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When an electron beam hits an interface at a point, the reflection beam comes back from another interface
point and a reflection shift occurs in real space. We investigate the reflection shift evolution and Fermi arcs on
the interface between two Multifold Weyl semimetals by changing the system parameters continuously using
tight-binding calculations. The incident pocket is touched tangentially by Fermi arcs through reflection shift
vortices located on the pocket edge. When the transmissive pocket is changed by tuning the parameters of the
transmissive side, the edge vortex is shifted to inner locations by the transmissive pocket covering it. In the
intersection region between the two pockets, the vortex and antivortex pair can be created and annihilated. The
net number of vortices in the incident pocket for any case and that in the transmissive pocket if the reflection
shift can be defined there, are just the monopole topological charges of the incident and transmissive media,
respectively. Our work uncovers new quantized features of interfaces between topological materials.
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I. INTRODUCTION

When a light beam is reflected by a flat interface, the
reflected and incident beams do not meet at the same point on
the interface and the reflection experiences an anomalous shift
[1]. The longitudinal component of the displacement is known
as Goos-Hänchen (GH) shift and the transverse component
is named Imbert-Fedorov (IF) shift. Since the wave-particle
duality holds for any particle and because the analogy between
the energy dispersion of photons and that of quasiparticles in
Weyl semimetals, the reflection shift effect may also be found
in electronic systems of condensed matters [2].

The Weyl semimetal [3–10], the electron and valance
bands of which are degenerate at points in momentum space
called Weyl points and the energy dispersion near Weyl points
is linear, has drawn much intention of physical society in
recent years. Weyl points come in pairs, and the two Weyl
points in one pair are the source and sink of the Berry curva-
ture. The Berry curvature flux around a Weyl point over 2π

defines the Chern number associated with the Weyl point and
also can be viewed as the topological charge in momentum
space. In a typical Weyl material, a Weyl point carries a unit
topological charge (positive or negative) and so a Weyl point
pair is a dipole of topological charge in momentum space. The
property of chirality of Weyl point leads to chiral anomaly
[6–10], which is the physical origin of many transport effects
such as planar Hall effect and 3D Hall effect [8,10–12]. The
chiral anomaly also leads to the appearance of topologically
protected Fermi arcs that consist of localized states on the
Weyl material surfaces [8–10,13]. On the junction of two
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different Weyl semimetals, the junction interface is a com-
mon surface of two beside materials, and the Fermi arcs
of individual materials interact and lead to the reconstruc-
tion of Fermi arcs on the interface [14–18]. The interface
Fermi arcs are expected to exhibit unique transport signals
[19–21], and high quality interfaces between Weyl semimetals
can be realized experimentally [22]. In addition to the usual
Weyl semimetals exhibiting linear dispersion, multifold Weyl
semimetals [23–25], of which a Weyl point carries one more
topological charge (N > 1), have a mix of linear and higher-
order dispersions, and Weyl semimetals with N = 2, 3, and
4 were reported [24–27]. Due to the fantastic properties of
Weyl semimetals, the interest in Weyl quasiparticles in crystal
solid is extended to that in metamaterials such as cold atoms
[28], resonator lattices [29], photonic crystals [30–33], and
phononic crystals [34,35].

The reflection shift of electron beam in Dirac-like materials
was first noticed in graphene systems [36]. Because graphene
is a pure 2D material, only the GH shift can happen. Weyl
semimetals, as 3D cousins of graphene, are expected having
the similar beam shift effect as in graphene. Following, it was
found that not only the reflected beam is displaced at Weyl
interfaces, the transmission beam is shifted too [37], while
the reflected shift is much notable than the transmissive one.
The IF component of reflection shift at potential step inter-
faces in Weyl semimetals [38–40], as well as the interfaces
between normal and superconducting materials [41], stems
from the angular momentum conservation when reflection
and is proportional to the topological charge of the Weyl
point, while the GH component cannot be explained by this
conservation law. The reflection shift has its geometric origin
[42], and it needs a correction beyond the linear approxi-
mation to remove the divergency at critical incident angles
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[43]. When electrons are injected from a Weyl medium to
vacuum, there are semivortex structures of reflection shift
locating where the Fermi arc states transit to bulk states in
momentum space [44,45]. At the interface between two Weyl
media with mismatched Weyl dipoles, interface Fermi arcs are
constructed, and semivortices can also be found at the joint
points between the incident bulk states and the interface Fermi
arc states [46]. If electrons are injected from a normal metal
to a Weyl medium, full vortices, not semiones, are found and
a vortex means a quantized circulation [47]. The circulation
stems from the winding of the complex phase of reflection
coefficient, and such a reflection phase can be detected in
metamaterials [48–51].

