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Real-space topological localizer index to fully characterize the dislocation skin effect
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The dislocation skin effect exhibits the capacity of topological defects to trap an extensive number of
modes in two-dimensional non-Hermitian systems. Similar to the corresponding skin effects caused by system
boundaries, this phenomenon also originates from nontrivial topology. However, finding the relationship between
the dislocation skin effect and nonzero topological invariants, especially in disordered systems, can be obscure
and challenging. Here, we introduce a real-space topological invariant based on the spectral localizer to
characterize the skin effect on two-dimensional lattices. We demonstrate that this invariant consistently predicts
the occurrence and location of both boundary and dislocation skin effects, offering a unified approach applicable
to both ordered and disordered systems. Our work demonstrates a general approach that can be utilized to
diagnose the topological nature of various types of skin effects, particularly in the absence of translational
symmetry when momentum-space descriptions are inapplicable.
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I. INTRODUCTION

The global conservation of energy ensures that the dynam-
ics of the system together with its environment is Hermitian.
However, in some cases it is more convenient to treat the
system separately, while introducing the external coupling
effectively as a non-Hermitian interaction in the system [1].
Non-Hermitian descriptions are thus commonly used to study
optical systems with gain and loss [2], electronic circuits with
external contacts [3], atomic systems coupled to probes [4], or
acoustic systems [5]. In these cases, energies can be complex,
and eigenstates are not guaranteed to form an orthonormal
basis [6], leading to phenomena that have no counterpart in
Hermitian systems.

One such phenomenon is the non-Hermitian skin effect
(NHSE) [7–12], which denotes the localization of an extensive
number of eigenstates at the boundary of the system [13].
The NHSE is a consequence of nontrivial bulk topology: With
periodic boundary conditions, the nonzero winding number of
the bulk spectrum around a point in the complex plane marks
the presence of a nontrivial point gap within which boundary
states accumulate [8,14].

Recently it has been pointed out that the NHSE is not
necessarily a boundary property, but that it may also occur at
topological defects such as dislocations [15–17] and discli-
nations [18]. In this regard, the topology of non-Hermitian
systems parallels that of Hermitian ones, allowing the appli-
cation of conventional bulk-defect correspondence [19–21] to
determine the combinations of system symmetries and defect
types that lead to topologically protected gapless modes. In
practice, however, there are several factors that complicate the

task of computing the topological invariants responsible for
the defect NHSE. For example, previous works have shown
examples of systems where dislocations host a NHSE for
which the conventional bulk-defect correspondence does not
apply [15,16]. Moreover, the topological invariants are usually
computed in an effective Brillouin zone composed of the
original momentum space and supplemented by additional
degrees of freedom which parametrize the surface surround-
ing the defect [19,21]. It is not a priori clear how this can
be done when momentum is not a good quantum number,
as is the case in disordered, fractal, quasicrystalline, or even
amorphous models [22].

In this work, we examine the defect-induced NHSE from
a different perspective. We turn to a real-space topological in-
variant called the localizer index. The latter is one of a family
of versatile topological invariants that were initially intro-
duced to study Hermitian topological insulators [23–31], but
have since been extended to study a variety of phases. These
include metals and semimetals [32–36], higher-order topolog-
ical phases [33], Floquet phases [37], as well as line-gapped
non-Hermitian phases [38]. More recently, one such localizer
index has been used to characterize the one-dimensional (1D)
NHSE [39] of a single Hatano-Nelson chain [40] experimen-
tally realized in a multiterminal quantum device.

We show that this particular localizer index, originally
meant to characterize 1D Hermitian systems [23], can be
adapted to study the topological properties of the NHSE in
two-dimensional (2D), point-gapped non-Hermitian systems.
One of its advantages is that, given a concrete system, it allows
for the direct detection of the topology associated to both
boundaries as well as dislocations. This approach sidesteps
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the need for constructing an effective Brillouin zone, and is
thus ideally suited for the study of disordered systems.

We begin in Sec. II by introducing a simple model of
a topologically nontrivial 2D non-Hermitian system, con-
structed as a stack of parallel Hatano-Nelson chains [15,16].
We describe the process of introducing different types of
dislocations into the system and show that they host a NHSE,
similar to the boundaries of the model. Section III is devoted
to understanding the observed NHSEs from a topological
point of view, based on a mapping that relates the topol-
ogy of Hermitian and non-Hermitian systems. After a brief
review of previous approaches, we introduce the spectral
localizer, describe its application to 1D Hermitian models,
and expand its usage to 2D non-Hermitian models. We high-
light the advantages of a direct, real-space formulation of the
topological invariant in Sec. IV, by showing that it correctly
predicts the robustness of the NHSE against onsite potential
disorder. Finally, we conclude in Sec. V, suggesting that a
variety of different types of skin effects, in systems of varying
dimensionality and symmetry class, may be amenable to a
localizer-based topological description.

