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Topological edge and corner states in the biphenylene network
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The electronic states and topological properties of the biphenylene network (BPN) are analyzed using a
tight-binding model based on the π -electron network. It is shown that tuning the hopping parameters induces
topological phase transitions, leading to the emergence of edge states owing to the nontrivial topological Zak
phase of the bulk BPN. Elementary band analysis clearly gives the number of edge states, which are associated
with the location of Wannier centers. In addition, we present the conditions for the emergence of corner states
owing to the higher-order topological nature of the BPN.
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I. INTRODUCTION

The concept of topology has brought about a paradigm
shift in modern condensed matter physics, opening up the re-
search field of topological materials. These materials include
topological insulators [1–10], topological crystalline insula-
tors [11–13], topological semimetals [14–19], and so on. One
of the essential properties of topologically nontrivial systems
is the bulk-edge correspondence, where robust edge and sur-
face states appear at the interfaces that separate two topolog-
ically distinct systems. These topologically protected states
are insensitive to local perturbation such as edge roughness
and disorder, which may serve for the application to ultralow-
power-consumption electronics and quantum computation.
The idea of device design based on topology was also recently
applied to photonics [20–23] and other systems [24,25].

In a system with both time reversal and crystal inversion
symmetries, the Zak phase can serve as a good topological in-
variant for characterizing the bulk-edge correspondence [26].
Since the Zak phase is associated with charge polarization
[27–31], a nontrivial finite Zak phase predicts the presence
of edge-localized states when an edge is introduced to the sys-
tem. In graphene, a one-atom-thick two-dimensional (2D) car-
bon sheet, the edges induce the electron localized states (edge
states) at the Fermi energy [32–34]. However, the edge states
crucially depend on the shape of the edges and are absent for
armchair edges. This puzzle can be resolved by considering
the Zak phase of the bulk wave function of graphene, which
gives the momentum-dependent Zak phase [35,36]. The Zak
phase is identically zero solely for the armchair edge, i.e., no
edge states, which is consistent with various numerical calcu-
lations [37,38]. The presence of edge states provides the spin
polarization [32,39] and a perfectly conducting channel [40].

Recently, the biphenylene network (BPN), a newly syn-
thesized 2D sp2-carbon-based material, was successfully
synthesized by Fan et al. [41]. The BPN has a fascinating
lattice structure, where the hexagonal carbon rings are or-
ganized on a square lattice, resulting in a 2D tiling pattern
that includes four-, six-, and eight-member rings. Previous

studies reported thermal conductivity, magnetic properties,
and hydrogen storage properties based on first-principles cal-
culations [42–45]. Also, Ref. [44] reported Zak phases and
topological grain boundary states along BPN nanoribbons.
However, the higher-order topological corner states have not
been considered yet. Here, we also employ elementary band
analysis, which clearly gives the number of edge states, which
are associated with the locations of Wannier centers.

In this paper, we theoretically study the electronic and
topological properties of the 2D BPN. Since the BPN com-
prises only sp2 carbon atoms similar to graphene, the π

electrons govern the electronic states of the BPN near the
Fermi energy. Thus, we employ the tight-biding model, which
describes π -electronic states of the 2D BPN to analyze
the topological properties. We will demonstrate that succes-
sive topological phase transitions occur by tuning the ratio
between intra- and intercellular electron hoppings. In the Su-
Schrieffer-Heeger (SSH) model [46,47], a similar topological
phase transition can occur, inducing a nontrivial Zak phase,
resulting in the edge states [36,48–50]. We also find that the
topological properties of the BPN are characterized by the Zak
phase of the bulk wave function. Charge polarization at the
surfaces, i.e., edge states, is induced if the Zak phase possesses
π . By studying BPN nanoribbons, we attribute the appearance
of edge states to the Zak phase of π . Furthermore, we demon-
strate that the exact number of edge states can be determined
by considering the position of the Wannier orbital. Similar
arguments can be used to show the existence of topological
corner states.

This paper is organized as follows. In Sec. II, we investi-
gate the electronic states of π electrons of the BPN using a
tight-binding model. Considering two types of hopping ener-
gies, we show that the topological phase transition occurs at a
specific ratio. In Sec. III, we illustrate the existence of the edge
states in the BPN guaranteed by the nontrivial Zak phase and
the central position of the Wannier function. In addition, we
find multiple corner states in the BPN nanoflake. Section IV
provides a summary of the paper.
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FIG. 1. (a) The lattice structure of the BPN. The shaded region is
the unit cell, with six nonequivalent sublattices of carbon atoms (A
to F). a1 = (a, 0) and a2 = (0, aT ) are two primitive vectors, where a
and aT = 3a√

3+1
. The intracellular (intercellular) hoppings denoted by

red (black) lines are γ (γ ′). (b) The first BZ of the BPN and its high-
symmetry points, � = (0, 0), X = (π/a, 0), Y = (0, π/aT ), and
S = (π/a, π/aT ).

