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Spatial exciton localization at interfaces of metal nanoparticles
and atomically thin semiconductors
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We present a self-consistent Maxwell-Bloch theory to analytically study the interaction between a nanostruc-
ture consisting of a metal nanoparticle and a monolayer of transition-metal dichalcogenide. For the combined
system, we identify an effective eigenvalue equation that governs the center-of-mass motion of the dressed
excitons in a plasmon-induced potential. Examination of the dynamical equation of the exciton-plasmon hybrid
reveals the existence of bound states with negative eigenenergies, which we interpret as excitons localized in
the plasmon-induced potential. The appearance of these bound states in the potential indicates strong coupling
between excitons and plasmons. We quantify this coupling regime by computing the scattered light in the near-
field explicitly and identify signatures of strong exciton-plasmon coupling with an avoided crossing behavior
and an effective Rabi splitting of tens of meV.
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I. INTRODUCTION

Transition-metal dichalcogenides (TMDCs) exhibit re-
markable optical properties, such as a direct band gap in the
monolayer limit [1,2], valley-selective dichroism [3,4], and a
spin-split band structure [4,5]. These properties, along with
their high sensitivity to the surrounding environment [6–10],
make them ideal for functionalization [11] with external
nanoparticles, such as molecules [9,12–14], metal nanopar-
ticles [15–17], quantum dots [18], or other two-dimensional
(2D) materials [19–21], to locally tailor their optical proper-
ties.

Recently, many research works have focused on localizing
excitons in TMDC layers through the deterministic creation of
defects within the structure [22], strain-induced localization
that attracts carriers [23,24], and Moiré potentials [25,26].
These methods enable the localization of individual excitons
in TMDCs, making them promising candidates for single-
photon emitters in 2D hybrid materials [22,27]. Moreover, the
strong coupling of electromagnetic modes to quantum emit-
ters provides unprecedented control over the quantum states,
which may have applications, in particular when it reaches
the quantum optics limit where light-matter effects cannot
be explained semiclassically and multiphoton correlations are
essential [28–30].

There has been much recent interest in creating joint states
of excitonic and plasmonic excitations, known as plexcitonic
states [31–34]; these hybrid states can be observed in strongly
interacting systems that support both excitons and plasmons.
Most works have focused on systems where an excitonic
system is located inside a cavity to take advantage of the
local field enhancement [35–38]. For example, picocavities
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have been utilized to achieve strong exciton-plasmon inter-
action [37–39]. Similarly, other systems have also reached
the strong-coupling regime [40], evinced by a clear spec-
tral splitting. However, the past few years have witnessed
a significant surge in interest towards a variety of systems,
in particular, systems consisting of individual nanoparticles
interacting with excitonic systems, which were shown to reach
the strong-coupling regime without requiring a typical dipole-
cavity interaction commonly used in cavity QED [31–34]: In
particular, experiments that are qualitatively similar to our
theoretical study revealed impressive Rabi splittings on the
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FIG. 1. Coupled nanostructure. The investigated system is com-
posed of a gold nanoparticle with its center being located at zpl and
a two-dimensional TMDC monolayer at zex. The half spaces reveal
a constant background permittivity ε1 and ε2, respectively, so that
an interface exist at z = 0. The eccentricity of the AuNP can be
manipulated from a sphere to an oblate spheroid which influences
the interaction strength. The inset shows the absorption spectrum
of the TMDC (blue) and the polarizability of a spheroidal gold
nanoparticle. Using the permittivity function from Ref. [51] and Mie
theory [52,53], the polarizability can be calculated classically.
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order of 100 meV [41–43] for systems consisting of nanorods
[44], resonators [37,45], nanodisks [42,46], bipyramids [43],
and nanocubes [41].

On the theoretical side, these interacting systems are
mostly treated using a classical coupled-mode theory with
the interaction strength as fitting parameter [47,48]. However,
there have been two recent studies that investigate the strong
coupling of a metal nanorod with a TMDC monolayer [49,50]
based on a quasinormal mode analysis and quantum reaction
coordinate approach, respectively, which reproduce the exper-
imentally observed spectral splittings [40,42,43]. However,
the modifications of the excitonic properties are so far not well
investigated.

