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Nanocrystalline surface energy studied within the Gibbs thermodynamic framework

Mahach N. Magomedov *

Institute for Geothermal Problems and Renewable Energy–Branch of Joint Institute for High Temperatures of Russian Academy Sciences,
39-a Shamil str., Makhachkala, Republic of Dagestan 367030, Russia

(Received 6 June 2023; revised 8 September 2023; accepted 15 December 2023; published 5 January 2024)

In the equilibrium thermodynamics framework, expressions were obtained that determine the dependences of
the specific surface energy σ and surface pressure PS f on the size (N) and shape of a freestanding nanocrystal
at different pressure P and temperature T. Based on these expressions, the behavior of the σ (P, T, N ) and
PS f (P, T, N ) functions for fcc Au have been studied. The calculations performed for the macrocrystal showed
good agreement with the experimental data. Calculations for a nanocrystal have shown that at P = 0, the
PS f (N ) function lies in the negative region, i.e., the nanocrystal is stretched by surface pressure the more the
higher of temperature, or the more the nanocrystal shape is deviated from an energy-optimal shape. With a
decrease in N at P = 0, the function σ (N ) decreases more noticeably the higher of temperature, or the more
the nanocrystal shape deviates from an energy-optimal shape. Based on these results, it was shown that the
increase in the σ (N ) function obtained in some articles with an isomorphic-isothermal decrease in N does not
correspond to the physical properties of nanoparticles. In these articles, the nanoparticle was compressed by
surface pressure, which increased with an isomorphic-isothermal decrease of the N value. This compression led
to the corresponding growth of the σ (N ) function both with an isomorphic-isothermal decrease in size and with
an isomeric (i.e., at N = const) increase in the nanoparticle temperature.
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I. INTRODUCTION

The value of the specific (per unit area) surface energy (σ )
of a macrocrystal is one of the most important parameters
determining its strength and adhesive properties. Therefore,
much attention is paid to determining the σ value. However,
the experimental determination of the σ value for the solid
phase is a very labor-consuming procedure, implemented only
at high temperatures [1,2]. At the same time, the accuracy of
measuring the σ value even at high temperatures is very ap-
proximate. Therefore, much attention is paid to the theoretical
prediction of the σ value for macrocrystals.

In recent years, in connection with the study of various
nanocrystal properties, a large number of works have been
devoted to the theoretical study of the size dependence of
the σ value. The relevance of this problem is due to the fact
that it is the dependence of the σ function on the nanocrystal
size (or on the N—number of its atoms) that determines the
size dependences of all the lattice properties of the nanocrys-
tal. Unfortunately, due to the complexity of experimental
measurement of the nanoparticle surface properties, there is
currently no experimental dependence of the σ function on
the nanocrystal size in the literature. In view of this, despite
the abundance of works devoted to methods of calculating the
σ (N ) function, there is still no clear and unambiguous answer
to the question: does the σ (N ) function decrease or increase
with an isomorphic (i.e., with an unchanged shape) decrease
in the nanocrystal atom number (N) at constant pressure P
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and temperature T? In the modern literature (see reviews in
Refs. [3–7]), there are theoretical articles that prove both the
decrease (these are mainly analytical works) and the increase
(this was obtained using computer simulation) of the σ func-
tion with an isomorphic decrease in the nanoparticle size.

For example, in the article [5], a spherical core-shell model
with radius (R) was studied by the method “a combination
of atomic modeling and continuum mechanics.” Calculations
carried out in Ref. [5] for a gold nanocrystal at T = 0 K
showed that the σ (R) function increases with an isomorphic
decrease in the radius of the nanocrystal.

Another example can be given. In the article [6], Amara
and co-authors investigated the change in the σ function with
an isomorphic change in the size and temperature of metal
nanoparticles, both in the solid and the liquid state. They
used the N-body interatomic potentials and the Monte Carlo
method, and performed analytical calculations too. A solid
nanocrystal was studied at a temperature of T = 5 K, and a
liquid nanodrop at T = 1500 K. The authors [6] obtained that
for a freestanding nanoparticle the σ function increases with a
decrease in the nanoparticle size in both solid (σs) and liquid
(σl ) phases.

The works that obtained an increase in the σ function
with isomorphic-isothermal reduction of the nanoparticle size
exploit the fact that there is no experimental dependence of the
σ function on the nanoparticle size in the literature. However,
although there is no experimental dependence of σ (N ) in the
literature, the function σ (N ) has a certain physical meaning,
and it is related to other properties of the nanoparticle that
can be measured, such as the melting point. Therefore, the
results of the works that prove the increase of the σ function
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with an isomorphic-isothermal decrease in the nanoparticle
size, do not correspond to the physical properties of real metal
nanoparticles for the following reasons.