II. MODEL

The Hatano-Nelson (HN) model is one of the simplest
systems exhibiting the NHSE [40,41]. It consists of a 1D chain
with one orbital per unit cell and nearest-neighbor nonrecipro-
cal hoppings given by tx(1 ± γ ). Under open boundaries, the
Hatano-Nelson chain shows the NHSE with an exponential
accumulation of all eigenstates towards the boundary. The
direction of accumulation is given by the largest hopping.

Following Ref. [16] we create a periodic 2D system by
stacking HN chains with an interchain coupling strength
ty. This gives the weak Hatano-Nelson model, with the
Hamiltonian

H (k) = 2tx cos kx + 2ty cos ky − 2iγ tx sin kx, (1)

where k = (kx, ky) the momentum vector. In the following we
will set tx = 1 as the energy scale of the problem, expressing
all other energy scales relative to it. All numerical results are
obtained using the Kwant library [42] and our own code is
included in the Supplemental Material [43].

For |ty| < 1, the complex spectrum has a point gap [shown
in Fig. 1(a)]. It can be considered as a collection of periodic
HN chains with a momentum-dependent chemical potential
2ty cos ky [16], such that the spectrum consists of a set of
ellipses displaced relative to each other along the real-energy
axis. For a finite-sized system with open boundary conditions
(OBC), the nonreciprocity along the x direction leads to the
formation of a NHSE. To describe the latter, we turn to the
real-space probability density summed over all states,

ρ(r) =
∑

n

| 〈r|ψn〉 |2, (2)

where r is the position of a lattice site, |r〉 is the position ket,
|ψn〉 is the nth right eigenstate of the Hamiltonian, and the sum
runs over all states. The summed probability density (SPD)
ρ, plotted in Fig. 1(b), shows an exponential accumulation
towards the boundary. In effect, each open HN chain in the

FIG. 1. Panel (a) shows the spectrum of the momentum-space
Hamiltonian Eq. (1) in the complex energy plane. The spectrum
consists of a set of ellipses displaced relative to each other along
the real axis, and shows a point gap around the origin, E = 0. Panel
(b) shows the SPD of Eq. (2) for a finite-sized system consisting of
25 × 25 sites with OBC. For ease of visualization, ρ is also shown as
a varying color scale. For both panels, we use ty = 0.4 and γ = 0.3
in units of tx .

stack produces its own non-Hermitian skin effect, with the
same, y-independent localization length.

We introduce dislocations in the lattice by removing one or
more rows of sites at fixed y coordinates and gluing the two
resulting edges together using the same ty hopping as in the
rest of the bulk. An example of a system formed in this way
is shown in Fig. 2(a), and contains two dislocations. Each is
characterized by a Burgers vector, the additional translation
required to form a closed loop around the dislocation core,
compared to a loop that does not encircle the defect [21,44].
In units of the lattice constant, the left-most dislocation has

FIG. 2. Panel (a) shows a sketch of the the weak Hatano-Nelson
model in the presence of two dislocations. The dashed lines show
two closed contours, one of which encircles the dislocation and one
which does not. The path that encircles the defect ends up with a
net displacement equal to the Burgers vector, here B = (Bx, By ) =
(0, 1), shown by the thick arrow. Panels (b), (c) show the skin and
anti-skin effect at the two dislocations. There is an accumulation or
a depletion of ρ compared to its bulk value depending on whether
By is positive or negative. In each case, the system size is 40 × 20
sites, the distance between the two dislocations is 20 sites, ty = 0.4,
and γ = 0.4. Panel (b) shows the case of unit Burgers vectors, B =
(0, ±1), whereas the dislocations in panel (c) have B = (0,±2).
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a Burgers vector B = (Bx, By) = (0, 1), whereas B = (0,−1)
for the right-most dislocation.

