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Majorana zero modes in gate-defined germanium hole nanowires
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We theoretically study gate-defined one-dimensional channels in planar Ge hole gases as a potential platform
for non-Abelian Majorana zero modes. We model the valence band holes in the Ge channel by adding appropriate
confinement potentials to the 3D Luttinger-Kohn Hamiltonian, additionally taking into account a magnetic field
applied parallel to the channel, an out-of-plane electric field, as well as the effect of compressive strain in the
parent quantum well. Assuming that the Ge channel is proximitized by an s-wave superconductor (such as Al) we
calculate the topological phase diagrams for different channel geometries, showing that sufficiently narrow Ge
hole channels can indeed enter a topological superconducting phase with Majorana zero modes at the channel
ends. We estimate the size of the topological gap and its dependence on various system parameters such as
channel width, strain, and the applied out-of-plane electric field, allowing us to critically discuss under which
conditions Ge hole channels may manifest Majorana zero modes. Since ultraclean Ge quantum wells with hole
mobilities exceeding one million and mean-free paths on the order of many microns already exist, gate-defined
Ge hole channels may be able to overcome some of the problems caused by the presence of substantial disorder

in more conventional Majorana platforms.

DOI: 10.1103/PhysRevB.109.035433

I. INTRODUCTION

Germanium is emerging as a promising material platform
for various quantum-technological applications [1]. In par-
ticular, Ge hole spin qubits are prominent candidates for
spin-based quantum information processing due to favorable
properties such as weak hyperfine interaction, large and tun-
able spin-orbit energies that enable fast qubit operations, and
tunable effective g factors [2—11]. While many early studies
focused on hole spin qubits defined in Ge/Si core/shell or Ge
hut nanowires, substantial experimental progress has recently
established Ge two-dimensional hole gases (2DHGs) as an
extremely clean and versatile platform for gate-defined hole
spin qubits. Indeed, ultrahigh-quality Ge 2DHGs with hole
mobilities exceeding one million and mean-free paths on the
order of tens of microns have been reported [12—15]. The two-
dimensional geometry of the parent quantum well additionally
facilitates scalability, with important recent experiments real-
izing gate-defined quantum dot arrays [16,17] and multiqubit
logical operations [18,19].

Going beyond standard spin-qubit  applications,
recent experiments report the fabrication of Ge-based
semiconductor/superconductor hybrid devices [20-24]
with hard proximity-induced superconducting gaps [25].
Such devices hold significant potential for the realization
of Majorana zero modes (MZMs) due to the extremely
high quality of the underlying Ge. Indeed, in standard
semiconductor/superconductor hybrid devices based on
InAs or InSb [26-33], the presence of substantial disorder
has hampered any conclusive observation of MZMs so far
[34-43], although a very recent Microsoft experiment [44]
reports the observation of small topological gaps in very
limited regions of the parameter space (of gate voltage and
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magnetic field) in InAs/Al devices. In contrast, a recent
experiment [15] shows that the mobility in Ge 2DHGs can
be 50-100 times larger than the electron mobility in InAs.
This makes Ge nanowires a plausible candidate platform for
topological MZMs since the Ge system is already ultraclean.
With this motivation, we investigate the prospects for the
realization of Ge-based MZMs and study one-dimensional
(1D) Ge hole channels obtained by electrostatic confinement
of a Ge 2DHG (see Fig. 1 for a schematic illustration) as a
potential platform for MZMs. Importantly, since the valence
band holes in Ge effectively carry spin 3/2, Ge hole nanowires
show qualitative and quantitative differences compared with
standard electron nanowires (e.g., InAs or InSb). For exam-
ple, the spin-orbit interaction (SOI) in Ge hole nanowires is
predicted to reach values on the order of meV [45,46], which
is much larger than what is expected in, e.g., InAs. This, in
principle, enhances the topological gap, other things being
equal. Additionally, both the SOI as well as the effective g
factor in hole nanowires exhibit a strong dependence on local
details such as the wire geometry, leading to an overall richer
behavior of hole nanowires compared to electron nanowires.
To model the valence band holes in the Ge channel, we
start from the standard 3D Luttinger-Kohn Hamiltonian, to
which we add appropriate confinement potentials. We account
for a magnetic field applied parallel to the channel, an out-
of-plane electric field, the effect of compressive strain in the
parent quantum well, and proximity-induced superconductiv-
ity due to the presence of a thin Al strip in the vicinity of
the channel. By numerically calculating the associated topo-
logical phase diagrams through the exact solutions of the
appropriate Bogoliubov-de Gennes (BdG) equations, we show
that sufficiently narrow Ge hole channels can indeed enter a
topological superconducting phase with MZMs at the ends of
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FIG. 1. Left: Sketch of a Ge quantum well of thickness L, (yel-
low) sandwiched between two layers of SiGe (blue). The 2DHG
in the quantum well is further confined into a quasi-1D geometry
by electrostatic gates (gray). If the channel is proximitized by a
superconductor (red) and a magnetic field is applied along the direc-
tion of the channel, MZMs can emerge at the channel ends. Right:
Schematic low-energy spectrum of a 1D Ge hole channel at zero
magnetic field and in the absence of a superconductor (note that a
global minus sign was omitted from the hole spectrum).

the channel. We present results for various wire geometries,
for different values of strain, and for different strengths of the
external electric field. We estimate the maximal topological
gaps to be on the order of tens of ueV in narrow channels,
which is comparable to the predicted as well as recently re-
ported topological gaps in InAs nanowires [44]. As a general
trend, we find that the topological gaps grow as the channel
width decreases and as strain is reduced. In wide channels,
the main limiting factor is the small effective in-plane g factor
of the lowest-energy Ge subband, which pushes the topolog-
ical phase transition to large magnetic fields. For all of the
considered wire geometries, we find that the external electric
field provides an additional tuning knob that can be adjusted
in order to maximize the topological gap for a given geometry.

