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Total reflection and large Goos-Hänchen shift in a semi-Dirac system
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Carriers in two-dimensional semi-Dirac materials exhibit massless and massive dispersions along two per-
pendicular directions. Here, we investigate theoretically their properties of transmission and Goos-Hänchen
(GH) shift under an electric barrier. It is found that isolated transmission zeros are allowed (prohibited) when
the electric barrier aligns with the parabolic (linear) dispersion direction. Such transmission zeros require the
coexistence of evanescent and propagating states in the outgoing region, whose number and position depend on
the barrier width and height. Under a wide barrier, huge GH shift can be achieved at a transmission zero close to
a reflection zero and at a small incident angle. The polarity of the GH shift depends on the sign of the incident
angle and is controlled by the relative position between the barrier height and incident energy. The isolated
transmission zeros and enhanced GH shift with tunable polarity could be helpful for potential electron-optics
applications of semi-Dirac systems.
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I. INTRODUCTION

The presence of massless Dirac fermions in graphene
leads to many extraordinary transport properties [1]. When
a proper uniaxial strain is applied on graphene lattice, the
two nonequivalent Dirac points merge into a single semi-
Dirac point [2–4]. Carriers with energy near the semi-Dirac
point behave relativistically and Schrödinger-like in two or-
thogonal directions [5–7]. Such a highly anisotropic electron
dispersion has also been predicted in various materials and
models, which include a TiO2-VO2 superlattice [8,9], strained
organic salt [10], phosphorene under pressure and doping
[11–13], black phosphorus under pressure [14–16], square
lattice with half a magnetic-flux quantum per unit cell [17],
photonic crystals [18], Bi1−xSbx thin film [19], striped boron
sheet [20], topological insulators under magnetic proximity
[21,22], monolayer arsenene [23], and silicene oxide [24].
Based on two-dimensional (2D) nonsymmorphic symme-
tries, spin-orbit semi-Dirac fermions have been proposed in
Ref. [25]. Recently, it was predicted that the interplay be-
tween altermagnetism and nonsymmorphic symmetries can
generate semi-Dirac points [26]. Semi-Dirac dispersion has
been observed experimentally in a few-layer black phospho-
rene under the deposition of potassium atoms [27], tunable
ultracold atomic honeycomb optical lattice [28], and polariton
honeycomb lattices [29].

The low-energy physics of semi-Dirac systems may exhibit
unique features in comparison with conventional semimet-
als and Dirac materials. For a 2D semi-Dirac system in
an external magnetic field B, the electronic energy levels
scale approximately as B3/2 [5] and the magneto-optical
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absorption spectrum has an anisotropic (isotropic) selection
rule for the interband (intraband) transition [30]. For a semi-
Dirac nanoribbon, a conventional quantization of the Hall
conductivity was demonstrated numerically, which is highly
distinct from a Dirac system [4]. It was shown theoretically
that the Fano factor of 2D semi-Dirac systems along the
linear dispersion direction converges to a universal value
[31] F ≈ 0.179, which transits between the sub-Poissonian
(F ≈ 1/3) and the Poissonian (F ≈ 1) limit at the band inver-
sion and the insulating phase [32]. The semi-Dirac dispersion
of a 2D electron system can be identified from the power-
law decay of local density of states near a line defect [33]
with decay index −5/4. The charge-pseudospin coupling in
semi-Dirac graphene can be utilized to control the valley
and chirality transport [34]. In normal-superconducting junc-
tions based on semi-Dirac materials, the crossover from retro
to specular Andreev reflection was predicted to be orienta-
tion dependent [35]. The presence of parabolic dispersion in
semi-Dirac systems can significantly prolong the decay of
the Ruderman-Kittel-Kasuya-Yosida interaction and enhance
the Dzyaloshinskii-Moriya interaction around the relativistic
direction [36]. It seems that unusual properties of semi-Dirac
systems show up only when the transport is along (or near)
the linear-dispersion direction. The electron-optics properties,
especially the shift of electron beams, in semi-Dirac systems
have received less attention.

