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Higher-order topological properties of two-dimensional (2D) magnetic materials have recently been pro-
posed. In 2D ferromagnetic Janus materials, we find that ScClI is a second-order topological insulator. Using
the tight-binding approximation, we develop a multiorbital model that adequately describes the high-order
topological states of ScCIll. Further, we give the complete high-order topological phase diagram of ScCll,
based on the external field modulation of the magnetovalley coupling and energy levels. The 2D ScCII has
a pronounced valley polarization. This type of magnetovalleytronics results in different insulating phases to
exhibit completely different anomalous Nernst conductance. Through valleytronics, we establish a link between
the topological insulator and the valley Nernst effect, thus constructing an anomalous valley Nernst conductance
map that corresponds to the topological phase diagram. We utilize the characteristics of valley electronics to
link higher-order topological materials with the anomalous Nernst effect, which has potential implications for

high-order topological insulators and valley electronics.
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I. INTRODUCTION

Recently, two-dimensional (2D) high-order topological in-
sulators (HOTIs) have received great attention [1-6]. Prior to
this, higher-order topological states in three-dimensional Bi,
MnBij,, Tes,+1, and Eulny As, have received attention [7-11].
However, higher-order topological corner states hidden in
the 2D transition metal 2H-MoS, family have only recently
been discovered [1-3]. They are all protected by space inver-
sion symmetry and have a nonzero topological corner charge
[12-14]. The analogous higher-order topological properties
can also be extended to 2D ferromagnetic and ferroelectric
materials [15,16]. However, there is still a need for a more
detailed and comprehensive analysis of high-order topological
multiorbital systems and phase transition processes, as well as
a stronger connection to valleytronics. Moreover, compared to
photonic and phononic crystals, which are highly manipulated
[17,18], there are still relatively few electronic materials with
higher-order topologies. Therefore, finding new 2D HOTI ma-
terials is important and significant.

Two-dimensional materials with a honeycomb structure
have strong energy valley properties [19-21]. For 2D ferro-
magnetic materials, the intrinsic ferromagnetic order couples
with the energy valleys to produce giant valley polarization
[4,22] and leads to large differences in the Berry curvature
of the K/K’ valleys. Since the Berry curvature is analogous
to an equivalent magnetic field [23], the anomalous velocity
transmitted to the electrons leads to valley currents [21-24].
Applications on this basis consist of the valley Hall effect
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[24] and the anomalous Nernst effect [22]. In particular, the
anomalous Nernst effect has been widely measured and ap-
plied experimentally [25-31]. The anomalous Nernst effect
on 2H-MoS, family materials was discussed earlier by Yu
et al. [31]. It can be predicted that there is a certain con-
nection between the topological properties and the valley
Nernst effect. Such a connection has been rarely mentioned.
Consequently, associating topological phase transitions with
the anomalous valley Hall effect holds significant physical
significance.

In this paper, we discover that monolayer ScCll is a
second-order topological insulator (SOTI), exhibiting second-
order topological corner states in a 2D triangular quantum
dot. Using the multiorbital tight-binding approximation the-
ory, we learn that the p orbitals of the halogen elements are
indispensable for higher-order topology. It is not possible to
show this by only considering the d orbitals. Next, by ap-
plying an external field to change the magnetovalley coupling
strength and energy level difference, we provide the complete
topological phase diagram of 2D Janus ScCII. ScCII mainly
undergoes the topological phase transition process of SOTISs,
quantum anomalous valley Hall insulators (QAVHIs), and
normal insulators (NIs). Due to the strong valley electronic
properties of ScCll, the phenomena of SOTIs, QAVHIs, and
NIs exhibit distinct characteristics in the thermally induced
anomalous Nernst effect. Based on this foundation, we pro-
vide anomalous Nernst conductance maps that correspond to
the higher-order topological phase diagram. Our results ef-
fectively link high-order topology with the anomalous Nernst
effect of thermal excitation, which is of great significance for
the measurement and application of experimental electronic
devices.
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FIG. 1. (a) Top and side views of ScCll. (b) In the out-of-plane ferromagnetic state, a fat band of projected orbitals is present. (¢c) The
projected density of states (PDOS) of the system. (d) Spin-polarized energy bands near the Fermi level. Red and blue lines indicate spin-up

and spin-down states.

