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We consider a two-dimensional electron system in the Laughlin sequence of the fractional quantum Hall
regime to investigate the effect of strong correlations on the mutual interaction between two levitons, single-
electron excitations generated by trains of quantized Lorentzian pulses. We focus on two-leviton states injected
in a single period with a time separation �t . In the presence of a quantum point contact operating in the weak-
backscattering regime, we compute the backscattered charge by means of the Keldysh technique. In the limit
of an infinite period and zero temperature, we show that the backscattered charge for a two-leviton state is not
equal to twice the backscattered charge for a single leviton. We present an interpretation for this result in terms
of the wave-packet formalism for levitons, thus proposing that an effective interaction between the two levitons
is induced by the strongly correlated background. Finally, we perform numerical calculations in the periodic
case by using the Floquet formalism for photoassisted transport. By varying the system parameters such as pulse
width, filling factor, and temperature we show that the value of the backscattered charge for two-leviton states
is strongly dependent on the pulse separation, thus opening scenarios where the effective interaction between
levitons can be controllably tuned.
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I. INTRODUCTION

The manipulation of individual quantum systems is at the
heart of current research in physics aiming at fostering the
development of new applications in the domain of quantum
technologies [1–3]. Historically, the principal effort has been
devoted to the generation and control of photons, the quanta
of light, leading to the proposal of quantum computation
schemes based on single-photon states [4–8]. Recently, a fast
progress in nanoelectronics paved the way towards the manip-
ulation of single-electron states [9–15]. This great interest in
the generation and control of single-electron states has led to
the development of a new research field which has been called
electron quantum optics (EQO) [16–19].

The major step at the foundations of EQO has been the
experimental realization of single-electron sources [12]. The
first proposal to inject a single electron into the filled Fermi
sea of a mesoscopic channel was introduced by Büttiker
and collaborators and is known as the mesoscopic capacitor
[20,21]. In their proposal, the energy levels of a quantum
dot are periodically driven leading to the alternate emission
of an electron and a hole into a two-dimensional electron
system [22,23]. Despite the fact that this source has been
actually realized in experiments [24,25], it requires complex
nanolithography techniques to properly design quantum dots.
Moreover, despite some theoretical proposals [26], it is also
difficult to generalize this experimental protocol to the emis-
sion of multiple electronic excitations in the same period.
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Both issues can be overcome by considering a different in-
jection scheme based on a time-dependent drive [27,28]. As
shown by Levitov and coworkers [29], a train of quantized
Lorentzian voltage pulses injects single- and few-electron
states, namely, propagating wave packets carrying a single
electron devoid of additional particle-hole pairs [30–33], into
ballistic quantum channels. These minimal excitations have
been called levitons and they have been proved to induce
the minimal excess current noise when injected into ballistic
channels of mesoscale devices. Due to the intrinsic property
of this source, q different levitons can be injected in a single
period and travel unhindered along ballistic channels. The
many-body states that are consequently formed are called
multielectron levitons or, simply, q levitons [34–36].

The tools of quantum transport have been widely employed
in the context of EQO to investigate the properties of these
excitations propagating in ballistic edge channels [37,38]. In
particular, the electrical shot noise [39], induced by the gran-
ularity of electrons, has proven to be an invaluable source
of information to probe the discrete nature of propagating
single-electron states. Ground-breaking experimental results
have opened the way to the triggered emission and manip-
ulation of single-electron excitations by adapting quantum
optics results to the realm of condensed matter. In the first
phase of EQO these experiments have shown that it is pos-
sible to reproduce the phenomenology of standard quantum
optics in mesoscopic fermionic systems in the absence of
interaction between electrons [17,40–42], by replacing the
bosonic statistics of photons with the Fermi-Dirac statistics.
Interestingly, compared to photons, electrons can interact with
each other and with the electromagnetic background, thus
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rendering extremely appealing to investigate the effects of the
electron-electron interaction on single-electron states. Indeed,
a great interest has been devoted to the study of the effects of
different types of solid-state correlations on the propagation
of levitons, for instance, in systems with superconductivity
[43–45] or Coulomb interaction [46–52].

The fractional quantum Hall effect (FQHE) represents a
seminal example of strongly correlated states where the in-
teraction between electrons cannot be neglected [53,54]. In
the Laughlin sequence of the FQHE a single chiral chan-
nel exists at the boundary of the system and the excitations
are exotic quasiparticles with fractional charge and statistics
called anyons [55–58]. The propagation of levitons in these
exotic states of matter is currently under investigation. Impor-
tantly, it has been shown that quantized Lorentzian pulses still
inject minimal single-electron excitations even in fractional
quantum Hall channels [59]. Intriguingly, the propagation of
levitons in these edge states has proven to lead to nontrivial
properties, which have no counterparts for noninteracting sys-
tems [35]. Indeed, in the case of multilevitons, the strongly
correlated background rearranges the charge density into an
oscillating pattern after a tunneling at the quantum point
contact (QPC), leading to the so-called crystallization of levi-
tons, in analogy with the formation of Wigner crystals in
one-dimensional systems [60–62]. These works prove that the
injection of levitons in a fractional quantum Hall bar still
presents many nontrivial aspects to investigate.

Recently, in the context of EQO, the idea of implement-
ing quantum information and computation schemes based on
the concept of electron flying qubit has attracted a lot of
attention [11,12,15,63–67]. In analogy with previous propos-
als for photonic states, the qubit states are defined by the
presence or the absence of an electron in two alternative
propagation paths, which are termed quantum rails. Even in
the absence of electron-electron interaction, single-qubit gates
can be realized by extended tunneling regions coupling two or
more quantum rails in the presence of voltage gates [12,15].
The angle of rotation on the Bloch sphere is proportional
to the length of the tunneling region and the voltage applied to
the gates, thus allowing for a full control on the single-qubit
operation. In contrast, the presence of an interaction between
electron flying qubits is a crucial ingredient towards the real-
ization of two-qubit quantum gates and, therefore, universal
quantum computation schemes in coherent semiconducting
nanoelectronics systems [15,68]. The Coulomb interaction
introduces a quantum phase between the two states which
is at the origin of the entanglement required to implement
a two-qubit gate. However, so far no theoretical proposal
or experimental evidence has ever revealed the interaction
between two propagating levitons.