We note that previous theoretical works have explored
Ge/Si core/shell nanowires [47] and planar Josephson junc-
tions based on Ge 2DHGs [48,49] as potential platforms
for MZMs. Furthermore, MZMs in hole nanowires based on
materials other than Ge have been theoretically studied in
Refs. [34,50,51]. However, we believe that the setup described
in the present work is ideally suited to take maximal advantage
of the already existing ultraclean planar Ge quantum wells.
Furthermore, electrostatically defined Ge hole channels of
high quality have already been realized in proof-of-principle
experiments [52], putting this setup well within experimental
reach.

The rest of this paper is organized as follows. In Sec. II, we
describe the basic model for a gate-defined Ge hole channel
that we use in our numerical simulations. In Sec. III, we
describe our calculations and present our numerical results.
Finally, we conclude in Sec. IV.

II. MODEL

The valence band holes of 3D bulk Ge are well described
by the isotropic Luttinger-Kohn (LK) Hamiltonian [53,54]

> 5y, \ k2
HLK:_|:<V1+ V)——ys(k-J)z}—M, (1)
m 2 2

where m is the bare electron mass, y; = 13.35, y, =
4.25, and y3 = 5.69 are the Luttinger parameters for Ge,
Vs = (V2 +13)/2, k = (ky, ky, k;) is the vector of momentum,
J = (U, Jy, J;) is the vector of spin-3/2 operators, and p is

the chemical potential. Since y3 — y» < y; in Ge, anisotropic
corrections to the LK Hamiltonian are small and the isotropic
approximation given in Eq. (1) is well justified. We note that
here and throughout this paper, since we are considering hole
excitations instead of electrons, we omit a global minus sign
in front of all Hamiltonian terms for convenience.

In the following, we consider a 2D Ge quantum well of
thickness L, encapsulated between two layers of Si;_,Ge,;
see Fig. 1. We model the confining potential arising at the
interface between the Ge and the SiGe by an infinite hard-wall
potential along the z direction:

0, 0<z<L,
oo, otherwise.

Hconf,l_(z) = { (2)
At zero in-plane momentum, the confinement to two dimen-
sions leads to an energy splitting between bands with spin
projection £3/2 along the z direction (heavy holes, HHs) and
bands with spin projection +1/2 along the z direction (light
holes, LHs), with the energy of the latter becoming higher
due to confinement. For finite in-plane momentum, the LK
Hamiltonian mixes HHs and LHs, but, at low energies, the
lowest subband retains predominantly HH character [54].

In typical Ge/SiGe quantum wells, the Ge is compressively
strained due to the lattice mismatch between the Ge and
the Si;_,Ge,. The strain is modeled by the Bir-Pikus (BP)
Hamiltonian [55]

Hpp = —EJ2, 3)

where the strain energy E; > 0 increases with the percentage
1 — x of Si in the Si;_,Ge,. For typical values x € (0.6,0.9),
E; is of the order of tens of meV [13]. Furthermore, we
consider an external electric field of strength &, that is applied
along the z direction (i.e., out-of-plane),

He = —el.z, “

where e is the positive elementary charge. The electric field
breaks inversion symmetry and leads to spin-orbit interac-
tion (SOI) of Rashba type, which has a cubic dependence
on the in-plane momentum in planar Ge [56-62] that be-
comes linear upon further confinement to 1D [45,46,63—67];
see also below. Additionally, the electric field tends to push
the low-energy hole wave functions toward the top of the
quantum well, which introduces an additional length scale
le = (B2, /2meE.)'? into the problem.

To obtain a quasi-1D geometry, the 2DHG is further con-
fined by electrostatic gates from the sides. Since the precise
form of the smooth confinement potential is neither known
exactly nor trivial to model numerically, we restrict ourselves
to discussing the two extreme cases of (1) infinite hard-wall
confinement and (2) parabolic confinement along the y direc-
tion. In case (1), the confinement potential takes the form

0, 0<y<lL,,
0o, otherwise,

Hine ) = { ®)
where L, is the width of the channel. In case (2), the confine-
ment potential is taken to be

hzy
e )

2)
7-lCOI'IfA,“ (y) = 2ml
y
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where [, is the harmonic confinement length. In this case,
the “width” of the channel is not a well-defined quantity.
Whenever we compare between the two different confinement
potentials, we therefore take the “width” of the parabolic
well to be 2/, which corresponds to the width felt by the
lowest subband of the parabolic well. In wide channels, where
the confinement along the y direction is much weaker than
the confinement along the z direction, the system is not far
from the 2D limit and the lowest subband has predominantly
HH character. However, in narrow channels with two axes
of comparably strong confinement, the situation is drastically
different as HHs and LHs are strongly mixed even at low
energies [68,69]. As we will discuss below, this has important
implications for the topological phase diagram of the channel.
We mention that our confinement models defined by Eqgs. (2),
(5), and (6) are simple, but not unreasonable, and enable
the notion of a wire width as the controlling parameter for
the discussions of our theoretical results. If and when MZM
experiments are performed in Ge nanowires, it should be pos-
sible to generalize our confinement models to more realistic
situations as relevant for the specific experimental samples.