II. ELECTRONIC STATES OF THE 2D BPN

A. Tight-binding model

Figure 1(a) displays the schematic of the lattice structure
for the 2D BPN, where the hexagonal carbon rings are or-
ganized on a square lattice, resulting in a 2D tiling pattern
that includes four-, six-, and eight-member rings. The shaded
rectangle in Fig. 1(a) represents the unit cell. Since the BPN
is composed of sp2 carbon atoms, the electronic states of the
2D BPN near the Fermi energy are governed by π electrons.
Now let us consider the nearest-neighbor tight-binding model
for π electrons of the 2D BPN. The BPN contains six geo-
metrically nonequivalent carbon atoms (A, B, C, D, E, and F)
in the unit cell, as shown in Fig. 1(a). Here, a1 = (a, 0) and
a2 = (0, aT ) are the primitive vectors. a and aT = 3a√

3+1
are

lattice periodicities along the x and y directions, respectively.
The length of a is 3.7554 Å. We shall introduce two kinds
of electron hoppings: γ is the intracellular hopping, and γ ′ is
the intercellular hopping. Figure 1(b) shows the first Brillouin
zone (BZ) with high-symmetry points, i.e., � = (0, 0), X =
( π

a , 0), Y = (0, π
aT

), and S = ( π
a , π

aT
). The actual parameter

set to reproduce the energy band structure for π electrons of
the 2D BPN is given in the Appendix.

The eigenvalue equation of the 2D BPN is described as

Ĥ (k) |un,k〉 = En,k |un,k〉 , (1)

where Ĥ (k) is the Hamiltonian at wave number k = (kx, ky )
and En,k is the eigenvalue with band index n (= 1, 2, . . . , 6).
The eigenvector |un,k〉 is written as

|un,k〉 = [cn,A(k), cn,B(k), cn,C (k), cn,D(k), cn,E (k), cn,F (k)]T ,

where [· · · ]T means the transpose of the vector. cn,α (k) is the
amplitude of the wave function at site α for the nth band. The
tight-binding Hamiltonian up to the nearest-neighbor hopping
is

Ĥ (k) = −γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ρy 0 1

1 0 1 0 0 ρ∗
x

0 1 0 1 ρ∗
x 0

ρ∗
y 0 1 0 1 0

0 0 ρx 1 0 1

1 ρx 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

with

ρx = γ ′

γ
eik·a1 , ρy = γ ′

γ
eik·a2 . (3)

Figure 2(a) shows the energy band structure along the path
connecting the high-symmetry points of the first BZ and the
density of states (DOS) for γ ′/γ = 1. Since the BPN has a π

electron per atomic site on average, the Fermi energy is E =
0. There are six energy bands from the bottom to the top, and
the corresponding band index is 1 to 6. The BPN is metallic
with flat bands at E = 0. Also, owing to the crystal symmetry
of the BPN, the energy dispersion has the following relation:

En(kx, ky) = −E6−(n−1)

(
kx ± π

a
, ky

)
. (4)

Figure 2(b) is a three-dimensional plot of the energy band
structure in the first BZ. It should be noted that the band
touchings occur only on the �-X line. Figures 2(c) and 2(d)
show the energy band structure on the �-X and �-Y lines,

FIG. 2. (a) The energy band structure and the corresponding DOS for γ ′/γ = 1. There are six subbands. (b) Three-dimensional plot of
the energy band structure for bands 2, 3, and 4. (c) The energy band structure along the kx direction. Tilted Dirac dispersions can be seen on
the �-X line between bands 2 and 3. (d) The energy band structure along the ky direction. Band 3 is flat along the �-Y line, and band 4 has a
parabolic dispersion at the � point.
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FIG. 3. Energy band structure of the 2D BPN for (a) γ ′/γ = 1/3, (b) γ ′/γ = 1/2, (c) γ ′/γ = 1.5, and (d) γ ′/γ = 2. The band
degenerating points are marked with green circles.

respectively. The second and the third subbands linearly cross
at a point on the �-X line, i.e., a tilted Dirac cone. Sim-
ilarly, tilted Dirac cones also emerge between the fourth
and fifth subbands. However, the third and fourth subbands
touch differently at E = 0, i.e., isotropic energy dispersion.
At the � point, these bands linearly touch along the kx direc-
tion, whereas the third subband becomes flat and the fourth
subband has a parabolic dispersion in the ky direction. Addi-
tionally, at the X point, the third subband is parabolic along
the X -S line, while the fourth subband is almost flat along the
X -S line.