It is well known that a light beam reflected totally by
an interface of two dielectric media undergoes a lateral dis-
placement relative to its incident position. This phenomenon,
named Goos-Hänchen (GH) shift [37], is continuously en-
riched in optics [38–40] and has been developed to electron
systems [41–43] and spin waves [44]. The similarity be-
tween photons and massless electrons has inspired extensive
studies on GH shift of electrons in Dirac materials. In
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graphene-based p-n-p junctions, the GH effect arises from
pseudospin-dependent scattering and results in an 8e2/h con-
ductance plateau. Valley-dependent GH shift can be obtained
in graphene under a local strain [45–47] and in tilted Dirac
systems (such as 8-Pmmn borophene) under an electric bar-
rier [48,49]. By applying an inhomogeneous time-periodically
driving field on graphene, an anomalous GH shift in the in-
elastic channel has been revealed, whose sign can be tuned
by the polarization of the laser field [50]. For electrons on the
surface of a topological insulator with a potential barrier, the
hexagonal warping effect leads to two transmitted beams with
different GH shifts [51]. At a normal-metal/superconductor
interface, GH-like shift in Andreev and normal reflection can
be made negative and strongly modify the dispersion for the
confined waveguide modes [52]. In Weyl semimetals, the
GH shift and Imbert-Fedorov shift at the reflection interface
are, respectively, valley independent and valley related [53],
which depend on surface potentials [54] and interface materi-
als [55,56].

In this work, for the transport along the parabolic di-
rection of a semi-Dirac system, we demonstrate a salient
electron-optics feature, i.e., giant GH shift at some iso-
lated transmission zeros. In the literature, transmission zeros
have been reported to appear in stubbed electron waveguides
[57–59] and atomic chains [60,61]. For an electron travers-
ing a thick potential barrier along the parabolic dispersion
direction, we find multiple isolated transmission zeros by ex-
amining the phase drop of the transmission coefficient. These
transmission zeros require the coexistence of evanescent and
propagating modes in the outgoing region, which are absent
when the transport is along the linear-dispersion direction.
The GH shift of reflected electron beams is strictly zero under
normal incidence, but can be huge at some transmission zeros
and at a quite small incident angle.

II. MODEL AND FORMALISM

We consider a 2D electron system in the (x, y) plane
showing a semi-Dirac dispersion, which is modulated by an
electrostatic barrier U (�r). The effective low-energy Hamilto-
nian around the semi-Dirac point reads [2,33,62]

Ĥ = −ih̄vσy∂x − h̄2

2m
σx∂

2
y + U (�r)σ0, (1)

where v is the Dirac quasiparticle velocity along the massless
(x) direction, σx and σy are Pauli matrices, σ0 is the 2 × 2
unit matrix, and m is the effective mass along the parabolic
(y) direction. For notational convenience, hereafter we ex-
press all quantities in dimensionless units by means of the
characteristic energy E0 = 2mv2 and length l0 = h̄/(2mv). In
tetralayered black phosphorus (TBP) under a proper interlayer
bias [63], one has v = 1.2 × 105 m/s and m = 0.92me, where
me is the free electron mass. Accordingly, the energy and
length units are E0 = 0.15 eV and l0 = 0.52 nm.

We focus on the case that the transport is along the
parabolic direction where U (�r) = U (y) vanishes outside the
region 0 < y < d [see the inset of Fig. 1(b)]. The momentum
component p̂x = −i∂x is thus conserved. For an electron with
energy E > 0 and transverse momentum kx incident from the
left of the barrier, the wave function �(x, y) can be written as
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FIG. 1. Variation of (a) GH shift sGH and (b) reflectivity |r|2 with
the incident angle � for the barrier V δ(y) (width d → 0) and under
different incident energies. The crosses mark the incident angles
of total reflection at different energies. We set V = 1. The inset
of (b) depicts the transport along the parabolic (y) direction of an
electron with incident angle �, where the blue rectangular region
represents the barrier with a width d . The energy and length units
for the considered semi-Dirac system (TBP) are E0 = 0.15 eV and
l0 = 0.52 nm.