However, what the physical connection between semivor-
tices and full vortices is and which side medium, incident
or transmissive side, is responsible for the number of these
vortices, are still unclear. Motivated by these questions, we
calculate the reflection shift and the density of states (DOS) on
the interface between two different multifold Weyl semimet-
als. The incident energy defines an incident pocket and a
transmissive pocket. Vortices of the reflection shift and Fermi
arcs on the interface are found respectively in the incident
pocket and outside it. Every vortex on the incident pocket
edge (semivortex) is planted with a Fermi arc while the vor-
tex in the inner region (full-vortex) is not. At the centers of
inner vortices, the transmission reaches unit perfectly. The
parameters of the transmissive side medium are tuned to
continuously change the position and size of transmissive
pocket. If the transmissive pocket overlaps an edge vortex,
the edge vortex is detached with the pocket edge to become
an inner one, saying, the semivortex becomes a full vor-
tex. Vortex pair with opposite helices can be generated and
annihilated in the overlap region, so the total number of vor-
tices is changed but the net number of vortices is conserved,
which is the topological charge of the incident Weyl medium.
When the incident pocket includes the transmissive one,
which means the reflection shift can be defined in the whole
transmissive pocket, the number of vortices appearing in the
transmissive pocket is the monopole topological charge of
the transmissive medium.

To obtain the reflection coefficient of the multifold Weyl
junction as well as the DOS on the interface, we develop a
tight-binding method based on the lattice description of the
junction. Our method not only can be applied for the Weyl
junctions, but also can be used to solve transport problems of
other systems with more complicated geometry.

This paper is organized as follows. In Sec. II, we describe
the model of multifold Weyl media and the Weyl junction we
considered. In Sec. III, we briefly introduce the calculation
method of reflection shift and interface DOS. In Sec. IV, we
investigate the evolution of the reflection shift vortices and the
interface DOS by changing the parameters of the transmissive
side continuously. In Sec. V, we summarize our main conclu-
sions. The lattice description of the multifold Weyl junction
and the calculation details are presented in Appendix.

II. MULTIFOLD WEYL JUNCTION

The heterojunction is constructed by jointing two different
multifold Weyl materials. The low-energy Hamiltonian of the

multifold Weyl material for each side is modeled by

H =
[

qz + U (qx − iχqy)N

(qx + iχqy)N −qz + U

]
(1)

and the corresponding bulk band energies are

E = U ±
√(

q2
x + q2

y

)N + q2
z ,

(2)

where qx = 2 + cos kw − cos kx − cos ky − cos kz, qy =
sin ky, qz = sin kz with kα (α = x, y, z) being the wave vector
component in α direction and kw being the half of Weyl point
connection length, N is the topological charge number of
Weyl points, U is the potential to lift the energy, and χ = ±1
indicates the chirality of the Hamiltonian. Equation (1)
describes the multifold Weyl semimetal with one pair of
N-fold Weyl points locating at (±kw, 0, 0) in k space. The
junction interface lies along the plane of z = 0, and the
Hamiltonian parameters N , U , χ and kw in the region z < 0
and those in the region z > 0 can be all different. We use
the subscript 1 to the label quantities for z < 0 and adopt
the subscript 2 to denote them for z > 0. For example, the
lift potential for z < 0 is assumed to be zero but that in the
region of z > 0 is set to be V , saying, U1 = 0 and U2 = V .
In low-energy limit, the dispersion near each Weyl point
is linear along kz axis and proportional to kN in other two
principal directions. The layout of the Weyl junction and the
reflection shift are illustrated in Fig. 1(a), and the dispersions
of two beside media along kx direction are sketchily shown
in Fig. 1(b). The calculations in the following sections are
based on the tight-binding version of the Hamiltonian. How to
construct the tight-binding Hamiltonian according to Eq. (1)
is not presented here but is given in Appendix A.

The electrons to be considered are those near the Weyl
points (kw, 0, 0) and to be injected from the region of z < 0
to that of z > 0. We refer the kx−ky plane projection of the
equienergy surface of the incident medium as the incident
pocket and name that of transmissive material as the trans-
missive pocket. An injected or transmitted state of energy E
can be represented by a point in the incident or transmissive
pocket, respectively. Because of the translational invariance in
x and y directions, the injected and transmitted states possess
the same in-plane wave vector. If an injected state in the
incident pocket also falls in the transmissive pocket, the state
has probability to be transmitted to a propagating state in
the transmissive side, otherwise, it is totally reflected back.
Figure 1(c) schematically shows a possible configuration for
the incident and transmissive pockets.