We additionally account for an external magnetic field of
strength B along the x direction, i.e., parallel to the 1D chan-
nel. The orbital effects associated with the magnetic field lead
to an additional term in the bulk LK Hamiltonian,

he 5)/; € o 2]/,3'6 2
b= L V(a2 pok.a) -2,
Horb 2m[<yl+ 2><h + ) Fz( J)

— 4y kAT + (e, Ay} + fhy, A Iy} + c.p-]],

(N

where A is the vector potential satisfying B=V x A,
{A, B} = (AB + BA)/2, and where “c.p.” stands for “cyclic
permutations.” For our numerical simulations, we fix the
gauge toA = (0, 0, By). Furthermore, the magnetic field leads
to a Zeeman splitting of the form [53,54]

Hz = 2k upBJy, (8

where pp is the Bohr magneton and « = 3.41 for Ge
[70]. The total normal-state Hamiltonian that we consider
in the remainder of this paper then takes the form Hy =
[dryTeYHor) W (r) with ¥ = (Y3, Y10, Yory2, Y-32)”
and

Ho = Hik + Heont, 1 + Hap + He + M

onf, ||

+ 7'lorb + HZ»
©)

where i =1 (i =2) corresponds to the case of hard-wall
(parabolic) confinement along the channel.

The normal-state Hamiltonian H has been studied in some
detail by previous works [63,64] focusing mainly on spin-
qubit applications, and it is useful to review some of its
properties at this point. Up to a global minus sign that we omit
in this work, the low-energy band structure of H, resembles
the one of electrons in a conventional Rashba nanowire; see
Fig. 1 for an example. Around k, = 0, the lowest-energy sub-
space of Hy can be described by a simple effective two-band

Hamiltonian of the form [64]

h2k2 2k2
Heir = 2_’/?:6 + E Zeff BB + mx Oy — asokxaya (10)

where m is the effective mass, ger is the effective g fac-
tor, «y, is the effective spin-orbit coupling strength, 7 is
an effective spin-dependent mass, and the Pauli matrices o;
with i € {x, y, z} act in the subspace of the two lowest-energy
subbands. However, in contrast to the case of spin-1/2 elec-
trons in semiconductor nanowires, the lowest Ge hole subband
has contributions from both states with spin projection £3/2
(HHs) and £1/2 (LHs), with the relative weight of these two
contributions depending sensitively on the wire geometry, on
the shape of the confinement potentials, and on strain. As a
consequence, the effective parameters entering Eq. (10) also
show a strong dependence on all of these factors [63,64], mak-
ing it generally necessary to solve the full Hamiltonian H,
to correctly capture these features. Therefore, while we will
frequently refer to the effective Hamiltonian H.g [Eq. (10)]
for intuition, all numerical calculations presented in this work
use the full normal-state Hamiltonian Hg [Eq. (9)].

Finally, we include a proximity-induced superconducting
pairing, which we take to be of the form

H, = /dr Z As ¥l (Y’ (r) 4+ He., (11)

=202

where Ay, (Asp) is the superconducting pairing ampli-
tude for LHs (HHs), respectively. In the following, we
assume for simplicity that the HH and LH pairing amplitudes
are equal in magnitude but of opposite sign, i.e., Az =
—Ay = A [71]. With this choice, the size of the effective
superconducting gap that is opened in the lowest confinement-
induced Ge hole subband is independent of the wire geometry
(see below). Indeed, since the precise microscopic descrip-
tion of the proximity-induced superconducting pairing in
Ge/superconductor hybrid structures is not known and, in ad-
dition, is likely to depend on the details of a particular sample,
we focus on a simple description that keeps the number of un-
known parameters to a minimum. Nevertheless, generalizing
our analysis to unequal pairing amplitudes |Aj /| # |A3z)2] is
straightforward; the only relevant effect is that the magnitude
of the effective superconducting gap that is opened in the
lowest confinement-induced subband gets renormalized.

We model the suppression of the proximity-induced super-
conducting gap due to the applied magnetic field as

B\?2
A=Ayl - (B—) OB, — |B)), 12)
where Ay is the proximity-induced superconducting gap at
zero magnetic field, B, is the critical magnetic field of the
superconductor, and © is the Heaviside step function ensuring
that the superconducting gap is zero for any |B| > B.. One
can take B, to be the approximate field value where the bulk
gap of the parent superconductor is closed by the applied
field as observed experimentally. For concreteness, we focus
on a Ge/Al heterostructure in this work, where we take the
critical field of the Al strip to be B, = 3T [73,74]. We note
that a more elaborate treatment of the proximity effect should
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explicitly include the tunneling between the superconductor
and the Ge. Such a description could then also capture the
regime of strong coupling [75-78], where the induced super-
conducting gap as well as the underlying Ge band structure
parameters get renormalized [79]. However, for the present
purpose, a minimal description of the proximity-induced su-
perconducting pairing as given in Eq. (11) is sufficient to
capture the important qualitative features of the system in
the regime of weak coupling between the superconductor and
the Ge. If necessary, the theory can be generalized to include
the self-energy effect describing the proximity effect, but such
a generalization is unnecessary and not useful at this early
stage where the goal is to see if the Ge-based MZM platform
is a feasible idea or not.

Extracting the exact low-energy behavior of proximitized
Ge hole channels in an experimentally realistic setting is a
highly nontrivial problem that we will not attempt to solve
in completeness (this should not be done without a detailed
knowledge of the actual experimental system being used
searching for MZMs in Ge nanowires since all the details
would matter at a quantitative, but not a qualitative, level).
Instead, in the next section, we present model calculations
for various wire geometries and a wide range of additional
parameters such as strain and electric field, and based on these
results we critically discuss the experimental feasibility of
MZMs in Ge hole nanowires. While we do provide quan-
titative estimates for the maximal topological gaps that are
achievable in a given wire geometry, our main focus lies on
identifying general trends that describe the qualitative behav-
ior of the system.