We use periodic boundary conditions (PBC) in order to
suppress the boundary NHSE, and examine the effect of the
dislocations on the SPD in Fig. 2(b). As a result, we reproduce
the findings of Ref. [16]: Depending on the sign of By, there
is either an accumulation or a depletion of the density relative
to that far from the dislocations. These phenomena have been
termed the skin and antiskin effect.

Going beyond the previous results of Ref. [16], we also
turn to a system with double the Burgers vectors. This is
achieved by removing two rows of sites in the cut and glue
procedure, yielding By = ±2. The SPD, shown in Fig. 2(c),
shows the peak and dip at the point defects in the same
manner as for By = ±1, but with a larger amplitude and width.
Thus, the NHSE is still present regardless of the parity of By.
Finally, we note that with OBC the boundary NHSE hinders
the visibility of the dislocation NHSE. We find that the peak
and dip appearing in Figs. 2(b) and 2(c) are no longer visible
in this case, except in the regime of weakly-coupled chains
|ty| � 1.

III. TOPOLOGY OF THE DISLOCATION SKIN EFFECT

The topological properties of non-Hermitian systems with
a point gap can be studied by means of a Hamiltonian-
doubling procedure, which maps them to Hermitian systems
with the same topological classifications [8]. Specifically, for
a non-Hermitian Hamiltonian H we construct a Hermitian

H̃ =
(

0 H
H† 0

)
. (3)

The latter obeys chiral symmetry �H̃ = −H̃�, with � =
diag(I,−I), where I is an identity matrix of the same size
as H .

The NHSE present in the non-Hermitian H maps to the
topologically protected zero-energy modes of the Hermitian
H̃ , and the two systems have equal-valued topological invari-
ants [8]. For the Hatano-Nelson Hamiltonian H , the doubled
Hamiltonian H̃ is an SSH chain [45,46] whose 1D winding
number is the same as the point-gap winding number of H .
Therefore, the topological invariant describing the SPD accu-
mulation in the Hatano-Nelson model is the same as the bulk
winding number for the doubled system.

For our case, the doubling procedure Eq. (3) maps the
stack of Hatano-Nelson chains into a stack of SSH chains. At
each dislocation, we observe one zero-energy state in the case
|By| = 1, whereas two states are present at each defect when
|By| = 2. We note that when the doubled system has OBC,
the zero modes at the bulk defects coexist with gapless states
at the boundaries of the system, as shown in Fig. 3. Thus,
we expect that the topological invariants characterizing the
dislocations should be identifiable under OBC, even though
the boundary NHSE, when present, obscures the presence of
a defect NHSE.

FIG. 3. The local density of zero modes ρ0(r) for the doubled
Hamiltonian Eq. (3) is shown in panel (a) for PBC and in panel (c) for
OBC. ρ0(r) is the summation of the eigenvector probability carried
out over only the zero-energy modes, defined using a tolerance of
10−4 in units of tx . Correspondingly, the spectra of the two systems
are shown in panels (b) and (d). In all plots, we use ty = γ = 0.4, a
system size of 60 × 30 sites, and introduce dislocations with By =
±1 that are 10 sites apart. In the case of PBC, there are only two
zero-energy modes, each one localized at a dislocation core. With
OBC, these defect modes coexist with boundary states formed by the
topological end modes of each SSH chain in the stack.

A. Previous approaches to characterize
the dislocation skin effect

According to the conventional bulk-defect correspon-
dence established for Hermitian systems [19], the topological
invariant characterizing a dislocation in 2D is computed from
a three-dimensional (3D) effective Hamiltonian that surrounds
the defect, H̃ (kx, ky, s), where kx,y are the two original bulk
momenta, and s ∈ [0, 1] is a periodic variable describing a
circle around the defect. For a non-Hermitian H that does
not have any additional symmetries (class A in the Altland-
Zirnbauer classification [47,48]), H̃ belongs to class AIII, and
the dislocation invariant is expected to take the form of a 3D
winding number:

W3 =
∫

BZ×S

d2kds

12π
εμνρTr[(q−1∂μq)(q−1∂νq)(q−1∂ρq)],

(4)

where εμνρ is the antisymmetric Levi-Civita tensor, and
q(k, s) is the off-diagonal block of the Hermitian Hamiltonian
H̃ (kx, ky, s) in a basis where the chiral symmetry operator
is of the form diag(I,−I). Using the doubling construction
Eq. (3) means that for the stack of Hatano-Nelson chains
q = H .The topological classification outlined in Ref. [19]
relies on the notion of stable equivalence [49]. Central to
this notion is the equivalence of a topological phase subject
to the addition of trivial bands. Reference [19] considers the
homotopy π2d−1(U (n → ∞)) = Z given by W3, n being the
dimension of q. However, this classification generally does not
hold true for systems with fewer bands. For our model, n = 1
and d = 2 give a trivial classification since π3(U (1)) = 0
[50]. Reference [16] points this out through the vanishing of
the antisymmetric summation, giving W3 = 0 trivially. There-
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fore, W3 fails to capture the topology of the one-band model,
regardless of which type of dislocation is considered. The de-
sired topological classification falls outside the conventional
bulk-defect correspondence based on K theory outlined in
Ref. [19].