In this paper, we intend to elucidate this matter and pro-
pose a way to measure the effect of an induced interaction
between levitons. Our main emphasis is on the detection
of the effect of this interaction between levitons and not
on the proposal of quantum information schemes based on
the aforementioned interaction. For this purpose, we employ
a two-dimensional electron system tuned into the Laughlin
sequence of the FQHE in a four-terminal configuration to
measure charge-transport properties. We focus on periodic
trains of two-leviton states separated by a delay �t , i.e., we

set the parameter of the Lorentzian voltage so as to inject two
levitons per period. As proven in Ref. [69], multiple levitons
are still minimal electronic excitations even in the presence
of a finite-time delay. By considering a QPC operating in
the weak-backscattering regime, we compute the backscat-
tered charge as a function of the separation time between
levitons. We first focus on the limit of a single pulse (i.e.,
infinite period), thus showing that the backscattered charge
for a two-leviton state, namely Q2, is not equal to twice the
backscattered charge Q1 for a single leviton. We rederive the
same result by resorting to the wave-packet formalism for
levitons, showing that Q2 contains a term with four leviton
wave functions, in contrast to Q1 which is expressed in terms
of an overlap of only two wave functions. We interpret this
additional term in Q2 as a result of an effective interaction
between the two levitons induced by the strongly correlated
background. Then, we consider the periodic case and we
perform a numerical calculation to show that Q2 differs from
twice Q1 even for a finite period. Indeed, we show that the
time delay �t between the two pulses can be exploited to
reduce, remove, or increase the interaction between levitons in
the periodic case. Finally, we address the case of the separated
injection of a leviton and an antileviton and show that the
backscattered charge is independent of the time delay. We
conjecture that our results are valid in any type of Luttinger
liquid, including for instance the integer quantum Hall effect
at ν = 2. The choice of focusing on the Laughlin sequence
is motivated by the absence of decoherence induced by other
propagating channels [70–72].

The paper is organized as follows. In Sec. II, we introduce
the model of the quantum Hall bar with quantum point con-
tact and the source of levitons. In Sec. III, we compute the
backscattered charge at the quantum point contact for isolated
pulses of levitons and for a periodic drive: we interpret our
results by using the wave-packet formalism for levitons. In
Sec. IV, we discuss our results by plotting the backscattered
charge as a function of different system parameters. In Sec. V,
we draw our conclusions.

II. MODEL

We consider a two-dimensional electron gas in the pres-
ence of a strong magnetic field that tunes the system into
the FQH regime at filling factor ν = 1/(2n + 1), with n ∈ N,
which defines the so-called Laughlin sequence. At filling fac-
tors ν < 1 only the first Landau level is partially filled. In this
phase, the bulk is incompressible and insulating from the point
of view of quantum transport. The excitations of this incom-
pressible Hall fluid are Laughlin quasiparticles with charge
e∗ = e/3. At the boundary of the sample, a gapless chiral edge
mode emerges (see Fig. 1). When reservoirs are connected to
the system, charge transport occurs from left to right on the
top edge and from right to left on the bottom edge, as shown
in Fig. 1. This allows us to describe transport properties in
terms of two counterpropagating modes existing on two op-
posite edges of the bar. These modes are connected by a QPC.
The latter operates in the weak-backscattering regime, where
the tunneling is dominated by Laughlin quasiparticles with
charge e∗ = νe [73]. A time-dependent voltage V (t ) is applied
to terminal S and the charge backscattered at the QPC is
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FIG. 1. Schematic view of the setup. A two-dimensional electron
system is in the Laughlin series of the FQHE, with a single edge
state propagating on the boundary. The system is connected to four
terminals: a periodic voltage drive applied to the source terminal S is
injecting multiple levitons in each period separated by a time delay
�t smaller than the period itself. The opposite edges are connected
by a QPC placed in x = 0. The charge backscattered at the QPC,
namely Q, is measured in the drain D. The remaining terminals (in
gray) are grounded and they are not involved in any measurement.

measured in the drain D. The two remaining terminals are
assumed to be grounded. The total Hamiltonian that describes
this system is given by H = H0 + Hs + HB and consists of
edge states, time-dependent drive, and tunneling terms, re-
spectively.

According to the seminal paper by Wen in Ref. [74], the
edge states for the Laughlin sequence can be described in
terms of an effective free-boson theory, termed chiral Lut-
tinger liquid. The effective Hamiltonian for the edge states
reads as (h̄ = 1)

H0 =
∑

r=R,L

v

4π

∫
dx [∂x�r (x)]2. (1)

The right- and left-moving excitations chirally propagating
along the two edges are described in terms of bosonic fields
�R/L, satisfying [�R/L(x),�R/L(x′)] = ±iπ sign(x − x′) and
v is their velocity. The charge density is defined in terms of
bosonic fields as

ρR/L (x) = ±e
√

ν

2π
∂x�R/L(x). (2)

The source of levitons is modeled as a time-dependent drive
capacitively coupled to the right-mover edge state by means
of a semi-infinite voltage gate. The latter is expressed as
Vg(x, t ) = V (t )�(−x − d ), where the Heaviside step function
models the semi-infinite contact that ends in x = −d . The
capacitive coupling of this gate to the density of right-moving
excitations is described by

Hs =
∫

dx Vg(x, t )ρR(x) = V (t )
∫

dx �(−x − d )ρR(x).

(3)
Equations of motion for the bosonic field �R in the presence
of the source term are solved in terms of the single-variable
fields φR in the equilibrium configuration V (t ) = 0, thus

giving (see, for instance, Ref. [69])

�R

(
t − x

v

)
= φR

(
t − x

v

)
− 1√

ν
ϕ
(

t − x

v

)
, (4)

where ϕ(t ) is the phase difference between the two electrodes
and is defined as

ϕ(t ) = e∗
∫ t

−∞
dt ′V (t ′). (5)

The propagation of bosonic excitations along the edge
states remains chiral even in the presence of the driving volt-
age: this is a consequence of the linear dispersion of edge
states for all filling factors in the Laughlin sequence. The pro-
file of these excitations is determined by the time dependence
of the phase difference ϕ(t ). Therefore, the choice of the driv-
ing potential is crucial to define the nature of the propagating
modes. Here, we focus on periodic trains of Lorentzian-
shaped voltage pulses. We consider quantized pulses carrying
an integer charge −qe = e2ν

2π

∫ T
0 dt V (t ), where q is any

integer number, here named q levitons. In order to study the
effect of the background correlations on q levitons we take
into account the possibility of injecting multiple levitons in
one period separated by a delay �t . The corresponding time-
dependent potential is

V (t ) =
q−1∑
j=0

+∞∑
k=−∞

V0

π

γ 2

γ 2 + (t − kT − j�t )2
, (6)

with period T = 2π
ω

, amplitude V0, and width at half-height
2γ . Later, we will consider also the case of an isolated pulse,
which can be recovered from the above expression in the limit
γ � T . In Fig. 2, we present some examples for this voltage
drive, both for the single-pulse (top panel) and the periodic
(bottom panel) cases. Except for very narrow pulses, pulses
in different periods always overlap and the signal cannot fully
vanish. This is a distinctive difference between isolated pulses
and periodic case.