(1) Since Tolman’s time, it has been accepted that with a
decrease in the size of the nanodrop, the σl function decreases
[8]. According to Tolman, for a single-component liquid, the
dependence of the σl function on the radius (r) of a spherical
nanodrop can be represented as follows [8,9]:

σl (r) = σl (∞)

1 + 2 δ
r

∼= σl (∞)

(
1 − 2

δ

r

)
.

Here σl (∞) is the surface energy of the macrodrop
and δ = re–r is the difference between the equimolar ra-
dius and the nanodrop radius; δ is also called Tolman
length.

Various expressions have been proposed to calculate the δ

value. For example, the following relations were obtained for
relatively large droplets:

δ = da [10], 0.725da [11], ro/3 [12], 0.376ro [13],

where da is the atomic diameter and ro is the coordinate of
the minimum of the Mie–Lenard-Jones interatomic potential
with powers of 6–12. In addition, in Ref. [9] it was obtained
that δ = αm/4, where αm is the parameter determining the size
dependence of the melting temperature (Tm) for a spherical
nanocrystal at atmospheric pressure (P = 1 atm):

Tm(r) = Tm(∞)
(

1 − αm

2r

)
= Tm(∞)

(
1 − 2δ

r

)
.

In Ref. [9], the δ values were calculated for 49 solid
metals. The δ values for liquid inert gases were calculated
in Ref. [13]. All these results show that δ > 0. This contra-
dicts the dependencies obtained in the works, in which the σ

function increases with isomorphic-isothermal decrease of the
nanoparticle size.

(2) In [6, Fig. 2(a)] it was obtained that when the ra-
dius of the fcc-Cu crystal decreases from macroscopic (r =
∞) to r = 5 Å, the σs value increases almost twofold: from
1.1–1.2 to 1.9–2 J/m2. For the fcc-Cu macrocrystal, the
experimental specific surface energy value is equal to
σs(∞) = 2 ± 0.1 J/m2 [14]. However, if we adopt the result
from [6, Fig. 2(a)] [i.e., σs(r = 5 Å)/σs(r = ∞) = 2/1.2 =
1.67 ], then the copper nanoparticle with a radius of 5 Å will
have a specific surface energy equal to σs(r = ∞) = 1.67 ×
(2 ± 0.1 J/m2) = 3.34 ± 0.167 J/m2. According to Ref. [14],
the experimental values for the Mo and W macrocrystals are
equal to σs(∞) = 2.91 − 3.00 J/m2 (for Mo) and 3.265 −
3.68 J/m2 (for W). Thus, according to the results from
Ref. [6], for the fcc-Cu nanocrystal with radius r = 5 Å, the
σ value should reach values corresponding to the specific
surface energies of the macrocrystals Mo or W.

(3) When studying the Cu nanodrop in [6, Fig. 2(a)],
an increase in the σl function from σl (r = ∞) = 1.2 J/m2

to σl (r = 5 Å) = 2.3 J/m2 was obtained. This result is sur-
prising too, because according to the experimental data for
macrosystems, the following relationship is observed between
the surface energies of the solid and liquid phases: σs/σl =
1.09 − 1.33 [1,15]. Herewith, as was shown in Ref. [16],
when the atom number in the nanosystem decreases, the σs/σl

function decreases to 1. Therefore, if the σl function increases
to the macrocrystal value as the nanodrop size decreases,
then this nanodrop would have to crystallize. Moreover, in
[6, Figs. 2(b) and 7(a)] the value of σl (T = 1500 K) turned
out to be greater than σs(T = 5 K) for both the macro- and
the nanosystem. This result clearly contradicts the physics of
nanoparticles.

(4) As for the experimental study of the size dependence
of the specific surface energy, such experiments were carried
out for the liquid phase in Refs. [17,18]. In these experiments,
it was found that the σl (r) function decreases with a decrease
in the nanodrop size. It is also possible to point to the results
from Ref. [19], where a system of submillimeter grains that
acoustically levitate in the air was studied. These levitating
grains self-assemble into a monolayer of particles, forming
mesoscopic granular rafts whose behavior is similar to a drop
of liquid. In Ref. [19] it was found that the effective surface
tension and elastic modulus of the raft decrease with a de-
crease in the size of the raft.

All these inconsistencies caused us to doubt the cor-
rectness of surface energy calculation methods, which were
used in theoretical works, where an increase of the σ

function was obtained with an isomorphic-isothermal de-
crease of the nanoparticle size. In accordance with this, the
question arises—why, when using computer simulation (in
Refs. [5,6] and in other works), an increase in the σ value
has been obtained with an isomorphic-isothermal decrease in
the nanoparticle size? How does one obtain the correct size
dependence of the function σ (N )? How will this size depen-
dence σ (N ) change at different temperatures and pressures
in a nanocrystal? In this paper, we will try to answer these
questions within the framework of equilibrium and reversible
thermodynamics, using the analytical method developed by us
for calculating the σ (T, P, N ) function.

