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We study the nonlocal magnetotransport through a strongly correlated quantum dot, connected to multiple ter-
minals consisting of two normal and one superconducting (SC) leads. Specifically, we present a comprehensive
view on the interplay between the crossed Andreev reflection (CAR), the Kondo effect, and the Zeeman splitting
at zero temperature in the large SC gap limit. The ground state of this network shows an interesting variety, which
varies continuously with the system parameters, such as the coupling strength �S between the SC lead and the
quantum dot, the Coulomb repulsion U , the impurity level εd , and the magnetic field b. We show, using the many-
body optical theorem which is derived from the Fermi-liquid theory, that the nonlocal conductance is determined
by the transmission rate of the Cooper pairs TCP = 1

4 sin2 � sin2(δ↑ + δ↓) and that of the Bogoliubov particles
TBG = 1

2

∑
σ sin2 δσ . Here, δσ is the phase shift of the renormalized Bogoliubov particles, and � ≡ cot−1(ξd/�S )

is the Bogoliubov-rotation angle in the Nambu pseudospin space, with ξd = εd + U/2. It is also demonstrated,
using Wilson’s numerical renormalization group approach, that the CAR is enhanced in the crossover region
between the Kondo regime and the SC-proximity-dominated regime at zero magnetic field. The magnetic fields
induce another crossover between the Zeeman-dominated regime and the SC-dominated regime, which occurs
when the renormalized Andreev resonance level of majority spin crosses the Fermi level. We find that the CAR is
enhanced and becomes less sensitive to magnetic fields in the SC-dominated regime close to the crossover region
spreading over the angular range of π/4 � � � 3π/4. At the level crossing point, a spin-polarized current flows
between the two normal leads, and it is significantly enhanced in the directions of � � 0 and � � π where the
SC proximity effect is suppressed.
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I. INTRODUCTION

Quantum dots (QD) connected to multiterminal networks
consisting of normal and superconducting (SC) leads is one
of the active fields of current research. In such networks,
the quantum coherence and entanglements can be probed
through the Andreev reflection [1–19] and Josephson effect
[20–25].

In particular, the crossed Andreev reflection (CAR) is one
of the most interesting processes caused by a Cooper-pair
tunneling in which an incident electron entering from a normal
lead forms a Cooper pair with another electron from the other
normal leads to tunnel into the SC leads, leaving a hole in
the normal lead where the second electron came from. The
time-reversal process of the CAR corresponds to a splitting
of a Cooper pair that is emitted from the SC lead into two
entangled electrons penetrating the different normal leads.
The CAR and the Cooper-pair splitting have also been studied
in the multiterminal systems without quantum dots [26–34].

Quantum dots give a variety to the transport properties
of multiterminal systems, through the tunable parameters

such as electron correlations, resonant-level positions, and
local magnetic fields which can polarize the spins of elec-
trons. The strong electron correlations induce an interesting
crossover between the Kondo singlet and the Cooper-pair
singlet [35–51]. Furthermore, the magnetic field induces a
crossover occurring between the Kondo singlet state and the
spin-polarized state due to the Zeeman splitting of discrete en-
ergy levels of quantum dots, which has recently been revisited
to find that the three-body Fermi-liquid corrections play an
essential role in the crossover region [52,53].

The CAR contributions can be probed through the nonlocal
conductance for the current flowing from the QD towards
one of the normal drain electrode when the bias voltage is
applied to the source electrode [1,4–6]. However, the nonlocal
current also includes the contributions of the single-electron-
tunneling process, in which an incident electron from the
source electrode transmits directly towards the drain electrode
through the QD. In order to observe the CAR contributions, it
is important to find some sweet spots in the parameter space,
at which the superconducting proximity effect dominates the
nonlocal current and enhances the Cooper-pair tunneling by
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FIG. 1. Single quantum dot (QD) connected to two normal leads
(N) and one superconductor lead (SC). �L , �R, and �S represent the
coupling strengths of the QD with the left (L), the right (R), and the
SC leads, respectively. The contributions of the normal tunnelings
are given by �N = �L + �R.

reconciling it with the other effects from electron correlations
and magnetic fields.

The CAR in a single correlated quantum dot has the-
oretically been studied over a decade, particularly for a
three-terminal QD connected to two normal and one super-
conducting leads. In the early stage, Futterer et al. [54] and
Michałek et al. [55,56] demonstrated some behaviors of the
nonlocal transport conductance typical to this three-terminal
configuration [56], taking also into account the Coulomb
interaction with a generalized master equation [54] or the
equation-of-motion method [55]. It has been extended to the
configuration in which the normal leads are replaced by ferro-
magnetic metals and has been investigated intensively, using
also the methods such as the real-time diagrammatic method
and the numerical renormalization group (NRG) [54,57–60].

Effects of the Zeeman splitting induced by the external
magnetic field applied to quantum dots have also been the-
oretically investigated, mainly for two-terminal systems in
which a quantum dot is connected to a single paramagnetic
normal and a SC lead so far [61–66]. Specifically, these the-
ories addressed such subjects as the field dependence of the
Andreev transport [61,62], the role of the Coulomb interaction
in this configuration [63–65], and the quantum phase transi-
tion between the spin-singlet and -doublet ground states [66].
However, it is still not fully clarified how the CAR contribu-
tions evolve at low energies in a wide parameter space of the
multiterminal networks, with and without magnetic fields.

The purpose of this paper is to provide a comprehensive
view of the Andreev transport through a strongly correlated
quantum state, the characteristics of which vary due to the
interplay between the Kondo, Zeeman, and Cooper-pair cor-
relations. To this end, we calculate the transport coefficients,
using the Fermi-liquid theory [67–71] in conjunction with
Wilson’s numerical renormalization group (NRG). Specifi-
cally, we consider a three-terminal quantum dot connected to
two normal and one superconducting leads, as illustrated in
Fig. 1, in the large SC gap limit [36]. We first of all derive the
optical theorem for the CAR at zero temperature, using the
Fermi-liquid theory that describes the interacting Bogoliubov
particles moving throughout the entire system. It elucidates
the fact that the nonlocal conductance is determined by the
transmission rate of Cooper pairs TCP = 1

4 sin2 � sin2(δ↑ +
δ↓) and that of the Bogoliubov particles TBG = 1

2

∑
σ sin2 δσ .

Here, � ≡ cot−1(ξd/�S ) is the angular coordinate in the ξd ≡
εd + U/2 vs �S plane shown in Fig. 2, and εd and U are the
discrete level and the Coulomb interaction of electrons in the

FIG. 2. Parameter space of Heff at zero magnetic field b = 0,
defined in Eqs. (A5) and (2.8). The semicircle represents the line
along which the energy of the Andreev level EA ≡ √

ξ 2
d + �2

S co-
incides with one-half of the Coulomb interaction U/2, where ξd ≡
εd + U/2. In the atomic limit �N = 0, the ground state is a magnetic
spin doublet inside the semicircle, which eventually is screened by
conduction electrons to form the Kondo singlet when the tunnel cou-
pling �N is switched on, whereas the ground state is a spin singlet due
to the Cooper paring outside the circle. � is the Bogoliubov-rotation
angle, which parametrizes the contributions of the Andreev scattering
on the transport coefficients.

QD, respectively, and �S is the coupling strength between
the QD and SC lead. In this case, the phase shift δσ of the
interacting Bogoliubov particles does not depend on the angle

� but varies along the radial coordinate EA =
√

ξ 2
d + �2

S .
We also calculate the transmission rate TCP and TBG with

the NRG in a wide range of the parameter space. It is demon-
strated that, at zero magnetic field, the CAR contributions
are significantly enhanced near the crossover region between
the Kondo regime and the SC-proximity-dominated regime.
Specifically, it takes place in a crescent-shaped region spread-
ing over the range of U/2 � EA � U/2 + �N in the radial
direction and π/4 � � � 3π/4 in the angular direction: �N
is the resonance width due to the tunneling between the QD
and normal leads. When a magnetic field is applied, another
crossover occurs between the Zeeman-dominated regime and
the SC-proximity-dominated regime when the spin-polarized
Andreev level crosses the Fermi level. We find that the CAR-
dominated transport taking place in the crescent region is less
sensitive to magnetic fields, and it emerges as a flat valley
structure in the magnetic-field dependence of the nonlocal
conductance. This parameter region provides an optimal con-
dition for observing the Cooper-pair tunneling, i.e., a sweet
spot, especially in the direction of � � π/2 where the Cooper
pairs are most entangled and become equal-weight linear
combinations of an electron and a hole.

This paper is organized as follows. In Sec. II, we introduce
an Anderson impurity model for quantum dots connected to
SC and normal leads, and rewrite the Hamiltonian and the
Green’s function in terms of interacting Bogoliubov particles.
Then, the optical theorem and the formula for the nonlocal
conductance are derived at zero temperature using the Fermi-
liquid description for the interacting Bogoliubov particles in
Sec. III. We investigate the CAR contributions to the nonlocal
conductance, using the NRG, at zero and finite magnetic fields
in Secs. IV and V, respectively. Summary and discussion are
given in Sec. VI.
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II. FERMI-LIQUID DESCRIPTION FOR INTERACTING
BOGOLIUBOV PARTICLES

In this section, we show how the contributions of the CAR
to the nonlocal conductance of the multiterminal network can
be described in the context of the Fermi-liquid theory for the
interacting Bogoliubov particles at zero temperature [36].

A. Anderson impurity model for the CAR

We start with an Anderson impurity model for a single
quantum dot (QD) connected to two normal (N) and one
superconducting (SC) leads, as shown in Fig. 1:

H = Hdot + HN + HTN + HS + HTS, (2.1)

Hdot = ξd (nd − 1) − b (nd,↑ − nd,↓) + U

2
(nd − 1)2,(2.2)

HN =
∑

ν=L,R

∑
σ

∫ D

−D
dε ε c†

ε,ν,σ cε,ν,σ , (2.3)

HTN =
∑

ν=L,R

vν

∑
σ

∫ D

−D
dε

√
ρc (c†

ε,ν,σ dσ + H.c.), (2.4)

HS =
∑

σ

∫ DS

−DS

dε ε s†
ε,σ sε,σ

+
∫ DS

−DS

dε(�S s†
ε,↑s†

ε,↓ + H.c.), (2.5)

HTS = vS

∑
σ

∫ DS

−DS

dε
√

ρS (s†
ε,σ dσ + H.c.). (2.6)

Here, Hdot describes the QD part: ξd ≡ εd + U/2, with εd the
discrete energy level, U the Coulomb interaction, and b (≡
μBB) the Zeeman energy due to the magnetic field B applied
to the QD, with μB the Bohr magneton. d†

σ is the creation op-
erator for an electron with spin σ , and nd ≡ nd,↑ + nd,↓ is the
number operator with nd,σ ≡ d†

σ dσ . A constant energy shift,
which does not affect the physics, is included in Eq. (2.2) in
order to describe clearly that the system has the electron-hole
symmetry at ξd = 0.

