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Convergent thermal conductivity in strained monolayer graphene
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The strain dependence of thermal conductivity (κ) in monolayer graphene, with reports of enhancement,
suppression, or even divergence, has been highly controversial. To address this open question, we have
systematically investigated the effects of tensile strain on the κ of graphene using the exact solution of the
Peierls-Boltzmann transport equation based on the first-principles interatomic force constants combined with
machine learning assisted molecular dynamics simulations. In contrast to previous studies, we find that the
κ in the strained graphene is convergent after considering four-phonon scattering, which is dominant for the
long-wavelength flexural phonons because of its much weaker frequency dependence (τ−1

4 ∝ ωβ with β < 2)
compared to the three-phonon scattering case (τ−1

3 ∝ ωβ with β > 2). Furthermore, κ exhibits nonmonotonic
variations with increasing strain up to 8% due to the competition between phonon lifetime, group velocity, and
heat capacity of acoustic phonons. Our results deepen the fundamental understanding of thermal transport in
strained graphene and offer insights for tuning the thermal properties of two-dimensional materials through
strain engineering.
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I. INTRODUCTION

Strain engineering is a powerful approach to manipulating
thermal properties [1–3]. Strain changes atomic structures
and bonding strength, thereby greatly affecting the lattice
vibrations and thermal properties of materials. Substantial
red shifts of the 2D and G bands have been observed in
monolayer graphene under tensile strain [4]. Remarkable en-
hancement in thermal conductivity (κ) caused by strain has
been reported in polymers [5,6], semiconductors [7,8], and
other materials [9–12]. Particularly, the stretching-induced
restructuring of polymer chains can result in orders of mag-
nitude increases in the κ of polymers, from a typical value
of around 0.1 W m−1 K−1 to a very high κ of approximately
104 W m−1 K−1, as the fiber quality approaches “ideal” single
crystals [5]. By applying a ∼9% cross-plane compressive
strain, the cross-plane κ of bulk MoS2 increases from 3.5 to
about 25 W m−1 K−1 mainly due to the substantially strength-
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ened interlayer force and the resulting modification of the
phonon dispersion along the cross-plane direction [8]. Strain
can also induce anomalous thermal behaviors, as observed in
cases like cubic boron arsenide [7], where a nonmonotonic
pressure-dependent κ is attributed to the competition between
three- and four-phonon scattering processes originating from
its unique phonon band structure.

Recent studies have demonstrated that strain can largely af-
fect the κ of monolayer graphene [13–16], a two-dimensional
material that has attracted great interest for both fundamental
research and practical applications in recent years due to its
extraordinary mechanical [17], electronic [18], and thermal
properties [19,20]. Notably, the κ of graphene, which falls in
the range of 2000–5000 W m−1 K−1, is considered the highest
among all known materials [21–23], offering great promise
for achieving efficient heat dissipation in electronics and op-
toelectronics [24].

Previous experimental works have shown that strain can
strongly suppress the κ of monolayer graphene. For instance,
under a 0.12% biaxial tensile strain, the κ of suspended mono-
layer graphene drops by approximately 20% at 350 K [25]. On
the other hand, the κ of multilayer graphene exhibits a drastic
reduction of 60%–70% from the total by applying a strain of
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approximately 0.1% [26]. On the simulation side, the impact
of strain on graphene’s κ has been the subject of significant
debate, varying according to different calculation methods.
Employing molecular dynamics (MD) simulations, Li et al.
reported that the κ of monolayer graphene decreases mono-
tonically with increasing tensile strain [27]. Using an iterative
approach to solve the Peierls-Boltzmann transport equation
(PBTE) based on the first-principles calculation, a reduction
of κ due to a 1% tensile strain was also reported in monolayer
graphene with a sample diameter of 10 μm [28], which is
mainly caused by boundary scattering of long-wavelength
phonons. In contrast, using the same approach, Fugallo et al.
showed that a 4% isotropic tensile strain increases the κ of
monolayer graphene by about 20% at room temperature [29].