II. CALCULATING METHOD

Consider a condensed nanosystem of N identical atoms,
which is bounded by a surface. To apply the methods of
equilibrium and reversible thermodynamics to such a system,
we must postulate that the system surface is a geometric
Gibbs surface that has no thickness. If we assume that the
surface layer has a thickness (δ), then this will introduce
uncertainty into the calculation of the system volume, and
questions will arise both about the surface layer thickness
and about the change in the thermodynamic properties of
the substance inside this layer. To get around these prob-
lems, Gibbs introduced a “dividing surface” instead of a
real interphase boundary [20, Ch. 15; 21, Ch. 19], to which
all surface characteristics belong. With this, the following
equilibrium conditions must be observed at each point (x)
of such a nanosystem: thermal [T (x) = const], mechanical
[P(x) = const], and chemical [μg(x) = const] equilibrium
conditions.

The change in the Helmholtz free energy (FH ) of such
a system with variations in temperature, volume (V), atoms
number, and surface area (�) in the framework of equilib-
rium and reversible thermodynamics is usually represented as
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follows [20, Ch. 2; 21, Ch. 6]:

dFH =
(

∂FH

∂T

)
N,V,�

dT +
(

∂FH

∂V

)
N,T,�

dV

+
(

∂FH

∂N

)
T,V,�

dN +
(

∂FH

∂�

)
N,V,T

d�

= − SdT − PdV + μgdN + σd�, (1)

where S is the entropy and μg is the chemical potential.
From Eq. (1) it is easy to see that the specific surface energy

is

σ (T, v, N ) =
(

∂FH

∂�

)
T,v=V/N,N

=
(

∂ fH

∂ (�/N )

)
T,v,N

. (2)

Herewith, the change in the specific surface �/N must
occur in a reversible way, i.e., without irreversible destruction
of the system, i.e., without violating the axioms of equilibrium
and reversible thermodynamics.

However, at N = const, it is impossible to isomorphically
change the surface area without changing the volume, because
at a constant of the nanocrystal shape, these values are related
by the ratio

∑ ∼ V 2/3. Therefore, as was stated in [22,23], at
�/N�0, the σ function can be determined only by isochoric-
isothermal reversible deformation of the nanosystem shape,
i.e., by means of the expression

σ (T, v, N, f ) =
(

∂ fH

∂ (�/N )

)
T,N,v

=
(

∂ fH

∂ f

)
T,N,v

/(
∂ (�/N )

∂ f

)
T,N,v

, (3)

where v = V/N , f is a parameter that determines the shape
of a system with a finite value of the number of atoms N, and
which is bounded by a surface area �.

It can be seen from Eq. (1) that the pressure in the nanosys-
tem should be calculated by the expression

P(T, v, N ) = −
(

∂ fH

∂v

)
T,N,�

. (4)

However, at constant values of T, N, and �, it is impos-
sible to change the specific volume of the nanosystem. To
get around this problem, it is necessary to assume that the
system surface is a geometric Gibbs surface, and to represent
the specific free energy as the sum of the volume and surface
contributions as follows [20, Ch. 15]:

fH (T, v, N, f ) = fH in(T, v) + σ (T, c, N, f )
�

N
. (5)

Here the specific Helmholtz free energy for the nanosystem
volume is

fH in(T, v) = lim
N→∞

[
FH (T, v, N, f )

N

]
v=const

, (6)

where c = (6kpv/π )1/3 is the average (over the nanosystem
volume) distance between the centers of the nearest atoms and
kp is the packing coefficient of the structure from N atoms.

Then from Eq. (5) for the pressure in the nanosystem we
obtain the expression

P(T, v, N, f ) = −
(

∂ fH

∂v

)
T,N

= Pin(T, v) − PS f (T, c, N, f ).

(7)
Here, Pin is the “volume” pressure, i.e., the pressure deter-

mined without taking into account the surface term in Eqs. (1)
and (5) as follows:

Pin(T, v) = − lim
N→∞

[
∂ fH in

∂v

]
T,N

. (8)

The PS f function is the surface pressure, which is equal to
[23,24]

PS f (T, c, N, f ) =
[
∂ (σ�/N )

∂v

]
T,N

= PLs(1 − �p). (9)

The first factor in Eq. (9) is the Laplace pressure, which is
determined by the change in surface area with the change in
the nanosystem volume as follows:

PLs(T, v, N, f ) = σ

[
∂ (�/N )

∂v

]
T,N

= σ

(
�/N

v

)[
∂ ln(�/N )

∂ ln(v)

]
T,N

. (10)

The expression for the �p function from Eq. (9) has the
form

�p = −
[

∂ ln(σ )

∂ ln(�/N )

]
T,N

= −
[

∂ ln(σ )

∂ ln(�)

]
T,N

. (11)

For the liquid phase, the following is performed:
(∂σ/∂�)T, N = 0. This is due to the dynamic nature of the
liquid state, where a large proportion of atoms are in a delo-
calized state. Isothermal stretching of the liquid phase surface
area causes an influx of new atoms from the volume to its
surface. If the influx of atoms to the surface occurs at a
rate sufficient for the surface density of atoms to remain un-
changed, then the σ value for the liquid phase will not change
with the growth in �, and therefore the �p value will be zero.
That is why the condition �p = 0, as was shown in Ref. [25],
can be used as a “surface melting” criterion for a system with
a geometric Gibbs surface. However, for the solid phase it is
impossible to assume that �p = 0. Nagaev first pointed this
out [26].