HN describes the conduction electrons in the normal leads,
the density of states of which is assumed to be flat ρc =
1/(2D), with D the half-width of the bands. c†

ε,ν,σ is the cre-
ation operator for conduction electrons with spin σ and energy
ε. The operators for conduction electrons satisfy the following
anticommutation relation that is normalized by the Dirac delta
function: {cε,ν,σ , c†

ε′,ν ′,σ ′ } = δνν ′ δσσ ′δ(ε − ε′). HTN describes
the tunnel couplings between the QD and the normal leads.
The level broadening of the discrete energy level in the QD is
given by �N ≡ �L + �R, with �ν ≡ πρcv

2
ν the contributions

of the two normal leads on the left ν = L and right ν = R.
HS and HTS describe the contributions of the superconduct-

ing lead with an s-wave SC gap �S ≡ |�S| eiφS : s†
ε,σ is the

creation operator for electrons in the SC lead, with DS the
half-bandwidth and ρS = 1/(2DS ). One of the key parameters
for the SC proximity effects is �S ≡ πρSv

2
S, i.e., the coupling

strength between the QD and the SC lead.
In this paper, we study the crossed Andreev reflection oc-

curring at low energies, much lower than the SC energy gap.

To this end, we consider the large gap limit |�S| → ∞, which
is taken at |�S| 
 DS keeping �S constant [36]. In this case,
the superconducting proximity effects can be described by the
pair potential penetrating into the QD:

�d ≡ �S eiφS . (2.7)

The Coulomb interaction U induces the correlation effects
for electrons in the QD and the symmetrized linear combina-
tion of the conduction bands defined in Eq. (A1), which can be
described by an effective Hamiltonian Heff given in Eq. (A5)
(see Appendix A). Furthermore, carrying out the Bogoliubov
rotation defined in Eq. (A8), it can be transformed further into
a system of interacting Bogoliubov particles described by a
standard Anderson model:

Heff = EA

(∑
σ

γ
†
d,σ

γd,σ − 1

)
− b

(
γ

†
d,↑γd,↑ − γ

†
d,↓γd,↓

)

+ U

2

(∑
σ

γ
†
d,σ

γd,σ − 1

)2

+
∑

σ

∫ D

−D
dε ε γ †

ε,σ γε,σ

+ vN

∑
σ

∫ D

−D
dε

√
ρc (γ †

ε,σ γd,σ + H.c.), (2.8)

Nγ =
∑

σ

γ
†
d,σ

γd,σ +
∑

σ

∫ D

−D
dε γ †

ε,σ γε,σ . (2.9)

Here, EA ≡
√

ξ 2
d + �2

S is the effective impurity level, and
vN ≡

√
v2

L + v2
R . The operators γd,σ and γε,σ describe the

Bogoliubov particles in the dot and the symmetrized part of
the conduction band, respectively. The effective Hamiltonian
conserves the total number of the Bogoliubov particles Nγ ,
reflecting the U(1) symmetry along the principal axis in the
Nambu pseudospin space.

Figure 2 illustrates the parameter space of Heff at zero mag-
netic field b = 0. For finite �N , the Kondo screening due to
the normal conduction electrons occurs inside the semicircle
region, at which the impurity level is occupied by a single
Bogoliubov particle: Q � 1.0 with

Q ≡ Q↑ + Q↓, Qσ ≡ 〈γ †
d,σ

γd,σ 〉. (2.10)

Bogoliubov particles show also the valence-fluctuation be-
havior near EA � U/2, at which the crossover between the
Kondo singlet and the superconducting singlet occurs. The
Bogoliubov rotation angle corresponds to � = cot−1(ξd/�S )
shown in Fig. 2. In particular, the crossed Andreev scattering
is enhanced in the angular range of π/4 � � � 3π/4 out-
side the semicircle EA � U/2, as discussed later in Secs. IV
and V.

B. Renormalized Bogoliubov quasiparticles

In this work, we calculate the nonlocal conductance for
the current flowing into the drain electrode, using the retarded
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Green’s function for electrons in the QD:

Gr
dd (ω) ≡ −i

∫ ∞

0
dt ei(ω+i0+ )t

×
(

〈{d↑(t ), d†
↑}〉 〈{d↑(t ), d↓}〉

〈{d†
↓(t ), d†

↑}〉 〈{d†
↓(t ), d↓}〉

)
. (2.11)

Here, 〈· · · 〉 denotes the thermal average at equilibrium.
This matrix Green’s function can be diagonalized with the
Bogoliubov transformation:

U† Gr
dd (ω) U =

(
Gr

γ ,↑(ω) 0

0 −Ga
γ ,↓(−ω)

)
. (2.12)

We will choose the Josephson phase of the pair potential to be
φS = 0 in the following, so that U is determined solely by a
pseudospinor rotation with the angle �/2:

U =
(

cos �
2 − sin �

2

sin �
2 cos �

2

)
. (2.13)

The matrix elements of U determine the behaviors of transport
coefficients as the superconducting coherence factors

cos
�

2
=

√
1

2

(
1 + ξd

EA

)
, sin

�

2
=

√
1

2

(
1 − ξd

EA

)
.

The diagonal elements Gr
γ ,σ and Ga

γ ,σ on the right-hand side
of Eq. (2.12) are the retarded and advanced Green’s functions
for the interacting Bogoliubov particles, described by Heff .
These diagonal elements can be expressed in the form, using
Eq. (A8),

Gr
γ ,σ (ω) ≡ −i

∫ ∞

0
dt ei(ω+i0+ )t 〈{γd,σ (t ), γ

†
d,σ

}〉

= 1

ω − EA,σ − �U
γ ,σ (ω) + i�N

, (2.14)

and Ga
γ ,σ (ω) = {Gr

γ ,σ (ω)}∗. Here, EA,σ ≡ EA − σ b, and
�U

γ ,σ (ω) represents the self-energy corrections due to
the Coulomb interaction term (U/2)(nd − 1)2, defined in
Eq. (2.2). The unperturbed part of the denominator describes
the Andreev resonance level with the width �N situated at
ω = EA,σ .

At low energies, effects of the electron correlations on the
transport properties can be deduced from the behavior of the
self-energy near ω � 0 at zero temperature T = 0:

Gr
γ ,σ (ω) � Zσ

ω − ẼA,σ + i�̃N,σ

. (2.15)

The asymptotic form of the Green’s function defines a renor-
malized resonance level of quasiparticles in the Fermi liquid,
the position ẼA,σ and the width �̃N,σ of which are given by
[67–71]

�̃N,σ = Zσ �N ,
1

Zσ

= 1 − ∂�U
γ ,σ (ω)

∂ω

∣∣∣∣∣
ω=0

, (2.16)

ẼA,σ = Zσ

[
EA,σ + �U

γ ,σ (0)
]
. (2.17)

Furthermore, the phase shift δσ of the interacting Bogoliubov
particles is defined by Gr

γ ,σ (0) = −|Gr
γ ,σ (0)|eiδσ , i.e.,

δσ = π

2
− tan−1

(
ẼA,σ

�̃N,σ

)
, (2.18)

plays a primary role in the ground-state properties. These
renormalized parameters can be calculated, for instance, using
the NRG approach described in the next section.

The Friedel sum rule also holds for the interacting Bogoli-
ubov particles, and thus the average number of the Bogoliubov
particles in the QD is determined by the phase shift

Qσ
T →0−−−→ δσ

π
. (2.19)

The phase shift varies in the range of 0 � δσ � π/2 along the
radial coordinate EA in the ξd vs �S plane but is independent
of the angle �.

The ground-state properties, such as the occupation num-
ber of electrons 〈nd〉 and the pair correlation function 〈d†

↑ d†
↓ +

d↓ d↑〉, can be deduced from Q:

〈nd〉 − 1 = (Q − 1) cos �, (2.20)

〈d†
↑ d†

↓ + d↓ d↑〉 = (Q − 1) sin �. (2.21)

These two averages correspond to the projection of a vector of
magnitude Q − 1 directed along the principal axis onto the z
axis and the x axis of the Nambu space, respectively. Further-
more, a local magnetization md is induced in the quantum dot
at finite magnetic fields,

md ≡ 〈nd,↑〉 − 〈nd,↓〉 = Q↑ − Q↓. (2.22)

Therefore, the occupation number of electrons with spin σ is
given by

〈nd,σ 〉 = 1 + cos �

2

δσ

π
+ 1 − cos �

2

(
1 − δσ

π

)
, (2.23)

where σ represents an opposite-spin component of σ .

III. LINEAR-RESPONSE THEORY FOR CAR

A. Cooper-pair transmission in a local Fermi liquid

We consider the linear-response current IR flowing from the
QD to the normal lead on the right, induced by bias voltages
VL and VR applied to the left and right leads, respectively. It
can be expressed in the following form at T = 0 (see Ap-
pendix B):

IR = IET
R + ICP

R ,

IET
R = 2e2

h
TET

4�R�L

�2
N

(VL − VR),

ICP
R = −2e2

h
TCP

[
4�R�L

�2
N

(VL + VR) + 4�2
R

�2
N

2VR

]
. (3.1)

Correspondingly, the current IL flowing from the left normal
lead towards the QD takes the form IL = IET

L + ICP
L , with

IET
L = IET

R and

ICP
L = 2e2

h
TCP

[
4�R�L

�2
N

(VL + VR) + 4�2
L

�2
N

2VL

]
. (3.2)
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The two components of the current IET
ν and ICP

ν represent the
contribution of the single-electron tunneling and that of the
Cooper-pair tunneling, respectively. The transmission proba-
bilities TET and TCP are determined by the equilibrium Green’s
functions at the Fermi level ω = 0, and can be expressed
in terms of the phase shifts and the Bogoliubov angle (see
Appendix B):

TET ≡ �2
N

2

[∣∣{Gr
dd (0)

}
11

∣∣2 + ∣∣{Gr
dd (0)

}
22

∣∣2]
= 1

2

∑
σ

sin2 δσ − 1

4
sin2 � sin2(δ↑ + δ↓), (3.3)

TCP ≡ �2
N

2

[∣∣{Gr
dd (0)

}
12

∣∣2 + ∣∣{Gr
dd (0)

}
21

∣∣2]
= 1

4
sin2 � sin2

(
δ↑ + δ↓). (3.4)

These two are bounded in the range 0 � TET � 1 and 0 �
TCP � 1

4 , and are related to each other through the optical
theorem (see Appendix C)

TET + TCP = TBG, TBG ≡ 1

2

∑
σ

sin2 δσ . (3.5)

Here, TBG can be regarded as a transmission probability of the
Bogoliubov particles.