Beyond these observations, a more important question
pertains to whether the κ of strained graphene converges
with system size. In 2001, Klemens [30] pointed out that
the κ of graphene diverges logarithmically with system size
using a model [31] when only considering the contribu-
tion of the transverse (TA) and longitudinal acoustic (LA)
phonons. However, Klemens’ model overlooks the role of
flexural modes (ZA), which have a crucial influence on
the phonon scattering channels and thermal conductivity
of graphene [32,33]. Nevertheless, the divergence of κ in
strained graphene has received support from several subse-
quent studies, including classical MD simulations and ab
initio PBTE calculations based on the single-mode relaxation
time approximation (RTA) and the full iterative approach
[13–16]. Confirmation of the convergence of κ in strained
graphene requires further investigation because of two ma-
jor reasons. First, the phonon population in MD simulations
follows the Maxwell-Boltzmann distribution and thus any
quantum effect is disregarded. Second, the PBTE calculations
considered only the three-phonon processes. The inclusion
of four-phonon scattering in PBTE calculations may change
the convergence behavior of κ in strained graphene. Re-
cent research has reported that the κ of unstrained graphene
was significantly reduced by four-phonon scattering [34]
because the reflection symmetry selection rule (RSSR) for-
bids three-ZA processes while allowing four-ZA scattering.
Gu et al. later confirmed the substantial drop in graphene’s
κ due to four-phonon scattering by additionally consider-
ing temperature-dependent interatomic force constants (IFCs)
[35]. Considering the pronounced impact of four-phonon scat-
tering on the κ of pristine graphene, it is anticipated that
four-phonon scattering plays a vital role in determining the
phonon scattering landscape and, consequently, the conver-
gence of κ in strained graphene.

In this work, we have revisited the κ of graphene under
tensile strain using PBTE based on first-principles calculation
and machine learning assisted molecular dynamics simula-
tions, demonstrating that the κ of the strained graphene is
convergent after further considering the four-phonon scatter-
ing in addition to the three-phonon scattering. This is mainly
because the scattering rates of long-wavelength ZA phonons
are dominated by four-phonon scattering, which exhibits a
much weaker frequency dependence of ωβ (β < 2) as com-
pared to ωβ (β > 2) for three-phonon scattering.

In addition, we predict a nonmonotonic variation of κ

of graphene in the strain range 0 � ε � 8%, which can be

attributed to the increase of the phonon lifetime and group
velocity of ZA phonons for ε � 4% and the reduction of
heat capacity and phonon lifetime of TA and LA phonons
for ε � 6% as strain increases. Our results enrich and deepen
the fundamental understanding of phononic thermal transport
in strained graphene and will shed light on heat conduction
tuning of two-dimensional (2D) materials.

II. COMPUTATIONAL METHODS

A. Thermal conductivity calculation

The lattice thermal conductivity can be calculated within
the framework of the PBTE [36,37]. The PBTE is solved
for the nonequilibrium phonon distribution function resulting
from an applied small temperature gradient, ∇T . By keeping
only the terms linear in ∇T , for a given mode λ, one can
obtain the deviation from equilibrium for its phonon distribu-
tion, i.e., nλ = n0

λ − Fλ · ∇T dn0
λ/dT , where Fλ = τ 0

λ (vλ +
�λ) [38], τ 0

λ is the phonon relaxation time obtained from
RTA, n0

λ is the Bose-Einstein distribution, vλ is the phonon
group velocity, and � is the linear functional of Fλ. � ≡ 0
corresponds to the results obtained from RTA. From this, the
thermal conductivity can be linearized and solved iteratively
using τ 0

λ obtained from RTA as a starting guess. The κ along
the transport direction can be calculated as the sum of contri-
bution over all the phonon modes λ:

καβ = 1

kBT 2	N

∑
λ

(h̄ωλ)2n0
λ

(
n0

λ + 1
)
να

λ Fβ

λ , (1)

where α and β denote Cartesian directions, kB is the Boltz-
mann constant, 	 is the volume of the unit cell, N is the total
number of q points, h̄ is the reduced Plank constant, and ωλ is
the phonon frequency. The total relaxation time τ 0

λ within the
RTA framework is computed from Matthiessen’s rule:

1/τ 0
λ = 1/τ

3ph
λ + 1/τ

4ph
λ + 1/τ iso

λ . (2)

where 1/τ
3ph
λ is the three-phonon (3ph) scattering rate, 1/τ

4ph
λ

is the four-phonon (4ph) scattering rate, and 1/τ iso
λ is the

phonon-isotope scattering rate.