As an alternative to the 3D winding number, Ref. [15]
proposed an invariant given by the 1D winding number of the
bulk Hamiltonian along specific lines of the Brillouin zone
for which B · k = π mod 2π . Thus, for By = ±1, the index
is the kx winding number at ky = π , while for By = ±2 it
is the sum of kx winding numbers at ky = ±π/2. Reference
[16], on the other hand, proposed an invariant of the form ϑ =
νxBy − νyBx, where νx and νy are weak topological invariants
that predict the appearance of the boundary NHSE. These
indices are defined as the 1D winding numbers of the bulk
spectrum along a particular momentum direction, averaged
over the perpendicular momentum direction. Thus,

ν j =
∫

d2k
i(2π )2

H (k)−1 ∂k j
H (k) , (5)

with j = x, y. Here ϑ can take arbitrary integer values, con-
sistent with the observation of a NHSE both for By = ±1 and
±2. It can be derived starting from a Chern-Simons invariant
defined in the effective Brillouin zone (kx, ky, s) [16], but the
latter only captures the parity of ϑ and does not yield the
expected Z classification. And the fact that both Refs. [15,16]
define invariants in momentum space hinders their use in
disordered systems.

B. Localizer index

We turn to a real-space description of the dislocation
NHSE. To this end, we consider a Hermitian matrix called
the spectral localizer [23,51], which is constructed from a
real-space, 1D Hermitian Hamiltonian in class AIII. It takes
the form

L = (X̃ + iH̃ )�, (6)

where H̃ is the Hamiltonian matrix, � is the chiral symmetry
matrix, and X̃ = diag(x1 − x0, x2 − x0, x3 − x0, . . .) contains
the positions of the lattice sites relative to a given origin x0.
Each position x j appears twice in X̃ , corresponding to two
sublattices, as detailed in Appendix A. From L, it is possible to
define a Z-valued topological invariant called localizer index
[23]

νL = 1
2 Sig L, (7)

where Sig refers to the matrix signature—the difference in the
number of positive and negative eigenvalues.

For an SSH chain with OBC, νL predicts the number
of zero-energy modes at each end whenever the origin of
space x0 is positioned deep within the bulk of the chain. It
gives a trivial answer when the origin is well outside of the
chain, i.e., when all lattice site positions x j > x0. In effect,
the localizer index is equal to the net number of zero-energy
modes (counted with their chirality), at positions away from
the origin x0.

In our case, the Hamiltonian doubling procedure Eq. (3)
yields an array of SSH chains oriented along the x direction
and stacked along y. As shown in Fig. 3, with OBC, H̃ hosts

FIG. 4. Panel (a) shows the topological index (red) sweeping
over x0 for a 40 × 20 lattice with By = ±1, γ = 0.4, ty = 0.4. The
index shows a jump equal to 1 when the origin is between the point
defects. Panel (b) shows the variation of νL (red) for the same system
with By = ±2. νL jumps by 2 between the point defects, showing
the complete topological classification yielded by the localizer index.
The blue lines show the respective localizer gap as a function of
the position. The localizer gap is defined as the absolute value of
the localizer eigenvalue closest to zero. Near the system boundaries
(x0 = 0 and 39), the localizer gap is small, such that the intermediate
values between 0 and −20 are unstable to disorder. Deep inside the
bulk, however the localizer gap is large (� 0.5), leading to a robust
invariant for both the boundary as well as the dislocation NHSE.

zero modes both at its boundaries, in correspondence to the
boundary NHSE, as well as at dislocations, in correspondence
to the dislocation NSHE. Thus, we expect that the localizer
index will give a unified prediction for both boundary as well
as defect states by considering νL as a function of x0.