�(x, y) = eikxxψ (y), where ψ (y) satisfies Hkx ψ (y) = Eψ (y)
with the reduced Hamiltonian

Hkx = kxσy − σx∂
2
y + U (y)σ0. (2)

In the left region (y < 0) and right region (y > d), one can
write ψ (y) as

ψL(y) = (eikLy + re−ikLy)

(
1

m+

)
+ r′ekLy

(
1

m−

)
,

ψR(y) = teikL (y−d )

(
1

m+

)
+ t ′e−kL (y−d )

(
1

m−

)
. (3)

Here, r and t are the reflection and transmission coefficient, r′
and t ′ are the coefficients of the decaying wave in the left and
right region, and

kL = (
E2 − k2

x

)1/4
> 0, m± = (

ikx ± k2
L

)
/E . (4)

For the incident wave �(�r) = eikxx+ikLyψin with ψin(kx ) =
(1, m+)T , the group velocity along the x and y directions is
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given by

vx = ψ
†
inσyψin

ψ
†
inψin

= kx/E ,

vy = ψ
†
in(2kLσx )ψin

ψ
†
inψin

= 2k3
L/E .

Then the incident angle � satisfies

tan � = vx

vy
= kx

2k3
L

. (5)

It can be seen from Eq. (3) that the propagating mode and
evanescent mode coexist in the outgoing region. This fact
allows the appearance of transmission zero (t = 0) or total
reflection in the presence of an outgoing mode. This kind of
transmission zeros (assisted by evanescent states) is forbidden
when the transport is along the linear-dispersion direction.
Actually, in the case U (�r) = U (x), when the the outgoing
mode exists but has a zero amplitude, the corresponding wave
function is zero in the outgoing region. The continuity con-
ditions and the related differential equation require that the
wave function should vanish in all regions. However, the wave
function is nonzero in the ingoing region. Such an argument
can be applied to a Schrödinger particle with a parabolic dis-
persion or a Dirac particle with a linear dispersion traversing
an electrostatic barrier.

For a wave packet consisting of incident electrons with the
same energy E and transverse momenta centered at kx, the
GH shift sGH of the reflected beam is defined as the differ-
ence between the lateral position (at the interface x = 0) of
the reflected and incident electron beam [64,65]. The general
expression is given by [48]

sGH = −Im
[
ψ†

r (kx ) ∂ψr (kx )
∂kx

]
ψ

†
r (kx )ψr (kx )

+ Im
[
ψ

†
in(kx ) ∂ψin (kx )

∂kx

]
ψ

†
in(kx )ψin(kx )

. (6)

Here, ψr (kx ) = r(1, m−)T . After some algebra, we yield

sGH = −d[arg(r)]

dkx
. (7)

Note that the reflection coefficient r and GH shift sGH de-
pend on both the incident energy E and transverse momentum
kx (incident angle �). Since the operation σx changes Hkx into
H−kx , the reflection coefficient r = r(E , kx ) satisfies

r(E ,−kx ) = r(E , kx ). (8)

Such a symmetry relation together with Eq. (7) and Eq. (5)
leads to

sGH(E ,−kx ) = −sGH(E , kx ),

sGH(E ,−�) = −sGH(E ,�). (9)

The GH shift sGH is thus an odd function of the incident angle
�, which is exactly zero at normal incidence (� = 0). It is
sufficient to consider the situation � � 0.