B. First-principles computational details

All first-principles calculations were performed based on
density functional theory (DFT) [39], as implemented in the
Vienna ab initio simulation package (VASP) [40] with the
projected augmented wave method [41]. The local density
approximation (LDA) [42] was used for the exchange-
correlation functional. For each structure, the unit cell was
optimized using a cutoff energy of 600 eV and a k-point
mesh of 21 × 21 × 1, with a convergence criterion of 10−8 eV
and 10−6 eV Å−1 for energy and Hellmann-Feynman force,
respectively. The optimized lattice constant is 2.45 Å for
the pristine graphene, which agrees well with the previous
calculations [16,34]. The tensile strain is defined as ε =
(a − a0)/a0 × 100%, where a and a0 are the lattice constants
of the strained and unstrained graphene, respectively. Based
on the optimized crystal structures, the second-, third-, and
fourth-order IFCs were calculated based on an 8 × 8 × 1 su-
percell using the finite displacement method as implemented
in PHONOPY [43], THIRDORDER.PY [38], and FOURTHORDER.PY
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[44], respectively. Specifically, the interaction distance was
restricted to ninth- and third-nearest neighbors for calculating
the third- and fourth-order IFCs, respectively. Then we cal-
culated the three-phonon, four-phonon, and phonon-isotope
scattering rates based on the obtained IFCs. Finally, the ther-
mal conductivity was calculated using our in-house modified
version of the SHENGBTE code [38,44]. Because our study
focuses on the effect of tensile strain on the thermal conductiv-
ity of monolayer graphene, we used zero-K interatomic force
constants directly extracted from first-principles calculations
and ignored the phonon renormalization effect [45–48].

We calculated the thermal conductivity using three differ-
ent levels of approach with increasing accuracy: (I) RTA for
both 3ph and 4ph; (II) iterative scheme for 3ph while RTA for
4ph; (III) full iterative scheme for both 3ph and 4ph. For the
approach of level I, the κ was calculated using Matthiessen’s
rule by adding up all types of scattering rates. In the case of
the 3ph iteration + 4ph RTA approach, the κ was obtained
through an iterative scheme involving three-phonon scattering
only, while the phonon-isotope and four-phonon scattering
were treated at the RTA level. For the full iterative approach,
the κ was determined through an iterative scheme considering
three-phonon, four-phonon, and phonon-isotope scattering.

C. Estimation of κZA
3+4 in the long-wavelength limit

To estimate the κZA
3+4 corresponding to a larger q-point mesh

under the RTA level, we first estimated the lifetime of phonons
below 1 THz by fitting to the frequency dependence of each
scattering term, and then calculated the κZA

3+4 contributed by
modes below 1 THz, with all the other inputs obtained from
SHENGBTE. We got the κZA

3+4 by summing up the result below
1 THz and that above 1 THz calculated using a 60 × 60 ×
1 q-point mesh. As the q-point mesh increases to N = 3000,
the κZA

3+4 almost saturates within the considered strain range;
e.g., for ε = 2%, κZA

3+4 for N = 3000 is only 0.06% larger than
that for N = 2000 at 300 K. We next further evaluate the con-
tribution of κZA

3+4 by the phonons in the long-wavelength limit.
Specifically, we define the minimum frequency corresponding
to the q-point mesh density N = 3000 as the cutoff frequency
ωcut and calculated the contribution of κZA

3+4 by phonons below
ωcut by Eq. (5). The total thermal conductivity of ZA phonons
in the long-wavelength limit κZA,∞

3+4 was then obtained by
summing up the integral result below ωcut and that above ωcut

calculated using a 3000 × 3000 × 1 q-point mesh.
In this study, the thermal conductivity below a cutoff fre-

quency ωcut is calculated by

κ =
∫ ωcut

0
κωg(ω)dω, (3)

where κω is the thermal conductivity contributed by phonons
with frequency ω, g(ω) is the phonon density of the states.
Because the dispersion of the low-frequency ZA becomes
linearized due to tensile strain, the total phonon density of the
states at low frequency can be expressed as

g(ω) = Aω, (4)

where A is a constant obtained by fitting the total phonon
density of states at low frequency.