Finally, we consider the tunneling between the two edges
which occurs through a QPC at x = 0. For this reason we
can set x = 0 in Eq. (4) and consider only the time depen-
dence of fields. Assuming that the QPC is working in the
weak-backscattering regime, the tunneling of Laughlin quasi-
particles between opposite edges is the only relevant process
[75–77]. Annihilation fields for Laughlin quasiparticles car-
rying fractional charge −νe (with e > 0) are defined through
the standard procedure of bosonization [74]. They read as


R/L(t ) = FR/L√
2πa

e−i
√

ν�R/L (t ) = eiϕ(t )ψR/L(t ), (7)

where a is a short-distance cutoff and FR/L are the Klein
factors [39,74,78,79] and we introduced the fermionic fields
at equilibrium (V = 0)

ψR/L(t ) = FR/L√
2πa

e−i
√

νφR/L (t ). (8)

The backscattered Hamiltonian reads as

HB = λ
∑

ε=+,−
[
†

R(t )
L(t )]ε, (9)

035436-3



BRUNO BERTIN-JOHANNET et al. PHYSICAL REVIEW B 109, 035436 (2024)

−40 −30 −20 −10 0 10 20 30 40

t/γ

0.0

0.1

0.2

0.3

0.4

V
(t

)/
V

0

(a)

(b)

Δt = 5γ

Δt = 15γ

Δt = 25γ

−1.0 −0.5 0.0 0.5 1.0

t/T
0.0

0.2

0.4

V
(t

)/
V

0

γ = 0.001T
γ = 0.02T

γ = 0.1T

FIG. 2. Time-dependent voltage drive. (a) Case of isolated
Lorentzian pulses separated for different values of the time delay �t .
Far before and far after the pulses, the signal is strictly vanishing.
(b) Case of a periodic train of Lorentzian pulses for different values
of the width γ .

λ is the amplitude of tunneling at the QPC and ε = − means
Hermitian conjugate. By expressing the Hamiltonian in terms
of fields at equilibrium, we obtain

HB = λ
∑

ε=+,−
[e−iϕ(t )ψ

†
R(t )ψL(t )]ε . (10)

III. CHARGE BACKSCATTERED AT THE QPC

We are interested in investigating the properties of the
charge backscattered at the QPC. Indeed, the transport prop-
erties before the QPC do not carry any information about the
effect of strong correlations of the propagation of q levitons,
as shown in Ref. [35]. Nevertheless, we expect that, due to
the nonlinear nature of the tunneling at the QPC, effects of
interaction will be manifested in the backscattered charge.
For a periodic time-dependent voltage, the charge which is
backscattered in one period T is given by

Q =
∫ T /2

−T /2
dt 〈IB(t )〉, (11)

where we introduce the backscattering current

IB(t ) = ie∗λ
∑

ε=+,−
ε[eiϕ(t )ψR(t )†ψL(t )]ε . (12)

The assumption of weak-backscattering regime allows us
to calculate the excess charge density perturbatively in the

tunneling Hamiltonian HB. Thermal averages are thus per-
formed over the initial equilibrium density matrix in the
absence of tunneling. In order to properly manage the out-of-
equilibrium dynamics of the system, calculations are usefully
carried out in the Keldysh formalism. To lowest order in the
tunneling amplitude λ, the backscattered charge becomes

Q = i
e∗λ2

2π2a2

∫ +∞

−∞
dτ e2νG(τ )

∫ T /2

−T /2
dt sin [ϕ(t ) − ϕ(t − τ )],

(13)

where we introduced the connected bosonic Green’s function
G(τ ) = 〈φR/L(τ )φR/L(0)〉c. Its expression for a finite temper-
ature θ reads as (kB = 1)

G(τ ) = log

[
πθτ

sinh (πθτ )
(
1 + i τ

τ0

)
]
, (14)

with τ0 = a/v is the short-time cutoff: our theoretical descrip-
tion is valid for times much longer than τ0.

The expressions for the backscattered charge Q are valid
for any arbitrary driving voltage V (t ). In the following, we
focus specifically on the case of q levitons, by using the time-
dependent potential defined in Eq. (6) for q = 1 and 2. In the
latter case, we will assume a time delay �t between the two
levitons. Before numerically evaluating Q for a finite period
T , we start by considering the case of isolated pulses (γ � T )
and zero temperature. In this case, we can provide analytical
expressions for the backscattered charge that will set the stage
for our later discussion.

For the sake of completeness, we will also present the
calculations for the charge fluctuations in the case of isolated
pulses at zero temperature. This would provide a full char-
acterization of the transport properties of this setup in the
presence of one-leviton and two-leviton states.

A. Isolated pulses

1. Backscattered charge

In the case of isolated pulses the integral over t in Eq. (11)
can be extended from −∞ to +∞ and can be solved analyt-
ically. Let us comment that this limit is well defined only for
voltage pulses that go to zero at t = ±∞, which is the case
for Lorentzian-shaped pulses. The expression for the charge
becomes

Q = i
e∗λ2

2π2a2

∫ +∞

−∞
dτ e2νG(τ )

∫ +∞

−∞
dt sin [ϕ(t ) − ϕ(t − τ )].

(15)

The integral over t can be solved analytically for integer
values of q. For q = 1, one finds

Q1 = 4ie∗

πa2
λ2γ 2

∫ +∞

−∞
dτ e2νG(τ ) τ

τ 2 + 4γ 2
. (16)

Next, we consider the case q = 2 where the isolated pulses are
separated by a constant delay �t . The integral over t gives

Q2 = 16ie∗

πa2
λ2γ 2

∫ +∞

−∞
dτ e2νG(τ ) τ [(4γ 2 + �t2)2 − τ 2(3�t2 + 4γ 2) + 2τ 4]

(τ 2 + 4γ 2)[(�t + τ )2 + 4γ 2][(�t − τ )2 + 4γ 2]
. (17)
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These two expressions can be computed numerically at finite
temperature θ . Nevertheless, one can obtain an analytical ex-
pression for Q1 and Q2. Indeed, by using the zero-temperature
limit of the bosonic Green’s function

G(τ ) = − log

(
1 + i

τ

τ0

)
, (18)

the residue theorem can be used to calculate the integral over
t , thus arriving to the final expression for the backscattered
charge in the case q = 1,

