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Rotationally displaced electric field intensity distribution around square nanoantennas
induced by circularly polarized light
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An optical field around regular polygon metal nanostructures excited by circularly polarized light can exhibit
rotationally displaced intensity distributions. Although this phenomenon has been recognized, its underlying
mechanisms have not been sufficiently explained. Herein, finite-difference time-domain simulations and model
analyses reveal that the rotationally displaced optical intensity distribution can be generated when each of the
linear polarization components that constitute circular polarization excites a superposition of multiple modes.
The proposed model reasonably explains the rotationally displaced patterns for a square nanoantenna and other
regular-polygon nanoantennas.
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I. INTRODUCTION

Localized collective oscillations of surface electrons on
metal nanostructures are acutely sensitive to the size and
shape of the nanostructure and exhibit strong electric field
enhancements [1,2]. Well-designed plasmonic antennas have
been used to modulate various optical properties [3]. In
particular, the interaction between circularly polarized (CP)
light and plasmonic structures has been extensively inves-
tigated [4–9]. During initial research, the enhancement of
optical properties originating from the circular polarization,
represented by optical chirality [10,11], has been primarily
demonstrated by chiral structures lacking mirror-image con-
gruency [12–14]. However, recent studies have reported that
optical chirality can be observed in the localized near fields
at the vertices of rectangle plasmonic structures excited by
linearly polarized (LP) light [15–17].

Furthermore, it has been shown that the spatial distribution
of the electric field of an achiral structure excited by CP
light is influenced by the handedness of the incident light
[17–19], and has been applied to the photochemical fabri-
cation of chiral nanostructures [20,21] and enantioselective
sensing or trapping of chiral molecules [22,23]. In rectan-
gular nanoantennas, the handedness-dependent distribution
appears as the localization of the electric field at one of
the two pairs of diagonal vertices [Fig. 1(a)]. This selective
localization has been explained by the superposition of the
two fundamental plasmon modes associated with the major
and minor axes [24,25]. However, it is also recognized that
the time-averaged electric field intensity around a rectangu-
lar nanoantenna may exhibit a rotationally displaced spatial
distribution depending on the exciting wavelength [Fig. 1(b)]
[20]; this wavelength-dependent two-dimensional spatial dis-
tribution cannot be explained solely by the fundamental mode.
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A similar issue has been recognized for square nanoanten-
nas, whereas the electric field intensity distribution around the
square nanoantenna is isotropic at wavelengths longer than the
dipole resonance wavelength, and several studies reported that
the intensity distribution becomes displaced in the direction of
the electric field rotation of the incident CP light at shorter
wavelengths [Fig. 1(c)]. This rotational displacement holds
for other regular polygons [26–29] as shown in Fig. 1(d), and
structures with equivalent rotational symmetry [19], and has
been used to fabricate chiral structures [26–28]. Nonetheless,
the underlying mechanism of this rotational displacement re-
mains unexplored.

In this paper, we investigate the origin of the rotationally
displaced electric field intensity distribution around a square
nanoantenna excited by CP light, employing finite-difference
time-domain (FDTD) simulations and model analyses. We
find that rotationally displaced intensity distribution appears
when the near field excited by each of the linear polarization
components that constitute circular polarization exhibits a
nonuniform phase distribution. The nonuniform phase distri-
bution cannot arise from a single plasmon mode but arises
from a superposition of multiple plasmon modes. Each of the
two orthogonal linear polarization components excites a near
field with the same spatial distribution but rotated 90◦ from
each other. When these two near fields are overlapped with
a phase difference of π/2, the intensity distribution exhibits
rotational displacement with respect to the square shape of
the nanoantenna. We verify that the nonuniform phase dis-
tribution plays an important role for the emergence of the
rotationally displaced intensity distribution around regular
polygons.