III. TOTAL REFLECTION AND GH SHIFT
UNDER A δ BARRIER

Under a δ barrier U (y) = V δ(y) with width d = 0 and in-
tensity V , from Eq. (2) one can obtain the matching conditions

for the wave function ψL and ψR in Eq. (3),

ψL(y)|y=0− = ψR(y)|y=0+ ,

σx[∂yψR(y)|y=0+ − ∂yψL(y)|y=0− ] = V ψL(y)|y=0.
(10)

Based on Eq. (10), one can work out the four unknowns r, t, r′,
and t ′. The reflection coefficient satisfies [33]

r−1 = −1 + 2i
V E − 2

(
E2 − k2

x

)3/4

V 2
(
E2 − k2

x

)1/4 − 2V E
, (11)

when (E2 − k2
x )1/4 �= 2E/V . At normal incidence kx = 0, one

gets

r(E , kx = 0) = 1

−1 + 2i
√

E/V
. (12)

From Eq. (11), one can find the condition for the total
reflection |r| = 1 (or transmission zero t = 0),

kL = (
E2 − k2

x

)1/4 = (EV/2)1/3 �= 2E/V. (13)

Since kL � E1/2, Eq. (13) indicates that the total reflection
happens only at E > V 2/4. Further, the reflection coefficient
at the critical energy Ec = V 2/4 changes discontinuously
with kx,

lim
kx→0

r(E = V 2/4, kx ) = 1

−1 − 3i
,

r(E = V 2/4, kx = 0) = 1

−1 + i
. (14)

This kind of discontinuity in the scattering coefficient has
been rarely reported. From Eq. (12), one can see that the
reflection coefficient at kx = 0 changes continuously with the
incident energy E .

By substituting Eq. (11) into Eq. (7), we yield the analytical
expression of the GH shift,

sGH = 12V Ekx/kL − 4V 2kx − V 3Ekx/k3
L

(V 2kL − 2V E )2 + 4
(
V E − 2k3

L

)2 . (15)

Due to the presence of discontinuity (14), how to define the
GH shift sGH at E = V 2/4 and kx = 0 deserves further dis-
cussion, which is beyond the scope of this work.

In Fig. 1, we plot the GH shift sGH of the reflected electron
beam and reflectivity |r|2 as functions of the incident angle
�. The intensity of the δ barrier is fixed at V = 1 so that
the critical energy is Ec = 0.25. At E = Ec, the GH shift
is small [|sGH| < 1.01 l0 (0.5252 nm)] in the considered re-
gion 0 < � � 0.3π . As shown in Fig. 1(b), the reflectivity at
E = Ec increases slowly with �, where the discontinuity at
kx = 0 agrees with Eq. (14). When E is slightly lower than
Ec such as E = 0.249, the GH shift decreases from zero to a
negative minimum <−50 l0 (−26 nm) as � increases from
0 to 0.0135π [see Fig. 1(a)]. The reflectivity at E = 0.249
decreases from 0.5 to 0 and then increases to a value 0.137.
Total reflection is not observed for E = Ec − 0.005, E =
Ec − 0.001, and E = Ec. For E > Ec, total reflection appears
as a reflection peak [marked as the leftmost cross in Fig. 1(b)].
The GH shift for E > Ec exhibits a positive maximum at
the incident angle where the total reflection happens. For E
approaching Ec from above, one can see a sharp peak of
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sGH with value exceeding 100 l0 (52 nm). Accordingly, the
GH shift can be remarkable in amplitude for E near Ec, and
change sign as E crosses Ec. By comparing the GH shift under
|E − Ec| = 0, 0.001, and 0.005, one can see that the maxi-
mum absolute GH shift (max |sGH|) increases as the incident
energy approaches the critical energy (E → Ec). Accordingly,
one can obtain a large GH shift by setting the incident energy
very close to the critical energy.

