ which satisfies U + 2V ∗ cos(2kF ) = 0, we expect
that g3,⊥ vanishes and hence the umklapp process is canceled,
and as a result, the 3kF mode disappears. We show nk of the
EHM model with U = 8,V = V ∗ and x = 14% in Fig. 5(a).
Clearly, the peak around 3kF is smeared out, indicating the
absence of 3kF .

APPENDIX D: DENSITY MATRIX RENORMALIZATION
GROUP CALCULATION ON ELECTRON-PHONON

COUPLING MODEL

We employ DMRG to extract the Luttinger parameter of
the Hubbard-Holstein-like model in this work, whose Hamil-
tonian reads

H = − t
∑

iσ

(c†
iσ ci+1,σ + H.c. ) + U

∑
i

ni,↑ni,↓

+ g
∑

i

ni(a
†
i + ai ) + g′ ∑

〈i, j〉
ni(a

†
j + a j ) +

∑
i

ωa†
i ai,

(D1)

where the EPC terms are only taken up to the NN term g′.
Solving the above EPC models follows a standard DMRG

procedure. However, incorporating the phonon modes, which
are typically truncated to very large Hilbert space dimensions,
results in computationally expensive calculations. To circum-
vent this issue, we employ the pseudosites scheme as proposed
in Ref. [77]. The underlying concept involves truncating the
Hilbert space dimension of the phonon mode to 2M , subse-
quently decomposing a single phonon site into M pseudosites,
each possessing a Hilbert space dimension of 2. We utilize
a pseudosite count of M = 5 in our calculations, equivalent
to phonon Hilbert space dimension 32. Under the parame-
ters of U = 8t, ω = 0.5t, g′ = g/

√
5, and the strongest EPC

case g = 0.6t , the occupancy number of the last pseudosite is
about 6 × 10−5, indicating the convergence with respect to the
phonon Hilbert space dimension.
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