Q1 = e∗
(

λ

v

)2(2γ

τ0

)2−2ν

+ O

[(
τ0

γ

)2ν−1
]
, (19)

where we kept only the leading order in τ0/γ . By performing
a similar calculation for Q2 in the limit of zero temperature,
we find at the lowest order in τ0/γ

Q2 = Q1

{
2 Re

[(
1 + 2iγ

�t

)2(
1 − i�t

2γ

)−2ν
]

+ 2

(
1 + 4γ 2

�t2

)}
+ O

[(
τ0

γ

)2ν−1
]
. (20)

We note that, at zero temperature, the backscattered charge
for two pulses is proportional to the backscattered charge for
a single pulse. For the integer filling factor ν = 1, we recover
the trivial result that Q2 = 2Q1. Nevertheless, for fractional
filling factor, the constant of proportionality depends on �t
and γ and Q2 
= 2Q1. From this result we can conclude that
the charge backscattered when two levitons are impinging
at the QPC does not amount in general to twice the charge
backscattered when a single leviton is injected. This result
is a consequence of the strong correlations that characterize
Laughlin states and that introduce a nonlinear current-to-
voltage characteristic in the presence of the tunneling of
quasiparticles at the QPC.

Before concluding this part, it is instructive to analyze two
extreme limits of the ratio �t/γ at zero temperature. In the
limit of simultaneous pulses, which can be obtained by setting
�t/γ � 1 in Eq. (20), we find

lim
�t/γ→0

Q2 = 2Q1(2 − 3ν + 2ν2). (21)

In this limit the constant of proportionality acquires a simple
expression, becoming independent of γ and being determined
solely by the filling factor ν.

Finally, we consider the opposite case of well-separated
pulses, which can be found by taking the limit �t/γ → ∞.
By using the expression Q2 in Eq. (20), we can compute this
limit analytically in the zero-temperature case, thus obtaining

lim
�t/γ→∞

Q2 = 2Q1. (22)

Indeed, in this case, we recover for any filling factor the trivial
result that the charge backscattered for two levitons is twice

0 50 100 150 200

Δt/γ

1.8

2.0

2.2

2.4

Q
2
/Q

1

Q2 = 2Q1(2 − 3ν + 2ν2) = 2.4̄

Q2 = 2Q1

θ = 0γ−1

θ = 0.025γ−1

θ = 0.05γ−1

θ = 0.1γ−1

FIG. 3. Backscattered charge for a two-leviton state Q2 rescaled
with respect to the same quantity for a single leviton as a function
of �t/γ at different temperatures. The blue line corresponds to the
analytical formula at zero temperature and valid in the limit τ0 � γ .
Black and red dotted lines are, respectively, the limits of simultane-
ous (�t/γ → 0) and well-separated pulses (�t/γ → ∞). The other
curves have been computed numerically by fixing τ0 = 10−4γ . The
only other parameter is the filling factor ν = 1

3 .

the one obtained with a single leviton. For well-separated
injection time, the system has relaxed to equilibrium when the
second pulse comes in. As a result, the two levitons behave as
two independent single pulses. We summarize these results
in Fig. 3, where the black and red dotted lines represent the
two limits of simultaneous and well-separated pulses at zero
temperature.

2. Charge fluctuations

In order to further characterize the transport properties of
this system, we provide here the analytical calculations of
charge fluctuations, which are defined as

SQ =
∫ +∞

−∞
dt

∫ +∞

−∞
dt ′〈IB(t )IB(t ′)〉 − Q2. (23)

Similarly to the backscattered charge, we compute the
above integral at zero temperature and for isolated quantized
Lorentzian pulses, in order to provide the analytical expres-
sions of charge fluctuations for q = 1 and 2. Before providing
the results, we notice that charge fluctuations diverge at zero
temperature: as discussed in Ref. [80], the integral should be
regularized by subtracting its value at equilibrium, i.e., in the
absence of voltage pulses. Therefore, one finds

S̃Q =
(

e∗λ
πa

)2 ∫ +∞

−∞
dτ e2νG(τ )

×
∫ ∞

−∞
dt {cos [ϕ(t ) − ϕ(t − τ )] − 1}, (24)

where we choose the notation S̃Q for the regularized charge
fluctuations. The calculation of the integrals over t can be per-
formed analytically for integer values of q using the residue
theorem, thus obtaining

S̃Q,1 = −e∗ 4e∗λ2γ

πv2
Fτ

2
0

∫ +∞

−∞
dτ

τ 2

τ 2 + 4γ 2
e2νG(τ ) (25)
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for q = 1 and

S̃Q,2 = −2πγ

(
2e∗λ
πa

)2 ∫ ∞

−∞
dτ τ 2 32γ 4 + (�t2 − τ 2)2 + 4γ 2(3�t2 − τ 2)

�t (τ 2 + 4γ 2)[(�t + τ )2 + 4γ 2][(�t − τ )2 + 4γ 2]

(
1 + i

τ

τ0

)−2ν

(26)

for q = 2. The residue theorem can be used once again to perform both integrals over τ and the final expressions for the charge
fluctuations for q = 1 and 2 are

S̃Q,1 = 2

(
2e∗λγ

vτ0

)2(
1 + 2γ

τ0

)−2ν

(27)

and

S̃Q,2 = 2

(
e∗λ
vF

)2(2γ

τ0

)2−2ν
[

2

(
1 + 4γ 2

�t2

)
+ 2 Re

(
1 + 2iγ

�t

)2(
1 − i�t

2γ

)−2ν
]
, (28)

where we performed the limit τ0/γ → 0. It is instructive to
introduce a Fano factor for the charge as

FQ = S̃Q,1,2

Q1,2
. (29)

We notice that FQ = 2e∗ for q = 1 and also for q = 2 indepen-
dently of the separation between the levitons. It is important
to remark that the above Fano factor has been defined by
employing the regularized charge fluctuations in order to yield
Fano relations similar to those existing between current and
noise in other setups (see, e.g., Refs. [59] and [69]). Due to the
proportionality between regularized charge fluctuations and
backscattered charge, the plot of SQ,2/SQ,1 as a function of
�t/γ has the exact same behavior as the one depicted in Fig. 3
at zero temperature.