IV. TOTAL REFLECTION UNDER A SQUARE BARRIER

To further confirm the presence of total reflection assisted
by evanescent waves, we consider the example of a square bar-
rier U (y) = V 	(y)	(d − y) with barrier height V and barrier
width d . Here, 	(y) is the Heaviside step function. The wave
function in the barrier region 0 < y < d can be written as

ψM(y) = (aeikMy + be−ikMy)

(
1

n+

)

+(ce−kMy + dekMy)

(
1

n−

)
, (16)

where kM = [(E − V )2 − k2
x ]1/4, n± = (ikx ± k2

M)/(E − V ).
The eight unknown coefficients r, r′, a, b, c, d , t , and t ′
in Eqs. (3) and (16) can be determined from the matching
conditions of the wave functions at the boundary y = 0 and
y = d , i.e.,

ψL(0) = ψM(0),

ψM(d ) = ψR(d ),

dψL(y)

dy
|y=0 = dψM(y)

dy
|y=0,

dψM(y)

dy
|y=d = dψR(y)

dy
|y=d . (17)

One can straightforwardly obtain an analytical expression for
the reflection coefficient r, which is, however, rather lengthy.
Instead, we calculate the scattering coefficient r and t by
means of the numerically stable scattering matrix method
[66–68].

At a first-order transmission zero Et=0, there is a
phase discontinuity [59,60], i.e., 
 arg[t (E )] = arg[t (E+)] −
arg[t (E−)] equals ±π at E = Et=0. For a given transverse
momentum kx � 0, the first-order transmission zeros are de-
termined as follows. First, we sweep the incident energy
E to find the narrow energy intervals [E1i, E2i] embrac-
ing a first-order transmission zero E0i, where | arg[t (E2i )] −
arg[t (E1i )]| > 0.25π . Here the index i is used to identify dif-
ferent transmission zeros. Then the bisection method is used
to find the value of E0i = (E1i + E2i )/2 with tolerance |E2i −
E1i| < 10−14, |t (E0i )| < 10−14, and mins=±1 | arg[t (E2i )] −
arg[t (E1i )] + sπ | < 10−7π . Based on the analytical ex-
pression of t , we can calculate the complex integral∮
|E−E0i|=ε

t−1(E ) dt (E )
dE dE to confirm the presence of transmis-

sion zero near E0i with tolerance ε.
In Fig. 2, we plot the energy of first-order transmission

zeros as a function of the transverse momentum kx. The
barrier height is fixed at V = 1. The results under several
values of barrier width d are compared to that under a δ

barrier [Eq. (13)]. For a given kx > 0, one can find only one

(a)

(b)

xk

chE

0mE

E
E

Vδ(y)
d
d

d
d

FIG. 2. Energy of transmission zeros plotted as a function of
the transverse momentum kx for rectangular barriers with the same
height V = 1 but different widths. (a) d = 1 and 4; (b) d = 8 and 16.
The result for the δ barrier [Eq. (13)] is plotted in (a) for comparison.
The inset of (a) plots the transmission zeros near normal incidence
under d = 4, which has maximum energy Em0 = 0.101. Ech is the
onset energy of the highest branch of transmission zeros, which
equals 0.735 in the case d = 4. The energy and length units for the
considered TBP are E0 = 0.15 eV and l0 = 0.52 nm.

transmission zero for the δ barrier and the narrow square
barrier with width d = 1. As shown in Fig. 2(a), the curves
for the two cases almost coincide and are approximately
linear for kx > 0.1. For the width d = 1, the critical energy
corresponding to the onset of transmission zero is slightly
lower than that for the δ barrier. As the barrier width in-
creases, several transmission zeros coexist at large transverse
momentums. In the case d = 4, one can find two transmis-
sion zeros at kx � 0.765. In the case d = 8 [Fig. 2(b)], the
number of transmission zero is, respectively, 1, 2, and 3 for
0.03 � kx � 0.496, 0.536 � kx � 0.96, and 0.961 � kx. In
the case d = 16, five transmission zeros coexist at kx � 1.1.
The highest energy of transmission zeros shows a nearly linear
variation with kx and a minor dependence on the width d . The
onset energy Ech of the highest branch of transmission zeros
for the wide barrier is noticeably higher than that for the δ

barrier. In the case of wide barriers d � 4, there are additional
transmission zeros with kx near zero and E < Ech [see, for
example, the inset of Fig. 2(a)].
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d=4,E=2.5

d=8,E=1.7

d=16,E=1.3

esahp
/ π
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T

(a)