If the crystal structure (characterized by the packing coef-
ficient kp) and the surface shape (characterized by the shape
parameter f ) do not change with an isothermal change in the
specific volume, then the functions PLs and �p from (10) and
(11) will take the forms

PLs = σ

(
�/N

v

)[
∂ ln(�/N )

∂ ln(v)

]
T,N,kp, f

= 2

3
σ

(
�/N

v

)
, (12)

�p = −
[

∂ ln(σ )

∂ ln(�)

]
T,N

= −1

2

[
∂ ln(σ )

∂ ln(c)

]
T,N,kp, f

. (13)

Thus, for further calculations, it is necessary, using Eq. (3),
to determine the σ (T, c, N, f ) function. To do this, it is neces-
sary to adopt a certain geometric model of a nanocrystal with
a variable surface shape.

035405-3



MAHACH N. MAGOMEDOV PHYSICAL REVIEW B 109, 035405 (2024)

As in Refs. [22–25], we assume that a nanocrystal with
a free Gibbs surface has the shape of a rectangular paral-
lelepiped with a square base and faces of the (100) type.
Limiting the system by the surface leads to the bonds breaking
at the boundary. Therefore, if the “only nearest neighbors
interaction” approximation is used, then instead of the first
coordination number (kn), it is necessary to take the 〈kn〉 func-
tion, which is the average (over the entire nanosystem) value
of the first coordination number. The 〈kn〉 function depends on
both the size (N) and the nanosystem shape ( f ) according to
the formula [22–24]

k∗
n = 〈kn(N, f )〉

kn(∞)
= 1 − Zs( f )

(
α2

N

)1/3

,

Zs( f ) = 1 + 2 f

3 f 2/3
. (14)

Here, kn(∞) = kn(N = ∞) is the coordination number for
the macrocrystal, α = π/(6kp) is the structure parameter, and
f = Nps/Npo is the shape parameter, which is defined by the
ratio of the number Nps of atoms on the side edge to the
number Npo of atoms on the base edge. It is obvious that
f > 1 for a rodlike shape, f = 1 for a cube, and f < 1 for a
platelike shape. With this, we assume that the structure of the
nanosystem remains unchanged: kp = const. This model of a
nanocrystal in the form of a rectangular parallelepiped, whose
shape can be varied by the shape parameter f , was called the
RP model.

The shape function Zs( f ) included in Eq. (14) reaches a
minimum equal to unity at f = 1, i.e., for a system that has the
cube shape. For platelike ( f < 1) or rodlike ( f > 1) shapes,
the Zs( f ) value is larger than unity: Zs( f �= 1) > 1. Therefore,
the kn( f )∗ function for any N value has a maximum at f = 1,
i.e., for the energy-optimal cubic shape of a rectangular paral-
lelepiped.

The surface volume and area for the RP model are [22–24]

V = N3
po f c3 = Nαc3,

� = 6c2(Nα2)
2/3

Zs( f ).

It is easy to see that the nanocrystal volume does not
depend on the system shape, i.e., on the f value.

Let us represent the paired interatomic interaction in the
form of the Mie–Lennard-Jones potential, which has the fol-
lowing expression [21]:

ϕ(r) = D

(b − a)

[
a
( ro

r

)b
− b

( ro

r

)a
]
, (15)

where D and ro are the depth and potential minimum coor-
dinate and b and a are the numerical parameters such that
b > a > 1.

Using the only nearest neighbors interaction approxi-
mation, in the framework of the RP model, the expres-
sions for the specific surface energy of the nanocrystal
face (100) and for the surface pressure were obtained as
follows [27]:

σ (N, f ) = −kn(∞)DR2

12α2/3r2
o

LE (N, f ), (16)

PS f = 4α1/3Zs( f )

N1/3c
σ (1 − �p). (17)

Here, R = ro/c is the relative linear density of the crystal;
the Laplace pressure and the introduced functions have the
following forms [27]:

PLs = 4α1/3Zs( f )

N1/3c
σ = 4

(1 − k∗
n )

α1/3c
σ, (18)

LE (N, f ) =U (R) + 3Hw(N, T ),

�p = − 1

2

[
∂ ln(σ )

∂ ln(c)

]
T,N,kp, f

= 1 + 1

2LE (N, f )

×
{

U ′(R) − 9

[
q − γ ty

(
�E

T

)]
Hw(N, T )