III. REFLECTION SHIFT AND DENSITY
OF INTERFACE STATES

When a beam of Weyl fermions is injected onto the junc-
tion interface, it hits on the interface at a point. The reflected
beam and transmitted one stem from other two points on
the interface, saying, the reflection point and transmission
point. The reflection shift S, which is defined by the vector
originated from the injection point and ended at the reflection
point, is calculated by [42]

S = Ar − Ai − ∇ arg r, (3)
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FIG. 1. (a) A reflection shift takes place when a beam of Weyl
fermions is injected from medium 1 to medium 2. (b) Energy disper-
sions of multifold Weyl materials beside the interface in kx direction.
(c) The incident and transmissive pockets (red and blue loops) in
kx−ky plane.

where Aα = i〈φα|∇|φα〉 (α = i, r) are the in-plane Berry con-
nection for the incident state |φi〉 and that for the reflected
state |φr〉, r is the reflection coefficient (It is associated with
the reflected state as r|φr〉) and ∇ stands for the gradient
operator in kx−ky plane. In the equation, the first two terms
rely only on intrinsic band geometric property of the incident
side, while the last term depends on band structures of both
sides. The reflection coefficient is a function of kx and ky

at a fix energy, saying r = r(kx, ky), and it is numerically
calculated point by point in kx−ky plane using the method
described in Appendix B based on the tight-binding version
of the Hamiltonian in Eq. (1). The transmission probability
1 − |r|2 is also calculated to identify the inner vortices.

The Berry connections in Eq. (3) serve as the compensation
source for gauge changing since the reflection coefficient is
gauge dependent. If we adopt another gauge so that the re-
flected state is |φ′

r〉 = |e−i fr φr〉, where fr is a function of kx

and ky, we have r|φr〉 = rei fr |φ′
r〉 = r′|φ′

r〉 with r′ = rei fr , and
∇ arg r′ = ∇ arg r + ∇ fr . Meanwhile, the Berry connection
of the new reflected state turns to be A′

r = i〈φ′
r |∇|φ′

r〉 = Ar +
∇ fr . Apparently, the change effect of reflection coefficient is
canceled by that of Berry connections in the reflection shift.

It is well known that there exist surface states on the junc-
tion interface. These states locate near the interface and decay

into the bulk. The interface DOS reveals the Fermi arcs on the
interface if they exist. The interface Fermi arcs are sensitive
to the Hamiltonian parameters of two sides and have relation
with the reflection shift in kx−ky space. The interface DOS is
defined by

DOS = i

2π
Tr(G − G+), (4)

where G is the retarded Green’s function of the interface
region. Our calculation of the retarded Green’s function is also
based on the tight-binding model, and the calculation details
are presented in Appendix C.

IV. VORTICES OF REFLECTION SHIFT AND FERMI
ARCS ON INTERFACE

On the interface between single fold Weyl materials, it was
reported that the incident and the transmissive pockets are
connected tangentially by an interface Fermi arc [44,46]. For
each incident state in the incident pocket, its reflection shift
can be calculated, so the distribution profile of reflection shift
can be obtained. At the tangent point between the incident
pocket and Fermi arc, there exists a vortex of reflection shift.
When we turn to the multifold Weyl junction, it is expected
that there are more Fermi arcs on the interface and more
vortices on the incident pocket edge arise. Moreover, the
difference of the topological properties in two sides, explicit
saying, the topological charges and chiralities, could introduce
interesting features of the reflection shift vortices and interface
Fermi arcs.

In this section, we will investigate the reflection shift vor-
tices and interface Fermi arcs of the multifold Weyl junction
with different topological charge numbers besides, specif-
ically saying, N1 = 3 and N2 = 2 will be adopted in the
following calculations. We fix the incident pocket by setting
E = 0.025 and kw1 = π/2, and let the transmissive pocket
change by tuning the parameters of transmissive side to ob-
serve the evolution of the vortices and Fermi arcs on the
interface. Explicitly, the changeable parameters of transmis-
sive side are V and kw2 = kw1 + d , where d is the Weyl point
mismatch.

A. Interface of same chirality configuration

The chiralities of the beside Weyl materials are set to be
χ1 = 1 and χ2 = 1. The transmissive pocket is initialed on
the left to the incident pocket without interacting with it, as
shown in Fig. 2(a). The reflection shift is indicated by arrows.
The Fermi arcs are revealed by the interface DOS that is
visualized by the shading (darker means larger) outside the
incident pocket. The incident pocket, in which a triple Weyl
point is included, spins three Fermi acs, and the transmissive
pocket, which is a double Weyl one, is touched by two Fermi
arcs. These Fermi arcs can be categorized into two types, those
bridge the pockets belong to the same side material (named as
surface arcs in the following) and those connect the pockets
of different side materials (named as interface arcs). The pair
of red loops in the inset are pockets of incident medium,
and the pair of blue loops are those of transmissive medium.
Around the incident pocket, there is one interface arc, which
is accepted by the transmissive pocket, and two surface arcs
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FIG. 2. Evolution of the Fermi arcs on interface and the reflec-
tion shift vortices in kx−ky space for the same chirality configuration
when the incident pocket (red loop) is fixed and the transmissive
pocket (blue loop) changes. The color in the incident pocket indicates
the transmission probability. The insets show the full view of Fermi
arc profiles. The Weyl point mismatch d takes values −2.5, −1.8,
−1.4, and −0.6 in (a) through (d), respectively (in units of average
radius of the incident pocket). The potential in the transmissive side
V = −0.06 in all panels.