Applying Eqs. (3) and (4) to the ZA phonon branch, the κ

contributed by ZA modes below ωcut can be written as

κZA = 1

2	

∫ ωcut

0

kB(h̄ω/kBT )2 eh̄ω/kBT

(eh̄ω/kBT − 1)2 τ

×
[

1

/(
1

ν2
ZA

+ 1

ν2
TA

+ 1

ν2
LA

)]
Aωdω, (5)

where τ was calculated using Matthiessen’s rule considering
1/τ 3ph, 1/τ 4ph, and 1/τ iso, which were obtained from the
fitting frequency dependence of three-phonon, four-phonon,
and phonon-isotope scattering rates below 2 THz. νZA, νTA,
and νLA represent the sound velocity of the ZA, TA, and LA
phonons, respectively. ωcut = 0.005, 0.007, 0.008 THz was
used for ε = 2%, 4%, and 6%, respectively.

D. Molecular dynamics simulations

We determined the thermal conductivity by employ-
ing the homogeneous nonequilibrium molecular dynamics
(HNEMD) [49,50]. This method applies an external force
to each atom to perturb the system from equilibrium. The
external force, Fext

i , is expressed as a function of the per-atom
energy Ei and the virial tensor Wi:

Fext
i = EiFe + Fe · Wi. (6)

When the parameter Fe (dimensionally an inverse length)
is sufficiently small, the system remains within the linear-
response regime, whereby a nonequilibrium heat current
〈J〉ne, proportional to Fe, is generated. The proportionality
can be delineated by

〈Jμ(t )〉ne

TV
=

∑
ν

κμν (t )F ν
e , (7)

where T represents the system’s temperature, V denotes its
volume, and κμν is the thermal conductivity tensor. The heat
current J for a system described by a many-body potential is
defined as [51]

J =
∑

i

νiEi +
∑

i

∑
j �=i

ri j

(
∂Uj

∂r ji
· νi

)
, (8)

where ri j = r j − ri, ri is the position of particle i, and U
is the potential energy. Given the hexagonal symmetry of
the system, the in-plane heat transport within graphene is
rendered isotropic. Consequently, the in-plane thermal con-
ductivity tensor reduces to a scalar κ , which can be expressed
as

κ (t ) = 〈J (t )〉ne

TV Fe
. (9)

For computational efficiency, κ (t ) is recalculated as a time-
cumulative average:

κ (t ) = 1

t

∫ t

0

〈J (s)〉ne

TV Fe
ds (10)

More technical and theoretical details about the HNEMD
method can be found in Ref. [50].

Here, the HNEMD simulations were executed in two pri-
mary stages. First, the system was equilibrated for 0.4 ns
within the canonical ensemble (NVT: constant number of
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FIG. 1. Convergence of κ contributed by ZA phonons with re-
spect to the size of q-point mesh (N×N×1) for graphene with 2%
(a), 4% (b), and 6% (c) isotropic tensile strain under RTA at 300 K,
respectively. (d), (e), (f) are the same as (a), (b), (c), respectively, but
for 1000 K.

atoms, volume, and temperature) realized using the Nosé-
Hoover chain thermostat. Secondly, we performed a pro-
duction run within the NVT ensemble for 8 ns, recording
and displaying the average heat current per 1000 steps. The
time step was set as 1.0 fs. For each system, eight indepen-
dent similations were performed to get the avaraged thermal
conductivity. The HNEMD method was implemented in the
Graphics Processing Units Molecular Dynamics (GPUMD)
package [52,53], using the neuroevolution potential (NEP)
[54], which is a type of machine learning potential based on
neural networks.