The linear-response coefficients, given in the above for
the large gap limit |�S| → ∞, are determined by δσ and
�. Therefore, the Cooper-pair contributions, which vary de-
pending on the parameter regions shown in Fig. 2, can
systematically be explored by using the polar coordinate (EA,
�) since the phase shift δσ through which the many-body
effects enter is independent of the angle � that determines the
superconducting coherence factor sin2 � for the transmission
probability TCP.

1. Nonlocal conductance for IR at VL �= 0 and VR = 0

Equations (3.1)–(3.4) provide a set of formulas that de-
scribe how the single-electron and the Cooper-pair tunneling
parts, IET

R and ICP
R , contribute to the total current IR for

arbitrary bias voltages VL and VR. We next consider the
situation, at which the right lead is grounded VR = 0 in or-
der to clarify the contributions of the CAR to the nonlocal
conductance gRL for the current IR,

gRL ≡ ∂IR

∂VL
= 2 g0 (TET − TCP)

= 2 g0 (TBG − 2TCP), (3.6)

where g0 = e2

h 4�R�L/�2
N . In the last line, the Bogoliubov

angle � enters gRL solely through TCP since TBG does not
depend on it. The contribution of Cooper-pair tunnelings in
gRL is negative as it induces the current flowing from the right
lead towards the QD at the center.

The CAR efficiency ηCAR is one of the useful param-
eters for measuring the CAR contribution to the nonlocal

conductance gRL:

ηCAR ≡
∣∣ICP

R

∣∣∣∣IET
R

∣∣ + ∣∣ICP
R

∣∣ = TCP

TBG

= sin2(δ↑ + δ↓)

sin2 δ↑ + sin2 δ↓

sin2 �

2
. (3.7)

Alternatively, the nonlocal conductance can also be expressed
in terms of the efficiency:

gRL = 2g0 TBG(1 − 2 ηCAR). (3.8)

Here, the � dependence of gRL arises from the efficiency
ηCAR. The efficiency ηCAR is enhanced by the coupling be-
tween the QD and the SC lead. In the limit �S → 0 where the
SC lead is disconnected, Eq. (3.8) reproduces the usual Lan-
dauer formula with the single-electron tunneling probability
TBG.

Similarly, the local conductance for the current from the
left lead IL can also be expressed in the form

∂IL

∂VL
= 2g0 TBG

(
1 + 2�L

�R

ηCAR

)
. (3.9)

Here, the second term on the right-hand side represents the
contribution of the direct Andreev reflection (DAR), inducing
the current component IDAR

L ≡ 4g0 TCP (�L/�R)VL ∝ �2
L/�2

N
for VR = 0. Therefore, the ratio of the DAR contribution to IL
is determined by δ and � through the efficiency ηCAR,

IDAR
L

IL

= 2�L ηCAR

�R + 2�LηCAR

. (3.10)

2. Andreev transport for VL = VR

Here we briefly discuss another setting, in which bias
voltages are applied in a symmetrical way VL = VR (≡ V ). In
this case, the contribution of single-electron process vanishes
IET
R = IET

L = 0, and the Cooper-pair tunnelings determine
both IR and IL, as

IR
VL=VR=V−−−−−→ − 4e2

h
TCP

[
4�R�L

�2
N

+ 4�2
R

�2
N

]
V, (3.11)

IL
VL=VR=V−−−−−→ + 4e2

h
TCP

[
4�R�L

�2
N

+ 4�2
L

�2
N

]
V. (3.12)

For both IR and IL, the first and the second terms in the square
brackets on the right-hand side represent the contributions
of the crossed Andreev reflection and the direct Andreev re-
flection, respectively. These terms depend sensitively on the
asymmetry of the tunnel couplings. For instance, the CAR
dominates IR for �R 
 �L, as the direct Andreev scattering
occurring in the right lead is suppressed.

The current flowing into the SC lead through the QD is
given by IL − IR. It reaches the maximum value 4e2V/h in the
case at which TCP = 1

4 for symmetric junctions �L = �R (≡
�N/2). Note that the behavior of this current IL − IR into the
SC lead is equivalent to the one flowing through an N-QD-SC
junction, which was investigated in the previous work [36].
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B. NRG approach to the CAR

In the following two sections, we numerically investigate
the contribution of the CAR over a wide range of the param-
eter space. To this end, we have calculated the phase shift δσ

and the other correlation functions of Bogoliubov quasipar-
ticles, applying the NRG approach [72–74] to the effective
Hamiltonian Heff given in Eq. (2.8) [36], choosing the dis-
cretization parameter to be � = 2.0 and �N/D = 1/(100π ).
We have also constructed the interpolating functions for the
phase shift δσ from a discrete set of the NRG data obtained
along the radial-EA direction in the parameter space, described
in Fig. 2. The dependence of the transport coefficients on
the Bogoliubov-rotation angle � of the polar coordinate has
been determined by using the exact formulas presented in the
above.

We will discuss the CAR contribution to the nonlocal trans-
port at zero field in Sec. IV, and then consider magnetic-field
dependence in Sec. V.

IV. CROSSED-ANDREEV TRANSPORT AT ZERO FIELD
b = 0

In this section, we show the NRG results for the nonlocal
conductance and renormalized parameters calculated at zero
magnetic field b = 0, extending the previous results obtained
for a two terminal N-QD-S system [36]. Before going into
the details, we describe some general features which can be
deduced from the transport formulas presented above.

At zero magnetic field b = 0, the phase shift becomes
independent of spin component δ↑ = δ↓ (≡ δ), and thus the
transport coefficients are determined by two angular parame-
ters δ and �. The average occupation number of the Andreev
level in this case is given by the phase shift Q = 2δ/π . It de-
creases from the unitary limit value Q = 1 as EA deviates from
the origin, EA = 0, of the parameter space illustrated in Fig. 2.
In contrast, the SC pair correlation function 〈d†

↑ d†
↓ + d↓ d↑〉,

defined in Eq. (2.21), depends not only on the phase shift δ

but also the coherence factor sin �, which takes a maximum
at � = π/2.

Similarly, at zero magnetic field, the transmission proba-
bilities defined in Eqs. (3.3) and (3.4) can be simplified as

TET = sin2 δ − TCP, TCP = 1
4 sin2 � sin2 2δ, (4.1)

and TBG = sin2 δ. Therefore, the Cooper-pairing part TCP
takes a maximum at � = π/2 and δ = π/4, where the An-
dreev level for Bogliubov particles is quarter-filling Qσ =
1
4 . Correspondingly, the nonlocal conductance and the CAR
efficiency defined in Eqs. (3.6)–(3.8) can be expressed in the
following forms, at b = 0:

gRL = 2 g0 sin2 δ (1 − 2 sin2 � cos2 δ), (4.2)

ηCAR = sin2 � cos2 δ. (4.3)

Thus, for the CAR to dominate the nonlocal conductance,
taking a negative value gRL < 0, the Bogoliubov angle must
be in the range π/4 < � < 3π/4, i.e., 2 sin2 � > 1.

FIG. 3. Renormalized parameters plotted vs EA/U for
U/(π�N ) = 1.0, 2.0, 3.0, 5.0 at b = 0. (a) Occupation number
of Bogoliubov particles Q (= 2δ/π ). (b) Pair correlation
|〈d†

↑d†
↓ + d↓d↑〉|. (c) Renormalized Andreev-resonance energy

ẼA. (d) Renormalization factor Z = �̃N/�N , which at EA = 0 takes
the values 0.629, 0.239, 0.080, 0.008, respectively, for the above four
values of U . Note that 〈nd 〉 = 1.0 and |〈d†

↑d†
↓ + d↓d↑〉| = 1 − Q, at

� = π/2 along the �S axis of Fig. 2. The dashed line in (c) denotes

the Hartree-Fock energy shift EHF
A

EA�U/2−−−−→ EA − U/2, given in
Eq. (4.6).

In particular, Cooper pairs are most entangled at � = π/2,
and in this case the transport coefficients take the form

TET

�= π
2−−−→ sin4 δ, gRL

�= π
2−−−→ − 2 g0 sin2 δ cos 2δ. (4.4)

Hence, along the �S axis in Fig. 2, the nonlocal conductance
gRL becomes negative for 0 < δ � π/4, where the ground
state of Heff is in the valence-fluctuation regime or the empty-
orbital regime of the Bogoliubov particles. It takes a minimum
of the depth gRL/g0 = − 1

4 at δ = π/6. As the phase shift
approaches δ � π/2, the Kondo effect dominates and the
transmission probability of the Bogoliubov particle shows a
Kondo-ridge structure, at which TBG � 1.0, as we will demon-
strate later.

A. Ground-state properties at � = π/2

We next consider how the ground state of Heff evolves as
EA varies along the radial direction in the ξd vs �S plane,
shown in Fig. 2. Note that the eigenstates and eigenvalues of
the effective Hamiltonian defined in Eq. (2.8) do not depend
on the angular coordinate �.

Figure 3(a) shows the occupation number Q as a function
of EA for U/(π�N ) = 1.0, 2.0, 3.0, and 5.0. We see that Q de-
creases as EA increases, especially near EA � U/2, where the
crossover from the Kondo regime to the valence-fluctuation
regime of Bogoliubov particles occurs for large interactions
U/(π�N ) � 2.0. Figure 3(b) shows the magnitude of the pair
correlation function for � = π/2, where the absolute value
is given by |〈d†

↑d†
↓ + d↓d↑〉| = 1 − Q. It increases signifi-

cantly at EA � U/2, i.e., near the quarter-filling point Q = 0.5
(δ = π/4) of Bogoliubov particles, and it saturates to the
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upper-bound value 1.0 as EA increases further towards the
empty-orbital regime.

The Kondo behaviors of Bogoliubov particles are clearly
seen for the renormalized Andreev level ẼA and the
wave-function renormalization factor Z = �̃N/�N , plotted in
Figs. 3(c) and 3(d), respectively. The renormalized level is
almost locked at the Fermi level ẼA � 0.0, for large interac-
tions U/(π�N ) � 2.0, over a wide Kondo-dominated region
0 � EA � U/2, taking place inside of the semicircle in Fig. 2.
Correspondingly, the renormalization factor Z is significantly
suppressed in this region, and it indicates the fact that the
Kondo energy scale T ∗,

T ∗ ≡ Z

4ρd

, ρd = sin2 δ

π�N

, (4.5)

becomes much smaller than the bare tunneling energy scale
�N .