can be found that are recycled by the other pocket of the
incident medium. The states of the surface and interface arcs
are both localized near the same interface. All Fermi arcs are
connected to pockets tangentially, which reflects the transition
between localized interface state and bulk state. The number
of Fermi arcs connecting to a pocket is just the number of its
topological charge, saying, three and two for the incident and

transmissive pockets respectively. At the touch points between
incident pocket and Fermi arcs, reflection shift vortices with
same helix can be found. Because the vortex centers locate
exactly on the pocket edge and the reflection shift can only be
defined in the incident pocket, only half-vortices are left and
visible. The edge vortices can be viewed as spinneret orifices
spinning out silk of Fermi arcs. These Fermi arcs cannot be
dangling outside and have to run for being wrapped on another
pocket.

We tune the parameter kw2 to move the transmissive packet
rightward. At the beginning, a surface arc of the transmissive
pocket and a surface one of the incident pocket attract each
other. The two attracted surface arcs will touch and evolve
into interface arcs if the incident and transmissive pockets
become closer. Because the interface arc (the shortest arc in
the above figure) is shortened, at a certain distance between
the two pockets after they intersect, the length of the interface
arc decreases to zero, so its spinneret orifice on the incident
pocket touches its reception spot on the transmissive pocket.
The situation is demonstrated as Fig. 2(b).

The intersection region is enlarged when the transmissive
pocket moves on. In the intersection region, nonzero transmis-
sion occurs. The newly formed interface arc is retracted and
the spinneret orifice closest to the transmitted pocket (the left
most one in the above figure) is covered by the intersection
region, its Fermi arc is direct absorbed by the transmissive
pocket without being spun out since no interface state is
physically allowed in the transmissive pocket. The vortex of
spinneret orifice is driven away from the edge to drift into
inner region in the incident pocket and the full vortex struc-
ture is exposed. Following, the intersection region overlaps
the second edge vortex, which is the spinneret orifice of the
newly formed interface arc, the edge vortex is pushed into
the inner region to become a full vortex too. The centers of
the full vortices locate at the positions where the transmission
probability is exactly unit, which is revealed by the hot spots
in the intersection region. Because the second spinneret orifice
disappears, the new interface arc loses its joint points on both
pockets. The interface arc is detached away and becomes an
isolated Fermi ring [16–18], as shown in Fig. 2(c).

When the transmissive packet continues to move in, the
two vortices in the intersection region swim far away from the
edge into the deep, and Fermi ring shrinks and then fades out.
The last Fermi arc of the incident packet, which is a surface
one, companied with its edge vortex, is left along, as Fig. 2(d)
shows.

The Weyl point of the transmissive side has to encounter
that of the incident side if the transmissive pocket moving
continues. In the special case, the incident and transmissive
pockets are almost overlap. To observe what happens in the
gap between the incident and transmissive pockets, at the
mean time of moving the transmissive pocket, we change the
lift potential in the transmissive side to adjust its pocket size.
We tune the potential so as to reach two different situations
between the two packets. First, the transmissive packet is
the larger one and includes the incident packet completely.
Second, the transmissive packet is the smaller one and is
surrounded by the incident packet totally.

From Fig. 3(a) on [it is identical to Fig. 2(d), we duplicate
it to guide eyes more friendly], when the transmissive pocket
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FIG. 3. Evolution of the Fermi arcs on interface and the reflec-
tion shift vortices in kx−ky space for the same chirality configuration.
The Weyl point mismatch d = −0.6, 0, 1.5, and 2.5 in (a) through
(d) respectively, and the potential V = −0.06 in all panels except that
V = −0.09 and in (b1) and V = −0.03 in (b2).

shifts and expands to include the incident pocket, the last spin-
neret orifice is covered by the transmissive pocket, the incident
pocket loses its last surface Fermi arc that does not disappear
but is taken over by the transmissive pocket smoothly, and
the last edge vortex goes down into the pool of intersection.
All the spinneret orifices disappear and they are transformed
into inner vortices. Figure 3(b1) illustrates the situation. We
restore transmissive pocket to its normal size after it passes
the incident pocket. The transmitted pocket leaves the incident
one gradually, the intersection region becomes smaller and

smaller. The inner vortices swim back to the bank one by
one and will be settled on the incident pocket edge to recover
their role of spinneret orifices. Every time a spinneret orifice
is released by the transmissive pocket, a Fermi arc is spun and
a surface or an interface arc is restored, as shown in Figs. 3(c)
and 3(d).