III. RESULTS AND DISCUSSION

We start by looking into the contribution of thermal con-
ductivity by ZA phonons, κZA, in graphene with a tensile
strain, which has been shown to dominate the convergence
of its κ [13–16]. Figure 1 shows the κZA at 300 and 1000 K
with respect to the q-point mesh calculated using the RTA ap-
proach by considering both three- and four-phonon scattering
(κ3+4), in comparison with the case that only three-phonon
scattering is included (κ3). The maximum q-point mesh for
calculating κ3 and κ3+4 using SHENGBTE [38,44] directly is
240 × 240 × 1 and 60 × 60 × 1, respectively. The κZA

increases almost linearly with q-point mesh when only the
three-phonon process is considered, which is consistent with

FIG. 2. Three-phonon and four-phonon RTA scattering rates of
ZA phonons in graphene with varying tensile strain (2%, 4%, and
6%) at 300 and 1000 K, respectively.

the previous work [15,16]. In sharp contrast, after considering
the four-phonon process, the κ of graphene with tensile strain
is strongly suppressed and shows a convergent trend towards
a finite value as the q-point mesh increases, especially for the
results at 1000 K.

The observation is that the κ of strained graphene diverges
within the three-phonon scattering framework, which is con-
sistent with the PBTE calculations by Kuang et al. [16]. This
phenomenon has been attributed to the frequency dependence
of the phonon scattering rates (τ –1) of the long-wavelength
ZA phonons, τ−1

3 ∝ ωβ . Specifically, the mode contribution
of long-wavelength ZA phonons to thermal conductivity is
demonstrated to be proportional to Nβ–2, where N represents
the grid number of an exceptionally dense mesh. These results
revealed that the total κ is convergent only when β is smaller
than 2. Kuang et al. [16] proved that β will be greater than
2 in graphene under tensile strain when only three-phonon
scattering is considered, resulting in a divergent κ .

To understand the difference between the convergence be-
havior of κ3 and κ3+4, in Fig. 2, we plot the ZA modal scatter-
ing rates for three-phonon τ−1

3 and four-phonon τ−1
4 processes

at 300 and 1000 K calculated by RTA for graphene with strain
ε = 2%, 4%, and 6%, respectively. The scattering rates for
ε = 8% are shown in Fig. 5 in the Appendix. Similarly, we
observe β > 2 for τ−1

3 of long-wavelength ZA phonons in
graphene with different tensile strains, which agrees well with
the previous work [16]. Differently, in the case of four-phonon
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scattering rates for ZA phonons with long wavelengths, β is
consistently smaller than 2. As a result, four-phonon interac-
tion dominates the frequency dependence of long-wavelength
ZA phonons below a critical frequency. This leads to the con-
vergence of the κ of graphene under tensile strain. The critical
frequency typically falls below ∼0.4 THz within the current
strain range at 300 K, but it increases at elevated tempera-
tures. For instance, for graphene with 4% strain, the critical
frequency increases from 0.27 to 0.74 THz as the temperature
increases from 300 to 1000 K. This results from the distinct
temperature dependences of three- and four-phonon scattering
rates at the long-wavelength limit, at which the former varies
with T while the latter varies with T 2 [55].

Now we examine how tensile strain affects the fre-
quency dependencies of the phonon scattering rate for
long-wavelength ZA modes. As shown in Fig. 2, the three-
phonon scattering rate shows a more pronounced frequency
dependence as strain increases at both 300 and 1000 K. To
be more precise, the exponent β increases from 2.43 to 2.81
as the tensile strain rises from 2% to 8% at 300 K. With
increasing strain, the β value approaches 3, the analytic long-
wavelength limit of the frequency dependence of dominant
three-phonon processes involving ZA modes [ZA + ZA →
TA (LA)] [13]. Despite the notable change in phonon scatter-
ing rates, the aaa processes involving three acoustic phonons
remain the dominant three-phonon channel for ZA modes in
graphene after tensile strains are applied, as shown in Fig. 6
in the Appendix. In contrast, the frequency dependence of
the τ−1

4 mostly decreases with increasing strain. Taking the
results at 300 K as an example, the frequency dependence
of the τ−1

4 follows ω1.54 in unstrained graphene and substan-
tially decreases from ω1.18 to ω0.58 as the strain increases
from 2% to 6%, then slightly increases to ω0.61 as the strain
increases to 8%. Similarly, the four-phonon scattering rates
of ZA modes at low frequencies are dominated by the aaaa
processes involving four acoustic phonons in both unstrained
and strained graphene, as shown in Fig. 7 in the Appendix.
Specifically, the frequency dependence of τ−1

4 contributed by
the aaaa processes is much weaker than that of other scat-
tering channels for ZA modes at low frequencies in strained
graphene. Taking ε = 6% as an example, the τ−1

4 of the aaaa
processes follows ω0.49, which is much weaker than that of
other channels ωβ (β � 0.99) at 1000 K [Fig. 7(b)].