III. TOPOLOGICAL PHASE DIAGRAMS

The low-energy spectrum of the gate-defined Ge hole chan-
nel can be obtained by rewriting the full Hamiltonian H =
Hy + H,. in BdG form and expanding its eigenstates in terms
of suitable basis functions that solve the confinement problem
[45,46,63,64,68,80]. Assuming translational invariance along
the channel, we write the spatially varying part of these basis
functions as @k, p.4(x, ¥, 2) = €%, (y)p,(z), where

) = {4/_2/@ sin(gmz/L,), z€ (0, L), 13

0, otherwise,

with ¢ € {1,2,...} are the eigenfunctions of the infinite
square well along the z direction. Similarly, along the y di-
rection, we use

o () = {\/ZTLysin (py/Ly), y€(O,Ly),

. (14)
0, otherwise,

with p € {1, 2, ...} for the case of hard-wall confinement and

o@D () = efyz/ﬂ?Hp(y/ly)/\/Zl’?nlyp! (15)

with p € {0,1,...} for the case of parabolic confinement
(here H, are the Hermite polynomials). For our numerical
simulations, we project the full BAG Hamiltonian into the sub-
space spanned by the first 10 basis functions for each spatial
direction, which results in an 800 x 800 effective Hamiltonian
that can be diagonalized numerically.

We start by comparing the topological phase diagrams
for Ge channels of different widths. Throughout this entire
section, we use y; = 13.35, y, = 4.97, and x = 3.41 for the
Ge band structure parameters, and the thickness of the well is
fixed to L, = 22 nm, which is a thickness that is routinely re-
alized in current state-of-the-art experiments [1]. (Additional
phase diagrams for alternative values of L, are shown in the
Appendix.) For now, we further fix the external electric field to
& =0.5 Vum~' and we focus on the regime of small strain
by choosing E; = 10meV. Assuming that the strain energy
depends linearly on the percentage of Si in the barrier and
using E; = 23.7meV at 20% (see Ref. [12]) as a reference
point, our choice of E; = 10meV corresponds to approxi-
mately 8.5% of Si in the barrier, which is only slightly below
the Si concentrations of 10%—20% that are currently used in
state-of-the-art devices. The proximity-induced superconduct-
ing pairing amplitude is fixed to Ay = 0.1 meV [23]. Since
the Hamiltonian H belongs to the symmetry class D [81], the
topological transition—if there is any—takes place at k, = 0
and is characterized by a change of sign of the Z, Pfaffian in-
variant for 1D topological superconductors [82-84], which we
evaluate numerically. In Figs. 2(a)-2(d), we show the resulting
topological phase diagrams as a function of the magnetic field
B and the chemical potential 1 for several channel widths L,
in the case of hard-wall confinement along the y direction.
In all cases, the chemical potential is chosen such that only
the lowest confinement-induced Ge subband is occupied. The
white regions in the phase diagrams correspond to the trivial
phase with Pfaffian invariant +1, while the colored regions
correspond to the topological phase with Pfaffian invariant
—1, with the color scheme encoding the size of the topological
gap (i.e., the bulk gap in the topological phase) obtained by
numerical exact diagonalization. We find that the topological
phase diagrams resemble the ones that are frequently encoun-
tered in the context of standard electron Rashba nanowires
[34,85-87], which is not very surprising given the form of the
effective low-energy Hamiltonian in Eq. (10). However, we
stress again that, for hole nanowires, the effective parameters
entering Eq. (10) are strongly geometry dependent. Indeed, we
find that the width of the channel has a critical effect on the
topological phase diagram, with narrow channels manifesting
larger maximal topological gaps [see Fig. 2(e)] and a signif-
icantly larger topological phase space than wide channels,
where the topological phase can only be achieved at high
magnetic fields close to the critical field of the superconductor.

The strong geometry dependence of the topological phase
diagrams can be understood from the behavior of the effective
parameters: First, as the width of the channel increases, the
effective g factor g.sr [see Fig. 2(f)] decreases significantly
due to the decreasing HH-LH mixing. Indeed, it is well known
that the effective in-plane g factor of Ge becomes very small
as one moves toward the 2D limit where the lowest subband
has predominantly HH character [1,7,8,65,88,89]. Second,
the effective spin-orbit energy E, = rha30/2h2 [see Fig. 2(g)]
reaches a maximum at a relatively small value of L, ~
16-17nm and decreases significantly as the channel width
increases further. It is known from previous works [63,90]
that such a maximum exists and that its exact position and
magnitude depend on various system parameters such as
the channel geometry, the applied electric field, and strain.
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FIG. 2. (a)—(d) Topological phase diagrams obtained by numerically diagonalizing H = H, + H,. for different widths of the channel L,
(see insets) in the case of hard-wall confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. (¢) Maximal bulk gap in the topological phase
in dependence on the channel width. (f)-(h) Effective g factor at B = 2T, effective spin-orbit energy at zero magnetic field, and effective
superconducting gap at zero magnetic field in dependence on the channel width. Filled squares correspond to the widths shown in (a)—(d). The
solid lines are a guide to the eye only. We fix L, = 22 nm, Ag = 0.1 meV, E; = 10meV, and &, = 0.5 V um~! for all panels.

Generally, we find that the maximum moves to smaller
(larger) channel widths with decreasing (increasing) L.,
increasing (decreasing) electric field, and/or increasing
(decreasing) strain. As one moves away from the strictly 1D
limit with two axes of strongest confinement, the effective
SOI becomes very small due to the decreasing HH-LH mixing
[45,46]. At this point, it should also be noted that, while the
nominal aspect ratio L,/L; is not very large even for the
widest channels considered here, the electric field induces an
additional length scale into the problem, such that the wave
function of the lowest-energy subband is compressed along
the z direction to a size of lg = (A*y,/2me&.)"/* ~ 10 nm for
E. = 0.5 Vum~'. We further mention that, since we include
orbital effects in our model [see Eq. (7)], both the effective g
factor as well as the effective SOI strength o, can in principle
depend on the magnetic field. Throughout this paper, we
show the effective g factors at B=2T and the effective
spin-orbit energies at zero magnetic field. The effective
proximity-induced superconducting gap that is opened in
the lowest subband of the Ge hole channel remains constant
for all of the considered wire geometries; see Fig. 2(h). We
note that this is a direct consequence of our choice of pairing
amplitudes A3z = —Aj;; = A. Incorporating different
pairing amplitudes for HHs and LHs would, within our
simplified description of the superconducting pairing given in
Eq. (11), result in a geometry-dependent renormalization of
the effective superconducting gap.