If the transmissive pocket shrinks into the incident one as
shown in Fig. 3(b2), it cannot include the last edge vortex
and the attached surface arc are always kept. The two con-
tained vortices are drawn to deeper region. Now one edge
vortex is left, two inner vortices drift near the incident pocket
center, and the total number of vortices is still three. When
the transmissive pocket restores its usual size and leaves, the
two vortices swim back and the corresponding interface arcs
are recovered one by one. The procedure is demonstrated in
Figs. 3(c) and 3(d).

In the process that transmissive pocket changes, the surface
and interface arcs can be transit through and back. The Fermi
arcs on the incident pocket can be erased by the covering of
the transmissive pocket on the spinneret orifices. No Fermi arc
is connected to the incident pocket when it is totally included
the transmissive one, and it possesses N1 − N2 Fermi arcs if it
included the transmissive pocket. The edge vortices can be ex-
truded from the incident pocket edge to inner positions where
the perfect transmission takes place. Though the number of
edge vortices can be eliminated by the transmissive pocket
covering, the total number of vortices (it will be updated as net
number for more general cases in the following section), edge
vortices and inner ones, is always N1, the topological charge
of the incident medium, and it can be viewed as a conserved
quantity. The figures described in this subsection are only few
snapshots of the process that the incident pocket moves from
left to right. The dynamic pictures to show the evolution of the
reflection shift and interface DOS in the process are provided
in the Supplemental Material [52].

B. Interface of opposite chirality configuration

We set the Hamiltonian chiralities of the Weyl beside ma-
terials as χ1 = 1 and χ2 = −1. The transmissive pocket is
initialed as shown in Fig. 4(a). It is placed left to the incident
pocket at the same location as in the same chirality case, and
the two cases share some similar features. There are three
Fermi arcs jointing to the incident pocket at edge vortices with
same helix and two Fermi arcs connect to the transmissive
pocket. Unlike in the same chirality case, the Fermi arcs
spun by the incident pocket, none of which is ended on the
transmissive pocket, are all surface arcs. We catalyze these
surface arcs into two types, the incident arcs that connect the
pockets of the incident medium, and the transmissive arcs that
bridge the pockets for transmissive side (see the inset).

We increase the parameter kw2 to move transmissive packet
rightwards. After the transmissive pocket intersects with the
incident one, in the intersection region, a hotspot area of
high transmission bubbles out, in which the reflection shift
orientation is changed apparently, as shown in Fig. 4(b). The
hotspot area expands in the next and a pair of vortices with
opposite helices are created there. At the centers of the two
opposite vortices, the transmission probability reaches unit.
Figure 4(c) shows the situation.
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FIG. 4. Evolution of Fermi arcs on interface and reflection shift
vortices in kx−ky space for opposite chirality configuration. The inset
in (a) shows the full view of Fermi arc profiles and the inset in (c) is
the zoom view of the vortex (red bold dot) and antivortex (blue bold
dot) pair. The Weyl point mismatch d = −2.5, −0.8, −0.5, and
−0.2 in (a) through (d) respectively and the potential V = −0.06
in all panels.

The pair of newly generated vortices are driven to drift
separately in different directions. One of the vortices, that has
opposite helix with respect to the edge vortices (referred as
antivortex), runs downward to the edge vortex which is the
nearest one to the transmissive pocket, and the other moves in
lower-left direction, as Fig. 4(d) shows.

As before, we change the lift potential of the transmissive
medium to adjust the pocket size when the two pockets nearly
overlap. First, we set the transmissive packet to be the larger

FIG. 5. Evolution of Fermi arcs on interface and reflection shift
vortices in kx−ky space for the opposite chirality configuration. The
inset in (c) is the zoom view of the vortex and antivortex pair. The
Weyl point mismatch d = −0.2, 0, 0.5, and 2.5 in (a) through
(d) respectively, and the potential V = −0.06 in all panels except
that V = −0.09 (b1) and −0.03 (b2).

one. If transmissive packet moves and expands from the situ-
ation shown in Fig. 5(a), which is same as Fig. 4(d) to guide
eyes, the transmissive pocket covers the nearest edge vortex
(the lowest one), the edge vortex is firstly detached from the
edge into the inner region, and immediately encounters the
antivortex running for it and is canceled out by the merging
of opposite helices, so the corresponding incident arc loses
its landing point and is transited onto the transmissive pocket.
The covering of the spinneret orifice by the intersection region
does not lead to the disappearance of Fermi arc, but results
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in the transition from incident arc to transmissive one. The
other vortex in the created vortex pair, which possesses the
same helix as the edge vortices have, hovers near left bottom
of incident pocket. When the transmissive packet includes the
incident one completely as shown in Fig. 5(b1), the remained
two incident arcs are taken over by the transmissive pocket
and their edge vortices are pushed away from the edge to be-
come inner vortices. Therefore five Fermi arcs, two of which
are transmissive arcs and three of which are initially belong
to the incident pocket, are all carried by the transmissive
pocket.