B. Effect of variable hopping energy

Figures 3(a)–3(d) show the energy band structures of the
2D BPN with several different ratios of hopping energy γ ′/γ .
It can be seen that the topology of the energy band structure
crucially depends on the ratio of these two hopping param-
eters. In the BPN, the topological phase transition occurs
at γ ′/γ = 1/2, 1, and 1.5, where the band gap closes and
reopens. The closing and reopening of the energy band gap
cause a band inversion, resulting in a topological phase tran-
sition, i.e., a change in the value of the Zak phase.

In the range of 1/2 � γ ′/γ � 1, the first subband touches
the second subband; similarly, the fifth subband touches the
sixth subband. However, these band touchings are lifted for
the other range and become isolated.

Furthermore, the third and fourth subbands touch at the
Fermi energy in the range of 1 � γ ′/γ � 1.5. Therefore, a
complete band gap opens when γ ′/γ < 1 and γ ′/γ > 1.5.
There are four tilted Dirac cones on the �-X line; one is
between the second and third subbands, and another one is
between the fourth and fifth subbands. These crossing points
are marked by green circles in Fig. 3. These four points are
maintained in all cases.

III. TOPOLOGICAL PROPERTIES

A. Zak phase and topological edge states

We numerically calculate the Zak phase [26–31,36], which
is given as the line integral of the Berry connection:

An(k‖, k⊥) = i 〈un,k| ∂k⊥ |un,k〉 . (5)

The Berry connection physically means the vector potential
in reciprocal space. In order to discuss the charge polarization
based on the Zak phase, we have introduced two specific
one-dimensional (1D) wave numbers, i.e., k‖ and k⊥. Here,
k‖ represents the 1D wave number parallel to the translational

direction of the considered edge or ribbons. k⊥ is a crystal
momentum perpendicular to k‖.

The Zak phase of the nth subband is defined as

Zn(k‖) =
∫

C
dk⊥An(k‖, k⊥), (6)

where C is a straight path along k⊥ connecting two equivalent
points of k in the 2D BZ. For an inversion-symmetric system,
the Zak phase is quantized by 0 or π . Charge polarization for
the nth subband Pn is related to the Zak phase as

Pn = 1

2π
Zn. (7)

Thus, if the nontrivial Zak phase of π appears, we obtain
finite charge polarization at the surface or edge, which is
nothing more than the edge states. Since the bulk topological
properties are related to the charge polarization at the edges,
this is referred to as bulk-edge correspondence. The Zak phase
approach successfully predicts the topological edge states
(TESs) for graphene, A3B nanosheets, the 2D SSH model,
and so on [31,35,36,51].

Now, let us consider 1D biphenylene ribbons (BPRs).
Figure 4 summarizes the lattice structure, electronic band
structure, and Zak phase of BPRs. To discuss the electronic
properties of BPRs, we shall define the translational vector of
the BPR as T = ma1 + na2 = T (m, n) and the corresponding
reciprocal vector as �‖ = 2π T

|T |2 . Figure 4(a) displays the
schematic of a BPR with zigzag edges (zigzag BPR), where
N is the width of the ribbons. Since the translational vector
of a zigzag BPR is given as T = T (1, 0), the first BZ of a
zigzag BPR is given as |kx| � π/a, which is marked by thick
magenta lines in Fig. 4(b). The integration path C for the
calculation of the Zak phase is given by the cyan arrow in
Fig. 4(b). The energy band structure for a zigzag BPR with
N = 50 is shown in Fig. 4(c), where black lines indicate the
modes of bulk states and cyan lines indicate the modes of
topological edge states.