In Figs. 3(a)-3(d), we show topological phase diagrams
for different confinement lengths [/, in the case of parabolic
confinement along the y direction. Again, we fix the thickness
of the well as L, =22 nm and the strain energy as E; =
10 meV, but we choose a larger electric field £ = 1 Vum™!.
In general, the achievable topological gaps are smaller than in

the case of hard-wall confinement even for narrow channels,
see Fig. 3(e), and larger magnetic fields are required to enter
the topological phase. Again, the effective g factor and the
effective spin-orbit energy strongly depend on the width of
the channel [see Figs. 3(f) and 3(g)], and both generally take
on smaller values than in the case of hard-wall confinement.
This can be explained by the reduced level spacing of the
subbands induced by the parabolic confinement potential,
which leads to a reduced HH-LH mixing. In contrast to the
hard-wall case, the SOI decreases monotonically throughout
the entire range of confinement lengths considered here. In-
deed, Ref. [90] has previously derived the ideal confinement
length [, that maximizes the SOI in a Ge hole channel for a
given thickness of the well L, and a given electric field &,
finding that, for typical thicknesses L, &~ 15-30 nm and an
electric field of £ ~ 1 Vum™!, the ideal confinement length
is /, ~ 5-7 nm in an unstrained device and even smaller in the
presence of strain, which is outside the range of confinement
lengths displayed here. As such, if experimentally feasible,
the fabrication of extremely narrow channels would further
increase the effective g factor and the effective SOI, and,
therefore, also the achievable topological gaps. (We note that
short ultranarrow channels with widths of only a few nm have
already been fabricated in silicon [91].) Finally, the effective
superconducting gap is again independent of the wire geome-
try; see Fig. 3(h).

Next, we analyze how the maximal topological gap in a
given wire geometry depends on the external electric field &,
and the strain energy E;, both of which have been kept fixed
so far. In Fig. 4(a), we show the maximal topological gap as
a function of &, for different channel widths L, in the case
of hard-wall confinement along the y direction. We find a
nonmonotonic dependence that can be explained by the
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FIG. 3. (a)-(d) Topological phase diagrams obtained by numerically diagonalizing H = H, + H,. for different confinement lengths I,
(see insets) in the case of parabolic confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. (¢) Maximal bulk gap in the topological phase
in dependence on the confinement length. (f)—(h) Effective g factor at B = 2 T, effective spin-orbit energy at zero magnetic field, and effective
superconducting gap at zero magnetic field in dependence on the confinement length. Filled squares correspond to the widths shown in (a)—(d).
The solid lines are a guide to the eye only. We fix L, = 22 nm, Ay = 0.1 meV, E; = 10meV, and &, = 1 V um~! for all panels.

behavior of the effective parameters: On the one hand, the
effective g factor generally decreases with increasing electric
field; see Fig. 4(b). This finding is consistent with earlier
studies of Ge hole nanowires in the context of spin qubits
[63,64,90]. On the other hand, the spin-orbit energy grows
with the applied electric field throughout the entire range of
fields considered here; see Fig. 4(c). As such, there is a trade-

off between a large spin-orbit energy and a large effective g
factor, leading, within our model, to a maximal topological
gap at a moderate field & ~ 0.5 Vum~'. In Fig. 4(d), we
show the maximal topological gap as a function of the strain
energy E;. We find that the overall maximum is achieved
at moderate strain energies for narrow channels, while the
maximum moves to smaller strain energies as the width of
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FIG. 4. (a), (d) Maximal topological gap, (b), (e) effective g factor at B = 2T, and (c), () effective spin-orbit energy at zero magnetic
field for different channel widths L, in the case of hard-wall confinement along the y direction (blue: L, = 15 nm, red: L, = 20 nm, orange:
L, =25nm, green: L, = 30 nm). The solid lines are a guide to the eye only. (a)-(c) Dependence on the external electric field &,. (d)—(f)
Dependence on the strain energy E;. In all panels, we set L, = 22 nm and Ay = 0.1 meV. In panels (a)—(c) we fix E; = 10 meV, and in panels

(d)—(f) we fix &, = 0.5 Vum~.
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for different confinement lengths [, in the case of parabolic confinement along the y direction (blue: /, = 7.5 nm, red: /, = 10 nm, orange:
I, = 12.5 nm, green: [, = 15 nm). The solid lines are a guide to the eye only. (a)-(c) Dependence on the external electric field &,. (d)—(f)
Dependence on the strain energy E. In all panels, we set L, = 22 nm and Ay = 0.1 meV. In panels (a)-(c) we fix E; = 10meV, and in panels

() wefixE, =1Vum!.

the channel increases. This is consistent with the behavior of
the effective g factor, see Fig. 4(e), which shows the same
qualitative strain dependence as the maximal topological gap.
The spin-orbit energy generally decreases with increasing
strain energy; see Fig. 4(f). Finally, we note that, within
our simple model, the effective superconducting gap that is
opened in the lowest subband of the Ge hole channel is in-
dependent of both strain and electric field. However, if the
superconducting proximity effect is treated in a more elab-
orate way that explicitly takes into account the tunneling
between the Ge and the superconductor, a field dependence
of the tunneling amplitudes and therefore of the effective
proximity-induced superconducting gap can be expected since
the electric field is responsible for pushing the wave function
toward the Ge/superconductor interface [79].