(b)

(c)

esahp
/ π

π /esahp

lg
T

lg
T

xk

T

(r)
(t)

FIG. 3. Variation of scattering phase [arg(r) and arg(t )] and the
decimal logarithm of the transmission (lg T ) with transverse momen-
tum kx for different barrier widths and incident energies. (a) d = 4
and E = 2.5; (b) d = 8 and E = 1.7; (c) d = 16 and E = 1.3. We
set V = 1. The energy and length units for the considered TBP are
E0 = 0.15 eV and l0 = 0.52 nm.

For a given incident energy E , one can also find many
transmission zeros with different transverse momenta, as
shown in Fig. 3. Here the scattering phase arg(r) (red lines)
and arg(t ) (blue lines) together with the transmission T = |t |2
are plotted as functions of the transverse momentum kx. Under
three barrier widths (d = 4, 8, and 16), the transmission phase
arg(t ) has a jump of π near each transmission zero (where
T < 10−15). The reflection phase arg(r) changes drastically
near a perfect transmission. The jump of π for the reflection
phase arg(r) at the first-order reflection zeros arises from
the analytical properties [60] of the function r(kx ) or r(E ).
Under d = 4, there are two transmission zeros at a high en-
ergy E = 2.5, which are away from the discontinuity point of

(c)

1003 1703

(d)(b)

(a)

E
E
E

E
E
E

E
E
E
E
E
E

ΦΦ

FIG. 4. Variation of the GH shift (upper panels) and reflectivity
(lower panels) with the incident angle � under several values of the
barrier width d and incident energy E . (a) and (b) d = 4; (c) and
(d) d = 16. The barrier height is fixed at V = 1. In (c), the GH shifts
beyond the vertical axis are marked with their maximum (numbers
in red). The crosses in the lower panels mark the incident angles
of total reflection at different energies. For the considered TBP, the
energy and length units are E0 = 0.15 eV and l0 = 0.52 nm.

arg(r). Under d = 8 and at E = 1.7, one can observe three
transmission zeros. The first transmission zero is close to the
last discontinuity point of arg(r). Similar features are seen
under d = 16, but at a smaller energy E = 1.3. From Eq. (7),
one can expect a large GH shift near the first transmission
zero.

V. GH SHIFT UNDER A SQUARE BARRIER

For square barriers with different width d and the same
height V = 1, we plot in Fig. 4 the GH shift sGH of the
electron reflected beam and reflectivity |r|2 as functions of
the incident angle �. The incident energy E is chosen to be
either near (or above) the onset energy Ech of the highest
branch of transmission zeros, or close to the maximum energy
Em0 (< Ech ) of transmission zeros with small incident angles.

Under the width d = 4 [Fig. 4(a)], the GH shift shows a
similar angular and energy dependence as that for the δ barrier.
At a low energy E = 0.1, sGH is negative and can be lower
than −65 l0 (−34 nm). At E = 0.105, sGH is positive and
exceeds 44 l0 (23 nm). Here the interval [0.1,0.105] contains
Em0 = 0.101 [see the inset of Fig. 2(a)]. The peak and trough
of the GH shift are broad for E near Em0. For E near Ech,
sGH changes quickly with E and �. At an energy (E = 0.735)
approaching Ech from above, a sharp peak of sGH [with height
>75 l0 (39 nm)] appears in a narrow region of incident angle
0 < � < 0.002π . As E > Ech is away from Ech (such as
E = 0.765), this peak of sGH moves to the right and becomes
weak. At E = 0.73 < Ech, a narrow trough of sGH [with value
<−38 l0 (−20 nm)] is observed. By inspecting the reflec-
tivity shown in Fig. 4(b), one can see a steep slope of the
reflectivity at the extremum of the GH shift. At E around
Ech (Em0), the reflectivity decays quickly (slowly) near � = 0,
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-405.1