For a numerical calculation, we rewrite Eq. (6) as a discrete
form using Taylor expansion up to first order, i.e.,

Zn(k‖) = −Im

⎡
⎣ln

⎛
⎝ N0∏

j=1

〈un,k⊥ j |un,k⊥ j+1〉
⎞
⎠

⎤
⎦, (8)

where k‖ is a 1D momentum space parallel to T . The integral
path is divided into N0 segments along k⊥. Here, we impose
for the wave function a gauge-fixing condition |〈φg|un,k j 〉| 	= 0
at all k j points on the path with a global gauge φg, which is
well defined in the whole BZ [52].
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FIG. 4. (a) Schematic lattice structure of the BPN ribbon (BPR) with zigzag edges. N is the width of the ribbon. The translational vector T
for the zigzag BPR is defined as T = T (1, 0). Here, T = ma1 + na2 = T (m, n). (b) The first BZ of the zigzag BPR (thick magenta line). The
shaded yellow area is the first BZ of the 2D BPN. In a zigzag BPR, its first BZ is projected onto the kx axis and given as −π/a � kx � π/a.
The integration path C for the calculation of the Zak phase is taken along ky. (c) Energy band structure for the zigzag BPR for N = 50. Cyan
lines indicate the modes of TESs that emerge in the energy gaps where the total Zak phase is π . (d) The corresponding Zak phase of the zigzag
BPR for the lowest three subbands, where the Zak phase is finite in the second and third subbands. (e) Schematic lattice structure of a BPR
with armchair edges. N is the width of the ribbon. The translational vector T for the armchair BPR is defined as T = T (0, 1). (f) The first BZ
of the zigzag BPR (thick magenta line). The shaded yellow area is the first BZ of the 2D BPN. In an armchair BPR, its first BZ is projected
onto the ky axis and given as −π/aT � ky � π/aT . The integration path C for the calculation of the Zak phase is taken along kx . (g) Energy
band structure for the armchair BPR for N = 50. Cyan lines indicate the modes of TESs that emerge in the energy gaps where the total Zak
phase is π . (h) The corresponding Zak phase for the armchair BPR for the lowest three subbands, where the Zak phase is finite in the first and
the third subbands.

The emergence of TESs in zigzag BPRs can be associated
with the nontrivial Zak phase of π . Figure 4(d) shows the
k-dependent Zak phase of a zigzag BPR for the lowest three
bands. The Zak phase of the first subband is always zero for
any k, i.e., topologically trivial. However, in the second and
third subbands, there are k regions (|k| > kc) with a finite Zak
phase of π , i.e., topologically nontrivial. Here, ±kc are the
positions of the Dirac point between the second and third sub-
bands. Thus, the TESs emerge in the energy gap between the
second and third subbands in the region of |k| > kc because∑2

n=1 Zn(k) = π for |k| < kc. However, since
∑3

n=1 Zn(k) = 0
for any k, there is no TES in the energy gap between the
third and fourth subbands. Other TESs above E > 0 are also
explained in a similar manner.

Next, we shall analyze the electronic and topological
properties of a BPR with armchair edges (armchair BPR).
Figure 4(e) displays the schematic of an armchair BPR,
where N is the width of the ribbon. The translational vec-
tor of armchair BPRs is given as T = (0, 1). Thus, the first
BZ of armchair BPRs is given as |ky| � π/aT , which is
marked by a thick cyan line in Fig. 4(f). The energy band
structure of an armchair BPR with N = 50 is shown in
Fig. 4(g), where the cyan lines in the energy gaps indicate TES
modes.

The emergence of TES modes in armchair BPRs is also
clearly explained by the analysis of the Zak phase. Figure 4(h)
displays the k-dependent Zak phase for the lowest three sub-
bands of the armchair BPR, which gives π , 0, and π from
the lowest subband. Thus, the energy band gaps between the
first and second subbands becomes topologically nontrivial
because Z1(k) = π . Similarly, the energy band gaps between

the second and third subbands become topologically nontriv-
ial because

∑2
n=1 Zn(k) = π . These results are consistent with

the emergence of TESs shown in Fig. 4(g). Other TESs above
E > 0 are also explained similarly.

Similarly, from the viewpoint of the Zak phase, we illus-
trate the existence of TESs, even if we tune the ratio of the
hopping energy, i.e., γ ′/γ . Figures 5(a) and 5(b) display the
energy band structures (top panels) and the corresponding Zak
phases (bottom panels) for zigzag and armchair BPRs, respec-
tively, with the ratio of hopping parameters tuned to γ ′/γ =
1/2 and 2. For all cases of zigzag BPRs shown in Fig. 5(a),
the emergence of TESs is consistent with the finite Zak phase
of π . For armchair BPRs shown in Fig. 5(b), the emergence
of TESs for γ ′/γ = 1/2 (left panel) is consistent with the
presence of the nontrivial Zak phase of π . For γ ′/γ = 2 (right
panel), the emergence of two TES modes shown by magenta
lines in the gap between the third and fourth bands cannot be
illustrated solely by the Zak phase because

∑3
n=1 = 2π . Since

the Zak phase of 2π is identical to the Zak phase of zero, TESs
should not appear. For armchair BPRs, in general, two TES
modes appear in the band gap between the third and fourth
bands for γ ′/γ > 1, in spite of the fact that the Zak phase is
2π . This puzzle is explained by counting the Wannier centers
using elementary band representation in the following section.