Figure 5 shows the same quantities as Fig. 4 but for the
case of a parabolic confinement potential along the y direc-
tion. In all panels, the overall trends are consistent with the
ones observed for hard-wall confinement, showing that the
details of the confinement potential only lead to quantitative,
but not qualitative, changes in the behavior of the system.
From Fig. 5(a), we see that the maximal topological gaps
are generally smaller than in the hard-wall case, mainly be-
cause the parabolic confinement is softer than the hard-wall
confinement. Additionally, the maximal topological gaps are
shifted to larger electric fields since (1) the dependence of
the effective g factor on the electric field is less pronounced
[see Fig. 5(b)] and (2) the spin-orbit energies are significantly
reduced compared to the hard-wall case [see Fig. 5(c)]. As
such, the increase in spin-orbit energy with the applied electric
field outweighs the detrimental effects of a slightly reduced g
factor up to relatively large electric fields, moving the maxi-
mal topological gap to & ~ 1.5 Vum~!. Figure 5(d) shows
that large values of strain generally reduce the topological
gap. In fact, for all but the most narrow channels, the maximal

topological gap occurs at zero strain. This is consistent with
the behavior of the effective g factor [see Fig. 5(e)] and the
spin-orbit energy [see Fig. 5(f)], where especially the latter
decreases significantly with increasing strain.

In summary, Figs. 2-5 show that narrow gate-defined chan-
nels in lightly strained Ge 2DHGs are a promising platform
for the realization of MZMs. On the other hand, wider chan-
nels exhibit a small topological phase space that is only
accessible at relatively high magnetic fields close to the criti-
cal field of Al, making the realization of MZMs challenging.
While the effective spin-orbit energy increases with increasing
electric field, the effective g factor typically decreases, lead-
ing to an optimal regime that can be accessed by tuning the
electric field. Within the range of channel widths considered
here, the maximal topological gaps are estimated to be on the
order of a few tens of peV, which is comparable to what is
expected and observed in InAs systems [44]. We note that,
while we have focused on a Ge/Al heterostructure in this
work for concreteness, using a superconductor with a larger
critical field (e.g., Nb) would significantly increase the topo-
logical phase space and the maximal topological gaps, making
the topological phase potentially accessible even in wider
channels.

We conclude this section by briefly commenting on several
limitations of our model. First, our simulations are based on an
effective 4-band model for the topmost valence bands in Ge,
while we have neglected the spin split-off band due to its large
separation of Agp &~ 300meV. Including the spin split-off
band into our description will result in quantitative corrections
to our results that become more pronounced as the width of
the wire decreases [64]. Second, we have used the isotropic
approximation of the LK Hamiltonian. If anisotropies are
taken into account, the effective parameters such as the effec-
tive g factor and the effective SOI become dependent on the
growth direction of the quantum well and the orientation of the
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channel with respect to the crystallographic axes. We expect
that the resulting corrections can either reduce or enhance the
effective g factor and SOI [64] and, therefore, also the max-
imal topological gaps, presenting an opportunity for further
optimization of the device geometry. Third, we have neglected
the finite depth of the quantum well. Last but not least, we note
that the SOI in wide channels may be underestimated in our
description. While our model takes into account the so-called
direct SOI that results directly from the 4-band LK Hamilto-
nian, we have neglected additional contributions to the SOI
resulting from couplings to remote bands [45,46,54,65] and
interface effects [92,93]. While these additional contributions
are expected to be negligible in narrow wires, where the direct
SOl is very large, they may become significant in wider wires.

IV. DISORDER

It has been now clear for more than 5 years, after the initial
short-lived euphoria of the zero-bias tunnel conductance peak
observations in InSb- and InAs-based Majorana nanowire
platforms [26-33], that the current generation of mostly
InAs/Al-based semiconductor-superconductor platforms are
simply too dirty for the manifestation of non-Abelian MZMs
and topological superconductivity because the existing disor-
der suppresses topology [34—43]. This is true not just for the
early experiments, but also for the latest impressive Microsoft
experiment using state-of-the-art InAs samples, where small
and fragile topological gaps (~25 ueV) over small regions of
magnetic field and gate voltage were reported very recently
[44]. Recent in-depth independent analyses of the Microsoft
data point to the presence of substantial disorder in the system,
calling into question whether the observed topological gap
and the associated zero modes are generically topological
or finite-size mesoscopic fluctuations [42,43]. The estimated
disorder in this state-of-the-art InAs platform is of the order
of 0.6-1.2 meV, which is an order of magnitude larger than
the claimed topological gap in the Microsoft experiment. We
emphasize that this Microsoft experiment is by far the best
measurement in the Majorana nanowire literature with all the
earlier nanowire experiments having another order of magni-
tude larger disorder [37—41].

A question, therefore, naturally arises as to why there
should be any interest at all in the Ge nanowire platform
where the disorder-free pristine topological gap (according
to the current calculations presented in this paper) is at best
50 ueV. For a comparison, the corresponding pristine gap
is 150-200 ueV in the InAs/Al nanowires without disorder
effects. The answer to this question is the extraordinary
material quality of the Ge system recently developed in Delft
[13,15]. In fact, our theoretical work is motivated entirely by
the extremely high quality of the Ge hole systems developed
in Dellft.