In contrast, at EA � U/2, i.e., in the valence-fluctuation
or empty-orbital regime for Bogoliubov particles, the effects
of electron correlations become less important: the renormal-
ization factor approaches Z � 1.0 and the renormalized level
ẼA,σ approaches the Hartree-Fock (HF) energy shift:

EHF
A,σ ≡ EA − σb + U

(
Qσ − 1

2

)
(4.6)

EA�U/2, b=0−−−−−−−−→ EA − U

2
,

since Qσ � 0.0 at EA � U/2 and b = 0.

B. Transport properties at � = π/2

We next discuss the transport properties. Specifically, in
this subsection, we consider the case � = π/2, where ξd = 0
and the occupation number of impurity electrons is fixed at
〈nd〉 = 1, reflecting the electron-hole symmetry of Heff de-
fined in Eq. (A5). In this case, the Andreev level takes the
value EA = �S , which is determined solely by the coupling
strength between the QD and the SC lead and it breaks the
particle-hole symmetry of the Bogoliubov particles even at
ξd = 0.

The transmission probability TET of the single-electron
tunneling process is shown in Fig. 4(a). We see that the plateau
of the unitary limit TET � 1.0 evolves at 0 � EA � U/2, for
large U . Since TET = TBG − TCP due to the optical theorem
mentioned above, it is the Bogoliubov-particle part TBG =
sin2 δ that shows the genuine Kondo ridge, as demonstrated in
Fig. 4(b). The single-particle contribution TET decreases out-
side of the Kondo regime EA � U/2, at which the occupation
number Q of Bogoliubov particles rapidly decreases and the
SC pair correlation increases, as demonstrated in Figs. 3(a)
and 3(b).

The Cooper-pair contribution TCP is also plotted in
Fig. 4(b), choosing the Bogoliubov angle to be � = π/2 and
multiplying a factor of −2 which emerges for the nonlocal
conductance gRL ∝ TBG − 2TCP: the negative sign represents
the fact that the crossed Andreev reflection induces the coun-
terflow, flowing from the right lead towards the QD. In this
case, Eq. (4.1) can be rewritten further into a similar form
to the current noise of normal electrons: TCP = sin2 δ (1 −

FIG. 4. Transport coefficients plotted vs EA/U for U/(π�N ) =
1.0, 2.0, 3.0, 5.0 at b = 0, keeping the Bogoliubov angle fixed at
� = π/2 (i.e., ξd = 0). (a) Single-electron transmission TET, defined
in Eq. (3.3). (b) Cooper-pair contributions −2TCP (<0) and the
Bogoliubov-particle transmission TBG = sin2 δ, defined in Eqs. (3.4)
and (3.5), respectively. (c) Nonlocal conductance gRL/g0 = 2(TBG −
2TCP ) with g0 = e2

h 4�R�L/�
2
N . (d) CAR efficiency ηCAR defined in

Eq. (3.7).

sin2 δ) [75,76]. Thus, the contribution of TCP to the nonlocal
conductance is maximized in the case at which the phase shift
becomes δ = π/4 and it reaches the value −2TCP = − 1

2 . The
corresponding dip emerges in Fig. 4(b) at the crossover region
EA � U/2, the width of which becomes of the order of �N .

Figure 4(c) shows the nonlocal conductance, which takes
the form gRL/g0 = −2 sin2 δ cos 2δ at � = π/2, as men-
tioned. It decreases from the unitary-limit value gRL/g0 = 1
as EA deviates from EA = 0, and vanishes gRL = 0 at EA �
U/2 where the phase shift reaches δ = π/4. The nonlocal
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FIG. 5. Three-dimensional plots of (a) |〈d†
↑d†

↓ + d↓d↑〉| and
(b) 〈nd〉, described as functions of ξd and �S , choosing U/(π�N ) =
5.0. Mesh lines are drawn along the polar coordinate (EA, �), with
EA = √

ξ 2
d + �2

S and � = tan−1(�S/ξd ).

conductance becomes negative gRL < 0 at EA � U/2 as the
CAR contributions dominate in this region. In particular, it
has a dip of the depth gRL/g0 = − 1

4 at the point where the
phase shift takes the value δ = π/6.

Similarly, the CAR efficiency takes a simplified form
ηCAR = cos2 δ at � = π/2, and the NRG results are plotted in
Fig. 4(d). The efficiency ηCAR increases with EA, and reaches
ηCAR = 0.5 at δ = π/4 where −2TCP has the dip of the depth
− 1

2 seen in Fig. 4(b). The transient region of ηCAR varying
from 0 to 1 is estimated to be of the order of �N . Furthermore,
at EA � U/2, the efficiency approaches the saturation value
ηCAR = 1.0 although the conductance gRL itself becomes very
small.

C. The characteristics of CAR along the polar coordinates EA

and � at b = 0

So far, we have discussed the transport properties at � =
π/2, along the vertical �S axis in the ξd vs �S plane. As
ξd varies from the electron-hole symmetric point ξd = 0, the
Bogoliubov angle � deviates from π/2. Here we discuss
how the ground-state and transport properties vary along the
angular direction over the range 0 � � � π .

Figures 5 and 6 show the NRG results of the renormalized
parameters and the transport coefficients as functions of ξd
and �S for a relatively large Coulomb interaction U/(π�N ) =
5.0. In these three-dimensional plots, mesh lines are drawn
along the polar coordinates (EA,�). Note that the supercon-
ducting coherence factors cos � and sin � vary in the angular
direction: Cooper pairs are strongly entangled at π/2 and the
SC proximity effect becomes weak as � deviates towards
0 or π . In contrast, along the radial direction, the crossover

(d)

FIG. 6. Transport coefficients (a) TBG, (b) TCP, (c) gRL, and (e) the CAR efficiency ηCAR plotted as functions of ξd and �S , for U/(π�N ) =
5.0 and b = 0. For these three-dimensional plots, mesh lines are drawn along the polar coordinate (EA, �). Two-dimensional plot (d) is a
contour map for the region where the nonlocal conductance gRL becomes negative: contour lines are drawn with 0.05 increments. The CAR
dominates gRL over the parameter region �S � U/2 and π/4 < � < 3π/4, i.e., �S > |ξd |.
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between the Kondo regime and valence fluctuation regime of
the Bogoliubov particles occurs near the semicircle of radius
EA = U/2, as mentioned.

1. � dependence of 〈d†
↑d†

↓ + d↓d↑〉 and 〈nd〉
Among the renormalized parameters plotted in Fig. 3,

the following three, Q, Z , and ẼA do not depend on the
Bogoliubov angle �, and thus Figs. 3(a), 3(c), and 3(d)
remain unchanged as angle � varies. In contrast, the corre-
lation functions which are defined with respect to electrons,
such as |〈d†

↑d†
↓ + d↓d↑〉| = (1 − Q) sin � and 〈nd〉 = 1 +

(Q − 1) cos �, evolve with the Bogoliubov angle �.
We can see in Fig. 5(a) that the pair correlation is sup-

pressed due to the Kondo effect at EA � U/2, especially along
the valley at � = π/2, inside the semicircle shown in Fig. 2.
The slope from the valley bottom towards the direction paral-
lel to the ξd axis is suppressed by the coherence factor sin �.
Correspondingly, in Fig. 5(b), the occupation number 〈nd〉 of
electrons clearly shows a plateau of a semicircle shape which
spreads around the origin EA = 0.0 of the ξd vs �S plane. Note
that the occupation number is locked exactly at 〈nd〉 = 1.0
along the �S axis. Outside the plateau EA � U/2, the super-
conducting proximity effects dominate over the angular range
of π/4 < � < 3π/4 or, equivalently, at �S > |ξd |. In partic-
ular, the ridge of the pair correlation develops at � = π/2,
along the �S axis in Fig. 5(a).

2. � dependence of transport properties

Figure 6(a) shows the NRG results of transmission prob-
ability of Bogoliubov particles TBG = sin2 δ calculated for
U/(π�N ) = 5.0. It has an isotropic structure independent of
�. In particular, the semicylindrical elevation of the height
TBG � 1.0 at EA � 0.5U corresponds to a rotating body of
the Kondo ridge shown in Fig. 4(b). On the slopes of this
semicylindrical hill at EA � 0.5U , it spreads over the valence
fluctuation region of the Bogoliubov particles, at which the
transmission probability TBG rapidly decreases.

Figure 6(b) shows the transmission probability of Cooper
pairs TCP = 1

4 sin2 � sin2 2δ. It is enhanced along the ridge of
a crescent shape that is spreading over the angular range of
π/4 < � < 3π/4 (at which �S > |ξd |) on the arc of radius
EA � U/2, where the crossover between the Kondo-singlet
and the superconducting-singlet states takes place. The ridge
height of TCP decreases from the maximum value 0.25 as �

deviates from � = π/2, showing the sin2 � dependence. The
width of the crescent region in the radial direction is of the
order of �N [� 0.06U in Fig. 6(b)].

The nonlocal conductance gRL/g0 = 2(TBG − 2TCP) is
shown in Fig. 6(c). It also features a flat-topped semicylin-
drical elevation at EA � U/2, which is mainly due to the
contributions of the Bogoliubov-particle part TBG seen in
Fig. 6(a). The nonlocal conductance gRL becomes negative at
the foot of the hill, specifically at EA � U/2 along the arc of
the range π/4 < � < 3π/4, where the CAR dominates the
transport. In order to see more precisely the profile of the
negative-conductance region, a contour plot of gRL is shown in
Fig. 6(d). The dip in the profile becomes deepest at � = π/2
and EA/U � 0.55, as seen also in Fig. 4(c). The behavior of
gRL along the � direction is determined by the coherence

FIG. 7. Parameter space of Heff at finite magnetic fields. Near the
semicircle of radius EA = U/2 + b with EA = √

ξ 2
d + �2

S , the occu-
pation number of the Bogoliubov particles in the Andreev level varies
rapidly from Q � 1.0 to Q � 0.0 for large U . Specifically, in the
atomic limit �N → 0, the ground state is spin polarized Q↑ → 1.0
inside the semicircle at finite fields b �= 0. The Andreev scattering
can dominate the transport in the range of π/4 < � < 3π/4 outside
the semicircle which evolves with b.

factor sin2 � of the Cooper-pair part TCP in Eq. (4.1). It
suppresses the CAR contributions to the nonlocal conductance
as � deviates from π/2. The crescent-shaped dip emerged
for gRL reflecting the corresponding one seen in Fig. 6(b) for
TCP, and the dip spreads from EA � U/2 to EA ∼ U/2 + �N
in the direction of the �S axis. These results suggest that the
crescent dip region will be a plausible target to probe the CAR
contributions in experiments.