In this paper, we consider a hybrid nanostructure consisting
of a spheroidal gold nanoparticle (AuNP) and a monolayer
of transition-metal dichalcogenides (TMDC), as illustrated in
Fig. 1. To model this system in a quantitative way, both the
TMDC and the AuNP are encapsulated in two different media
with homogeneous and isotropic permittivities ε1 and ε2, re-
spectively. In contrast with previous works, we treat the entire
system using a semiclassical microscopic model based on
the Maxwell-Heisenberg equation of motion framework. We
analytically identify an eigenvalue equation in the composite
system, which describes the center-of-mass motion of the
excitons in the potential induced by the plasmonic excitation.
Our derived eigenvalue equation can be used to drastically
reduce the numerical complexity of the problem, and offers
new physical insight into the character of the hybridization.
As an example, it allows us to connect to the strong-coupling
limit with the occurrence of bound exciton states induced by
the AuNP.

The rest of our paper is organized as follows: In Sec. II,
we give an introduction to the theoretical description of the
composite subsystems: We provide the excitonic Bloch equa-
tion for TMDC excitons in Sec. II A and discuss Mie-Gans
theory for the localized plasmons in the AuNP in Sec. II B.
We proceed with introducing a Green’s function solution of
Maxwell’s equations in Sec. II C that is used to couple the
constituents and find equations that describe the dynamics
of the coupled system. In Sec. III, we discuss the occurring
eigenvalue equation that characterizes the interaction within
the nanoparticle and analyze the corresponding eigenvalues
and eigenvectors. In Sec. IV, we then study the implications
of the interaction and the arising eigenstates on the macro-
scopic polarization within the TMDC monolayer. Section V
computes the electric near-field around the nanostructures and
finds a peak splitting of the excitonic and plasmonic modes
that for artificially detuned exciton resonance is shown to
result in an avoided crossing behavior of the two resonances.
Finally, in Sec. VI, we provide our conclusions and discuss
the utility of our analytical plexcitonic approach to describe
the interaction in nanostructures and their implications on
localization and strong coupling.

II. MAXWELL-BLOCH APPROACH

We employ a semiclassical framework to obtain a set
of self-consistent Maxwell-Bloch equations. These describe
the exciton dynamics in terms of excitonic Bloch equations,
the plasmonic response of the metal nanoparticle using Mie

theory and the electromagnetic field that mediates the inter-
action by Maxwell’s equations. We work in real space for the
out-of-plane component (z direction) and Fourier transform
the in-plane component (x, y directions) and transform the
temporal dynamics to the frequency domain so that we use
a set of (Q‖, z; ω) as our coordinates, which makes it possible
to solve the differential equations algebraically.

A. Optical response of transition-metal dichalcogenide excitons

The microscopic dynamics in TMDC monolayers are de-
scribed using the Heisenberg equation of motion, which leads
to excitonic Bloch equations, as described in Refs. [54–56]:

(
E ν + h̄2Q‖2

2M
− h̄ω − iγ ν

)
pξν

Q‖ (ω)

= ϕ∗
ν (r‖ = 0) (dξ )∗ · EQ‖ (zex; ω). (1)

The left-hand side accounts for the oscillation of the micro-
scopic polarization pξν

Q‖ with excitonic energy E ν , where we
use a valley index ξ = +1 (−1) for the K (K ′) valley, re-
spectively, exciton state number ν, e.g., 1s, 2s, ..., and Fourier
component of the center-of-mass motion Q‖. Furthermore, the
left-hand side accounts for the dispersion of excitons (second
term) with the exciton mass M. The dephasing rates γ ν are
added to account for phonon-induced dephasing as calculated
microscopically in Ref. [57]. The TMDC excitons are driven
by the electric field EQ‖ (zex; ω) via the electronic transition
dipole moment dξ at the respective valley [4] and ϕν (r‖ = 0).
Here, ϕν (r‖) is the excitonic wave function depending on
the relative coordinate of electron and hole r‖ and can be
obtained by solution of the Wannier equation with a Coulomb
potential tailored to the specific geometry. In the literature,
this is mostly done using a Rytova-Keldysh-type approach
[6,7] with a model dielectric function [58,59], which we adapt
to our effective four-layer system, cf. Fig. 1. The excitonic
wave function is evaluated at r‖ = 0 which accounts for the
probability of finding electron and hole at the same position
[60]. The resulting TMDC absorption spectrum is given in
the inset of Fig. 1. In the hybrid structure, the total field at
the TMDC position EQ‖ (zex) includes the external field E0

Q‖ , a
contribution caused by the AuNP-TMDC interaction as well
as the valley exchange coupling within the monolayer [61].