B. Elementary band representation

In the previous section, we showed that the Zak phase
determines the existence of the edge states by numerical
calculation. However, the ambiguity about the number of edge
states has remained because the Zak phase gives only the
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FIG. 5. Energy band structure of the BPR and the corresponding Zak phase. (a) Zigzag BPR with γ ′/γ = 1/2 (left) and γ ′/γ = 2 (right).
In these cases, TESs (cyan lines) emerge in the energy gap where the Zak phase is π . (b) Armchair BPR with γ ′/γ = 1/2 (left) and γ ′/γ = 2
(right). TESs shown by cyan lines appear in the energy gap where the Zak phase is π . However, TESs shown by magenta lines emerge in the
energy band gap where the Zak phase is 2π . The puzzle will be resolved by considering Wannier centers (see the text).

parities of the Z2 value; for example, the summation of the
Zak phase of the occupied bands becomes zero even if there
are two edge states in the gap. In order to obtain an accurate
number of edge states, we introduce the symmetry analysis us-
ing the irreducible representation (irrep) at the high-symmetry
points of the first BZ [53–58].

The number of edge states is deeply involved with the
central position of the Wannier states (Wannier center)
[29,53,59,60]. The edge-terminated line crosses the Wannier
orbital n times in a period of the unit cell, and n edge states
exist in the gap. The Wannier center is located at the midpoint
of the bond with the stronger hopping energy. As discussed
before, we considered two types of hopping energies between
two atomic sites, i.e., γ and γ ′. Here, we identify the position
of the Wannier center in terms of the ratio γ ′/γ .

To show the relationship between the position of the Wan-
nier center and the stronger hopping bond, we classify the
energy bands of the BPN by the irreps of high-symmetry
points in the first BZ. The space group of BPN is Pmmm,
which belongs to point group D2h, and there are eight irreps,
as shown in Table I. Here, C2 j ( j = x, y, z) is the twofold
rotation around the j axis, I is the inversion, and σ j is the
mirror reflection with respect to the kl plane ( j, k, l = x, y, z).

TABLE I. Character table of point group D2h. The four high-
symmetry points in the first BZ belong to the point group D2h.

D2h E C2z C2y C2x I σz σy σx

�+
1 1 1 1 1 1 1 1 1

�+
2 1 1 −1 −1 1 1 −1 −1

�+
3 1 −1 1 −1 1 −1 1 −1

�+
4 1 −1 −1 1 1 −1 −1 1

�−
1 1 1 1 1 −1 −1 −1 −1

�−
2 1 1 −1 −1 −1 −1 1 1

�−
3 1 −1 1 −1 −1 1 −1 1

�−
4 1 −1 −1 1 −1 1 1 −1

Each of the six bands in the BPN is classified by the irreps
at the high-symmetry points of the first BZ. Since four high-
symmetry points in the first BZ have the same symmetry as
the BPN lattice, the irreps at the �, X , Y , and S points are
identical to point group D2h. In Fig. 6, we show the correspon-
dence between the occupied bands of the BPN and the irreps
characterized by the symmetry of the wave function. From
Fig. 6, we can define the character of the occupied bands by a
single vector,

b = (γ +
1 , γ +

2 , γ −
3 , γ −

4 ; x+
1 , x+

2 , x−
3 , x−

4 ;

y+
1 , y+

2 , y−
3 , y−

4 ; s+
1 , s+

2 , s−
3 , s−

4 ), (9)

where γ ±
n , x±

n , y±
n , and s±

n , with n = 1, 2, . . . , 4, are the num-
bers of bands whose wave function at the �, X , Y , and S
points have an irrep �±

n . Here, we omit irreps �+
3 , �+

4 , �−
1 ,

and �−
2 , which are related to the parity with respect to the xy

plane, i.e., the symmetry operation of σz, because our tight-
binding model essentially assumes the s orbital for the atomic
orbitals, which always have positive parity with respect to
the operation of σz and become irrelevant. If we change the
atomic orbital on each site from an s orbital to a pz orbital,
we need to take into account irreps �+

3 , �+
4 , �−

1 , and �−
2 , but

the discussion and the result will not essentially change. Thus,

FIG. 6. The irreps of the occupied energy bands for γ ′ > γ . Note
that only the lowest three energy bands of the 2D BPN are displayed.
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TABLE II. Elementary band representations of space group Pmmm.