The NRG result of the CAR efficiency at b = 0, ηCAR =
sin2 � cos2 δ, is shown in Fig. 6(e). We can see that its
behavior is similar to that of the pair correlation described
in Fig. 5(a): the ridge of ηCAR evolves at EA � U/2 in the
direction of � = π/2 along the �S axis. In the valley region
at EA � U/2, however, the slope of ηCAR in the direction
parallel to the ξd axis becomes steeper as it is determined
by the coherence factor sin2 �, whereas that for the pair
correlation function is sin �. There are also some quantitative
differences between the profiles of the CAR efficiency and the
pair correlation function in the radial direction: it is because
ηCAR ∝ cos2 δ, whereas |〈d†

↑d†
↓ + d↓d↑〉| ∝ 1 − 2δ/π .

V. CROSSED-ANDREEV TRANSPORT AT FINITE
MAGNETIC FIELDS b �= 0

Both the Kondo effect and the superconducting proxim-
ity effect are sensitive to a magnetic field. Here we study
precisely how the CAR contributions vary at finite magnetic
fields.

Figure 7 shows the parameter space of the effective Hamil-
tonian Heff at finite magnetic fields (b > 0). In the atomic
limit �N → 0, the phase boundary evolves with b, and the
ground state of the isolated QD is spin polarized inside the
semicircle of radius EA = U/2 + b where the Andreev level is
occupied by a single Bogoliubov particle with majority spin:
Q↑ → 1.0. In contrast, outside the semicircle, the Andreev
level is empty Q = 0 and the ground state is unpolarized. The
transition is caused by the level crossing between the energy
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level EA,↑ ≡ EA − b of the singly occupied majority-spin state
and the spin-singlet empty state of energy U/2, and thus it
takes place at the circumference of the semicircle EA,↑ = U/2.

The level crossing becomes a gradual crossover, the width
of which is of the order of �N , when normal leads are con-
nected. The CAR contribution to the nonlocal conductance is
enhanced also at finite b near the crossover region: specifi-
cally along the circumference of radius EA � U/2 + b over
the angular range of π/4 � � � 3π/4. We will consider
magnetic-field dependence of the CAR contribution precisely
in this section.

A. Ground-state and transport properties at � = π/2

At finite magnetic fields, the renormalized parameters
become dependent on spin components σ and vary as
Zeeman splitting increases. Our discussions in the following
are based on the transport formulas for the ground state given
in Eqs. (3.3)–(3.7). The NRG calculations have been carried
out for a strong interaction U/(π�N ) = 5.0 in order to clar-
ify how the electron correlations affect the crossed Andreev
reflection in the multiterminal network.

1. b dependence of renormalized parameters

Figures 8(a)–8(f) show the magnetic-field dependence of
the renormalized parameters, calculated for several different
positions of the Andreev level: EA/U = 0.0, 0.2, 0.4, 0.5,
0.6, and 0.8. The results commonly reflect the Fermi-liquid
properties of the Bogoliubov particles, which evolve as EA and
b vary.

For 0 � EA � U/2, the renormalized parameters exhibit
a universal b/T ∗ scaling behavior at small magnetic fields,
with T ∗ the Kondo energy scale defined at zero field b = 0
by Eq. (4.5). The magnitude of T ∗ depends sensitively on
the interaction strength and the level position EA, and, for in-
stance, for U/(π�N ) = 5.0, it is given by T ∗/(π�N ) = 0.002,
0.005, and 0.097 for EA/U = 0.0, 0.2, and 0.4, respectively.
At the magnetic field of order at b ∼ T ∗, the Kondo resonance
of Bogoliubov particles splits into two as the Zeeman effect
dominates. In contrast, in the parameter region of EA � U/2
where the Andreev level deviates further from the Fermi level,
the renormalization effects due to the electron correlations are
suppressed, and the low-energy states depend significantly on
whether U/2 � EA � U/2 + b or U/2 + b � EA. The mag-
netization md of quantum dot is almost fully polarized at
U/2 � EA � U/2 + b, where the Zeeman effect dominates.
In contrast, the superconducting proximity effect dominates
outside the semicircle of radius EA � U/2 + b in the angular
range of π/4 < � < 3π/4. We will discuss these of vari-
ations of the ground state properties in more detail in the
following.

Figures 8(a)–8(d) describe the occupation number Qσ and
the magnetization md ≡ 〈nd↑〉 − 〈nd↓〉 as functions of mag-
netic fields. Note that two of them, Fig. 8(d) and the inset
presented for Q↓ in Fig. 8(b), are plotted vs b/T ∗ for small
magnetic fields. We see in Fig. 8(d) that the magnetization md
for EA/U � 0.4 exhibits the universal Kondo scaling behavior
at b � T ∗. It can also be recognized that the three curves
for Q↓ shown in the inset in Fig. 8(b) will collapse into a
single universal curve if we introduce the offset values along

FIG. 8. Magnetic-field dependence of the renormalized parame-
ters calculated at different Andreev-level positions EA/U = 0.0, 0.2,
0.4, 0.5, 0.6, and 0.8, for a fixed interaction U/(π�N ) = 5.0. (a),
(b) Occupation number of Bogoliubov particles Q↑ and Q↓. Inset
in (b) is an enlarged plot of Q↓ vs b/T ∗, with T ∗ the characteristic
energy scale of the Kondo regime defined at b = 0 in Eq. (4.5).
For EA = 0.0, 0.2U , and 0.4U , it takes the value T ∗/(π�N ) =
0.002, 0.005, and 0.097, respectively (or T ∗/U = 0.0004, 0.001,
and 0.019). The values of Z = �̃N/�N at these three points of EA

are given by Z = 0.008, 0.02, 0.31, respectively. (c) Magnetization
md = 〈nd↑〉 − 〈nd↓〉, which does not depend on the Bogoliubov angle
�. (d) Enlarged view of md for EA = 0.0, 0.2U , and 0.4U plotted
vs b/T ∗ in the Kondo regime. (e) Pair correlation |〈d†

↑d†
↓ + d↓d↑〉|

at � = π/2, which in this case is given by 1 − Q and varies with
b and EA, in contrast to the electron filling 〈nd〉 ≡ 1.0 that remains
unchanged along the �S axis at ξd = 0. (f) Renormalized Andreev
levels ẼA,↑. The dashed straight lines represent the Hartree-Fock (HF)

result EHF
A

EA�U/2−−−−−→ EA − U/2 − b.

the vertical axis which is determined at b = 0 for each EA:
note that the occupation number takes the value Qσ = 0.5 at
EA = b = 0.

However, as seen in Figs. 8(a) and 8(c), the Zeeman effect
dominates at strong magnetic fields. Note that the magneti-
zation can also be written as md = Q↑ − Q↓ and does not
depend on the Bogoliubov angle �. The Kondo behavior
disappears for EA/U � 0.5, at which the Bogoliubov parti-
cles are in the valence fluctuation or empty orbital regime
at b = 0. In this region of EA/U , the occupation number Q↑
of the majority-spin component and the magnetization md
show a steep increase at magnetic fields of b � EA − U/2
where the level crossing occurs. As magnetic field increases
further b � EA − U/2, the magnetization rapidly approaches
the saturation value md → 1.0.

Figure 8(e) shows the magnetic-field dependence of the
SC pair correlation function |〈d†

↑d†
↓ + d↓d↑〉| which becomes
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equal to 1 − Q in the direction of � = π/2. While the pair
correlation increases with EA, it decreases as b increases.
We can see that the SC proximity effect dominates at small
fields b � EA − U/2 in the parameter region of EA � U/2, i.e,
the outside of the semicircle of radius EA � U/2 + b shown
in Fig. 7. In this region, the SC pair correlation function
can take the value of the order of 10% of the maximum
possible value |〈d†

↑d†
↓ + d↓d↑〉| = 1, as seen in Fig. 8(e) at

magnetic fields of the order of b ∼ 0.1U . However, as mag-
netic field approaches b � EA − U/2, the crossover to the
Zeeman-dominated spin-polarized regime occurs, and the pair
correlation rapidly decreases. The sum of the phase shifts
takes the value δ↑ + δ↓ � π/2 in the crossover region. There-
fore, the Andreev scattering is most enhanced at this point
since the factor sin2(δ↑ + δ↓) that determines TCP takes the
maximum value.

Figure 8(f) shows the results for the majority-spin compo-
nent of the renormalized Andreev level ẼA,↑ which includes
the Zeeman energy and the many-body corrections defined in
Eq. (2.17). For EA � U/2, the slope of ẼA,↑ is steep at small
magnetic fields b � 0. This is because the spin susceptibility
χs = md/b is enhanced in this region by the Kondo effect as
seen in Fig. 8(c). The slope becomes gradual, however, as b
increases and the crossover to the Zeeman-dominated regime
occurs at b ∼ T ∗. In contrast, for EA � U/2, the renormalized
level ẼA,↑ at small magnetic fields b � 0 shifts away from the
Fermi level, and the occupation number of the Bogoliubov
particles Q decreases as EA increases. However, as magnetic
field increases further, the renormalized level ẼA,↑ crosses
the Fermi level at b � EA − U/2, and the occupation number
of the majority-spin component Q↑ increases abruptly at the
crossing point. The dashed straight lines in Fig. 8(f) repre-
sent the Hartree-Fock energy shift EHF

A,↑, which asymptotically
takes the following form at EA � U/2:

EHF
A,↑ ≡ EA − b + U

(
Q↓ − 1

2

)
EA�U/2−−−−−→ EA − U

2
− b. (5.1)

The NRG results for ẼA,↑ and the Hartree-Fock energy shifts
show a close agreement for EA � U/2. This is caused by
the fact that the renormalization factor approaches Zσ � 1.0
and it becomes less important at the crossover region be-
tween the Zeeman-dominated spin-polarized regime and the
SC-dominated regime.

2. b dependence of transport properties at � = π/2

We next discuss the magnetic-field dependence of transport
coefficients in the direction of � = π/2, i.e., along the �S axis
(ξd = 0). The NRG results are shown in Fig. 9: the magnetic
field b is scaled by T ∗ in two of the panels 9(a) and 9(c),
whereas the other panels are plotted vs b/U .