Second, we set the transmissive packet to be the smaller
one and move it to the incident pocket from the situation of
Fig. 5(a). The antivortex in the created pair retreats back, and
the other vortex is anchored on the incident pocket edge as an
edge vortex to receive a transmissive arc (the left-most one)
that is belong to the transmissive pocket and the antivortex is
left in the pool. When the transmissive pocket is surrounded
by the incident one, the last transmissive arc (the upper-left
one) is transited onto the incident pocket. To settle the last
transmissive arc, a new edge vortex is needed. To achieve
this, a vortex and antivortex pair has to be generated before,
the normal vortex in the vortex pair runs to the incident
pocket edge, and remained one, another antivortex, is thrown
in the pool. Now the incident pocket has five spinneret orifices
and spins five Fermi arcs, and two antivortices are left near
the incident pocket center. This situation is demonstrated in
Fig. 5(b2).

When the transmissive pocket moves out, the intersection
region shrinks. The incident and transmissive pockets take
back their own Fermi arcs gradually. Before the intersection
region vanishes, the pair of vortices with opposite helices
are left behind in the residual hotspot area, as a vortex and
antivortex pair arises when intersection region begins to be
enlarged previously. The vortex pair will be canceled out
later by merging together. Finally, the transmissive pocket is
decoupled with the incident one, and all the Fermi arcs come
back to their home pockets, as indicated in Figs. 5(c) and 5(d).

For the opposite chirality configuration, the maximum
number of spinneret orifices on the incident pocket edge
N1 + N2 (the incident pocket surrounds the transmissive one)
and the minimum number is zero (the incident pocket is
included by the transmissive one). The vortices can be cre-
ated and annihilated pairwise, so the total number of vortices
varies, while the net number of vortices is conserved as its
initial value N1. The dynamic pictures to show the whole
process of the incident pocket moving are presented in the
Supplemental Material [52].

V. CONCLUSION AND SUMMARY

We presented a systematic study of the reflection shift and
surface states between two multifold Weyl semimetals. There
are Fermi arcs, states of which are localized near the junction
interface, connect the pockets of incident and/or transmis-
sive media. Reflection shift vortices are found in the incident
pocket and the vortices on the pocket edge work as spinneret
orifices of Fermi arcs. The covering of edge vortices by the
transmissive pocket shifts the vortices from the edge to inner
regions where the perfect transmissive takes place. Vortices

can be created and annihilated in positive-negative helices
pairs in the intersection region between the incident and trans-
missive pockets, so the number of vortices is changeable but
the net number is a conserved quantity, that is Nnet = χ1N1

(In this paper, χ1 = 1 is the default choice). At the centers of
a pair of vortex and antivortex, the transmission probability
reaches unit also. In other words, whatever the origination of
an inner vortex is, an edge vortex slipping into the pool or a
vortex (normal vortex or antivortex in a vortex pair created),
the perfect transmission at its location is always true.

The cases of the incident pocket including the transmission
one are most important to reflect the topological properties of
the junction interface because if so the reflection shift is well
defined not only in the incident pocket but also in the whole
transmissive pocket. The number of edge vortices as well as
the number of Fermi arcs carried by the incident pocket is
Nedg = χ1N1 − χ2N2. To ensure the net number Nnet be an
unchanged quantity, we must have Ninn = Nnet − Nedg = χ2N2

pieces of inner vortices appearing in the intersection region
(also the transmissive pocket region). In our examples of
the two configurations, N1 = 3 and N2 = 2 are used. For the
same chirality configuration, we have Nnet = 3, Nedg = 1, and
Ninn = 2 that means 2 inner vortices inside. For the oppo-
site chirality configuration, we have Nnet = 3 and Nedg = 5,
therefore Ninn = −2 that means 2 antivortices appearing in
the transmissive pocket. Though the vortex pair creation and
annihilation are not observed in the same chirality configu-
ration, indeed they can occur in other examples not shown
in this paper. For instance, if we set N1 = 2 and N2 = 3,
we will have edge vortex number Nedg = 2 − 3 = −1, which
means there is an antivortex landing on the incident pocket
edge and the antivortex must be generated by the vortex
pair creation.