WP SSG irreps γ +
1 γ +

2 γ −
3 γ −

4 x+
1 x+

1 x−
3 x−

4 y+
1 y+

1 y−
3 y−

4 s+
1 s+

1 s−
3 s−

4 η

1a (0, 0) mmm �+
1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

�+
2 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2

�+
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

�+
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

�−
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

�−
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

�−
3 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 7

�−
4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 8

1b (a, 0) mmm �+
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 9

�+
2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 10

�+
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

�+
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

�−
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

�−
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14

�−
3 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 15

�−
4 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 16

1e (0, aT ) mmm �+
1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 17

�+
2 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 18

�+
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

�+
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

�−
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21

�−
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

�−
3 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 23

�−
4 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 24

1 f (a, aT ) mmm �+
1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 25

�+
2 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 26

�+
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27

�+
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

�−
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29

�−
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30

�−
3 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 31

�−
4 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 32

2i (±x, 0) 2mm �1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 33
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34
�3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 35
�4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

2k (±x, aT ) 2mm �1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 37
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38
�3 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 39
�4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

2m (0,±y) m2m �1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 41
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42
�3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 43
�4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

2o (a,±y) m2m �1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 45
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46
�3 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 47
�4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

4y (±x, ±y) ..m �1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 49
�2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50

bpz (occupied pz bands) 2 0 1 0 1 1 0 1 1 0 2 0 0 1 1 1 17 + 45
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(a)

2i

2m 2o

2k

1a 1b

1e 1f

(b) zigzag-edge

armchair-edge

FIG. 7. (a) Wyckoff positions (WPs) on the xy plane for space
group Pmmm. WPs 2i, 2k, 2m, and 2o are two positions on the green
lines. In the case of γ ′ (gray line) > γ (red line), the three occupied
bands of the BPN consist of two elementary bands, b17 (WP 1e) and
b45 (WP 2o) in Table II. (b) Top: Since the edge-terminated line of
the zigzag BPR crosses the Wannier orbital (indicated by the blue
ellipse) once, one edge state appears. Bottom: On the other hand,
the edge-terminated line of the armchair BPR crosses the Wannier
orbitals (the red ellipse) twice, which results in two edge states.

the vector of the occupied π bands of the BPN is described as

bpz = (2, 0, 1, 0; 1, 1, 0, 1; 1, 0, 2, 0; 0, 1, 1, 1). (10)

Here, we list all elementary bands allowed in space group
Pmmm in Table II. An elementary band is a set of atomic
orbitals situated at the symmetry-protected position, which is
called a Wyckoff position (WP). The WP is classified by the
site symmetry group (SSG), which guarantees that the WP is
invariant in the unit cell. In Fig. 7(a), we show WPs in the
unit cell. For instance, eight WPs have the highest symmetry,
with the coordinates 1a : (0, 0, 0), 1b : (a, 0, 0), 1c : (0, 0, z),
. . . , 1h = (a, aT , z), and their SSGs are identical to the point
group of the lattice and have eight irreps. The WPs (and their
coordinates) and their corresponding SSGs are shown in the
first and second columns of Table II.

Atomic orbitals located at WPs have irreps characterized
by SSGs, which are subgroups of the space group of the
crystal. Each arrangement of the atomic orbitals is called an
elementary band, and the irreps of an elementary band are ele-
mentary band representations (EBRs). In Table II, we show all
possible EBRs of the WP on xy plane. There are 50 different
elementary bands with a serial number η (= 1, 2, . . . , 50).

In the same manner as in Eq. (9), we shall describe the
elementary bands labeled by η as

bη = (
γ

+(η)
1 , γ

+(η)
2 , γ

−(η)
3 , γ

−(η)
4 ; x+(η)

1 , x+(η)
2 , x−(η)

3 , x−(η)
4 ;

y+(η)
1 , y+(η)

2 , y−(η)
3 , y−(η)

4 ; s+(η)
1 , s+(η)

2 , s−(η)
3 , s−(η)

4

)
. (11)

Actual elements of bη are listed in the 4th to 19th columns in
Table II, where that Bloch function eik·R is taken into account

FIG. 8. The structure of the BPN nanoflake for γ ′ > γ . The
red ellipses indicate the Wannier orbitals. Deleting the atom basis
indicated by the black dots at the four corners, there are (m × n ×
12 − 6) atom sites. Wannier orbitals are cut by the corner geometries,
resulting in uncoupled Wannier orbitals at the corner sites.