II. FDTD SIMULATION

In our simulation, we targeted a square gold (Au)
nanoantenna in a vacuum with a thickness (h) of 30 nm
and an edge length (L) of 400 nm. Circularly or linearly
polarized light was normally incident on the nanoantenna

2469-9950/2024/109(3)/035428(6) 035428-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5910-2405
https://orcid.org/0009-0000-7206-2292
https://orcid.org/0000-0002-5730-246X
https://orcid.org/0000-0001-8738-9837
https://orcid.org/0000-0001-6697-2513
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.035428&domain=pdf&date_stamp=2024-01-22
https://doi.org/10.1103/PhysRevB.109.035428


NAOKI ICHIJI et al. PHYSICAL REVIEW B 109, 035428 (2024)

FIG. 1. Localization of the electric field on a nanoantenna un-
der circularly polarized (CP) light: (a)–(c) Electric field intensity
distributions from finite-difference time-domain simulations for (a),
(b) rectangular at different wavelengths and (c) square nanoan-
tenna. White dashed lines represent the intensity contour lines.
(d) Schematics of the electric field distributions for regular polygonal
nanoantennas.

from a total-field scattered-field (TFSF) wave source located
5 µm away. All boundary conditions are perfectly matched
layers (PMLs), and the dimensions of the entire computational
region are (x, y, z) = (2.5, 2.5, 10) µm, with z representing
the propagation axis of the excitation light. The dielectric
function of Au is obtained from the Palik database [30]. A
minimum mesh width is 10 nm. The observation plane P is
set in the middle of the Au nanoantenna. All simulations were
performed using ANSYS LUMERICAL (2023 R1).

Nanoantennas with a finite area are known to exhibit
multiple resonant modes that depend on their size and
shape [31–33]. The scattering spectrum in Fig. 2(a) con-
firms the existence of multiple resonance peaks. The top
panels depict the spatial distributions of the Ex components
at a representative phase around the nanoantenna excited
by x-polarized light. The resonance at 1500 nm indicates

FIG. 2. (a) Scattering spectra of a nanoantenna excited by x-
polarized light. The top panels indicate the Ex components at a
representative phase. (b), (c) Electric field intensity distributions
obtained at plane P. (d), (e) Ey components at a representative
phase excited by y-polarized (green frames) and x-polarized (purple
frames) light. Phase profiles traced along the dashed lines are plotted
in the bottom panels.

a clear dipole mode, whereas that at 600 nm displays a
hexapole mode.

The intensity distribution of the electric field in the
nanoantenna under CP light excitation exhibits a wavelength-
dependent spatial pattern; Figs. 2(b) and 2(c) illustrate the
spatial distributions of the selected wavelengths. By contrast,
the spatial distribution at the resonance wavelength of the
dipole mode (1500 nm) is isotropic, and a rotationally dis-
placed pattern is observed at 700 nm. To investigate the factors
responsible for the rotational displacement, we analyzed the
near field under each of the x- and y-polarized light excita-
tions, that constitute the CP light.

Figure 2(d) depicts the electric field distribution Ey(x, y) at
a representative phase at λ = 1500 nm. Hereafter, the electric
fields excited by the light polarized perpendicular and par-
allel to an edge are referred to as E⊥ and E‖, respectively.
In addition, the phase distributions of each electric field are
referred to as φ⊥ and φ‖, respectively. The subscripts indicate
the relationship between the edge and the polarization of the
incident light. The directions of the calculated electric field
indicated by black arrows [Figs. 2(d) and 2(e)] are consistent
with those expected from the positions of the electrons for
the dipole mode plotted schematically in the same figure. In
this section, we discuss the electric field distribution obtained
along the upper edge as representative of the four edges.
The phase distributions at the upper edge, indicated by the
dashed horizontal lines, are plotted as solid lines in the bottom
panel in Figs. 2(d) and 2(e). φ⊥ and φ‖ are consistent with an
intuitive oscillation pattern inferred from the dipole mode: φ⊥
is constant across the edge, and φ‖ is flat except for a π shift
on the x < 0 and x > 0 region, reflecting the sign difference
of the electric field. Therefore, the phase difference between
E⊥ and E‖, |φ⊥ − φ‖| exhibits only discrete values of 0 or π .