B. Effect of a finite temperature

In Fig. 3 we also present some curves computed numeri-
cally at finite temperature for the backscattered charge. Here,
we note that in the limit �t/γ → ∞ the charge Q2 eventually
reaches the value 2Q1 even for finite values of temperature
and we checked that this result is independent of the filling
factor. Nevertheless, the curves at finite temperature present
some interesting features that deserve additional comments.
First of all, the limit of simultaneous pulses is not universal as
a function of temperature: it reduces its value for increasing
temperature and, eventually, it can acquire a value smaller
than 2Q1. Moreover, we note that, as the time delay �t is
varied, the ratio Q2/Q1 can become smaller than 2 for certain
values of temperature. We ascribe this effect, which is in strik-
ing contrast with the zero-temperature isolated-pulse limit, to
the additional timescale tθ = θ−1 introduced at finite temper-
ature which acts as a natural cutoff for the edge-state Green’s
functions. Finally, it is interesting to point out that, when the
temperature is increased, the ratio shows a minimum which
gets closer and closer to 0, whose position is proportional to
the thermal timescale tθ .

Here, we would like to address with more details the
change in sign of the excess charge in the presence of a finite
temperature. At zero temperature, the ratio Q2/Q1 is always
greater than 2 and it decays by showing a slow power-law
dependence, which is due to the power-law behavior of the
Green’s functions of the gapless one-dimensional edge modes.

When we turn to the case of a finite temperature, we introduce
an additional timescale tθ : in this case the Green’s function
of the fractional quantum Hall edge states is exponentially
suppressed on a scale set by tθ . Let us write the backscattered
charge for one and two levitons as

Q1 = i
e∗λ2

2π2a2

∫ +∞

−∞
dτ e2νG(τ )�1(τ ), (30)

Q2 = i
e∗λ2

2π2a2

∫ +∞

−∞
dτ e2νG(τ )�2(τ ), (31)

where

�1,2(τ ) =
∫ +∞

−∞
dt sin [ϕ1,2(t ) − ϕ1,2(t − τ )] (32)

is the phase accumulated by the quasiparticles due to the
voltage drive integrated over the time t for a single leviton
and for a two-leviton state, respectively. For the following
discussion, it is useful to introduce the excess charge �Q as

�Q ≡ Q2 − 2Q1, (33)

which represents the backscattered charge in excess compared
to the trivial case at ν = 1. We note that when Q2/Q1 > 2
(Q2/Q1 < 2), the excess charge �Q is positive (negative).
Then for this quantity one has

�Q = i
e∗λ2

2π2a2

∫ +∞

−∞
dτ e2νG(τ )��(τ ), (34)

where we defined ��(τ ) = �2(τ ) − 2�1(τ ). The latter can
be computed analytically as

��(τ ) = τ 3

(4γ 2+τ 2)

(τ 2−12γ 2−�t2)

[�t4 − 2�t2(τ 2 − 4γ 2)+(4γ 2+τ 2)2]
.

(35)

We plot ��(τ ) in Fig. 4 for different values of �t , only for
τ > 0 since ��(τ ) = −��(−τ ).

One can see from this plot that this function is changing
sign as a function of τ and the crossing point is pushed to the
right by increasing the value of �t . Indeed, by its analytical
expression one can deduce that the zeros are located in

τ̄ =
√

12γ 2 + �t2. (36)

At temperature zero, the Green’s function has a power-law
decay and ��(τ ) contributes fully to the final value of the
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FIG. 4. Excess phase ��(τ ) = �2(τ ) − 2�1(τ ) for different
values of the time delay �t as a function of the time τ .

integral over τ , such that the long positive tail compensates
the initial negative values. In contrast, when we introduce
a finite temperature, we expect the positive contribution to
be suppressed by the Green’s function for certain values
of �. Qualitatively we expect this change in behavior to
occur for

�t ∼
√

1 − 12γ 2θ2

πθ
. (37)

Physically, the above expression corresponds to the time de-
lays at which the effect of temperature starts influencing the
excess charge �Q. In this respect, we can identify three dif-
ferent regimes of temperatures. At zero temperature, �t is
diverging, meaning that the effect of temperatures will never
appear and, therefore, the ratio Q2/Q1 stays always above 2.
In the regime of intermediate temperature, one can roughly
see that the values given by Eq. (37) are the ones at which
the ratio Q2/Q1 is crossing the line at Q2/Q1 = 2. Finally, for
high enough temperature, the square root becomes imaginary:
in this regime �t is not defined. This corresponds to a ratio
Q2/Q1 which always stays below 2.

In conclusion, we argue that the main reason while at finite
temperature the ratio Q2/Q1 can go below 2 is due to the
presence of an additional timescale, related in this case to
θ−1. Therefore, we expect to observe a sign switch even for
a periodic signal, due to the presence of a finite period T .
Before showing the numerical results for the periodic case, we
present a physical interpretation of the above results in terms
of the wave-packet formalism of levitons.

C. Correlated two-leviton state

In this part, we recast the expression for the backscattered
charges Q1 and Q2 at zero temperature in terms of the wave
function of an isolated leviton. Indeed, a quantized Lorentzian
drive with a single peak creates a quantum state of the form
[29,81]

|
〉 =
∫

dx X ∗(x)ψ†(x)|F 〉, (38)

where ψ†(x) creates an electron at the position x, |F 〉 is the
ground state of the system, and

X (x − vt ) =
√

γ v

π

1

x − vt + ivγ
(39)

is the wave function of a single leviton propagating in a chiral
edge state. By using Eq. (39), the charge Q1 can be recast as

Q1 = − e∗λ2

2π2a2

∫ ∞

−∞
dt

∫ ∞

−∞
dτ Re[χ (t )χ∗(t − τ )]τe2νG(τ ),

(40)

where we defined χ (t ) ≡ X (−vt ). We observe that the charge
Q1 contains a product of leviton wave function χ , thus show-
ing that it is determined directly by the charge density of the
state injected on the system ground state. One can similarly
express the charge backscattered by the two-leviton state as

Q2 = − 2ie∗

π2a2
λ2

∫ ∞

−∞
dt

∫ ∞

−∞
dτ τ 2 Im[χ (t )χ∗(t − τ )χ (t + �t )χ∗(t − τ + �t )]e2νG(τ ) + 2Q1. (41)

We note that, while the leviton wave function is strictly
valid only for noninteracting systems, the expressions for the
backscattered charge are equivalent to the ones obtained in a
system without interactions where the Green’s functions have
been replaced by those of the strongly correlated fractional
quantum Hall edge channels. Based on this observation, we
claim that we can still use the leviton wave function to support
the physical interpretation for our result. A general description
of a leviton, even with a fractional charge, in terms of wave
functions is possible, but requires a more elaborated formal-
ism [82].