The notable variation of the phonon scattering rates mainly
arises from the hardening of the ZA branch (Fig. 8 in the
Appendix) and the modification of anharmonic IFCs induced
by the tensile strain. On one hand, because the hardening
of the ZA branch due to tensile strain becomes weaker as
frequency increases, the reduction of the phonon population
becomes less at higher frequencies. Therefore, the phonon
scattering rates of low-frequency modes are more strongly
suppressed as compared to high-frequency modes, leading to
enhanced frequency dependence of phonon scattering rates
for both three-phonon and four-phonon processes. On the
other hand, increasing strain changes the magnitude of the
anharmonic IFCs and thus modifies scattering rates, which
can implicitly affect the frequency of phonon scattering rates.
In general, the magnitude of the third-order IFCs decreases
with increasing strain and results in an overall reduction of
τ−1

3 for all phonon modes, which is expected to have little

effect on its frequency dependence. Therefore, the hardening
of the ZA phonon branch mainly accounts for the enhanced
frequency dependence of τ−1

3 at low frequency. The opposite
trend observed for τ−1

4 indicates that the modification of the
fourth-order IFCs dominates over the hardening of the ZA
phonon branch in determining its frequency dependence.

Due to the limitation of current computing capability, it is
prohibitive to conduct the 3ph+4ph calculation directly using
a q-point mesh much larger than 60 × 60 × 1. Therefore,
we estimated the converged value of κZA

3+4 under the RTA
level by approximating the contribution of ZA phonons in the
long-wavelength limit using inputs obtained from SHENGBTE

[38,44] (see Sec. IIC for calculation details). The conver-
gent κZA,∞

3+4 at 300 K is estimated to be 555, 821, and
1217 W m−1 K−1 for ε = 2%, 4%, and 6%, respectively. Be-
cause of the important contribution of long-wavelength ZA
phonons, experimentally determining the converged value of
κZA

3+4 requires large-size samples. For example, the largest
mean free path corresponding to 99% of κZA,∞

3+4 at 300 K is
∼16, 0.43, and 0.52 mm for ε = 2%, 4%, and 6%, respec-
tively, indicating a sample size of millimeter scale. At 1000
K, the corresponding mean free path decreases to ∼500, 50,
and 46 μm, respectively.

Taking the graphene with 6% strain as an example, we
further compare the convergence of κ3+4 calculated using
the iterative approach and RTA. Specifically, we used three
approaches with different accuracy, i.e., RTA, 3ph iteration
+ 4ph RTA, and the full iterative treatment. We verified our
full iterative calculation using unstrained graphene, observing
that its κ3+4 exhibits a convergence behavior with respect to
the q-point mesh size (see Fig. 9 in the Appendix) similar to
that reported by Han and Ruan [56]. As shown in Fig. 3(a),
the magnitude of the κ3+4 calculated by the iterative approach
is much larger than that by RTA. This discrepancy between
the iterative and RTA approach is due to the strong normal
processes in graphene [32,34]. We note the magnitude of the
κ obtained from the 3ph iteration + 4ph RTA approach is
almost 99% of that of the full iterative approach for graphene
with 6% tensile strain. Compared to the full iterative method,
the underestimation of κ3+4 obtained from the 3ph iteration
+ 4ph RTA approach decreases with increasing strain. For
instance, the underestimation decreases from almost 22% to
1% as strain increases from 0 to 8% at 1000 K, which can be
attributed to the enhanced four-phonon umklapp scattering of
the low-frequency modes as the strain increases, as shown in
Fig. 10 in the Appendix. Overall, the underestimation is less
than 10% for ε � 1%, indicating the four-phonon iteration has
negligible influence on the thermal conductivity prediction.
The κ obtained from the iterative approach converges rela-
tively faster than that from RTA, as shown in Fig. 3(b).