By contrast, a nontrivial phase distribution is observed at
wavelengths that show a rotationally displaced pattern un-
der CP light irradiation. As indicated in Fig. 2(e), φ⊥ and
φ‖ excited at a wavelength of 700 nm, particularly φ⊥, ex-
hibit nonuniform curvature. Consequently, a phase difference
|φ⊥ − φ‖| is a nondiscrete value, which is neither 0 nor π .
This phase difference breaks the symmetry of the interference
on each edge under CP light incidence. Considering the phase
difference of π/2 between the orthogonal linear polarization
components in CP light, φ‖ relative to φ⊥ for CP light is
positioned as indicated by the dashed purple line in Fig. 2(e).
Consequently, E⊥ and E‖ interfere constructively on the left-
hand side and vice versa on the right-hand side, inducing an
asymmetric intensity distribution along the edges.

III. MODEL CALCULATION

As a single dipole mode is incapable of producing a dis-
torted phase distribution, the nonuniform phase distribution
can be attributed to a superposition of multiple resonant
modes. To examine the validity of this hypothesis, we consider
the superposition of charge distributions for each resonant
mode. Here, the dipole mode and the hexapole mode, whose
resonance peaks are observed on both sides of 700 nm as
shown in Fig. 2(a), are used as the unit oscillation modes. The
charge densities excited by the y-polarized light, which are ρdi

for the dipole mode, ρhe for the hexapole mode, and ρco for the
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FIG. 3. (a) Charge density distributions for the dipole mode
(left), hexapole mode (middle), and combined excitation (right)
comprising both the dipole and hexapole modes. The central cross
markers indicate the origin of coordinates in the xy plane. (b) Cal-
culated Ey components at a representative phase assuming x and y
polarization of the excitation light. The bottom panels display the
phase profiles traced along the dashed lines indicated in the top panel.

combined excitation, can be expressed in simplified forms as
follows,

ρdi

(
y = ±L

2
; t

)
= ± cos(ωt ), (1)

ρhe

(
y = ±L

2
, x; t

)
= ± cos

(
2πx

L

)
cos(ωt ), (2)

ρco(t ) = Adiρdi(ωt ) + Aheρhe(ωt + φdiff ), (3)

where ω and t denote the angular frequency and time, re-
spectively. Adi and Ahe indicate the scalar coefficients that
determine the ratio of the two modes in the combined ex-
citation. Additionally, φdiff represents the phase difference
between the two modes. As the resonant wavelengths of dis-
tinct resonant modes are different, they have different phase
delays with respect to the external field. Figure 3(a) depicts
the charge density distribution for each mode. While the ratio
between Adi and Ahe can take various values, we set that both
coefficients are 0.5 as a typical example. Assuming a phase
delay of π for the dipole mode and π/2 for the hexapole
mode, φdiff is set to π/2. The corresponding charge distribu-
tions for the x-polarized light can be obtained by rotating each
distribution by 90◦.

Figure 3(b) illustrates the electric field distribution ob-
tained by applying Coulomb’s law to each charge density
distribution. The phase distributions of E⊥ and E‖ and φ⊥
and φ‖ obtained along the upper edge (dashed lines in the
top panel) are presented in the bottom panels. The φ⊥ di-
rectly reflect their charge distributions across the bottom
edge, whereas the φ‖ are dominated by the charge distribu-
tion at both sides of the edges. Therefore, φ⊥ of the dipole
and hexapole modes is distinct, whereas φ‖ is similar. Con-
sequently, φ⊥ in the combined excitation exhibits a large
concave at the center portion and a significantly larger degree
of curvature in comparison with φ‖. Note that the degree of

FIG. 4. (a) Schematic of the electric field distribution in the
model. Red and blue regions on the frames represent positive and
negative electric fields, respectively. (b) Amplitude (top) and phase
(bottom) distributions of the upper edge of the model under circularly
polarized (CP) light excitation. (c) Calculated field distribution for
typical φadd. (d) Spatial electric field distributions calculated using
the curved φadd models.

phase curvature depends on the ratio of Adi to Ahe and value of
φdiff , which vary with the excitation wavelength. The different
curvatures of the φ⊥ and φ‖ on the same edge introduce a
nondiscrete phase difference between them that would never
appear in the single mode.