Using a direct comparison, the best Ge holes and InAs elec-
trons have low-temperature mobilities of 1.2 x 10% cm?/V's
and 5 x 10* cm?/V's, respectively. Using the known effec-
tive masses of 0.07m (for Ge holes) and 0.02m (for InAs
electrons), these mobilities can be converted into effective
disorder strengths of ~5 ueV (for Ge holes) and ~600 ueV
(for InAs electrons). Note that this estimate (~0.6 meV) of the
InAs disorder is consistent with Refs. [37—43], and is in fact

a lower bound on the InAs disorder. (This much better quality
of the Ge system compared with the InAs system is also
reflected in the Ge system having a much lower percolation
metal-insulator transition than InAs.) We are therefore faced
with two very contrasting situations: (1) Electrons in InAs/Al
nanowires have a pristine gap ~0.2meV and a disorder of
>0.6 meV; (2) holes in Ge/Al nanowires have a pristine gap
of ~0.05meV and a disorder of ~0.005 meV. It is clear that
this comparison favors the Ge system since the pristine gap,
although it is smaller than in InAs, is 10 times the disor-
der strength whereas in the InAs/Al system, as has already
been emphasized in Refs. [37-43], the disorder is at least 3
times larger than the pristine gap. Earlier works show that the
topology perhaps survives a disorder twice the pristine gap,
but this constraint has hardly been satisfied in InAs, whereas
in Ge, our current work shows that the pristine topological
gap is an order of magnitude larger than the low disorder
level already achieved in the existing materials. Obviously, a
better solution is making the InAs system cleaner, reducing
its disorder, but until that happens, Ge/Al is clearly a more
promising Majorana platform because it has a much larger
gap-to-disorder ratio than InAs. We mention as an aside that
InSb nanowires are far worse than InAs nanowires with much
larger intrinsic disorder, which is why Microsoft and most
other experimental groups have discarded the InSb platform
completely.

V. CONCLUSIONS

We have shown that gate-defined 1D channels in Ge
2DHGs can enter a topological superconducting phase with
MZMs at the ends of the channel. We find that the topological
gaps are largest (on the order of tens of peV) for narrow chan-
nels due to strong HH-LH mixing, while both the maximal
topological gaps as well as the overall topological phase space
are significantly reduced in wider channels due to the small
in-plane g factor of the lowest HH-like subband in planar
Ge. Large values of strain generally reduce the topological
gaps, with the detrimental effect becoming more pronounced
as the width of the channel increases and/or the confinement
becomes softer. Furthermore, for all of the considered wire
geometries, the external electric field provides a tuning knob
that can be adjusted in order to maximize the topological gap
for a given geometry.

The main advantage of using Ge as a platform for MZMs
is the high quality of the material. Since ultrahigh-quality Ge
2DHGs with very high hole mobilities already exist [12—15],
it is reasonable to expect that high-quality gate-defined Ge
hole channels are within experimental reach as well. While
the Ge/superconductor interface may introduce additional
disorder into the system, first proof-of-principle experiments
show that a hard superconducting gap in Ge-based hybrid
devices can be achieved, and further experimental progress
in this direction is to be expected. As such, despite the rel-
atively small pristine topological gaps found in this work,
Ge/superconductor hybrids can potentially exhibit reduced
disorder-to-gap ratios compared to hybrid devices based on
InAs or InSb, where disorder is likely the most challenging
obstacle for future progress. Experimentally, the signatures
of MZMs in Ge hole nanowires remain the same as in the
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InAs or InSb platform (i.e., the main MZM signature is a
zero-bias peak in the local conductance), but the reduced
disorder-to-gap ratio should lead to a significant reduction
of spurious signals stemming from disorder-induced in-gap
Andreev bound states, and, therefore, to less ambiguity in the
experimental transport data. A detailed analysis of disorder in
Ge hole nanowires and its effects on the experimental MZM
signatures will be presented in future work. In the context of
MZM detection, we further mention that also quasi-Majorana
bound states originating from smooth parameter variations
and the presence of unintentional quantum dots at the ends
of the Ge wire can mimic the signatures of MZMs. We leave
an analysis of quasi-MZMs to future work as well.

Our work shows that Ge-based MZM nanowires have se-
rious advantages if very narrow clean Ge channels can be
fabricated, which would enhance both the spin-orbit coupling
and the g factor, thus enabling topological gaps approaching
50 ueV in Ge/Al hybrid structures. However, any topological
gap larger than 50 peV may necessitate using a parent super-
conductor (e.g., Pb, Nb) with larger gap (and/or larger critical
field). An additional considerable advantage of Ge systems is
that Ge hole spin qubits can in principle be fabricated on the
same Ge device containing MZMs, thus enabling a combina-
tion of circuit level and topological quantum computation in a
monolithic structure.
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APPENDIX: ADDITIONAL PHASE DIAGRAMS

Throughout the main text, the thickness of the quantum
well has been kept fixed to L, = 22 nm. In this Appendix,
we present numerical results for two additional thicknesses
L, =18 nm and L, = 26 nm. In Fig. 6 (Fig. 7), we show
topological phase diagrams for L, = 18 nm (L, = 26 nm) for
the case of hard-wall confinement along the y direction for
different widths L,. In Fig. 8 (Fig. 9), we show the corre-
sponding maximal topological gaps as a function of electric
field and strain. For both thicknesses, we find that the general
trends discussed in the main text persist. In particular, the
topological gaps, the effective g factors, and the effective
SOI generally decrease as the width of the channel increases.
While the g factor decreases monotonically throughout the
range of channel widths considered here, the SOI exhibits a
maximum at a small value of L, that depends on the thickness
of the quantum well L,, the electric length /¢, and the strain
energy E;. In Fig. 8(c), this maximum occurs outside the range
of widths considered here, while it can be seen to occur around
L, ~ 20 nm in Fig. 9(c). Furthermore, the topological gap
exhibits a maximum in dependence on the electric field due
to a trade-off between an increasing (decreasing) effective
spin-orbit energy (effective g factor) as the electric field is
increased. Large values of strain generally decrease the topo-
logical gaps except for very narrow wires with strong HH-LH
mixing.