II. METHODS

First-principles calculations based on density functional
theory (DFT) are conducted using the Vienna ab initio
simulation package (VASP) [32,33]. The electronic exchange-
correlation interactions are treated using the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
[34,35]. For two-dimensional materials, a minimum of 15 A
vacuum layer is included. The energy cutoff for the plane-
wave basis is set to 500 eV, and a 10 x 10 x 1 k mesh
is employed for Brillouin-zone sampling. The convergence
threshold for the maximum force during structural opti-
mization is set to be less than 0.01 eV/A, and the energy
convergence criterion is set to be 107® eV. We apply the
GGA + U method to correct the Coulomb repulsion interac-
tions of the Sc atom’s d orbitals, with a typical value of U =
3 eV [36,37]. The parity of the occupied states is calculated
using the IRREP program [38]. Additionally, a tight-binding
model based on maximally localized Wannier functions (ML-
WFs) is constructed using the WANNIER90 and WANNIERTOOLS
packages [39,40].

III. RESULTS AND DISCUSSION

The crystal structure of the two-dimensional Janus honey-
comb material ScClI is shown in Fig. 1(a). Its fat band reveals
a predominant contribution from the d orbitals of Sc in the
vicinity of the Fermi energy level. From PDOS, it can be seen
that the low-energy states dominated by p orbitals also contain
contributions of d orbitals from Sc, as shown in Fig. 1(c). In
the out-of-plane ferromagnetic state, magnetovalley coupling
induces polarization at K and K’, as illustrated in Fig. 1(d).
The measured energy level difference between valence elec-
trons in the K and K’ valleys is 73.1 meV, and the band gap
in the spin-up energy band of the K valley is determined to
be 502.1 meV. Although the system is an indirect band-gap
insulator in its fully relaxed state, it can be transformed into a
direct band-gap insulator by applying strain.

To verify the high-order topological properties of ScCll,
we first calculate the higher-order topological indices Q%) of
the system, which is protected by the symmetry of the C; ro-
tation symmetry. For the rotation eigenvalue calculation of all
occupied states on the high-symmetry points in the Brillouin
zone, one can take [K®)] = #K() — #I'(>), where # denotes

the counting about the symmetry eigenvalues at the points
K and I'. The eigenvalues of the C; rotations are defined as
e¥ =113 (forn = 1, 2, 3). The topological indices [12,13] of
the HOTI are

(0= (KPL KD 00 = Sk mode, (1)

where e is the charge of the free electron. The upper indicator
(3) represents C3 symmetry. By performing DFT calculations,
we obtain the wave functions of all occupied Bloch states be-
low the Fermi level. Afterwards, utilizing the IRREP program
[38], we calculate the symmetry eigenvalues of these wave
functions upon application of the C; rotation operator. With
them, the topological indicator x ® = (1, 2) and the nonzero
corner charge Q§3) = 2e/3 are obtained. So, we can conclude
that the in-gap corner states of the system are topologically
protected.

For this system, the magnetovalley coupling gives rise to
a giant valley polarization. This depends on the magnitude
of the magnetic moment outside the surface, and the valley
polarization disappears when a magnetic moment inside the
surface is applied. This is illustrated in Figs. S4(a)- S4(c)
of the Supplemental Material [41]. Then, to comprehensively
capture the essential physical characteristics of higher-order
topology, we develop a simplified multiorbital tight-binding
(TB) model based on the Wannier functions. To provide a
complete representation of HOTI, the TB model incorporates
the entire set of five d orbitals and six p orbitals (from Sc,
Cl, and I, respectively), with a focus on the nearest-neighbor
orbital hopping. From Wannier fitting, the system shows both
spin-orbit coupling (SOC) and valley polarization due to in-
trinsic magnetism. Thus, the Hamiltonian can be written as

H= Z (5 clyeip +He) +tocl - S+mM - S, (2)
(i,j)a, B

where CL (cjp) represents the electron creation (annihilation)
operator for the orbital o (B8) located at position i (j). #soc
denotes the strength of the SOC, and M = (M,, M,,, M) rep-
resents the magnetic moment direction with m, intensity. S is
the Pauli matrix.