}
,

(19)

Hw(N, T ) = 6 γ (N, f )

(b + 2)

[
kB�E (N, f )

D kn(N, f )

]
Ew

(
�E

T

)
,

U (R) = aRb − bRa

b − a
,

U ′(R) = R

[
∂U (R)

∂R

]
= ab(Rb − Ra)

b − a
,

Ew(y) = 0.5 + 1

[exp(y) − 1]
,

ty(y) = 1 − 2y exp(y)

[exp(2y) − 1]
. (20)

Here, kB is the Boltzmann constant. Expressions
for the Einstein temperature (�E ), and the first
[γ = –(∂ ln �E/∂ ln v)T ] and second [q = (∂ ln γ /∂ ln v)T ]
Grüneisen parameters have been presented in Ref. [27].

It is obvious that in the “thermodynamic limit” (i.e., when
N → ∞ and V → ∞ at v = V/N = const), the functions PLs

from Eq. (18) and PS f from Eq. (17) disappear, for in this case
k∗

n (N → ∞) → 1, and the expressions from (16), (19), and
(20) are converted to formulas for the macrocrystal.

The use of this RP model made it possible to study
the dependence of the specific surface energy on both the
size and the nanocrystal shape at various P-T conditions in
Refs. [27–32]. Details of the method application and its results
can be found in these articles.

III. CALCULATION RESULTS

To calculate the dependence of the surface energy
on the nanocrystal size, we choose gold [Au; m(Au) =
196.967 amu]. Gold has a fcc structure [kn = 12,

kp = 0.7405, α = π/(6kp) = 0.707 09] and does not
experience polymorphic phase transitions up to 220 GPa [33].

For fcc Au, the parameters of the paired interatomic po-
tential (15) were determined by our self-consistent method in
Ref. [31], and they have the following values:

ro = 2.87 × 10–10 m,
D

kB
= 7446.04 K,

b = 15.75, a = 2.79. (21)

There are statements in the literature that the pair-
wise four-parametric Mie–Lennard-Jones potential (15) in
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FIG. 1. (a) Isomorphic-isomeric dependences of pressure on normalized volume for fcc Au. Solid lines were obtained for a macrocrystal,
and dashed lines were obtained for a nanocrystal. Isotherms are shown (bottom to top): T = 100, 300, 1337 K. (b) Isomorphic-isomeric
baric dependences of Laplace pressure (PLs ) and surface pressure (PS f ) for a nanocrystal of 306 atoms. Isotherms are shown (top to bottom):
T = 100, 300, 1337 K.

a methodological sense is inferior to, e.g., potentials based
on the tight-binding approximation, which have a quantum-
mechanical foundation. However, as we have shown in
Refs. [27,34,35], the potential (15) with parameters from (21)
allows us to obtain good agreement with experimental data
for all thermodynamic properties and baric dependence of the
melting temperature of the fcc-Au macrocrystal. Therefore, in
this paper, we have studied the change in the state equation
and surface energy during the transition from macrocrystal to
nanocrystal based on the potential parameters (21).

A cubic nanocrystal of N = f N3
po/α = 306 atoms (i.e.,

with Npo = 6, f = 1, k∗
n = 0.8822) with a free geometric

Gibbs surface was taken for the calculations. Figure 1(a)
shows isomorphic-isomeric (i.e., at constants of f and N)
pressure dependences (P, in GPa) on the normalized vol-
ume [v/vo = (c/ro)3 = R−3] for the macro- and nanocrystal
of fcc Au. Solid lines were obtained for a macrocrystal
(i.e., at N = ∞) and dashed lines were obtained for a cu-
bic nanocrystal of N = 06 atoms. A decrease in pressure
growth during the transition from macro- to nanocrystal in-
dicates a decrease in the elastic modulus: BT = –v(∂P/∂v)T ,
with a decrease in the nanocrystal size. Other authors also
obtained a decrease in the BT function with a decrease
in the nanocrystal size theoretically and experimentally in
Refs. [36–40].

It can be seen from Fig. 1 that at a certain value of
relative volume (v/vo)0, the P(v/vo) dependences for a
nanocrystal and a macrocrystal intersect. Thus, at (v/vo)0,
the surface pressure [PS f (v) = P(v)Macro–P(v)Nano] becomes
zero: PS f (v/vo)0 = 0. At v/vo < (v/vo)0, the surface pres-
sure compresses the nanocrystal (PS f > 0), and at v/vo >

(v/vo)0, the surface pressure stretches the nanocrystal (PS f <

0). The (v/vo)0 value decreases with both an isomorphic-
isomeric ( f , N = const) increase in the temperature and
an isomorphic-isothermal ( f , T = const) decrease in N or
upon the isomeric-isothermal (N,T = const) deviation of a
nanocrystal shape from the most energy-optimal shape (for
the RP model it is a cube). It also follows from Fig. 1

that the pressure in the nanocrystal passes through zero at
a v/vo value greater than for the macrocrystal. Figure 1(b)
shows that the surface pressure increases with the pressure
more noticeably than the Laplace pressure. If at low pressures
PLs > PS f is fulfilled, then at high pressures this inequality is
reversed.