The reflection coefficient is a function of every param-
eter of both sides. However, the net number of vortices is
only determined by the topological charge of the incident
medium for any configurations between incident and trans-
missive pockets. In case the reflection shift in the transmissive
pocket can be well defined, the net number of vortices in the
transmission pocket only depends on the topological charge of
the transmissive medium. Our work uncovers new topological
features of interfaces between Weyl media and will lead to a
further understanding of the nature of the topological phase of
matters.
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APPENDIX A: TIGHT-BINDING MODEL
OF THE WEYL JUNCTION SYSTEM

The Weyl Hamiltonian in Eq. (1) can be rewritten as

H = U + qzσz + (qx − iχqy)Nσ+ + H.c., (A1)

where σα (α = x, y, z) are the α-component Pauli matrices and
σ± = (σx ± iσy)/2. We preserve kx and ky as good quantum

035434-7



HE, WANG, DENG, AND YANG PHYSICAL REVIEW B 109, 035434 (2024)

numbers and discretize the Hamiltonian in z direction on a 1D
chain with unit lattice constant.

To express the tight-binding Hamiltonian conveniently, we
define an generator matrix of infinite dimension on the 1D
lattice,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

0 1
0 1

0 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Using the matrix, cos kz and sin kz in the Hamiltonian (They
are included in qx, qy, and qz) are translated into

cos kz = 1 − 1

2
(K + K+) = 1 − P+,

sin kz = 1

2i
(K − K+) = P−, (A3)

where P+ = (K + K+)/2 and P− = (K − K+)/2i are two
Hermitian matrices. The term (qx + iχqy)N in the Hamilto-
nian is a polynomial of P+ with the highest power N . We know
P+ leads to nearest hopping, so P2

+ produces next-nearest hop-
ping, P3

+ results in next-next-nearest hopping, and PN
+ brings

about the N’th nearest hopping. Recalling the expressions of
qx, qy, and qz, the Hamiltonian matrix of the tight-binding
model is

H = U + σzP− + [σ+(M + P+)N + H.c.] (A4)

with M = 1 + cos kw − cos kx − cos ky − iχ sin ky.
We demonstrate how to construct the tight-binding model

by assuming the Hamiltonian has next nearest hopping, that
means N = 2. Generally saying, the translational symmetric
Hamiltonian with next nearest hopping has the form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

. . . H11 H12 H13

. . . H+
12 H11 H12 H13

H+
13 H+

12 H11 H12
. . .

H+
13 H+

12 H11
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

In the equation, each matrix element is not a pure number but
a two-by-two matrix because it includes Pauli matrices. The
elements H12 and H+

12 are the nearest hopping terms, and H13

and H+
13 stand for the next nearest hopping. Letting N = 2 in

Eq. (A4), we have

H11 = U + [(M2 + 1/2)σ+ + H.c.],

H12 = σz/2i + [Mσ+ + H.c.],

H13 = σ+/4 + H.c. (A6)

The Hamiltonian matrix can be divided into blocks (each
block is 2 × 2) as shown in Eq. (A5) and can be viewed as a
block tridiagonal matrix. The division strategy is not unique
but is demonstrated in the equation as an example. If needed,
the Hamiltonian can be split into blocks of dimension 3 × 3

FIG. 6. The junction formed by jointing two semiinfinite chains.

(Any choice of n × n with n � 2 is physically allowed). Be-
cause of the translational symmetry, the main diagonal blocks,
the upper diagonal blocks, the lower diagonal blocks are re-
spectively identical. The block Hamiltonian can be expressed
more compact as

H =

⎛
⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . h C

C+ h . . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠, (A7)

with the block matrices

h =
(

H11 H12

H+
12 H11

)
, C =

(
H13 0
H12 H13

)
. (A8)

The Hamiltonian describes an infinite 1D translational chain,
of which h stands for the Hamiltonian of the extended trans-
lational cell and C means the adjacent coupling. In the
Hamiltonian, we eliminate the non-nearest couplings at the
cost of cell extension.

The junction system consists of two semi-infinite chain and
the connection between them, as shown in Fig. 6. The regions
of z < 0 and z > 0 are renamed by the left and right parts.
The Hamiltonian of each semi-infinite chain can be obtained
by truncating the matrix of the full infinite chain at the inter-
face. For computational convenience, we adjust the division
strategy in Eq. (A5) so that the size of left cells is identical
to that of right cells. (In the calculation of main text, the
3 × 3 strategy is adopted because N1 = 3 and N2 = 2.) The
jointing of the two semi-infinite chain provides the definition
of the interface region, which is made up by the end cells of
the left and right semi-infinite chains. The Hamiltonian of the
interface region is

HS =
(

hL CLR

C+
LR hR

)
, (A9)

where hL and hR are the cell Hamiltonians of left and right
sides, CLR is the coupling between the cells closest to the
interface. The interface coupling is assumed to be the average
of the intercell coupling in left side, CL, and that in the right
side, CR.
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APPENDIX B: REFLECTION AND TRANSMISSION
COEFFICIENTS IN TIGHT-BINDING METHOD

We divide the whole system into three parts (see Fig. 6),
the left region, the scattering region, and the right region.
The left and right regions have translational symmetry and the
scattering only happens in the center region. For our junction
system, the scattering region is defined same as the interface
region, which only includes the right end cell of the left chain
and the left end cell of the right chain.