1050838.2
V

V
V

V
V
V
V
V

Φ

FIG. 5. Variation of the GH shift with the incident angle under
different values of barrier height V . We set d = 16 and E = 1.3.
The maximum or minimum of the GH shift beyond the range of the
vertical axis is marked with their values (numbers in red). For the
considered TBP, the energy and length units are E0 = 0.15 eV and
l0 = 0.52 nm.

corresponding to a narrow (broad) peak of sGH. As E changes
from 0.73 to 0.765, the minimum of reflectivity increases from
0 to 0.705. We note the reappearance of reflection zero at high
incident energies (such as E = 2.5), which is followed by a
relatively low peak of sGH and a transmission zero.

The GH shift under a large barrier width d = 16 is plotted
in Fig. 4(c) for E > Ech. There exist sharp peaks of sGH in
the narrow angular interval 0 < � < 0.09π . As the incident
energy E increases, both the values and angular positions
of these peaks move up. The GH shift can exceed 1703 l0
(886 nm) at E = 2.5. As shown in Fig. 4(d), such a giant
enhancement of GH shift happens near a transmission zero
which is very close to a reflection zero. Consequently, at this
transmission zero, a remarkable GH shift can be obtained. In
addition, we can see several reflectivity maxima before the
transmission zero. The GH shift at these reflectivity peaks,
although comparable to the maximum of sGH under d = 4, is
much lower than that at the transmission zero.

It is desirable that the GH shift of the system with
semi-Dirac points can be tuned electrically, i.e., changes re-
markably with the barrier height V . For a typical incident
energy E = 1.3 and barrier width d = 16, such a tunability is
shown in Fig. 5. Under 0.25 � V < E , the GH shift is positive
and can exceed 1050 l0 (546 nm), a value 65 times larger than
the barrier width. The maximum of GH shift decreases with
the barrier height. For V > E , the GH shift is negative and
can be lower than −405 l0 (−211 nm). This indicates that
both the amplitude and polarity of sGH can be tuned by the
barrier height. As V increases from 0.25 to 2, the maximum
of |sGH| moves first towards the small incident angle and then
turns back. In addition, the GH shift under −2 � V � −0.25
(not shown here) slightly changes with V and has a small am-
plitude [|sGH| < 10 l0 (5.2 nm) in the range 0 � � � 0.3π ].

VI. CONCLUSIONS

In summary, we have studied the presence of transmis-
sion zeros and GH shift of reflected electron beams for a

2D system with semi-Dirac points when the electric barrier
aligns with the parabolic dispersion direction. The coexistence
of evanescent and propagating states in the outgoing region
allows the appearance of isolated transmission zeros. Such
transmission zeros are absent when the electric barrier is along
the linear-dispersion direction. The number and position of
evanescent-state-assisted transmission zeros depend on the
barrier width and height. When the incident energy is near the
onset of the highest branch of transmission zeros, one can ob-
tain both positive and negative GH shift with large amplitude
at positive incident angles. Under a wide barrier, the above-
barrier transmission zeros are very close to some reflection
zeros. Accordingly, the GH shift at these transmission zeros
is huge. In addition, the amplitude (polarity) of the GH shift
depends on the distance (relative position) between the barrier
height and incident energy. As demonstrated in the Appendix,
the presence of transmission zeros and large GH shift are also
sensitive to the angle between the transport direction and the
parabolic dispersion direction. These findings could enrich
the potential applications of the special dispersion relation of
the semi-Dirac systems and provide a different approach to
enhance the GH shift of reflected electron beams.
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APPENDIX: TRANSPORT ALONG OTHER DIRECTIONS

When the width direction ζ (length direction η) of the
electric barrier is in an angle α to the x axis (y axis), i.e.,
U (�r) = V 	(ζ )	(d − ζ ), the momentum operators p̂x and
p̂y in Eq. (1) can be written as p̂x = p̂ζ cosα − p̂ηsinα and
p̂y = p̂ηcosα + p̂ζ sinα. Such a general case is depicted in the
inset of Fig. 6. For the transport along the linear-dispersion
direction (α = 0◦), the transmission zeros are absent, as ar-
gued in Sec. II. We thus focus on the case that α is close
to 90◦.