Figure 2 shows the calculated baric (a) and temperature
(b) isomorphic-isomeric dependences of the specific surface
energy (σ , in J/m2 = N/m) for the face (100) in fcc Au. Solid
lines were obtained for a macrocrystal (i.e., at N = ∞) and
dashed lines were obtained for a cubic nanocrystal of N = 306
atoms. As was shown in Ref. [34], our calculations of the
σ (100) value for the fcc-Au macrocrystal are in good agree-
ment with experimental and theoretical estimates by other
authors. The experimental and theoretical (in parentheses)
σ (100) values for the fcc-Au macrocrystal presented in the
literature are equal:

σ (100)/[J/m2] = 1.54 (T = 0 K)–1.333(Tm = 1337 K) [1],

[1.363 (T = 0 K)] [4], [1.359 (T = 0 K)] [14].

Figure 2 shows that as the temperature decreases, there
is a pressure region where the specific surface energy of the
nanocrystal becomes greater than that of the macrocrystal,
i.e., σ (N ) > σ (∞). As was shown in Refs. [27,29–32], this
effect is associated with the compression of the nanocrystal
by surface pressure at low temperatures. As was shown in
Refs. [23,24], the surface pressure in a nanocrystal consists
of two competing forces:

(i) The resultant component of the attraction forces of the
surface atom from the surrounding neighboring atoms. This
force (maximum for the atoms on the edges, and especially
at the vertices of the parallelepiped) tends to pull the sur-
face atom inside the nanocrystal. This force compresses the
nanocrystal the stronger the smaller the value of the “size
argument” k∗

n .
(ii) The force arising from vibrations (“zero” at T = 0 K,

or “thermal” at T > 0 K) of atoms. This force tends to push
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FIG. 2. The upper graphs show the baric (a) and temperature (b) isomorphic-isomeric dependences of the specific surface energy σ (100).
The lower graphs show the baric (c) and temperature (d) isomorphic-isomeric dependences of the isothermal derivative of the σ (100) function
on pressure: σ ′(P) = (∂σ/∂P)T . The graphs on the left from top to bottom show the isotherms: T = 100, 300, 1337 K. The graphs on the right
show isobars: P = 0, 60, 24 GPa. Solid lines were obtained for a macrocrystal, and dashed lines were obtained for a nanocrystal.

the surface atom out of the nanocrystal, and it is this force that
stretches the nanocrystal. Moreover, the energy and pressure
caused by the vibrations of atoms increase with temperature.

At low temperatures, for “nonquantum” crystals (i.e., for
which the “zero vibrations” energy of atoms is much less than
the interatomic interaction energy), the first force prevails.
However, with an increase in temperature, the second force
grows, and at the “temperature of zero surface pressure,” these
forces balance each other [24].

As can be clearly seen from Figs. 2(a) and 2(b), at P = 0,
the σ (N ) function decreases more noticeably with decreasing
N the higher the temperature. In the region of P < 20 GPa, the
σ function increases under isothermal compression for both
macro- and nanocrystal of 306 atoms.

The lower graphs of Fig. 2 show the baric [graph
(c)] and temperature (d) dependences of the derivative of
specific surface energy on pressure: σ ′(P) = (∂σ/∂P)T in
10−3 J/(m2GPa). Solid lines were obtained for a macro-
crystal (i.e., at N = ∞) and dashed lines were ob-
tained for a cubic nanocrystal of N = 306 atoms. As
can be seen from Figs. 2(c) and 2(d), there are points
on the isotherms at a certain pressure (Pσ ) where the
σ ′(P)T dependencies for macro- and nanocrystal intersect:
σ ′(Pσ )T,∞–σ ′(Pσ )T,N = 0. At these points, the size depen-
dence of the function σ ′(P)T changes. When P < Pσ , the

function σ ′(P)T increases with decreasing N, and when P >

Pσ , the function σ ′(P)T decreases at the isothermal-isobaric
decreasing of N value.

As can be seen from Figs. 2(c) and 2(d), the value of
σ ′(P)T increases with the isomer-isobaric increase in tem-
perature. With this, the temperature growth of the function
σ ′(P)T slows down with increasing pressure.

Table I shows the properties of fcc Au calculated for
three temperatures, indicated in the first column. The sec-
ond, third, and fourth columns show the values of the
normalized volume: v/vo = (c/ro)3, the specific surface en-
ergy of the face (100), the value of the function �p(N ) =
1–(PS f /PLs), both for the macrocrystal at PMacro = 0 (first
row), and for a cubic nanocrystal of 306 atoms at PNano =
0 (second row). The fifth column shows the values of the
PNano pressure at which the nanocrystal is located if PMacro =
0 (top row), and the PMacro pressure at which the macro-
crystal is located if PNano = 0 (bottom row) [see Fig. 1(a)].
The two right columns show the maximum point coordi-
nates of the σ (P) function in Fig. 2(a): for each temperature,
the first row shows the data for a macrocrystal, and the
second row shows the data for a cubic nanocrystal of
306 atoms.