Under this TB model, we have successfully identified
higher-order topological corner states in the fully relaxed
structure of ScCII. The electronic band structure of the
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FIG. 2. (a) The complete phase diagram as a function of the magnetic moment direction 6, and the energy level difference A,. (b) Energy
spectrum of triangular armchair nanosheets, and the total wave-function distribution in real space for the corner states within the band gap
of the energy spectrum. (c) The quantum dot energy spectrum of QAVHI is displayed, with blue dots marking the boundary states near the
Fermi energy. The inset shows the wave-function distribution. (d) The energy spectrum of NI, illustrating the wave-function distribution of

bulk states.

triangular quantum dot is depicted in Fig. 2(b), where the pres-
ence of the red color in the middle of the band gap represents
the corner states. The wave functions of the corner states are
localized on the corners of the quantum dots. Higher-order
topological corner states are the result after a full considera-
tion of the p, d orbitals. Conversely, if we focus solely on the
d-orbital contribution from the Sc atom, the presence of only
one occupied band below the Fermi level results in the corner
charge 0 = 0. In this way, we will not obtain in-gap corner
states that are topologically protected, as shown in Fig. S2.
Moreover, from the PDOS, it can be seen that there is a certain
coupling between the d and p orbitals. So, establishing a TB
model for multiple orbits is effective.

Next, we can achieve higher-order topological phase tran-
sitions by tuning the angle 6, of the magnetic moment and
the energy level difference A, between the d, and d,» orbitals
at the K-valley vertex. The angle 6, primarily influences the
magnitude of valley polarization, while A, induces band in-
versions, leading to a transition from a SOTI to a QAVHL
Due to the magnetovalley coupling, after the first band in-
version, the system becomes a QAVHI with Chern number
C = 1. Following the second band inversion, the system trans-
forms into a trivial insulator. Notably, at the critical point
of the topological phase transition, the system manifests a
valley-Hall semimetal phase at the K valley during the initial
inversion and at the K’ valley during the subsequent inversion.
Figure 2(a) displays the complete phase diagram, showing the
progression SOTI-VHSM-QAVHI-VHSM-NI.

For the above topological phase transition process, we
can realize it by applying tensile strain. After experiencing
the first energy band inversion in the K valley, the system

becomes QAVHI. At this time, the energy spectrum of the
triangular quantum dots undergoes a transformation, wherein
the band gap disappears and is supplanted by a continuum
of edge states, as shown in Fig. 2(c). With increasing strain,
the second energy band inversion occurs in the K’ valley.
The system behaves as a normal insulator. The corresponding
energy spectrum exhibits a band gap with no corner states or
edge states within it. Additionally, both sides of the band gap
show localized features within the body, as shown in Fig. 2(d).
At tensile strain magnitudes of 2.05% and 2.34%, the system
reaches the phase boundary, transitioning into a valley-half
semimetal, as shown in Fig. 3(a). In both strain ranges, the
Chern number of the system is 1, and Fig. 3(b) illustrates
the Wannier charge center (WCC) of the system. The surface
states and quantum anomalous Hall conductance platform of
QAVHI are shown in Figs. 3(c) and 3(d), respectively.

The giant valley polarization property, due to the intrinsic
magnetism of the system, has attracted our attention because
it will bring about a difference in the Berry curvature at the
valley of K/K'. Berry curvature is the same as adding an
equivalent magnetic field to the system, which causes the
electrons to acquire anomalous velocities [23]. We can exploit
this property to obtain tunable valley flows.

Since the Berry curvature-induced valley flow depends on
the neighborhood of the Fermi energy level and is related to
the valley degree of freedom, we can use the two-band & - p
model to characterize the physical properties of valley lock-
ing. The Hamiltonian of the two-band model can be written as

A
H = at (ko + nkyoy) + 7801 + sin 6,nm. o, 3)
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FIG. 3. (a) Projected energy band evolution in the 1.5%—3% strain range. WCC and surface band of QAVHI at 2.2% strain are shown in
(b) and (c), respectively. (d) Plot of quantum anomalous Hall conductance vs energy.