The microscopic TMDC polarization pξν

Q‖ , calculated from
Eq. (1), is related to the macroscopic polarization via

PTMDC
Q‖ (z; ω) =

∑
ξν

dξ ϕν (r‖ = 0) pξν

Q‖ (ω) δ(z − zex) + c.c.,

(2)

where we assume that the monolayer can be approximated
as infinitesimally thin which makes it effectively two dimen-
sional. This definition will be used as a source term in the
macroscopic Maxwell’s equation. Later in this paper, we only
focus on the ν = 1s resonance and effectively drop the ν

index. This is a good approximation when the 1s resonance
is spectrally clearly separated and the spectral range is limited
to the one dominated by the 1s resonance, as it is for our case.
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TABLE I. Material parameters for MoSe2 and AuNP used in the
numerical implementation.

Parameter Value Units Reference

d 0.27 eC nm [4]
M 6.2535 fs2 eV nm−2 [85]
h̄γ (300 K ) 0.0269 eV a

c 299.79246 nm fs−1

ϕ0 0.51 nm−1 b

ε∞ 1.53 [51]
h̄ωp 8.55063 eV [51]
h̄γp 0.072932 eV [51]
A1 0.94 [51]
ϕ1 −π/4 [51]
h̄ω1 2.64923 eV [51]
h̄γ1 0.53906 eV [51]
A2 1.36 [51]
ϕ2 −π/4 [51]
h̄ω2 3.74575 eV [51]
h̄γ2 1.31898 eV [51]
rxy 8 nm
rz 4 nm
zex −1 nm
zpl 5 nm
ε1 4.5
ε2 1

aCalculated by exploiting the method from Ref. [57].
bCalculated from Rytova approach for 4 layer system similar
to Ref. [6].

B. Optical response of nanoparticle plasmons

The metal nanoparticle, in the dipole approximation, is
modeled using Mie-Gans theory [52,53] that condenses the
light-matter interaction in response to the external field E0

Q‖
for a spheroid in a diagonal polarizability tensor α(ω) whose
diagonal components are given by

αi(ω) = 4πε0ε1
rxryrz

3

εAu(ω) − ε1

LiεAu(ω) + ε1(1 − Li )
. (3)

The gold permittivity εAu(ω) is analytically modeled using
the approach from Ref. [51], that incorporates d band con-
tributions and two interband transitions in the visible regime
in order to accurately describe the experimental data found
in Ref. [62]. Its analytical expression is given in Eq. (A1).
The strength of the individual components depends on the
aspect ratio and is determined by the lengths of the spheroid’s
semi-axes ri and Li, as defined in Eqs. (A2) and (A3). This
description is valid for the nanoparticles considered in our
study; for smaller or larger nanoparticles one would need to
include additional terms to incorporate hydrodynamic [63,64]
or retardation effects [65–67].

The choice of an oblate spheroid allows for enhanced in-
teraction of AuNP and TMDC since it reduces the effective
separation while keeping the volume and thus the polariz-
ability large. In the inset of Fig. 1, the absolute value of the
in-plane polarizability of the considered spheroid is shown
as an example. All used parameters can be found in Table I.
The dipole approximation is generally applicable for metal
nanoparticles significantly smaller than the wavelength of the

incident light. This condition ensures that the electromagnetic
field across the nanoparticle remains approximately uniform,
allowing for an effective representation of the particle as a
single dipole. In our study, the dimensions of the particles
under consideration have a radius of rxy = 8 nm. These length
scales are at least an order of magnitude smaller than the rele-
vant wavelength range from 500 to 700 nm. Furthermore, one
might assume that higher-order modes occurring in the metal
nanoparticle become important due to the small interparticle
spacing of TMDC and AuNP of 1 nm for our study. However,
due to the far-field excitation and the fact that the unstruc-
tured excitons within the 2D semiconductor corresponds to
a collective continuum of emitters large compared with sin-
gle atoms, as discussed in Ref. [68], the dipole mode is the
dominant contribution. Therefore, for a qualitative and even
a quantitative understanding [16,31,68–73] of the interaction
between a plasmonic nanoparticle (dipole source) and the
calculated localization of excitons (TMDC monolayer), which
is of primary interest in this study, it is sufficient to assume the
dipole approximation. For other scenarios, such as excitation
by point dipoles, it might be necessary to go beyond the dipole
approximation [65].