From Eq. (16), it is possible to obtain expressions for iso-
choric and isobaric derivatives of the σ (N, f ) function with
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TABLE I. Values of fcc-Au surface properties. For each temperature, the first row shows the results calculated for a macrocrystal, and the
second row shows the results for a cubic nanocrystal of 306 atoms.

PNano (GPa)
T, K v/vo σ (100) (10−3 J/m2) �p PMacro (GPa) σmax (10−3 J/m2) Pmax (GPa)

100 1.00487 1561.19 1.0299 0.090 1623 27.0
1.00547 1559.84 1.0342 –0.101 1622 23.9

300 1.01302 1542.47 1.0903 0.255 1613 28.6
1.01483 1538.36 1.1027 –0.293 1611 25.3

1337 1.06874 1422.80 1.4207 1.082 1555 35.8
1.08112 1398.07 1.4818 –1.210 1545 32.7

respect to temperature. These expressions have the following
form [27,31,34]:

σ ′(T )v =
(

∂σ

∂T

)
c,N, f

= − 3kBR2γ (N, f )

2α2/3(b + 2)r2
o kn(N, f )∗

FE

(
�E

T

)
, (22)

σ ′(T )P =
(

∂σ

∂T

)
P,N, f

= σ ′(T )v + vαp

(
∂σ

∂v

)
T,N, f

= σ ′(T )v − 2

3
σαp�p. (23)

Here, αp = (∂ ln v/∂T )P is the isobaric thermal volume
expansion coefficient, which depends on the nanocrystal size
and shape,

FE (y) = ∂Ew(y)

∂ (1/y)
= y2 exp(y)

[exp(y) − 1]2 .

Figure 3 shows the behavior of the isochoric and isobaric
derivatives of the σ (100) function with respect to temperature
[in 10–6 J/(m2 K)]. The upper graphs (a) and (b) are for the
function σ ′(T )v = (∂σ/∂T )v , and the lower graphs (c) and
(d) are for the function σ ′(T )P = (∂σ/∂T )P. Solid lines are
obtained for a macrocrystal (i.e., at N = ∞) and dashed lines
are obtained for a cubic nanocrystal of N = 306 atoms.

Figure 3 shows that at T = 0 K the functions σ ′(T )v
and σ ′(T )P reach their maximum at any pressure: σ ′(0)v =
σ ′(0)P = 0. At low pressures the inequality is satisfied,
|σ ′(T )v| < |σ ′(T )P|. However, at high pressures, this inequal-
ity changes to the opposite. Therefore, one cannot equate the
functions σ ′(T )v and σ ′(T )P, as some works do. At T 
 �,
the σ ′(T )v function is almost independent of temperature, and
the |σ ′(T )P| value is greater, the higher the temperature. In the
transition to nanocrystal, the magnitude of |σ ′(T )i| increases
under any P-T conditions (here i = v or P).

As we indicated in [41], to fulfill the third law of thermody-
namics, the σ function at T = 0 K must satisfy the following
conditions:

lim
T → 0 K

(
∂σ

∂T

)
i,N

= −0,

lim
T → 0 K

[
∂ (∂σ/∂T )v,N

∂v

]
T,N

= −0,

lim
T → 0 K

T

[
∂

∂T

(
∂σ

∂T

)
v,N

]
i,N

= −0. (24)

The conditions from (24) are valid for any crystal structure,
at any specific volume and pressure, as well as for any size and
shape of a nanocrystal.

Various methods have been proposed in the literature to
calculate the derivative of the σ function with respect to
temperature for a macrocrystal. However, due to the absence
in these works of the state equation taking into account the
surface, it remains unclear whether the expression for σ ′(T )
proposed in these works is isochoric or isobaric derivative.
Meanwhile, as can be seen from Fig. 3, the difference between
the functions σ ′(T )v and σ ′(T )P is significant, especially
when P = 0.

In some works, a linear approximation of the following
form was used for the isobaric or isochoric temperature de-
pendence of the specific surface energy [42]:

σ (T ) = σ (T = 0 K) − const T . (25)

However, as can be seen from Fig. 3, approximation (25)
is valid only at high temperatures: T 
 � (for i = v), or at
high pressures (for i = v or i = P). The use of approximation
(25) at low temperatures can lead to both numerical errors and
violation of the third law of thermodynamics (24).

IV. DISCUSSION

Why in some works was the increase of the σ function at
the isomorphic-isothermal decrease of the nanoparticle size
obtained? Let us explain it on the example of Refs. [5,6],
taking into account the results obtained by us.