IV. DISCUSSION

The simulation results indicate that the nonuniform phase
distributions along the edges are crucial for understanding
the rotationally displaced pattern. However, it is not self-
evident whether the fundamental origin of the rotationally
displaced intensity distribution lies in the concave distribution
of E⊥ itself, or in the phase difference between E⊥ and E‖.
Here, we discuss the underlying mechanism of the rotationally
displaced intensity distribution by employing a model with
simplified spatial electric field distributions. The electric field
components excited by the x- and y-polarized components,
Expol and Eypol, respectively, are modeled assuming the elec-
tron distribution as depicted in Fig. 4(a) [34]. Expol at each
side can be defined as follows,

Expol
⊥

(
x = ±L

2
, y; t

)
= A⊥(y) cos[ωt + φ⊥(y)], (4)

Expol
‖

(
x, y = ±L

2
; t

)
= A‖(x) cos[ωt + φ‖(x)], (5)

where A⊥ and A‖ represent the amplitudes; φ⊥ and φ‖ indicate
the phase distributions for E⊥ and E‖, respectively. We as-
sumed that E⊥ is a uniform electric field (A⊥ = A1), and E‖ is
a sinusoidal electric field distribution (A‖ =|A2 sin[2πx/L]|),
where A1 and A2 are scalar coefficients. From the electric field
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distributions shown in Figs. 2(d)and 2(e), we can see that the
amplitudes of the E⊥ and E‖ components have comparable
values. Here, we show the calculations for a model where A1

and A2 are set to 1 for simplicity. The phase distributions φ⊥
and φ‖ are simplified as

φ⊥

(
x = ±L

2
, y

)
= −φadd, (6)

φ‖

(
x, y = ±L

2

)
= −π�(±x), (7)

where �(x) denotes the step function and is 0 if x > 0 and 1
if x < 0, and φadd represents the hypothetical phase difference
introduced between E⊥ and E‖. This coordinate-independent
hypothetical phase difference is introduced for a generalized
discussion that concentrates solely on the phase difference.
Eypol is defined in the same manner. Considering the π/2
phase difference between the orthogonal linear polarization
components for the CP light, the field distribution excited by
ECP can be expressed as

ECP(t, φadd ) = Expol
(
ωt + π

2

)
+ Eypol(ωt ). (8)

Figure 4(b) depicts the amplitude and phase distributions
at the upper edge of the model (y = L/2) under CP light
excitation. In the lower panel of Fig. 4(b), assigning a pos-
itive constant to φadd corresponds to moving the green line
downwards. This shift introduces a spatial asymmetry in the
magnitude of the relative phase difference between φ⊥ and
φ‖ (|φ⊥ − φ‖|). In the absence of phase difference, |φ⊥ − φ‖|
is constant at π/2, resulting in the averaged intensity for
one oscillation period being perfectly symmetric. However,
when φadd is a finite value, such as π/2, φ⊥ and φ‖ are fixed
in phase on the x < 0 and fixed out of phase on the x > 0
region. Therefore, the intensity distribution is asymmetrical,
reflecting the constructive and destructive interferences at the
left- and right-hand sides.

Figure 4(c) illustrates the calculated spatial distributions of
|ECP(x, y)| in typical φadd values. Considering that an identical
break occurred in the symmetry of the electric field strength
distribution on all four edges, the electric field distributions
|ECP(0 < φadd < π )| exhibit a clear rotational displacement.
The degree of asymmetry of the electric field increases until
φadd reaches π/2, and then decreases to become isotropic at
π . These calculations demonstrate that the essential factor for
the rotationally displaced intensity distribution is the phase
difference between E⊥ and E‖.