We have computed the localizer index for the doubled
Hamiltonian Eq. (3), taking X̃ to represent the lattice positions
in the horizontal x direction and independent of the site’s
position in the vertical y direction. As shown in Fig. 4, νL

correctly captures the number of zero modes as x0 is varied
across the system, both in the case By = ±1 as well as for
By = ±2. When x0 is positioned outside the lattice, νL = 0
yields a trivial answer. As x0 enters the bulk of the system, νL

changes by an amount equal to the number of boundary zero
modes, i.e., the number of SSH chains. The same invariant,
however, also correctly identifies the number of zero modes
bound to the dislocation, showing a jump by ±1 in Fig. 4(a)
or by ±2 in Fig. 4(b) as x0 is swept across the dislocation
core. Thus, the localizer index also allows to determine the
position of the topologically protected states: A difference of
νL between two different values of x0 is a topological invariant
counting the number of protected zero modes in a particular
region of space.

Due to the mapping between the NHSE of the weak
Hatano-Nelson model H and the zero modes of the stack
of SSH chain H̃ , the localizer index can thus predict the
appearance and position of the NHSE both at boundaries as
well as at dislocations.

We now go one step further and reexpress the localizer
index in such a way that it depends on the non-Hermitian
Hamiltonian directly, thus avoiding the need for a doubling
procedure. As detailed in Appendix A, using the block LDU
decomposition together with Sylvester’s law of inertia we
obtain

νL = 1
2 Sig(X ) − 1

2 Sig(X + HX −1H†), (8)
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FIG. 5. Panel (a): Average localizer index characterizing the
dislocation NHSE (red), and average bulk gap of the doubled Hamil-
tonian (blue) as a function of disorder strength W . The system
consists of 40 × 20 lattice sites and contains two dislocations with
By = ±1 that are positioned 20 lattice sites apart. We use ty = γ =
0.4 and each point is obtained by averaging over 100 independent
disorder realizations. The localizer index characterizing the disloca-
tion topology is obtained as a difference between the values of νL

computed at x0 = 20.1 and x0 = 7.1. Panel (b) shows the SPD for
a single disorder configuration at disorder strength W = 1. The skin
and antiskin peaks can be prominently seen.

where X is the position operator corresponding to the non-
Hermitian H . In order to prevent X from becoming singular,
this formula requires that the origin of space x0 be cho-
sen such that it does not exactly coincide with one of the
lattice site positions, which can be achieved for any finite
discrete system. This formula makes the computation of the
localizer index faster due to the smaller size of the matrices
involved. As shown in Appendix A, the formula in terms
of the non-Hermitian system gives an identical result to that
using Eq. (7). For dense n × n matrices, this gives an eightfold
speedup due to the O(n3) complexity for computing the sig-
nature. This complexity can be reduced, however, for sparse
matrices using sparse versions of decomposition algorithms to
compute the signature [23,52].

We note that the localizer index’s ability to describe the
topological properties of both boundaries as well as dislo-
cations in a unified manner goes beyond the classification
proposed for the conventional bulk-boundary and bulk-defect
correspondence. The latter relies on having more than one
band, as discussed above, and different invariants are gener-
ally needed for the boundary and the defect, as mentioned at
the beginning of this section.

IV. ROBUSTNESS AGAINST DISORDER

The NHSE occurring in the weak Hatano-Nelson model
does not require any symmetry, such that it is expected to
be robust against disorder. We test this hypothesis by adding
onsite potential disorder to the model, choosing for each site j
a random potential ω j , drawn independently from the uniform
distribution [−W/2,W/2]. W therefore encodes the strength
of disorder.

Beyond testing for the robustness of the dislocation NHSE,
adding disorder also allows us to check the validity of the
localizer index in a regime where previous invariants do not
apply since momentum is not a good quantum number. We
show in Fig. 5(a) the average topological invariant describing
the defect NHSE for a system containing dislocations with

By = ±1. The index is computed as the difference of νL

[Eq. (8)] for two values of x0 on either size of the left-most
dislocation (x0 = 7.1 and x0 = 20.1). We compare it with
another indicator of NHSE robustness, the bulk gap of the
doubled Hamiltonian. We find that the system remains robust
against disorder up to values of W of the order of tx, showing
a well-quantized average invariant. When disorder strength
is increased further, the bulk gap decreases and the index
loses its quantization. In Fig. 5(b) we examine the SPD of
a single disorder configuration at W = 1. While ρ is clearly
noisy in the bulk of the system compared to Fig. 2(b), the
peak and dip corresponding to the skin and antiskin effect
are clearly visible, consistent with the well-quantized localizer
index. Finally, we note that neither the distribution of gap sizes
nor that of νL is Gaussian, so that the error bars of Fig. 5
cannot be determined simply from the variance. We detail
their calculation in Appendix B.