In Ref. [5], a spherical core-shell model for a gold
nanocrystal at T = 0 K was studied by the method of “com-
bination of atomistic modeling and continuum mechanics.”
At the same time, the presence of surface pressure was taken
into account according to the Laplace formula (which is valid
for the liquid phase) only for the shell region. This led to the
fact that the shell region turned out to be highly compressed
compared to the volume. Consequently, it was found in [5]
that both the specific surface energy and the Young’s modulus
increase with decreasing nanocrystal size. This contradicts the
P(v/vo) dependence for macro- and nanocrystal from Fig. 1,
and the results of [36–40], where a decrease in the elastic
modulus BT with decreasing nanocrystal size was obtained.
An error of the authors of [5] is also the division of the
equilibrium system into two different phases, core and shell,
for which different regularities were applied. This violates
the conditions of thermodynamic equilibrium and leads to
strong gradients of properties over the nanocrystal volume.
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FIG. 3. Behavior of isochoric (upper graphs) and isobaric (lower graphs) derivatives of specific surface energy with respect to temperature
for fcc Au. The isotherms of the baric dependence are shown on the left, and the isobars of the temperature dependence are shown on the right.
Solid lines were obtained for a macrocrystal (i.e., at N = ∞) and dashed lines were obtained for a cubic nanocrystal of N = 306 atoms.

The application of the formulas of equilibrium and reversible
thermodynamics to such a system is incorrect.

In the computer method that was used in [6] (as well as
in other theoretical works, where an increase of the σ func-
tion was obtained with isomorphic-isothermal decrease of the
nanoparticle size), the following formula was used to calculate
the specific surface energy [6, Eq. (4)]:

σ (N ) = ENP(N ) − Eref (∞)

�
, (26)

where ENP(N ) is the internal energy of a nanoparticle of N
atoms and Eref (∞) is the internal energy of a macrocrystal.

However, a contradiction arises when calculating the
ENP(N ) and Eref (∞) functions by this method: Eref (∞) is
calculated for a macrocrystal at PMacro = 0, while the ENP(N )
function is calculated for a nanocrystal at PNano > 0. This
clearly follows from the results of [6], and it is evident from
Fig. 1 and Table I. To obtain PNano = 0, it is necessary that the
nanocrystal be stretched, i.e., that the specific volume or the
average distance between the centers of the nearest atoms in
the nanocrystal must be larger than in the macrocrystal. This
was experimentally shown in [36] for a nanodiamond, and in
[43] when studying an fcc-ruthenium nanocrystal. This also

follows from the fact that the elastic modulus for a nanocrystal
is less than that for a macrocrystal at the same temperature.

For the liquid phase at high temperatures, the surface
pressure is much larger than for the solid phase at low tem-
peratures. That is why Ref. [6] has obtained the result σl (T =
1500 K) > σs(T = 5 K), both for macro- and for nanosys-
tems. For the liquid phase, this result contradicts the results
of [44,45], in which methods that are more correct were used
to calculate the size dependence of the σl function.

Unfortunately, in theoretical works, in which the increase
of the σ function at isomorphic-isothermal size reduction
was obtained, the nanosystem state equation was not studied.
Therefore, the authors of these works did not notice that an
isomorphic-isothermal size reduction led to compression, i.e.,
to a decrease in the specific volume of the nanoparticle, and,
as a consequence, to an increase in the specific surface energy.

V. CONCLUSIONS

Within the framework of equilibrium and reversible ther-
modynamics, expressions determining the dependence of
specific surface energy σ and surface pressure PS f on the
size and shape of a freestanding nanocrystal under differ-
ent P-T conditions were obtained based on the RP model
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and the paired Mie–Lennard-Jones interatomic interaction
potential. Based on these expressions, the behavior of the
σ (P, T, N, f = 1) and PS f (P, T, N, f = 1) functions for fcc
Au has been studied. Calculations performed for a macrocrys-
tal and a cube-shaped nanocrystal of 306 atoms have shown
that at P = 0 the PS f (N ) function lies in the negative region,
and the value |PS f (N, P = 0)| the higher the temperature, or
the more the nanocrystal shape deviates from the most energy-
optimal shape (for the RP model it is a cube). With a decrease
in N at P = 0, the σ (N ) function decreases more noticeably
the higher the temperature, or the more the nanocrystal shape
deviates from the most energy-optimal shape.

Based on these results, it is shown that the increase in
the σ (N ) function with an isomorphic-isothermal decrease

in the nanocrystal size at P = 0, which was obtained in
some articles, is not completely correct. In such calculation
methods, the nanoparticle was compressed by the surface
pressure, which increased with decreasing N. This led to a
corresponding increase in the σ (N ) function both with an
isomorphic-isothermal decrease in size and with an isomeric
(i.e., at N = const) increase in the temperature of the nanopar-
ticle.
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