To further verify the convergence of κ , we calculated
the κ of corresponding systems using molecular dynamics
(MD) simulations combined with high-quality machine learn-
ing potential [50,52,54]. The obtained thermal conductivity in
the strained graphene is well converged (see Fig. 11 in the
Appendix).

After confirming the convergence of the κ of the graphene
with tensile strain, we next evaluate how κ varies with strain.
Figure 3(c) shows the κ3+4 of graphene at 1000 K as a function
of strain calculated using a 60 × 60 × 1 q-point mesh under
the full iterative approach and that by MD simulations based
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FIG. 3. Convergence of κ of graphene as a function of q-point
mesh for 6% isotropic tensile strain under full iterative approach at
1000 K (a), in comparison to that under RTA and 3ph iteration +
4ph RTA. (b) The same as (a), but for the κ normalized by that at N
= 80. (c) The total κ and contribution from different acoustic phonon
branches as a function of tensile strain under full iterative approach
at 1000 K, along with the MD simulation results with a standard
deviation. (d) The relative contribution of κ by ZA phonons under
full iterative approach at 1000 K.

on machine learning potential. Overall, both methods predict
a nonmonotonic strain dependence of κ in the strain range
0 � ε � 8%. Specifically, as the strain increases, the κ3+4
increases for ε � 0.04 and decreases for ε � 6%, while the κ

for ε = 5% is slightly lower compared to that corresponding
to ε = 4% and 6%.

To understand the strain dependence of κ3+4, we also plot
the κ3+4 contributed by each acoustic phonon branch. As is
shown in Fig. 3(c), ZA phonons dominate the increase of
κ3+4 for ε < 4%, while the TA and LA phonons dominate the
reduction of κ3+4 for ε > 6%. We note the κZA

3+4 increases from
81 to 266 W m−1 K−1 as strain increases from 0 to 8%, which
is due to the reduced ZA scattering rates with the increasing
strain.

Also, the relative contribution of κ3+4 by ZA phonons in-
creases with increasing strain in general, as shown in Fig. 3(d).
For example, the relative contribution of κ3+4 by ZA phonons
at 1000 K increases from 44% to 62% as the strain increases
from 0 to 8%. This is because κZA

3+4 increases faster than κTA
3+4

and κLA
3+4 as strain increases from 0 to 2%, and κZA

3+4 continues
to increase while κTA

3+4 and κLA
3+4 remain almost unchanged as

strain increases from 2% to 8%.
To further understand the nonmonotonic behavior of the

κ3+4 for 0 � ε � 8%, in Fig. 4, we plot the group velocity,
heat capacity, and the phonon lifetime at 1000 K, which essen-
tially determine the behavior of thermal conductivity. When a
strain is applied, the group velocity and heat capacity change
due to the shift of phonon branches while the phonon lifetime
is affected by the variation of both harmonic and anharmonic
IFCs. As the strain increases from 0 to 4%, although the
heat capacity decreases, the lifetime and group velocity of

FIG. 4. Strain-dependent group velocity (a), heat capacity (b),
phonon lifetime of ZA (c), and that of TA (d) and LA (e) phonons
as a function of frequency.

the ZA phonon increases, resulting in an increase of the κ3+4.
Compared to the κ3+4 for ε = 4% and 6%, the slight reduction
of κ3+4 for ε = 5% is due to the lower phonon lifetime of the
TA and LA phonons, as is shown in Figs. 4(d) and 4(e). As
the strain increases from 6% to 8%, the group velocities of
the acoustic phonons change little while the heat capacity and
phonon lifetime of TA and LA phonons decrease a lot, leading
to the reduction of κ3+4.

Overall, as strain increases, the group velocities of ZA
phonons increase, while those of TA and LA phonons de-
crease, as is shown in Fig. 4(a). This is because the ZA
branch becomes hardened, while TA and LA branches become
softened with increasing strain, as shown in Fig. 8 in the Ap-
pendix. The heat capacities of ZA modes decrease due to the
hardened phonon dispersion and the increased unit cell vol-
ume for strained systems with increasing strain. In contrast,
the phonon population of TA and LA modes slightly decreases
due to the softened phonon dispersion, indicating the decrease
of the heat capacities of TA and LA modes is dominated
by the increase of the unit cell volume for strained systems.
As shown in Fig. 4(c), the phonon lifetime of ZA modes
increases with increasing strain, which can be attributed to
the weakened scattering strength caused by the strain-induced
linearization of the ZA branch.