We see in Fig. 9(a) that the transmission probabilities of
Bogoliubov particles TBG for EA � 0.2U collapse into a single
curve at small magnetic fields b � T ∗, showing a univer-
sal b/T ∗ Kondo scaling behavior, whereas the probability
of the Cooper pairs TCP is suppressed in this region. Corre-
spondingly, the nonlocal conductance gRL exhibits the scaling
behavior for EA � 0.2U , as shown in Fig. 9(c). The results

FIG. 9. Magnetic-field dependence of the transport coefficients
at � = π/2 for different positions of EA/U = 0, 0.2, 0.4, 0.5, 0.6,
and 0.8, for a strong interaction U/(π�N ) = 5.0. Top panel describes
TBG = ∑

σ sin2 δσ /2, and �-dependent part −2TCP for (a) small
EA � 0.5U and (b) large EA � 0.5U . (c), (d) Nonlocal conductance
gRL/g0. Inset in (d) is an enlarged view in the region around gRL/g0 ≈
0.0: the dashed lines represent the perturbation results obtained with
Eq. (5.2). The characteristic energy is given by T ∗/U = 0.0004,
0.001, 0.019, and 0.097 for EA/U = 0.0, 0.2, 0.4, and 0.5, respec-
tively. (e) CAR efficiency ηCAR. (f) gRL/g0 at a fixed Andreev level
position EA = 0.8U for several different angles � = 0, π/8, π/4,
3π/8, π/2: the dashed lines here also represent the perturbation
results.

for TBG and gRL at EA = 0.4U still show a similar monotonic
decrease although they did not collapse into the universal
curves. Therefore, the CAR efficiencies ηCAR = TCP/TBG for
EA/U = 0.2 and 0.4, described in Fig. 9(e), increase clearly
with b at small magnetic fields near b � 0. It shows that
the Zeeman splitting suppresses the Kondo correlations and
assists the contributions of the Cooper-pair tunneling.

In contrast, when the Andreev level situates further away
from the Fermi level EA � U/2, the ground state evolves
from the superconductivity-dominated regime to the Zeeman-
dominated spin-polarized regime, as magnetic field increases.
In particular, at b � EA − U/2, i.e., the crossover region be-
tween these two regimes, the transmission probability of the
Bogoliubov particles TBG = (sin2 δ↑ + sin2 δ↓)/2 has a peak,
which emerges in Fig. 9(b), as the phase shifts take the
value δ↑ � π/2 and δ↓ � 0. Similarly, the Cooper-pair con-
tribution TCP = 1

4 sin2 � sin2(δ↑ + δ↓) reaches the maximum
value 1

4 at b � EA − U/2 in the crossover region. This is
consistent with the previous work that examined an N-QD-SC
system with the modified second-order perturbation theory
[63]. It revealed the fact that the Andreev scattering is sig-
nificantly enhanced under the condition that the renormalized
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parameters satisfy
∏

σ (ẼA,σ /�̃N,σ ) = 1: this can be rewritten
into the form cot δ↑ cot δ↓ = 1 and is fulfilled at δ↑ + δ↓ =
π/2.

We can see in Fig. 9(d) that, for EA � U/2, the nonlo-
cal conductance gRL = TBG − 2TCP becomes negative in the
SC-dominated regime b � EA − U/2, whereas gRL takes a
positive value in the Zeeman-dominated regime b � EA −
U/2. In particular, for EA � 0.6U , the nonlocal conductance
forms a flat valley structure at 0 � b � EA − U/2, the bottom
of which is negative and is less sensitive to b. This is caused by
the fact that the peak of TBG and the dip of −2TCP move almost
synchronously, in Fig. 9(b), as EA increases from 0.5U . For
observing the flat valley structure of gRL, the depth of which
should not be too shallow, and thus EA − U/2 should be of
the order of �N , or should not be too much larger than �N .
Note that, in this magnetic-field region 0 � b � EA − U/2,
the occupation number of the Bogoliubov particles with the
minority spin is almost empty Q↓ � 0.0 and the transport co-
efficients are determined by the majority-spin component Q↑.
In order to verify this quantitatively, we expand the nonlocal
conductance into the following form, keeping the terms up to
the first order with respect to δ↓:

gRL ≈ g0[cos2 � sin2 δ↑ − δ↓ sin2 � sin 2δ↑] + O(δ2
↓)

�= π
2−−−→ g0 [−δ↓ sin 2δ↑ + O(δ2

↓)]. (5.2)

The dashed lines plotted in the inset of Fig. 9(d) are the results
evaluated with Eq. (5.2), using the NRG results for δσ . These
results show close agreement with the full NRG calculations
of gRL plotted with the symbols, i.e., for EA/U = 0.6 (•) and
0.8 (�).

So far, we have considered behaviors along the angular di-
rection of � = π/2. Figure 9(f) compares the magnetic-field
dependence of gRL for several different angles �, keeping the
Andreev-level position at EA = 0.8U . The dashed lines, which
also show nice agreement with the full NRG results (symbols)
of gRL in this figure, are the perturbation results obtained from
Eq. (5.2). We find that the flat structure with negative gRL
remains for � = 3π/8, where the angle largely deviates from
π/2. As � derives further, however, gRL becomes positive
at 0 < � < π/4, or 3π/4 < � < π . Note that the � depen-
dence enters the nonlocal conductance through the coherence
factor sin2 � in TCP, and thus gRL is symmetrical with respect
to the �S axis in parameter space shown in Fig. 7.

In the SC-dominated regime 0 � b � EA − U/2, both
components of the phase shift approach zero as EA increases
keeping b unchanged, i.e., δ↑ � 0 and δ↓ � 0 as seen in
Figs. 8(a) and 8(b). The CAR efficiency ηCAR is enhanced
in this region although it decreases as b increases, as seen
in Fig. 9(e) for EA/U = 0.6 and 0.8. In particular, for EA �
U , the efficiency approaches saturation value ηCAR → 1.0 at
small magnetic fields near b � 0.0.

B. The characteristics of CAR along the polar coordinates EA

and � at b �= 0

In this subsection, we consider the � dependence of the
transport properties at finite magnetic fields in more de-
tail. Specifically, in order to clarify in which situations the
CAR contribution can dominate the nonlocal conductance by

FIG. 10. Contour maps of |〈d†
↑d†

↓ + d↓d↑〉| at finite magnetic
fields: (a) b = TK and (b) b = 0.1U , for U/(π�N ) = 5.0. Here, TK =
0.0004U is defined as the value of T ∗ at EA = b = 0. The contours
are drawn with 0.1 increments, and the dashed line represents the
semicircle of radius EA = U/2 + b.

overcoming the disturbance of the SC proximity effects by the
Coulomb interaction and magnetic field, we explore a wide
range of the parameter space, i.e., the ξd vs �S plane. Our
discussion here is based on the NRG results in Figs. 10 and 11,
obtained for a relatively large interaction U/(π�N ) = 5.0: the
Kondo temperature in this case is given by TK/U = 0.0004,
which is defined as the value of the characteristic energy scale
T ∗ at EA = b = 0. These results can be compared with those
for zero field presented in Figs. 5 and 6.

1. � dependence of 〈d†
↑d†

↓ + d↓d↑〉 at b �= 0

Figure 10 shows the pair correlation |〈d†
↑d†

↓ + d↓d↑〉| =
(1 − Q) sin � for two different magnetic-field strengths: (a)
b = TK and (b) b = 0.1U . Here, the occupation number Q of
Bogoliubov particles does not depend on � but varies with b
and EA, as mentioned and shown in Figs. 8(a) and 8(b).

The pair correlation function for a small magnetic field b =
TK , shown in Fig. 10(a), is enhanced outside the semicircle
of radius EA � U/2 + b in the angular range of π/4 < � <

3π/4, especially along the �S axis (� = π/2), where the SC
proximity effects dominate. In contrast, it is suppressed by the
Kondo effect inside the semicircle EA � U/2 + b. Note that b
is much smaller than U in this case (TK/U = 0.0004).

Figure 10(b) shows the pair correlation function for a large
magnetic field b = 0.1U . Although it is qualitatively similar
to Fig. 10(a), we can see that the slope just inside of the
circumference becomes steeper than that for b = TK . The
radius of the dashed semicircle at the crossover region in this
case is EA � U/2 + b (= 0.6U ), and thus the expansion of the
circumference due to b becomes visible in Fig. 10(b).

2. � dependence of transport properties at b �= 0

The top panels of Fig. 11 show TBG, TCP, and ηCAR as
functions of EA for three different magnetic fields: (a) b = 0,
(b) b = TK , and (c) b = 0.1U , taking the Bogoliubov angle
to be � = π/2, i.e., the direction in which the SC proximity
effect is most enhanced. We can see that, as b increases, the
peak of the Cooper-pair tunneling part TCP, emerging at EA �
U/2 + b, moves with the crossover region towards the larger
EA side along the horizontal axis. The peak height is 1

4 and the
width becomes of the order of �N (� 0.06U in this case). The
Bogoliubov-particle part TBG exhibits the flat Kondo plateau
at zero field, plotted in Fig. 11(a) for comparison. However,
the Zeeman splitting dominates at magnetic fields of the order
of b � TK and the top of the Kondo plateau caves in around
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FIG. 11. Bogoliubov-angle dependence of transport coefficients in a strong interaction case U/(π�N ) = 5.0 at small b = TK and large
b = 0.1U fields, with TK/U = 0.0004 defined as the value of T ∗ at EA = b = 0. In the top panels for (a) b = 0, (b) b = TK , and (c) b = 0.1U ,
the coefficients TBG, TCP, and CAR efficiency ηCAR at � = π/2 are plotted vs EA/U . (d), (e) Contour maps of TCP, drawn with 0.05 increments.
(f), (g) Contour maps of ηCAR, drawn with 0.1 increments. (h)–(k) Describe the nonlocal conductance gRL/g0. In particular, (j) and (k) are the
contour maps for negative conductance region gRL < 0, for which contours are drawn with 0.05 increments. The dashed semicircle of radius
EA = b + U/2 in (d)–(g) and (j)–(k) corresponds to the one in Fig. 7.

EA � 0.0, as seen in Fig. 11(b). As magnetic field increases
further, the peak of TBG in Fig. 11(c) becomes small and
approaches the peak of TCP that situates close to the crossover
region.

The CAR efficiency ηCAR = TCP/TBG plotted in Fig. 11(c)
takes relatively large value 0.1 � ηCAR � 0.5 even at EA �
U/2 + b. Such a behavior is not seen for small b in Figs. 11(a)
and 11(b), and reflects the suppression of TBG caused by a
large magnetic field b = 0.1U . Outside the crossover region
EA � U/2 + b, however, ηCAR shows a similar behavior in
Figs. 11(a)–11(c): it approaches the saturation value ηCAR →
1.0 as EA increases.