For an electron with a given energy E and conserved trans-
verse momentum pη = q, the wave function of the incident
state has the form �(�r) = eiqη+ipζ ψin(q). The longitudinal
momentum p satisfies

(pcosα − qsinα)2 + (psinα + qcosα)4 = E2. (A1)

Here the longitudinal velocity vζ = (∂E/∂ p)|q is positive.
The presence of a real root p in Eq. (A1) requires |q| �√

E2 + |E |. From Eq. (A1), we can further obtain the trans-
verse velocity vη = (∂E/∂q)|p and the incident angle � =
arctan(vη/vζ ). For such an incident state, the reflection and
transmission coefficients (r and t) can be obtained by the
scattering matrix method [66–68]. The GH shift is calculated
from the formula in Ref. [48]. Note that at α = 90◦, the +η

axis is opposite to the +x axis so that the angle � defined here
is actually the opposite of that in Eq. (5).

In Fig. 6, the GH shift sGH of the reflected electron beam is
plotted as a function of the incident angle � under the barrier
orientation α = 89◦ and 83◦. We take the incident energy E =
0.62, barrier width d = 8, and barrier height V = 1. Now the
GH shift is not antisymmetric on � = 0 and sGH(� = 0) �= 0.

035432-6



TOTAL REFLECTION AND LARGE GOOS-HÄNCHEN … PHYSICAL REVIEW B 109, 035432 (2024)

x

0

y

α

α
α

η

ζ
Φ

Φ

FIG. 6. Variation of the GH shift with the incident angle � under
the barrier orientation α = 89◦ and 83◦. We set E = 0.62, d = 8,
and V = 1. The inset depicts the transport along the ζ direction of
an electron with incident angle �, where the ζ axis has an angle
α relative to the x axis. The blue rectangular region represents the
electric barrier. For the considered TBP, the energy and length units
are E0 = 0.15 eV and l0 = 0.52 nm.

This observation is in contrast to the case of α = 90◦ [see
Eq. (9)]. At α = 89◦, sGH exhibits a narrow trough at � =
0.000 874π [with value <−60 l0 (−31 nm)]. At α = 83◦,
the GH shift reaches its extreme value −23 l0 (−12 nm) at
� = 0.007 42π .

The narrow trough of sGH shown in Fig. 6 is related to
the transmission zeros. In Fig. 7, we plot the scattering phase
[arg(r) and arg(t )] and the transmission T = |t |2 as functions
of the transverse momentum q. The parameters are the same
as in Fig. 6. Under α = 89◦ [Fig. 7(a)], one can identify a
transmission zero q = 0 from the phase jump π of t and the
transmission minimum. Since arg(r) changes gradually near
q = 0, the GH shift at this transmission zero is much smaller

(a)

(b)

π /esahp
π /esahp

lg
T

lg
T

q

α=89

α=83

r
t

T

FIG. 7. Variation of scattering phase [arg(r) and arg(t )] and the
decimal logarithm of the transmission (lg T ) with transverse momen-
tum q for different transport directions. (a) α = 89 ◦ and (b) α = 83 ◦.
The parameters are the same as in Fig. 6.

than those in Fig. 4. Under α = 83◦ [Fig. 7(b)], arg(t ) changes
continuously and T > 10−4 in the considered interval of q.
The transmission zero is absent. It is worth mentioning that
under the numerical conditions given in Sec. IV, the transmis-
sion zero (in the energy interval 0 < E < 3) cannot be found
under 0 < α � 83◦.
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