As presented above, the divergence of the κ of 2D materials
depends on the magnitude of β. Because of tensile strain, the
magnitude of β for three-phonon scattering becomes larger
than 2 and thus makes a divergent κ in graphene. After taking
into account the four-phonon scattering, κ in the strained
graphene becomes convergent because the value of β in τ−1

4
is smaller than 2. Similarly, the divergent κ within a three-
phonon framework was also observed in strained silicene [57],
germanene, stanine [58], and h-BN [15], indicating β is larger
than 2 in these 2D materials. One may expect four-phonon
scattering to have a similar influence on the magnitude of β

and result in convergent κ in other 2D materials with tensile
strain. It should be pointed out that the divergence of κ can be
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determined by different acoustic branches. For example, the
divergent κ of silicene was due to LA phonons as compared
to ZA phonons in graphene [59]. Therefore, how four-phonon
scattering affects the thermal conductivity of strained 2D ma-
terials is a fascinating and complex issue, which needs to be
further explored.

IV. CONCLUSIONS

In summary, we have investigated the thermal conductiv-
ity of monolayer graphene with varying tensile strains up to
8% by solving the exact solution of the linearized PBTE in
combination with machine learning assisted molecular dy-
namics simulations. Our first-principles results illustrate that
a convergent thermal conductivity in strained graphene can be
obtained, provided that four-phonon interactions are incorpo-
rated into the calculations. This stems from the dominance of
the four-phonon scattering rate of ZA modes in the thermal
transport of strained graphene, coupled with its significantly
weaker frequency dependency (τ−1

4 ∝ ωβ with β < 2) com-
pared to the three-phonon scattering case (τ−1

3 ∝ ωβ with β >

2). Furthermore, we observe a nonmonotonic trend in thermal
conductivity with varying tensile strains. Within the range of
0–4%, strain leads to an enhancement of thermal conductivity
owing to the increased phonon lifetime and group velocity of
the dominant long-wavelength ZA modes. As strain continues
to increase, in contrast, the thermal conductivity decreases,
which can be attributed to the reduction of heat capacity and
phonon lifetime for the in-plane acoustic modes.
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APPENDIX

See Figs. 5–11.

FIG. 5. Three-phonon and four-phonon RTA scattering rates of
ZA phonons in graphene with a tensile strain ε = 8% at (a) 300 and
(b) 1000 K, respectively.

FIG. 6. Three-phonon scattering rates of ZA modes contributed
by different scattering channels at 1000 K in graphene with ε = 0 (a)
and ε = 6% (b), respectively.

FIG. 7. Four-phonon scattering rates of ZA modes contributed
by different scattering channels at 1000 K in graphene with ε = 0 (a)
and ε = 6% (b), respectively.

FIG. 8. The calculated acoustic phonon dispersion around �

point in the direction from � to M for graphene with varying tensile
strains.

Figure 8 shows the strain-dependent phonon dispersion for
the acoustic modes around the � point in the direction from �

to M. The ZA phonons become progressively hardened while
the TA and LA phonons become softened with increasing
tensile strain. The change of the phonon frequency depends
on the mode-specific Grüneisen parameter, which is defined
as γλ = −(�ωλ/�V )/(ωλ/V ), where V is the crystal volume
[35].
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FIG. 9. Convergence of κ of unstrained graphene as a function
of q-point mesh under full iterative approach at 300 K.

FIG. 10. The four-phonon scattering rates contributed by the nor-
mal and umklapp processes normalized by the total four-phonon
scattering rates. Unstrained graphene and four tensile strains (2%,
4%, 6%, and 8%) are considered here. FIG. 11. Running thermal conductivity as a function of time

in the nonequilibrium production stage of the HNEMD simulation
for graphene with a tensile strain of 2%, 4%, and 6% at 1000 K,
respectively. The thermal conductivity is well converged.
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