The Bogoliubov angle � enters the nonlocal conductance
gRL through TCP since the Bogoliubov part TBG is independent
of it. Figures 11(d) and 11(e) show the contour maps of TCP
described on the ξd vs �S plane, for magnetic fields of (d)
b = TK and (e) b = 0.1U . The Cooper-pair tunneling part TCP
is enhanced along in the crescent-shaped region on the arc

of radius EA = U/2 + b in the angular range of π/4 < � <

3π/4. The crescent region spreads over the direction of the �S
axis with the width of the order of �N (� 0.06U in this case).
As the magnetic field increases, the crescent region moves
upward along the �S axis, together with the arc indicated as a
dashed semicircle in Figs. 11(d) and 11(e). This evolution of
the crescent region causes the CAR-dominated flat structure
of nonlocal conductance gRL that emerged in the magnetic-
field dependence in Figs. 9(d) and 9(f).

Figures 11(f) and 11(g) show the contour maps of the CAR
efficiency ηCAR for magnetic fields of (f) b = TK and (g) b =
0.1U . Figure 11(f) captures the typical profile of ηCAR at small
fields of order b � TK : the CAR efficiency is enhanced in the
SC-dominated regime EA � U/2 + b and π/4 < � < 3π/4,
whereas it decreases rapidly outside this region, especially
just inside the semicircle, EA � U/2 + b, in the edge of the
Zeeman-dominated spin-polarized regime. It reflects the steep
slope along the direction of � = π/2, seen in Fig. 11(b),
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at the crossover region EA � U/2 + b. In contrast, at large
fields of order b � 0.1U , the corresponding slope of ηCAR
inside the semicircle shows a slow modest decline as seen
in Fig. 11(g). This modest decline of ηCAR = TCP/TBG is
caused by the behavior of the transmission probability of the
Bogoliubov particles in the denominator that is suppressed in
the Zeeman-dominated regime for large magnetic fields, as
seen in Fig. 11(c).

Figures 11(h) and 11(i) describe three-dimensional plots
of the nonlocal conductance gRL/g0 for magnetic fields of (h)
b = TK and (i) b = 0.1U , respectively. These two examples
show quite different behaviors inside the semicircle of radius
EA � U/2 + b. While the Kondo plateau of gRL starts to cave
in around EA = 0 for magnetic fields of the order of TK , it
is significantly suppressed at large magnetic fields of order
0.1U , almost in the whole region inside the semicircle EA �
U/2 + b, except for the rim of the semicircle. However, in
both cases, there spreads commonly a CAR-dominated region
with negative nonlocal conductance, outside the semicircle
EA � U/2 + b in the direction of the �S axis, which also
emerges at zero magnetic field in Fig. 6(c).

Figures 11(j) and 11(k) are the contour maps of the region,
at which the nonlinear conductance becomes negative gRL <

0.0, for magnetic fields of (j) b = TK and (k) b = 0.1U . It
spreads in the ξd vs �S plane, over the region of EA � U/2 + b
and π/4 < � < 3π/4. These plots clearly show that the CAR
contribution is enhanced, particularly at the crescent region
just outside the circumference of the dashed semicircle. The
CAR dominates the nonlocal conductance in this region, and
the dip structure of gRL still remains for finite magnetic fields
of order 0.1U although the depth decreases as b increases.
Furthermore, these results demonstrate how the flat structure
can emerge in the magnetic-field dependence of gRL, seen in
Figs. 9(d) and 9(f). For example, the point (EA = 0.6U,� =
π/2) in the ξd vs �S plane situates in the dip region of gRL
when the magnetic field b varies from 0 to the order 0.1U .

These results suggest that, in order to experimentally probe
the CAR contributions in the nonlocal conductance gRL, this
crescent region will be a plausible target to be examined.
The CAR-dominated transport occurs in the parameter re-
gion �S � U/2 + b, where the Cooper pairs can penetrate
into quantum dots, overcoming the repulsive interaction and
magnetic field. Although we have chosen a rather strong inter-
action U/(π�N ) = 5.0 in this section, the sweet spot for the
measurements, at which gRL exhibits a dip structure, emerges
for any U , as demonstrated in Fig. 4(c) for b = 0.

C. Spin-polarized current between normal leads

So far, we have mainly considered the charge transport.
In particular, we have seen in Fig. 11(i) that for a magnetic
field of b = 0.1U , the nonlocal conductance has a peak in the
angular directions � � 0 and � � π , along the rim of the
semicircle of radius EA � U/2 + b. Here we discuss the res-
onant spin-polarized current which is significantly enhanced
in this region where the crossover takes place between the
Zeeman-dominated regime and the SC-proximity-dominated
regime.

The spin current IR,spin ≡ IR,↑ − IR,↓ flowing from the
quantum dot to the right lead can be expressed in the following

FIG. 12. Spin-dependent transport coefficients at finite magnetic
field b = 0.1U , for U/(π�N ) = 5.0. Top panel (a) shows sin2 δ↑ and
sin2 δ↓, plotted vs EA. Three-dimensional figures represent (b) spin
transmission coefficient Tspin and (c) current polarization PR, plotted
as functions of ξd and �S , for �L = �R.

form, as shown in Appendix D:

IR,spin = e2

h

4�L�R

�2
N

Tspin (VL − VR), (5.3)

where Tspin = (sin2 δ↑ − sin2 δ↓) cos �. The magnetic-field
dependence of the spin current is determined by the difference
sin2 δ↑ − sin2 δ↓ between the transmission probability of the
↑-spin and that of the ↓-spin Bogoliubov particles. Similarly,
the normalized current polarization is defined by [77–80]

PR ≡ IR,↑ − IR,↓
IR,↑ + IR,↓

�L=�R−−−−→ sin2 δ↑ − sin2 δ↓
sin2 δ↑ + sin2 δ↓

cos �. (5.4)

Figure 12 shows the NRG result of the spin-resolved trans-
port coefficients calculated at a magnetic field of b = 0.1U ,
for a strong interaction U/(π�N ) = 5.0. In this case, the
renormalized Andreev level for the majority spin ẼA,↑ crosses
the Fermi level at EA � U/2 + b since ẼA,↑ can be approxi-
mated by the Hartree-Fock energy shift, defined in Eq. (5.1),
in the crossover region.

Figure 12(a) shows that the resonant tunneling of the
unitary limit sin2 δ↑ = 1 occurs for the majority ↑-spin
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Bogoliubov particles, whereas the minority one sin2 δ↓ is very
small and does not give any significant contribution to the
current. Note that the occupation number of electrons 〈nd,σ 〉
depends on the coherence factor cos �, and is given by a
linear combination of the phase shifts as shown in Eq. (2.23).
Therefore, the occupation number of ↓-spin electrons fluctu-
ates significantly at the crossover region in the direction of

� = π in such a way that 〈nd,↓〉 �=π−−−→ 1 − δ↑/π , whereas
the ↑-spin electrons fluctuate in the direction of � = 0 as

〈nd,↑〉 �=0−−−→ δ↑/π .
Figures 12(b) and 12(c) clearly show that Tspin and PR are

enhanced at the level-crossing point EA � b + U/2 near the
ξd axis. The � dependencies of Tspin and PR are determined
by the coherence factor cos �, as shown in Eqs. (5.3) and
(5.4). Therefore, these coefficients become most significant
in the directions of � = 0 and π , where the resonant tun-
neling occurs for the ↑-spin and ↓-spin electron components,
respectively. As the Bogoliubov angle � deviates away from
the ξd axis, the spin polarization is suppressed, especially
in the SC-proximity-dominated regime at π/4 < � < 3π/4,
and the spin current IR,spin vanishes at � = π/2.

VI. SUMMARY

We have studied the interplay between the crossed Andreev
reflection, Kondo effect, and Zeeman splitting, occurring in a
multiterminal quantum dot, consisting of two normal and one
SC leads.

It has been shown that the linear-response currents flowing
through quantum dot at zero temperature T = 0 are deter-
mined by two angular variables, i.e., the phase shift δσ of
Bogoliubov particles and the Bogoliubov rotation angle � =
cot−1(ξd/�S ) in the the limit of large SC gap |�S| → ∞. In
this limit, the phase shift can be deduced from an effective
Anderson model for interacting Bogoliubov particles, which
has a global U(1) symmetry along the principal axis in the
Nambu pseudospin space. The Bogoliubov angle � enters the
transport coefficients through the SC coherence factors, and
plays an essential role in the conductance, together with the

position of the Andreev level EA =
√

ξ 2
d + �2

S .
In the first half of the paper, we have described the role

of the many-body optical theorem on the CAR, and have
shown that the multiterminal conductance at finite magnetic
fields is determined by the transmission probability TBG =
1
2

∑
σ sin2 δσ of the Bogoliubov particles, which does not

depend on �, and by the Cooper-pair tunneling part TCP =
1
4 sin2(δ↑ + δ↓) sin2 �. In the second half, we have discussed
the behaviors of nonlocal conductance, obtained by using the
NRG approach in a wide range of the parameter space which
consists of ξd , �S , �N , the Coulomb interaction U , and the
magnetic field b.

At zero magnetic field, the nonlocal conductance gRL be-
comes negative at EA � U/2 and π/4 < � < 3π/4, where
the CAR dominates. In particular, the contribution of Cooper-
pair tunnelings TCP is maximized at a crescent-shaped
crossover region between the Kondo-dominated and the SC-
dominated regimes, emerging at EA � U/2 in the angular
direction of � � π/2. The width of the crescent region along

the �S axis is of the order of �N . The enhanced CAR occurring
in this region is caused by the valence fluctuation of the
Bogoliubov particles, in the middle of which the occupation
number takes the value Q = 1

2 and the phase shift due to
the Cooper-pair tunneling reaches the unitary limit δ↑ + δ↓ =
π/2.

Magnetic fields lift the spin degeneracy of the Andreev
resonance level. In the strongly correlated case where Q �
1.0 with EA � U/2 and U � �N , the crossover between the
Kondo regime and Zeeman-dominated regime occurs at a
magnetic field b ∼ T ∗ of the order of the Kondo energy scale
T ∗. In contrast, at EA � U/2 in the valence-fluctuation re-
gion of the Bogoliubov particles, magnetic fields induce a
crossover between the SC-proximity dominated regime and
the Zeeman-dominated regime at b � EA − U/2, where the
renormalized Andreev level ẼA,↑ for the majority-spin com-
ponent (σ =↑) crosses the Fermi level. It induces the resonant
tunneling of the Bogoliubov particles and the Cooper-pair
tunneling, the transmission probabilities of which are de-
termined by the phase shifts δ↑ � π/2 and δ↑ + δ↓ � π/2,
respectively. Note that δ↓ � 0.0 as the renormalized Andreev
level for the minority-spin component becomes almost empty
Q↓ � 0.0 in this region. It has also been demonstrated that the
resonant spin current is enhanced in the angular direction of
� � 0 or � � π when the Andreev level of the majority spin
crosses the Fermi level.