This interpretation can hold true for complex intensity and
phase distributions as well. We calculate the average intensity
in the cases where φadd exhibits a curved phase distribution
as observed in the FDTD simulation [Fig. 2(e)], and in the
case where both phase and amplitude comprised complex
distributions, assuming a superposition of higher-order bright
modes. Although the intensity distributions are different, clear
rotationally displaced patterns appear in both cases [Fig. 4(d)].
Note that the position where the electric field intensity reaches
its maximum value does not necessarily coincide with the
position where the phase difference is zero. This is because the
intensity distribution is determined not only by the locations
where constructive or destructive interference occurs, but also
by the respective spatial distributions of A⊥ and A‖.

FIG. 5. (a) Spatial distributions of the electric field intensity for
polygon plates excited by the circularly polarized (CP) light. (b) Ey

components at a representative phase at typical wavelengths. The
edge lengths of the triangle and hexagon are 500 and 400 nm,
respectively. Scale bars represent 200 nm.

In the case of the square structure, the dipole and hexapole
modes introduce phase differences for symmetry breaking.
Although the specific modes and phase distributions depend
on individual cases, the proposed interpretation of the ori-
gin of the rotationally displaced distribution should be valid
for other regular polygons. Considering the superposition of
distinct resonance modes induced by both perpendicular and
horizontal polarizations with respect to one of the edges,
asymmetric interference along the edges is expected [19]. As
indicated in Fig. 5, the FDTD simulations for triangular and
hexagonal plates corroborate the distinct oscillation modes
for the y- and x-polarized LP light, manifesting the rotational
displacement under CP light at a wavelength between these
modes.

Although the detailed calculations in this paper are concen-
trated on two-dimensional regular polygonal plates, extending
this interpretation to a rectangular structure should be feasible
by considering the phase differences between the major and
minor axes, which define the vertices at which the electric
field becomes localized. In addition, the use of substrates is
often unavoidable in practical experiments. From FDTD sim-
ulations, we confirmed that the rotational displacement similar
to that shown in Fig. 2(c) is observed for the same square
nanoantenna but with a CaF2 substrate (n = 1.43). Here, the
addition of the substrate slightly shifted the resonance fre-
quency of each plasmon mode, but we did not observe a
significant change in the formation of the rotationally dis-
placed intensity pattern. It should be noted, however, that
for thicker nanoantennas, the distinction between the top and
bottom surfaces may result in intensity distributions that vary
along the z axis [27]. Constructing a three-dimensional model
that considers the thickness of plates and the presence of a
substrate, along with the experimental observation of rotation-
ally displaced optical intensity, are among our future tasks.

V. CONCLUSION

We numerically investigate the rotationally displaced
intensity distributions around a square nanoantenna excited
by CP light, using FDTD simulations and two model
calculations. When the rotationally displaced pattern
appeared, the electric fields at the square edges induced

035428-4



ROTATIONALLY DISPLACED ELECTRIC FIELD … PHYSICAL REVIEW B 109, 035428 (2024)

by the linear polarization components exhibit a concave
phase distribution. This nonuniform phase distribution is
explained by the superposition of dipole and hexapole modes,
indicating that the rotationally displaced patterns require
the involvement of multiple modes. The phase difference
between edges perpendicular and parallel to the polarization
direction caused by the nonuniform phase distribution is
essential for the rotationally displaced intensity distributions
around regular polygon antennas.

The proposed interpretation provides insights for dis-
cussing the chiral electromagnetic field derived from plas-
monic nanostructures. Particularly, the nonuniform phase dis-
tribution generated by the superposition of multiple oscillation

modes should be considered in calculating the optical chirality
enhanced by plasmonic antennas. The potent relationship be-
tween the spatial phase distribution of a resonator excited by
LP light and its symmetry is indispensable for understanding
the interaction between the enhanced electric field of res-
onators and light-matter interactions.
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