Moreover, we observe that the integral appearing in the
above expression is zero for ν = 1. Indeed, in this case e2G(τ )

is an even function of τ , while the imaginary part appearing in
Eq. (41) is an odd function of the same variable: therefore, the

integral over τ vanishes at ν = 1 and one recovers the trivial
result Q2 = 2Q1 at any temperature.

It is instructive to recast the excess charge �Q = Q2 −
2Q − 1 in terms of the leviton wave function as

�Q = e∗λ2

4π2a2(i)2ν−2

∫ ∞

−∞
dt[χ (t )gν (t,�t )χ (t+�t )−H.c.],

(42)

where

gν (t,�t ) =
∫ ∞

−∞
dτ χ∗(t − τ )χ∗(t − τ + �t )τ 2e2νG(τ ).

(43)
In contrast with Q1, the excess charge is related to the prod-
uct of four leviton wave functions, thus proving that it is
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originated by a density-density interaction between levitons.
We interpret this result by conjecturing that the strongly cor-
related background mediates an effective interaction between
the two levitons.

The function gν is different from zero for fractional fill-
ing factors because of the propagator e2νG(τ ). The power-law
decay for fractional filling factors is slower than τ 2, thus in-
ducing long-time correlations between the two levitons. These
correlations do not affect the charge only when the isolated
pulses are well separated (limit of �t � γ , 1/θ ). Otherwise,
correlations induce an effective interaction between levitons
that effectively enhance the value of the charge Q2 compared
to the limit of two well-isolated pulses.

We highlight that the existence of this interaction dramat-
ically relies on the correlations of the FQH background. We
base our claim on the fact that for ν = 1 the interaction be-
tween levitons is absent, as discussed below Eq. (41). Indeed,
the specific type of this correlation, while influencing the
form of the interaction between levitons, is not crucial for its
existence. In particular, even at finite temperature, where the
power-law behavior of the correlation functions is exponen-
tially suppressed at times t > θ−1, the interaction gν is still
present. Since the long-range nature of FQH correlation is not
necessary, we will show in the next chapter that our claims
are still valid even for a periodic signal, despite the fact that a
finite period T is cutting the range of correlations. Moreover,
we expect the periodic case to be qualitatively similar to the
finite-temperature case for isolated pulses and that Q2 can
be smaller than 2Q1. Nevertheless, for a periodic signal, we
expect to recover the limit of well-separated pulses only for
very small width γ with respect to the period T .

D. Periodic train of levitons

In order to make contact with experiments, we consider
here the periodic case since the emission of a single isolated
pulse is still experimentally challenging. We will show that
not only our results still hold, but also that new phenomena
emerge. In the case of a periodic signal, no analytical expres-
sion can be derived for the backscattered charges Q1 and Q2

and one has to resort to a numerical calculation. The latter
is conveniently carried out in the photoassisted formalism,
where the transport properties are expressed in terms of the
Fourier coefficients of the phase associated with the periodic
signal [83]. In the following, we will focus only on the case of
Lorentzian-shaped pulses with q = 1 and 2.

The photoassisted expressions for the backscattered
charges Q1 and Q2 are

Q1 = Q
∑

m

p2
m

∣∣∣∣�
(

ν + i
m + 1

2θπ

)∣∣∣∣
2

sinh

(
m + 1

2θ

)
, (44)

Q2 = Q
∑

m

| p̃m|2
∣∣∣∣�

(
ν + i

m + 2

2θπ

)∣∣∣∣
2

sinh

(
m + 2

2θ

)
, (45)

where Q = 2e∗
T ( λ

v
)2(2πθτ0)2ν−2 θ

�(2ν) . Here, we introduced the
photoassisted coefficients for q = 1,

pm =
⎧⎨
⎩

e−2πηm(1 − e−4πη ), m � 0
−e−2πη, m = −1
0, m < −1

(46)

and for q = 2,

p̃m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1−eiπα(m+1)]−e−4πη−iπα[1−eiπα(m+3)]
(1−eiπα )eiπαm pm, m � 0

eiπα (e−iπα + 1)(1 − e−4πη )p−1, m = −1

eiπα p2
−1, m = −2

0, m < −2

(47)

in terms of the rescaled pulse width η = γ /T , the re-
duced temperature θ = kBT/h̄ω, and the pulse separation α =
2�t/T . The sums appearing in Eqs. (44) and (45) can be
evaluated numerically: their convergence is ensured by the
negative exponential of coefficients pm in Eq. (46). As for
the case of isolated pulses, we can define an excess charge
�Q = Q2 − 2Q1 for the periodic drive. We present the corre-
sponding results in the next section by carrying on an analysis
over different system parameters. Moreover, we checked that
the interpretation of an interaction between levitons induced
by the background can be generalized to the periodic case by
resorting to the periodic version of leviton’s wave functions
[34,35].

Concerning the charge fluctuations in the periodic case,
in Ref. [69] some of the authors have already shown that
a Fano relation exists between noise and backscattered cur-
rent for one-leviton and multileviton states regardless of the
value of the time separation �t . Therefore, one can conclude
that, given the proportionality between charge fluctuations and
backscattered charge, the calculation of the latter quantity
is sufficient to fully characterize the transport properties of
the system. Moreover, it is instructive to point out that the
regularized charge fluctuations introduced for isolated pulse
in Eq. (24) are the correct expression that is recovered from
the periodic case in the limit η → 0.

Before concluding this section, we address the case of the
injection of two excitations with opposite charge, i.e., one
leviton and one antileviton, separated by a time delay �t in
the same period. The form of the applied voltage is

V (t ) =
∑
s=±

s
+∞∑

k=−∞

V0

π

γ 2

γ 2 + (t − kT + s�t/2)2
. (48)

We note that the voltage is an even function of time, i.e.,
V (t ) = V (−t ). By using this property, in Appendix, we show
that the backscattered charge induced by this voltage vanishes
for any value of �t . We conclude that for the drive in Eq. (48),
the total backscattered charge Q2 is always identically zero for
any choice of system parameters.