Figure 10 (Fig. 11) shows phase diagrams for L, = 18
nm (L, =26 nm) for the case of parabolic confinement
along the y direction with different confinement lengths I,
and Fig. 12 (Fig. 13) shows the corresponding maximal
topological gaps as a function of electric field and strain.
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FIG. 6. (a)-(d) Topological phase diagrams obtained by numerically diagonalizing H = H, + H,. for different widths of the channel L,
(see insets) in the case of hard-wall confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. () Maximal bulk gap in the topological phase
in dependence on the channel width. (f)-(h) Effective g factor at B = 2 T, effective spin-orbit energy at zero magnetic field, and effective
superconducting gap at zero magnetic field in dependence on the channel width. The solid lines are a guide to the eye only. We fix L, = 18 nm,

Ap = 0.1meV, E; = 10meV, and &, = 0.5 Vum~! for all panels.
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FIG. 7. (a)-(d) Topological phase diagrams obtained by numerically diagonalizing H = H, + H,. for different widths of the channel L,
(see insets) in the case of hard-wall confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. () Maximal bulk gap in the topological phase
in dependence on the channel width. (f)—(h) Effective g factor at B = 2T, effective spin-orbit energy at zero magnetic field, and effective

superconducting gap at zero magnetic field in dependence on the channel width. The solid lines are a guide to the eye only. We fix L, = 26
nm, Ay = 0.1meV, E; = 10meV, and £, = 0.5 V um™! for all panels.
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FIG. 8. (a), (d) Maximal topological gap, (b), (e) effective g factor at B = 2T, and (c), (f) effective spin-orbit energy at zero magnetic
field for different channel widths L, in the case of hard-wall confinement along the y direction (blue: L, = 15 nm, red: L, = 20 nm, orange:
L, =25nm, green: L, = 30nm). The solid lines are a guide to the eye only. (a)-(c) Dependence on the external electric field &,. (d)—(f)

Dependence on the strain energy E;. In all panels, we set L; = 18 nm and Ag = 0.1 meV. In panels (a)-(c) we fix E; = 10meV, and in panels
(d)—(D) we fix &, = 0.5 Vum~".
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FIG. 9. (a), (d) Maximal topological gap, (b), (e) effective g factor at B = 2T, and (c), (f) effective spin-orbit energy at zero magnetic
field for different channel widths L, in the case of hard-wall confinement along the y direction (blue: L, = 15 nm, red: L, = 20 nm, orange:
L, = 25nm, green: L, = 30nm). The solid lines are a guide to the eye only. (a)-(c) Dependence on the external electric field £.. (d)—(f)

Dependence on the strain energy E;. In all panels, we set L, = 26 nm and Ay = 0.1 meV. In panels (a)—(c) we fix E; = 10 meV, and in panels
(d)—~(f) we fix &, = 0.5 Vum~".
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FIG. 10. (a)-(d) Topological phase diagrams obtained by numerically diagonalizing H = H, + H,. for different confinement lengths /,
(see insets) in the case of parabolic confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. () Maximal bulk gap in the topological phase
in dependence on the confinement length. (f)—(h) Effective g factor at B = 2 T, effective spin-orbit energy at zero magnetic field, and effective
superconducting gap at zero magnetic field in dependence on the confinement length. The solid lines are a guide to the eye only. We fix
L, =18nm, Ag = 0.1meV, E; = 10meV, and £, = 1 Vum™! for all panels.
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FIG. 11. (a)-(d) Topological phase diagrams obtained by numerically diagonalizing H = H,, + H,. for different confinement lengths /,
(see insets) in the case of parabolic confinement along the y direction. The white regions correspond to the trivial phase, while the colored
regions correspond to the topological phase with the color encoding the size of the bulk gap. () Maximal bulk gap in the topological phase
in dependence on the confinement length. (f)—(h) Effective g factor at B = 2 T, effective spin-orbit energy at zero magnetic field, and effective

superconducting gap at zero magnetic field in dependence on the confinement length. The solid lines are a guide to the eye only. We fix
L, =26nm, Ag =0.1meV, E; = 10meV, and £, = 1 Vum~! for all panels.

Again, we observe similar trends as in the main text, with
the topological gaps, the effective g factors, and the effective
SOI decreasing monotonically with [, throughout the entire
range of confinement lengths considered here. There is once
again a trade-off between an increasing (decreasing) effective

spin-orbit energy (effective g factor) as the electric field is
increased, but it is interesting to note that the dependence
of the effective g factor on the electric field [see Figs. 12(b)
and 13(b)] is less pronounced than in the case of hard-wall
confinement (in fact, we even observe a slight increase of
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FIG. 12. (a), (d) Maximal topological gap, (b), (e) effective g factor at B = 2T, and (c), (f) effective spin-orbit energy at zero magnetic
field for different confinement lengths /, in the case of parabolic confinement along the y direction (blue: /, = 7.5 nm, red: /, = 10 nm, orange:
I, = 12.5 nm, green: [, = 15 nm). The solid lines are a guide to the eye only. (a)-(c) Dependence on the external electric field &;. (d)—(f)
Dependence on the strain energy E;. In all panels, we set L, = 18 nm and Ay = 0.1 meV. In panels (a)—(c) we fix E; = 10 meV, and in panels
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FIG. 13. (a), (d) Maximal topological gap, (b), (e) effective g factor at B = 2T, and (c), (f) effective spin-orbit energy at zero magnetic
field for different confinement lengths [, in the case of parabolic confinement along the y direction (blue: /, = 7.5 nm, red: /, = 10 nm, orange:
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the effective g factor with increasing electric field at L, = 18
nm for [, = 12.5, 15 nm), such that the maximal topological

gap moves to larger electric fields compared to the hard-wall
case.
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