The nonlocal conductance gRL becomes negative in the
parameter region of EA � U/2 + b and π/4 < � < 3π/4. In
particular, the CAR contribution is maximized in the crescent-
shaped region, which moves in the ξd vs �S plane, together
with the semicircular boundary of radius EA � U/2 + b as b
increases. The crescent region evolves with the magnetic field
and yields a flat valley structure which emerges in the b de-
pendence of gRL, at 0 � b � EA − U/2. These results suggest
that, in order to experimentally probe the CAR contributions
measuring the nonlocal conductance, the crescent parameter
region will be a plausible target to be examined.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR |�S| → ∞
The Hamiltonian H defined in Eq. (2.1) can be separated

into two independent parts since only the symmetrized linear
combination αε,σ of conduction electrons has a finite tunnel
coupling to the QD, whereas the antisymmetrized linear com-
bination βε,σ is decoupled from the rest of the system:

αε,σ ≡ vL cε,L,σ + vR cε,R,σ√
v2

L + v2
R

, (A1)

βε,σ ≡ −vR cε,L,σ + vL cε,R,σ√
v2

L + v2
R

. (A2)
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Correspondingly, the conduction-electron part and the
normal-tunneling part of the Hamiltonian can be rewritten in
the form

HN =
∑

σ

∫ D

−D
dε ε (α†

ε,σ αε,σ + β†
ε,σ βε,σ ), (A3)

HTN = vN

∑
σ

∫ D

−D
dε

√
ρc (α†

ε,σ dσ + H.c.), (A4)

where vN ≡
√

v2
L + v2

R.
Furthermore, in the large gap limit |�S| → ∞ which is

taken at |�S| 
 DS keeping ρS constant, the superconduct-
ing proximity effects can be described by the pair potential
�d ≡ �S eiφS penetrating into the QD [36,47]. Therefore, at
low energies, the subspace to which the QD belongs can be
described by the following effective Hamiltonian:

Heff ≡ ψ†
d HSC

dot ψd + U

2
(nd − 1)2

+ vN

∫ D

−D
dε

√
ρc[ ψ†

α (ε) ψd + ψ†
d ψα (ε)]

+
∫ D

−D
dε ε ψ†

α (ε) ψα (ε). (A5)

Here, HSC
dot is the following matrix defined in the Nambu

pseudospin space,

HSC
dot ≡

(
ξd �d
�∗

d −ξd

)
− b 1, (A6)

with 1 the 2 × 2 unit matrix, and

ψd ≡
(

d↑
d†

↓

)
, ψα (ε) ≡

(
αε,↑

−α
†
−ε,↓

)
. (A7)

The effective Hamiltonian Heff has a global U(1) symmetry
with respect to the principal axis along the three-dimensional
vector n̂ ∝ (Re �d , −Im �d , ξd ) in the Nambu space. The
conserved charge associated with this U(1) symmetry cor-
responds to the total number of Bogoliubov particles, the
operators for which are given by(

γd,↑
γ

†
d,↓

)
= U†ψd ,

(
γε,↑

−γ
†
−ε,↓

)
= U†ψα (ε). (A8)

Here, U is the unitary matrix which diagonalizes HSC
dot:

U† HSC
dot U = EAτ3 − b1, τ3 =

(
1 0
0 −1

)
, (A9)

with EA ≡
√

ξ 2
d + �2

S . For example, in the case where the
Josephson phase φS = 0, the matrix U is determined by a
single Bogoliubov angle �, as shown in Eq. (2.13).

APPENDIX B: DERIVATION OF LINEAR NONLOCAL
CURRENT

In this Appendix, we provide a brief derivation of the
nonlocal conductance defined in Eqs. (3.1)–(3.4) The current
flowing from the quantum dot to the normal lead on the right

is described by the operator

ÎR,σ = −i evR

∫ D

−D
dε

√
ρc (c†

ε,R,σ dσ − d†
σ cε,R,σ ) (B1)

for spin σ component. The steady-state average of the
total current IR ≡ 〈ÎR,↑〉 + 〈ÎR,↓〉 with IR,σ ≡ 〈ÎR,σ 〉 can be
expressed in terms of the Green function in the Keldysh for-
malism [36]

IR = − i
e

h

∫ ∞

−∞
dω �R Tr

[
Gr

dd (ω)CR(ω) Ga
dd (ω) τ3

]
,

CR ≡ �K
tot − (1 − 2 f R)[�−+

tot − �+−
tot ]. (B2)

Here, Tr denotes the trace of the 2 × 2 matrices in the
Nambu pseudospin space. �−+

tot and �+−
tot are the lesser and

greater self-energies, respectively, and �K
tot ≡ −�−+

tot − �+−
tot .

The matrix f ν is defined as

f ν (ω) =
[

fν (ω) 0
0 f ν (ω)

]
, ν = L, R. (B3)

The bias voltage eVν is applied to the leads such that fν (ω) ≡
f (ω − eVν ) and f ν (ω) ≡ f (ω + eVν ) with f (ω) = 1/[eω/T +
1] the Fermi distribution function.

Each self-energy matrix can be separated into two parts,
e.g.,

�K
tot (ω) = �K

0 (ω) + �K
U (ω). (B4)

Here, the first term on the right-hand side represents the tunnel
contributions at U = 0,

�K
0 (ω) = −2i

∑
ν=L,R

�ν[ 1 − 2 f j (ω) ], (B5)

�−+
0 (ω) − �+−

0 (ω) = −2i(�L + �R) 1, (B6)

with 1 the 2 × 2 unit matrix in the pseudospin space. The sec-
ond term on the right-hand side of Eq. (B4), �K

U (ω), represents
the self-energy corrections due to the Coulomb interaction U .
This and the corresponding terms of the lesser and greater
self-energies �−+

U (ω) and �+−
U (ω) are also pure imaginary in

the frequency domain, and represent the damping of quasi-
particles due to the multiple collisions. These imaginary parts
of the interacting self-energies vanish at T = 0, eVν = 0, and
ω = 0, and thus they do not contribute to the linear-response
current at zero temperature. Furthermore, the function CR(ω)
identically vanishes at eVν = 0 since there is no steady current
at equilibrium.

Therefore, at T = 0, the linear-response current can be
calculated, keeping the noninteracting terms in Eqs. (B5) and
(B6) for CR(ω) in the right-hand side of Eq. (B2):

IR = 4e2

h

[(∣∣{Gr
dd (0)

}
11

∣∣2 + ∣∣{Gr
dd (0)

}
22

∣∣2)
× �R�L (VL − VR)

− (∣∣{Gr
dd (0)

}
12

∣∣2 + ∣∣{Gr
dd (0)

}
21

∣∣2)
× {

�R�L (VL + VR) + 2�2
R VR

}]
. (B7)

Note that the anomalous Green’s functions are related to each
other through {Gr

dd (ω)}21= {Ga
dd (ω)}∗12. Equation (B7) can

be rewritten further in terms of the phase shifts δσ and the
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Bogoliubov angle �, by using Eq. (2.12) to obtain Eqs. (3.3)
and (3.4).

APPENDIX C: OPTICAL THEOREM FOR ANDREEV
SCATTERING

We provide a derivation of the optical theorem, which
emerges in the form∑

σ

sin2 δσ = 2(TET + TCP). (C1)

We start with the matrix identity for the impurity Green’s
function in the Nambu form

Gr
dd (ω) − Ga

dd (ω)

= Gr
dd (ω)

[{
Ga

dd (ω)
}−1 − {

Gr
dd (ω)

}−1]
Ga

dd (ω)

= Gr
dd (ω)

[
�r

tot (ω) − �a
tot (ω)

]
Ga

dd (ω). (C2)

At ω = T = eV = 0, it can be rewritten further in the form

−�N

2i

[
Gr

dd (0) − Ga
dd (0)

] = �2
N Gr

dd (0) Ga
dd (0). (C3)

Here, we have used the property that the imaginary part of the
interacting self-energy vanishes Im �r

U (0) = 0 and the nonin-
teracting one is given by �r

0(ω) − �a
0(ω) = −2i�N 1. Taking

trace of the Nambu matrices, the left-hand side of Eq. (C3)
can be calculated as

−�N

2i
Tr

[
Gr

dd (0) − Ga
dd (0)

] = −�N

2i

∑
σ

[
Gr

γ ,σ (0) − Ga
γ ,σ (0)

]
=

∑
σ

sin2 δσ . (C4)

Similarly, the right-hand side of Eq. (C3) takes the form

�2
N Tr

[
Gr

dd (0) Gr
dd (0)

]
= �2

N

[∣∣{Gr
dd (0)

}
11

∣∣2 + ∣∣{Gr
dd (0)

}
12

∣∣2

+ ∣∣{Gr
dd (0)

}
21

∣∣2 + ∣∣{Gr
dd (0)

}
22

∣∣2 ]
. (C5)

The last line corresponds to 2(TET + TCP) defined in Eqs. (3.3)
and (3.4), and from this Eq. (C1) follows.

APPENDIX D: DERIVATION OF THE SPIN-CURRENT
FORMULA

We briefly describe here the linear-response formula for
the spin current following between two normal leads at finite
magnetic fields. The current formula presented in Appendix B
can be decomposed into the contributions of the ↑- and ↓-spin
components, which can be rearranged as a spin current:

IR,spin ≡ IR,↑ − IR,↓

= −i
e

h

∫ ∞

−∞
dω �R Tr

[
Gr

dd (ω)CR(ω) Ga
dd (ω)

]
. (D1)

Specifically at T = 0, the linear-response spin current can be
expressed in the form

IR,spin = 4e2

h
�L�R

(∣∣{Gr
dd (0)

}
11

∣∣2 − ∣∣{Gr
dd (0)

}
22

∣∣2)
×(VL − VR)

= 4e2

h

�L�R

�2
N

Tspin (VL − VR), (D2)

Tspin ≡ (sin2 δ↑ − sin2 δ↓) cos �. (D3)

Note that IL,↑ − IL,↓ = IR,↑ − IR,↓.
Similarly, the current polarization PR, defined with respect

to symmetric voltages VL = −VR, can be used as a measure of
the spin current relative to the charge current [77–80]:

PR ≡ IR,↑ − IR,↓
IR,↑ + IR,↓

= �L�RTspin

2
[
�L�RTET + �2

RTCP

]
�L=�R−−−−→ sin2 δ↑ − sin2 δ↓

sin2 δ↑ + sin2 δ↓
cos �. (D4)
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