In this dipole approximation, the AuNP polarization can be
written as

PAuNP
Q‖ (z; ω) = α(ω)

(2π )2

·
∫

d2Q′
‖ e−i(Q‖−Q′

‖ )·rpl
‖ EQ′

‖ (zpl; ω)δ(z − zpl),

(4)

which describes the polarization of a point dipole located at
rpl = (rpl

‖ , zpl). The polarizability α(ω) incorporates the elec-
tric field generated by the AuNP. Thus, EQ′

‖ (zpl) corresponds
to the electric field at the position of the AuNP, excluding
the field contributed by itself. For the purpose of this paper,
we assume rpl

‖ = 0. Combing the two polarizations given in
Eqs. (2) and (4), the full polarization is given by

PQ‖ (z; ω) = PTMDC
Q‖ (z; ω) + PAuNP

Q‖ (z; ω), (5)

which enters Maxwell’s equations to compute the electric field
close to the nanostructure.

C. Optical response of the coupled nanostructures

In our description, the interaction of TMDC and AuNP
is mediated by the electric field, as can be seen in Eqs. (1)
and (4), which has to be determined self-consistently from
Maxwell’s equations. The starting point for the investigation
is the wave equation(

∇2 − ε(z)

c2

∂2

∂t2

)
E(r, t )

= 1

ε0c2

∂2

∂t2
P(r, t ) − 1

ε(z)ε0
∇[∇ · P(r, t )], (6)

for polarization P(r, t ) in a background medium with spatially
piecewise constant permittivity ε(z), which is ε1 in the upper
half plane and ε2 in the lower half plane.
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A general solution of this equation can be provided via
the Green’s function using the coordinate system (Q‖, z; ω)
which we obtain by Fourier transformation E(r; ω) =
(2π )−2

∫
d2Q‖eiQ‖·r‖EQ‖ (z; ω), with

EQ‖ (z; ω) =
∫

R
dz′GQ‖ (z, z′; ω) · PQ‖ (z′; ω) + E0

Q‖ (z; ω),

(7)

with the dyadic Green’s function GQ‖ (z, z′; ω) and the exter-
nal electric field E0

Q‖ (z; ω). For Eq. (6), the dyadic Green’s
function is given by

GQ‖ (z, z′; ω) =
[
− ω2

ε0c2
1 + 1

ε0ε(z)

(
Q‖ ⊗ Q‖ iQ‖∂z′

iQT
‖ ∂z′ ∂2

z′

)]

× GQ‖ (z, z′; ω), (8)

where the symbol 1 denotes the three-dimensional identity
matrix. The second matrix has a two-by-two matrix as its first

entry, and the resulting matrix is also three dimensional. Here,
the scalar Green’s function GQ‖ (z, z′; ω) is defined as

GQ‖ (z, z′; ω) = − i

2kQ‖
eikQ‖ |z−z′ |

, (9)

where kQ‖ ≡ [ε(z)ω2

c2 − Q2
‖]1/2. Equations (8) and (9) allow

one to calculate the self-consistent electric field at the TMDC
and the AuNP position which enters the dynamical equa-
tion for the microscopic TMDC polarization pξν

Q‖ (ω), cf.
Eq. (1), and the AuNP polarization, cf. Eq. (4).

We focus on the 1s TMDC resonance in our interacting
system and, for clarity, we omit the index ν. We use the
notation ϕ1s(r‖ = 0) → ϕ0 to represent the value of ϕ1s at the
origin and the corresponding 1s damping coefficient γ . By
inserting Eq. (7) into Eq. (1), we find the following equation of
motion for the microscopic TMDC polarization:

[
E1s + h̄2Q2

‖
2M

− h̄ω − iγ

]
pξ

Q‖ (ω) = ϕ∗
0 dξ∗ · [E0

Q‖ (zex; ω) + GQ‖ (zex, zpl; ω) · α(ω) · E0(rpl; ω)
]

+ |ϕ0|2dξ∗ ·
∑
ξ ′

[
GQ‖ (zex, zex; ω) · dξ ′

pξ ′
Q‖ (ω)

+GQ‖ (zex, zpl; ω) · α(ω)

(2π )2
·
∫

d2Q′
‖ GQ′

‖ (zpl, zex; ω) · dξ ′
pξ ′

Q′
‖
(ω)

]
. (10)

In Eq. (10), the coupling between TMDC excitons and the
AuNP plasmon induced by the electric field is given in terms
of the Green’s functions, including the self-interaction of
the excitonic polarization. In Eq. (10), the first term on the
right-hand side is the interaction with the external electric
field E0

Q‖ (zex) at the TMDC position zex. The second term
is the external electric field at the AuNP position, which is
resonantly enhanced by the AuNP and then coupled to the
TMDC. In the second line, we see that the electric field also
mediates a dipole-dipole coupling between the excitons at
the K and K ′ points, widely known as the valley exchange
coupling [74]. The final term in the equation describes a
self-interaction of the TMDC that is mediated by the AuNP,
as evinced by the appearance of two Green’s functions.
This term can be interpreted as an effective exciton-exciton
interaction.