The interaction between the leviton and the antilevi-
ton cannot be probed by a measure of the backscattered
charge. A computation of the charge fluctuations can therefore
prove to be useful. To this end, we performed the equivalent
of the calculation leading to Eq. (28). This allowed to obtain
the charge fluctuations induced by a single couple of leviton
and antileviton, which read as

S̃Q,ll = 2

[(
2γ

�t

)2

+ 1

]−1

S̃Q,l , (49)

where l stands for leviton and l stands for antileviton. This
result can be interpreted as follows: when �t/γ → 0, the levi-
ton is superposed with the antileviton in the drive, resulting in
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FIG. 5. Backscattered charge for a two-leviton state Q2 rescaled
with respect to the same quantity for a single leviton as a function
of �t/γ at zero temperature. The black dashed line is the limit of
a single pulse. Solid lines are computed for the periodic case with
η = 10−2, 10−3, 10−4, 10−5. We see that for the smallest value of η =
10−5, the periodic case coincides with the analytical limit at infinite
period. The black dotted line is a visual guide for Q2 = 2Q1. The
ratio Q2/Q1 always stays above this line, except for the highest value
of η = 10−2: in this case Q2 can be smaller than twice Q1. The only
other parameter is the filling factor ν = 1

3 .

no drive at all, and when �t/γ → ∞ they are well separated
and give twice the fluctuations of a single leviton.

Finally, it is worth pointing out that the case of leviton and
antileviton is equivalent to an HOM interferometer, where two
levitons with the same charge are injected from two opposite
terminals, e.g., terminal S and the gray terminal of left-moving
particles in our setup Fig. 1, separated by a controllable time
delay. Indeed, we notice that the charge fluctuations for the
case of two excitations with opposite charge separated by a
time delay correspond to the well-known analytical expres-
sion for the charge noise computed in an Hong-Ou-Mandel
configuration (see, for instance, Ref. [59]).

IV. RESULTS

In the previous section we established a connection be-
tween the excess charge �Q and the effect of the strongly
correlated background on the two-leviton state. Here, we dis-
cuss our results and present some plots of the latter quantity
as a function of different parameters.

A. Comparison with the isolated pulse case
and effects of time separation

Before investigating the excess charge, in Fig. 5, we plot
the backscattered charge Q2 at filling factor ν = 1

3 , normalized
with respect to Q1, as a function of �t/γ in the periodic
case for different values of the parameter η = γ /T . Here, in
order to provide an estimation for the experimentally realistic
value of γ , we focus on Lorentzian pulses tailored for future
applications in the quantum information domain. In order to
couple long enough single-electron excitations in the micro-
metric tunneling region, short pulses should be realized. It
has been estimated that the required pulse width to perform
a single-qubit rotation is roughly γ ∼ 10 ps, which is at the

limit of state-of-the-art technology [15]. Shorter pulses can be
envisaged by resorting to schemes based on optoelectronics
generation [84]. Since in usual experiments with levitons, the
frequency is set to � = 2π×5 Ghz, the resulting value for the
renormalized width is η = 5×10−2. While in the following
analysis we will consider values of η close to this estimation,
in Fig. 5 we consider also smaller values of η in order to
compare the charge backscattered with a periodic drive to the
same quantity for the case of isolated pulses.

One can clearly see that for η = 10−4, 10−5 the colored
lines corresponding to the periodic case approach the black
dashed line, which corresponds to the case of isolated pulses.
This is in agreement with the idea that the case of isolated
pulses is recovered in the limit γ � T , as anticipated in the
model section. From the analysis of Fig. 5, we can also gather
some information concerning a different qualitative behavior
of Q2 with respect to the case of isolated pulses. Indeed,
we could check that for η = 10−4, 10−5 the ratio Q2/Q1 is
always greater than or equal to 2: the effect of the correlated
background is always to enhance the backscattered charge
compared to the case ν = 1 as for the case of an isolated
pulse. Indeed, for η = 10−2, 10−3, we see that the ratio Q2/Q1
could be also smaller or equal to 2, thus showing that the
effect of the correlated background is strongly affected by the
width of Lorentzian pulses in the periodic case. In passing,
we comment that this additional feature appears exactly for
values of η which are closer to realistic estimation. The effect
of a finite period is similar to the one induced by a finite
temperature in the sense that it introduces another timescale in
the system. Moreover, the overlap between pulses in different
periods cannot be avoided, except for very narrow pulses (see
the comparison between the single-pulse case and the periodic
case with η = 10−5 in Fig. 5). As a result, the limit of well-
separated pulses is hard to reach in the period case (see Fig. 2).

For this reason, we explore further the dependence of
the backscattered charge on parameters α = 2�t/T and η =
γ /T . In particular, we focus on the quantity �Q introduced
in Eq. (33): for �Q > 0 (�Q < 0), the backscattered charge
is increased (reduced) by strong correlations with respect to
the trivial case at ν = 1. In Fig. 6, we present the excess
charge as a function of α for different values of η. Despite
the fact that for α > 1 pulses from two neighboring periods
are overlapping, we decided to always plot the full interval
0 < α < 2, in order to show the correct periodicity of the
backscattered charge. One can deduce from this plot that, for a
large range of η, the sign of �Q can be changed by tuning the
parameter α. Interestingly, there exist some values of α where
the excess charge �Q vanishes, thus showing that the effect
of strong correlations on two-leviton states can be tuned on
and off by acting on the separation time �t . Above a certain
value of η, we found that the sign of �Q is negative for
any value of α at zero temperature and ν = 1

3 . While the
specific values of η depend on temperature and filling fac-
tor, the important result is that there always exists a width
of Lorentzian pulse above which the sign of �Q is strictly
negative.

B. Effects of the pulse width

Similarly, in Fig. 7 we explore the behavior of the excess
charge as a function of η. In particular, we observe that for
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FIG. 6. Excess backscattered charge �Q rescaled with respect
to the backscattered charge Q1 for a single leviton as a function
of α = 2�t/T at zero temperature. The black dotted line is a vi-
sual guide for �Q = 0. Solid lines are computed for the periodic
case with η = 10−3, 5×10−3, 10−2, 2×10−2. The excess charge �Q
changes sign as a function of α, except for the highest value of
η = 2×10−2: in this case �Q is always negative. The smaller the
value of η and the higher the value of α at which �Q = 0. The only
other parameter is the filling factor ν = 1

3 .

increasing values of η all the lines reach the asymptotic excess
charge �Q = Q1(22ν−1 − 2), which corresponds to the limit
of a constant voltage VDC = h̄�q/e. This is in agreement with
the fact that the case η → ∞ corresponds to a constant signal.
In the inset of this figure, we zoom in on these curves in the
range η = 10−3–10−2. Again, we observe that for some values
of α and η the excess charge �Q vanishes and by tuning these
parameters its sign can be reversed.
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FIG. 7. Excess backscattered charge �Q rescaled with respect
to the backscattered charge Q1 for a single leviton as a function of
η = γ /T at zero temperature. The black dotted line is a visual guide
for the limit η → ∞: in this case the periodic drive corresponds to
a constant voltage with q = 2 and one finds the analytical value of
�Q = Q1(22ν−1 − 2). The other lines are computed for the periodic
case with α = 0.01, 0.1, 0.5, 1. We see that for increasing values of
η, all lines tend to the same limit �Q = Q1(22ν−1 − 2), indepen-
dently of α. The only other parameter is the filling factor ν = 1

3 .
(Inset) Zoom of the same plot between η = 0 and η = 2×10−2: one
can see that �Q changes sign only for α = 0.01 and 0.1.
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to the backscattered charge Q1 for a single leviton as a function of
α = 2�t/T at zero temperature. The black dotted line is a visual
guide for �Q = 0 and corresponds to the case ν = 1. The other
lines are computed for the periodic case with ν = 1

3 , 1
5 , 1

7 . The excess
charge �Q is changing sign as a function of α for all the fractional
filling factors. The smaller the value of ν, i.e., the stronger the
interaction, the higher is the value of α at which �Q changes sign.
The only other parameter is η = 10−2.