Applying the Schrödinger equation Hψ = Eψ on the
whole system, we have the local equation of the wave function
in the scattering region

HSψS + HSLψL + HSRψR = EψS, (B1)

where ψS , ψL and ψR are the wave functions in the scattering
region, the left side and right side respectively, HS is the
Hamiltonian of the scattering region, and HSL (HSR) is the
coupling Hamiltonian between the scattering region and the
left (right) sides. By defining the isolated Green’s function of
the scattering region, GS = (E − HS )−1, the above equation is
reduced to

ψS = GSHSLψL + GSHSRψR. (B2)

The coupling Hamiltonian HSL takes effect between the grids
adjacent to left boundary of the scattering region. The grids of
the scatter region are adjacent to left boundary are labeled by
A and those in the left side are denoted by L (see Fig. 6). Simi-
larly, HSR works between the grids adjacent to right boundary,
and we label the grids of the scatter region adjacent to the
boundary by notation B and mark those in the right side by
R (see Fig. 6). Applying the above equation not on the whole
scattering region, but on grids A and B, we have

ψA = GASHSLψL + GASHSRψR,

ψB = GBSHSLψL + GBSHSRψR, (B3)

where ψα is the wave function on grids α with α = A, B and
GαS means the block of grids α cross the scattering region.

Considering an electron is injected from eigenmode |φ f 〉m

of the left side, reflected to another eigen mode |φb〉n and
transmitted to the eigen mode |φ f 〉n′ of the other side, the
above equation is∣∣φ f

A

〉
m +

∑
n

∣∣φb
A

〉
nrnm = DAL

(∣∣φ f
L

〉
m +

∑
n

∣∣φb
L

〉
nrnm

)

+ DAR

∑
n

∣∣φ f
R

〉
ntnm,

∑
n

∣∣φ f
B

〉
n
tnm = DBL

(∣∣φ f
L

〉
m

+
∑

n

∣∣φb
L

〉
n
rnm

)

+ DBR

∑
n

∣∣φ f
R

〉
ntnm, (B4)

where rnm and tnm are the reflection and transmission coeffi-
cients from mode m to mode n, |φ f

α 〉m and |φb
α〉m are the wave

function of forward and backward modes m distributed on
grids α and Dαβ = GαSHSβ with α, β = L, A, B, R. Because
the equation holds for any incident mode, we place the eigen
modes one by one to construct the matrices

	 f
α = [∣∣φ f

α

〉
1,

∣∣φ f
α

〉
2, · · ·

]
,

	b
α = [∣∣φb

α

〉
1,

∣∣φb
α

〉
2, · · ·

]
, (B5)

so as to the set of equations for all incident modes can be
equivalent to one matrix equation. The matrix version of
Eq. (B4) reads

	
f
A + 	b

Ar = DAL
(
	

f
L + 	b

Lr
) + DAR	

f
Rt,

	
f
Bt = DBL

(
	

f
L + 	b

Lr
) + DBR	

f
Rt, (B6)

where r and t are the reflection and transmission matrices with
elements rnm and tnm, respectively. Rearrange the terms of two
sides, the equation can be transform to⎛

⎝ 	b
A − DAL	b

L −DAR	
f
R

−DBL	b
L 	

f
B − DBR	

f
R

⎞
⎠(

r

t

)

=
(

−	
f
A + DAL	

f
L

DBL	
f
L

)
.

After solving the equation, the reflection and transmission
matrices are obtained. For the Hamiltonian in Eq. (1), only
one propagating forward mode is allowed. We label the mode
as the first one, so only the matrix element r11, which is ex-
pressed as r in the main text, is needed to obtain the reflection
shift.

APPENDIX C: INTERFACE GREEN’S FUNCTION

To obtain the interface DOS, we have to calculate the inter-
face Green’s function G first. The interface Green’s function is
defined in the interface region and includes the effects induced
by the semi-infinite chains besides. It is calculated by

G = (E − HS − 
L − 
R)−1, (C1)

where 
L and 
R are the self-energies of the left and right
semi-infinite chains. By using the eigen modes obtained in
Appendix B, the self-energies can be direct written down as


L = C+
L 	b

L

(
	b

A

)−1
,


R = CR	
f
R

(
	

f
B

)−1
. (C2)

So we have the self-energies without iterative calculation and
the interface Green’s function can be obtained.
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