in each character. For example, the EBR of WP 1a with
R = (0, 0) gives identical irreps among the �, X , Y , and S
points. In contrast, the EBR of WP 1b with R = (a, 0) changes
the sequence of the irreducible representations at the X and S
points depending on the Bloch phase. The Wannier orbitals
are a combination of the elementary bands, and their central
positions are the corresponding WPs in the unit cell. As shown
in the bottom row of Table II, the Wannier orbitals of the three
occupied bands of the BPN can be described as

bpz =
∑

η

nηbη, (12)

where nη is zero or a positive number. From Table II, nη is
zero except for two EBRs, η = 17 and η = 45, whose WPs
are 1e and 2o and which correspond to SSGs mmm and m2m,
respectively. Therefore, the occupied bands of the BPN are
a linear combination of the two elementary bands b17 and
b45, which are both s-like orbitals situated at WPs 1e and
2o. Hence, the Wannier orbitals are situated at the stronger
hopping bonds, and the exact number of edge states can be
determined. Figure 7(b) illustrates the broken Wannier orbitals
at the zigzag and armchair edge boundaries for γ ′ > γ . If
the strength of the hopping energy is the opposite (γ ′ < γ ),
Wannier orbitals should be situated at the six-member rings
(indicated by the red line), not the edge boundaries. Recalling
that the 2π Zak phase leads to either zero (γ ′ < γ ) or two
(γ ′ > γ ) edge states in Sec. III A, it can be understood that
the number of broken Wannier orbitals at the edge boundary
is consistent with the number of edge states.

C. Topological corner states

In this section, we consider a BPN nanoflake to investigate
the conditions for the appearance of topological corner states
as “edge-of-edge” states [61–65]. In a manner similar to that
in the previous section, we assume a geometry in which the
Wannier orbitals are isolated at the boundary of the system.
Figure 8 illustrates the structure of the BPN nanoflake formed
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(a) (b) 597 598 595, 596, 599, 600

FIG. 9. (a) The energy spectrum of the BPN nanoflake. (b) The amplitude of the wave function of the six energy levels in the gap. Two
states are localized in the left and right corners, and the other four states are localized in the upper and lower corners.

by a combination of diagonally cut lines. The rhombus shaded
in yellow is a unit which is periodic in the m and n directions.
Here, the red lines indicate the hopping of γ , and the black
lines indicate the hopping γ ′. For γ ′ > γ , edge states exist
in the energy gap, where the Wannier orbitals are located on
the bonds indicated by the red ellipses, as shown in the zoom
in Fig. 8. Furthermore, if the basis of atomic sites marked by
the black circles at the four corners is removed, the Wannier
orbitals are broken at the corner sites, i.e., the emergence of
corner states.

Figure 9(a) shows the energy spectrum of the nanoflake;
the right panel is a zoomed-in view near zero energy. Since the
system includes 1194 atoms in the case of (m, n) = (10, 10),
the site index has that same number. For γ ′ > γ , it has an
energy gap near zero energy, and six isolated energy levels
are found within the gap. Figure 9(b) shows the wave function
of the six states within the gap near zero energy. We plot the
amplitude of the wave function as the radius of the circles.
We can see the exponentially localized states at the corners
of the nanoflake. Two states with E = 0 are localized in the

left and right corners, while the other four states are localized
in the lower and upper corners. This can be understood from
the positions of the Wannier orbitals. The Wannier orbitals cut
by the corner geometry are present: One in the left and right
corners and two in the upper and lower corners, resulting in
a corresponding number of corner states. Therefore, we can
see that these corner states are due to the uncoupled Wannier
orbitals at the corners of the system. In addition, changing the
values of m and n does not affect the appearance of corner
states.

IV. CONCLUSION

In this paper, we have studied the electronic and topolog-
ical properties of the BPN. We have demonstrated that the
BPN exhibits flat bands and tilted Dirac cones, and these
tilted cones persist even when the strength of electron hop-
pings is modified. By varying the ratio of hopping energies,
specifically the ratio between intracellular hopping γ and
intercellular hopping γ ′, we can open an energy band gap,
leading to a topological phase transition. The emergence of