C. Effects of the filling factor and the temperature

Finally, we discuss the dependence of �Q from the prop-
erties of the strongly correlated background. The latter are
encoded in the Green’s function which in turn depends on
the filling factor ν and the temperature θ . The dependence
of �Q on the filling factor and, therefore, the strength of the
interaction is presented in Fig. 8 for ν = 1

3 , 1
5 , 1

7 . In general,
we observe two behaviors as the filling factor is reduced.
First of all, the values of α for which the excess charge
vanishes increase, thus implying that a stronger interaction
requires larger separation time �t to compensate its effect on
the two-leviton state. Moreover, for stronger correlations, the
absolute value of the maximum (in α = 0) and the minimum
(in α = 1) of �Q are also increasing. We study the effect
of temperature in Fig. 9. Here, we observe a qualitatively
different behavior as a function of α for different regimes of
temperature. For low temperature, the excess charge behaves
as the zero-temperature case (blue line): in this case, a single
minimum appears at α = 1. As the temperature is increased, a
plateau develops for intermediate values of α, similarly to the
case of isolated pulses presented in Fig. 3. The width of this
plateau is roughly proportional to θ−1. In the high-temperature
limit, two minima appear for values of α different from α = 1
and whose position scales with the inverse temperature, much
like the isolated pulse case of Sec. III A 1. In this regime, the
value of �Q in α = 1 corresponds to a local maximum. In
order to make contact with experiments, we comment that
for � = 2π×5 Ghz, the temperature θ = � corresponds to
roughly 1.5 K.

V. CONCLUSIONS

Here, we considered a quantum Hall bar in the Laughlin
sequence of the fractional quantum Hall effect to investigate
the effect of a strongly correlated system on the propagation
of two-leviton states. These states are injected by periodic
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FIG. 9. Excess backscattered charge �Q rescaled with respect
to the backscattered charge Q1 for a single leviton as a function of
α = 2�t/T for different values of temperature. The black dotted
line is a visual guide for �Q = 0. The other lines are computed for
the periodic case with θ = 0, 0.4�, 0.7�, �. As the value of tem-
perature is increased, a plateau develops around α = 1. For higher
temperatures, two local minima appear at the left and at the right
of α = 1. The excess charge �Q is changing sign as a function of
α, except for the highest value of θ = �: in this case �Q is always
negative. The other parameters are ν = 1

3 and η = 10−2.

trains of quantized Lorentzian-shaped pulses with width γ

and are separated by a controllable �t . They are minimal
electronic excitations, i.e., purely electronic states traveling
above the Fermi sea and generating the minimal electrical
noise. In the presence of a quantum point contact, we com-
puted the backscattered charge for the low-transparency limit.
We presented analytical results in the case of isolated pulses
(i.e., infinite period) and zero temperature. We considered
the charge backscattered for the two-leviton state, namely
Q2, and we compared it with the backscattered charge in the
presence of a single pulse, termed Q1. By an explicit calcu-
lation, we showed that Q2 > 2Q1 in the fractional regime,
in contrast to the trivial result Q2 = 2Q1 at ν = 1. Inter-
estingly, in the limit of simultaneous pulses (�t � γ ), the
backscattered charge acquires a simple expression depending
only on the filling factor ν. By resorting to the wave-packet
formalism for levitons, we conjectured the existence of an
effective interaction between the two levitons caused by the
strongly correlated background. Then, we considered the case
of a finite period, performing numerical calculations in the
photoassisted formalism. We showed that in the periodic case,
as a function of �t , one can tune the backscattered charge Q2

to be smaller than, equal to, or greater than 2Q1. The effects
of the correlated background were considered in the depen-
dence of the backscattered charge on the filling factor and on
temperature. We based our numerical calculations on realistic

estimations of the parameters that can be realized with state-
of-the-art technology. Interesting extension of this work can
be the calculation of the backscattered charge in the presence
of extended or multiple quantum point contacts, thus taking
into account the effect of quantum interference [85–87]. In-
deed, the realization of quantum computing architecture with
levitons requires the presence of multiple tunneling regions.
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APPENDIX: LEVITON AND ANTILEVITON CASE

In this Appendix, we compute the charge backscattered at
the QPC when terminal 1 is driven by the voltage

V (t ) =
∑
s=±

s
+∞∑

k=−∞

V0

π

γ 2

γ 2 + (t − kT + s�t/2)2
, (A1)

which corresponds to the injection of a leviton and an antile-
viton in the same period separated by a time delay �t . In this
case, V (t ) = V (−t ). The phase ϕ(t ) becomes in this case

ϕ(t ) = e∗
∫ t

−∞
dt ′ ∑

s=±
s

+∞∑
k=−∞

V0

π

γ 2

γ 2 + (t ′ − kT + s�t/2)2

= e∗
∫ t+�/2

t−�/2
dt ′

+∞∑
k=−∞

V0

π

γ 2

γ 2 + (t ′ − kT )2
, (A2)

and, as a result, ϕ(t ) = ϕ(−t ). By using the latter property,
we show that the integral over t in Eq. (15) vanishes. Indeed,∫ ∞

−∞
dt sin [ϕ(t ) − ϕ(t − τ )]

=
∫ ∞

−∞
dt sin [ϕ(−t + τ/2) − ϕ(−t − τ/2)]. (A3)

By using ϕ(t ) = −ϕ(−t ), we obtain∫ ∞

−∞
dt sin [ϕ(t + τ/2) − ϕ(t − τ/2)]

=
∫ ∞

−∞
dt sin [ϕ(t − τ/2) − ϕ(t + τ/2)], (A4)

and the integral is obviously zero.
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