where is 7 the valley index, a is the lattice constant, and
t is the hopping integral. m, denotes the strength of the
magnetovalley coupling. oy , . is the Pauli matrix. The absence
of a spin indicator is attributed to the spin polarization in
the vicinity of the Fermi energy level. The effective mass
A, = A./2 4+ sin 6,nm,. The energy eigenvalues are

E) =ny/ (kar)* + A2, 4

where n = %1, denoting the conduction and valence bands,
respectively. According to the definition of Berry curvature,
Q(k) =V x (u(k)|iV;lu(k)), where u(k) is the periodic
part of the Bloch wave function. We can obtain the Berry
curvature associated with the valley,

a*tEA,,
n .
2[(kat)* + (A,)*16G/2

By tuning the band gap and the magnetovalley coupling
strength, we obtained the Berry curvature for the three phases
SOTI, QAVHI, and NI, respectively. They are shown in
Figs. 4(a)-4(c), respectively, matching the results of the DFT
calculations. It is worth noting that the valley polarization
is reflected by the difference in Berry curvature. One of the
distinguishable traits of the quantum anomalous valley Hall
effect (QAVHI) is the evident shift from opposite polarities
to consistent polarities in the Berry curvature of the K/K’
valleys during a phase transition.

For characterizing the nature of the valleys matching the
phase diagram, we can reveal it through the anomalous Nernst
effect of thermal excitation. The valley-dependent anomalous

Q(k) = —1) s)

Nernst conductivities are defined as
ekp d*k " on
Ny == Z/ Wsznsn (k), (6)

where S) is the entropy density, and f; denotes the Fermi
distribution function. At 300 K temperature, we can obtain the
anomalous valley Nernst conductance (ANV) and the anoma-
lous charge Nernst conductance (ANC):
ANV = N, — Ny, ANC =N, + N, @)
Figures 4(a)-4(c) show the anomalous Nernst conductiv-
ities for each of the three phases. In the context of QAVHI,
the ANC intersects the zero-energy level just once, whereas
for SOTT and NI, the ANC crosses the zero point three times.
Therefore, the ANC does not perfectly distinguish between
individual insulation phases. On the other hand, the ANVs
of the three phases differ from each other. The ANV of
QAVHI has three intersections with the Fermi energy level.
The ANVs of SOTT and NI have only one intersection with the
Fermi energy level, and they have opposite signs. Therefore,
ANV is a perfect choice to distinguish the insulating phases.
When the magnetic moment is perpendicular to the plane,
the magnetovalley coupling strength reaches its maximum. By
adjusting the gap size, a contour plot of the ANV with respect
to the energy and gap is obtained, as shown in Fig. 4(d), and
with this process accompanied by a fixed magnetic moment
direction 6, = 90°. Figure 4(e) corresponds to a fixed energy
level difference of A, = —0.05 eV, with magnetic moment
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FIG. 4. (a)—(c) present the Berry curvature, ANC, and ANV of three insulation correlations: SOTI, QAVHI, and NI, respectively,
concerning the K/K’ valley. In (d), ANV is plotted as a function of energy and gap. Meanwhile, (e) illustrates the relationship between
ANY, energy, and the direction of the magnetic moment 6,. Phase boundaries are marked by gray dashed lines.

direction adjustment, resulting in a QAVHI-SOTI-QAVHI
phase transition that perfectly matches the phase diagram.

IV. CONCLUSIONS

In summary, we employ the multiorbital tight-binding
method to analyze the high-order topological properties of
the 2D Janus ScCll. We give the complete phase diagram
of ScCII’s high-order topology, which is controlled by
the magnetic moment direction 6, and the orbital energy
level interpolation A,.. The theoretically predicted phase
transition process of SOTI-VHSM-QAVHI-VHSM-NI has
been verified and realized from the DFT calculation results
under strain engineering. Meanwhile, due to the valley
polarization characteristics of the system, the three types of

insulators, SOTI, QAVHI, and NI, have different anomalous
Nernst conductivities. By exploiting the anomalous Nernst
effect, we construct an ANV map that corresponds to the
topological phase diagram. Our findings can be extended
to other similar types of two-dimensional materials, paving
a way for future measurements and characterizations of
higher-order topological phases in a broader range of
materials.
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