V. SUMMARY AND OUTLOOK

In this work, we have revisited the skin effect occurring at
dislocations in 2D non-Hermitian systems, using the simple
toy model introduced in Refs. [15,16]. We have found that
a real-space topological invariant, called the localizer index,
can fully capture the presence and the position of the NHSE,
both at boundaries as well as at dislocations. This is in con-
trast to previous approaches, which rely on different invariant
formulas.

One of the main advantages of localizer invariants is their
ability to probe a given system directly and without the need
for momentum space. Thus, we expect that this index may
play an especially useful role in those systems where mo-
mentum space is inaccessible, such as in disordered or in
amorphous systems.

Finally, we note that the index we have used is one of a
large family of localizer invariants, which have been shown
to apply to a variety of different Hermitian topological in-
sulators, with different symmetries as well as in different
dimensions. Due to the mapping relating the topology of
Hermitian and non-Hermitian Hamiltonians, we expect that
similar types of localizer index can be useful to character-
ize other types of NHSE, such as the ones protected by
time-reversal symmetry [53]. This would be a particularly
interesting direction for future research, given that time re-
versal enables the dislocation NHSE to coexists with strong
topology, i.e., with systems that cannot be viewed as being
composed out of stacks of one-dimensional chains.
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APPENDIX A: TOPOLOGICAL INVARIANT
FOR THE NON-HERMITIAN SYSTEM

Here we derive an alternate expression for the localizer
index in Eq. (6) applied to doubled Hamiltonians of the form
in Eq. (3). The position operator for the doubled system has
the block form

X̃ =
(

X 0
0 X

)
. (A1)

X = diag(x1 − x0, x2 − x0, ...xN − x0) is the position oper-
ator for the non-Hermitian system. Substituting the block
representations of the matrices in Eq. (6), we get the invariant
as

νL = 1

2
Sig

(
X −iH

iH† −X

)
. (A2)

The matrix in the argument is the localizer L, and its
signature can be written in terms of the signature of its
blocks. We use the following identity for the block LDU
decomposition:(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

(A3)

Assuming that X is invertible, meaning that we choose
x0 	= x j for all j, we apply this block LDU decomposition for
L, resulting in:

L = SMS†, (A4)

where

S =
(

I 0
iH†X −1 I

)
(A5a)

and

M =
(

X 0
0 −X − H†X −1H

)
. (A5b)

Equation (A4) is called a congruence relation, which by
Sylvester’s law implies that Sig(L) = Sig(M ) [54–56].

Since M is block diagonal, its signature is simply the sum
of the signatures of the diagonal blocks. Therefore, the local-
izer index can be written in terms of the quantities for the
non-Hermitian system as

νL = 1
2 Sig(X ) − 1

2 Sig(X + H†X −1H ). (A6)

FIG. 6. Localizer index calculated using Eq. (6) (blue) and
Eq. (A6) (red). Both approaches give the same value for the invari-
ant for the 40 × 20 system with a dislocation with By = 1, with a
significantly faster computation for the non-Hermitian invariant in
Eq. (A6).

Aside from providing an eightfold speedup for numerical
computation, this also provides the expression for the invari-
ant directly in terms of the non-Hermitian system and gives
the same answer as the invariant calculated on the doubled
system, as shown in Fig. 6.

APPENDIX B: DETERMINING ERROR BARS

The choice of the error bars is made in accordance with the
characteristics of the distribution of the corresponding vari-
able. Since the energy gap is a continuous variable which is
bounded below by 0, we use the first and third quartiles of the
distribution as the lower and upper error bounds. This measure
of the dispersion of the data is known as the interquartile
range, and gives the interval where the middle half of data
points are contained.

Since the topological index is always integer by definition,
the corresponding distribution is discrete. We thus use the
bootstrap method [57]. We create datasets of the same size
as the original dataset (100 disorder realizations for each W ),
by randomly resampling data points from the dataset with
replacement. We calculate the mean for each resampled set,
and use the interquartile range on the dataset of means for
each such resampled set. For each disorder value, we apply the
bootstrap procedure 10 000 times and report the interquartile
range as the lower and upper error bars.
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