)d()c()b()a(

x

y

BF

E C
D

A
BF

E C
D

A

FIG. 10. (a) Energy band structures obtained with DFT (dashed lines) and WANNIER90 (solid lines). In the WANNIER90 calculation, only
pz orbitals of carbon atoms are taken into account for the projection. (b) Schematic of the BPN lattice structure with the definition of nearest-
neighbor (NN) hoppings for the tight-binding model of the 2D BPN. The yellow shaded rectangle is the unit cell. γ0 is the intracellular NN
hoppings for the bonds of B-C and E-F. γ0 is the intracellular NN hoppings for the bonds of A-B, C-D, D-E, and F-A. γ ′

x and γ ′
y are the

intercellular hoppings for the x and y directions, respectively. (c) The definition of second- and third-NN electron hoppings. Magenta thick
dashed lines indicate the second-NN hoppings. τ0 is the intracellular hoppings for the bonds of A-E and A-C. τ ′

y is the intercellular hoppings
for the bonds of A-E and A-C. τ ′

x is the intercellular hoppings for the bonds of A-B and A-F. Cyan dotted lines indicate the third-NN hoppings.
ζ0 is the intracellular hoppings for the bond of A-D. ζ1 is the intracellular hoppings for the bonds of B-E and C-F. ζ ′

y is the intercellular
hoppings for the bonds of B-C and E-F. Actual values of the hoppings are summarized in Table III. (d) Energy band structure of the effective
tight-binding model considering up to the NN hopping (dashed lines) and the third-NN hopping (solid lines). Inclusion of up to third-NN
hoppings reproduces the energy band structures obtained with DFT shown in (a) sufficiently well.
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TABLE III. Tight-binding parameters for the 2D BPN. The values are derived from the WANNIER90 calculation. The set of these parameters
well reproduces the energy band structures of π electrons for the 2D BPN, as shown in Fig. 10(d). The list of the hopping integrals is given.
Vα (Vβ ) is the on-site potential energy on A and D (B, C, E, and F) sites. The definition of the electron hoppings on the lattice of the 2D BPN
are shown in Figs. 10(b) and 10(c).

Potential NN Second NN Third NN

Vα Vβ γ0 γ1 γ ′
x γ ′

y τ0 τ ′
x τ ′

y ζ0 ζ1 ζ ′
y

−2.0742 −2.3647 −2.9603 −2.6910 −2.7479 −2.7962 0.2880 0.3969 0.2473 −0.2041 −0.2991 −0.1920

edge states is guaranteed by a nonzero Zak phase, and the
number of edge states aligns with the number of Wannier
orbitals at the edge boundary. Using the same principle, we
have illustrated the existence of corner states in systems where
uncoupled Wannier orbitals are located in the corners. The
present theoretical approach is applicable to the design of
new materials that share the same structure as BPNs. Al-
though it is very hard to tune the electron hopping energies
in actual BPN materials, we can design a system having the
topological properties of the BPN based on photonic crys-
tals. The extension to photonic crystals will be discussed
elsewhere.
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APPENDIX: TIGHT-BINDING PARAMETERS OF 2D BPN

In this Appendix, we present the parameter set for the
tight-binding model to describe π -electronic states of the 2D
BPN. We implemented first-principles calculations to obtain
the energy band structure for the 2D BPN based on the density
functional theory (DFT). To this end, we used the QUANTUM

ESPRESSO package [66,67] by employing the Perdew-Burke-

Ernzerhof variant of the generalized gradient approximation
method [68]. A relaxation of the structure was achieved by
considering a magnitude of the forces on each atom that is
less than 13.6 × 10−4 eV/Å. A 12 × 14 × 1 Monkhorst-Pack
mesh [69] was used to sample the first BZ for structural re-
laxation. Figure 10(a) shows the obtained π -electronic energy
band structures of the 2D BPN (dashed lines).

Furthermore, we extracted the tight-binding parameters for
π electrons of the 2D BPN using the WANNIER90 package
[70]. The parameter set reproduces quite well the energy band
structure obtained with DFT, as shown in Fig. 10(a), where
the solid lines are the tight-binding calculation obtained with
WANNIER90.

Figures 10(b) and 10(c) are schematics for the positions
of the hopping integrals for the tight-binding model, where
the nearest-neighbor (NN) hoppings are shown in Fig. 10(b).
Similarly, the second- and third-NN hoppings are shown in
Fig. 10(c). The obtained electron hopping parameters are
listed in Table III. Figure 10(d) shows the energy band
structure of π electrons for the 2D BPN. The dashed lines
indicate the band structure, which includes only NN hoppings.
However, the solid lines indicate the energy band structure,
which includes up to third-NN hoppings. The inclusion of up
to third-NN hoppings reproduces the energy band structure
obtained with DFT sufficiently well. Especially, third-NN
hoppings are necessary to reproduce the band crossing be-
tween the third and fourth subbands on the Y -� line, the band
gap opening at X , and the slight tilt of the flat band on the X -S
line.
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