In our particular setup, special care is required to include
the dielectric interface at z = 0, which arises due to the piece-
wise constant background permittivity. Since the distance
between the TMDC and the AuNP is only a few nanometers
and the wavelengths used are in the optical range, we have
opted to utilize the quasistatic Green’s function, provided
in Eq. (C1), which also incorporates the change in back-
ground permittivity. This leads to the fact that the quasistatic
Green’s function can only be defined piecewise. Due to the
interface, the Green’s function also contains additional mir-
ror charge terms. The Green’s function is derived following
Ref. [75] and takes into account the individual positions of the
scatterers.

In the quasistatic limit, i.e., c → ∞, the dyadic Green’s
function can be expressed as

Gst
Q‖ (z, z′) = 1

ε0ε(z)

(
Q‖ ⊗ Q‖ iQ‖∂z′

iQT
‖ ∂z′ ∂2

z′

)
Gst

Q‖ (z, z′). (11)

Evaluating Eq. (10) with the quasistatic scalar Green’s
function Gst

Q‖ (z, z′) in Eq. (C1), we obtain individual equa-
tions for the respective valley K and K ′. To investigate the
effects resulting from the coupling of TMDC and AuNP, we
first diagonalize our system of equations by performing a
transformation with respect to the exchange coupling [first
term in the second line in Eq. (10)]:(

pU
Q‖

pV
Q‖

)
≡ 1√

2

(−eiφ e−iφ

eiφ e−iφ

)
·
(

pK
Q‖

pK ′
Q‖

)
, (12)

similar to Ref. [61] with φ being the angle coordinate in polar
coordinate corresponding to Q‖. The same matrix transfor-
mation is used to transform the circularly polarized external
electric field E0

Q‖ in Eq. (10) into its new basis {E0,U
Q‖ , E0,V

Q‖ }.
We find two decoupled equations, Eqs. (13) and (14), for the
new polarizations pU

Q‖ (ω) and pV
Q‖ (ω):[

E1s + h̄2Q2
‖

2M
− h̄ω − iγ

]
pU

Q‖ (ω) = d∗ϕ∗
0 E0,U

Q‖ (zex; ω).

(13)

In Eq. (13), pU
Q‖ is unaffected by the exchange coupling.

The left-hand side of Eq. (13) exhibits a free parabolic exciton
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dispersion that is consistent with previous literature [61]. Ac-
cordingly, we refer to Eq. (13) as parabolic Bloch equation. It
is worth noting that both the exchange coupling contributions
and the coupling contributions between TMDC and AuNP
cancel each other out. This is due to the quasistatic approach,
which reduces the interaction to longitudinal components that
appear under the transformation in Eq. (12) only in the V com-
ponent, cf. Ref. [61]. Hence, the right-hand side only accounts
for the excitation by the external electric field E0,U

Q‖ (zex; ω)
at the TMDC position and accordingly has the same form
as the pristine TMDC case without exchange and TMDC-
AuNP coupling. In contrast, the equation for pV

Q‖ (ω), Eq. (14),
reads [

E1s + h̄2Q2
‖

2M + XQ‖ (zex) − h̄ω − iγ
]

pV
Q‖ (ω)

− 1
(2π )2

∫
d2Q′

‖ VQ‖Q′
‖ (zex, zpl; ω) pV

Q′
‖
(ω)

= d∗ϕ∗
0

(
E0,V

Q‖ (zex; ω) + SQ‖ (zpl, zex; ω)
)
. (14)

Comparing with Eq. (13), where all interaction contributions
cancel, we find three additional terms. The first one is the
valley exchange term, which renormalizes the parabolic dis-
persion:

XQ‖ (zex) = −|ϕ0|2|d|2 Q2
‖

ε0ε2
Gst

Q‖ (zex, zex). (15)

As can be seen in Fig. 2, where we depict the further
relevant momentum range from −1 nm−1 to 1 nm−1, XQ‖ (zex)
changes the parabolic dispersion to a conical one depend-
ing on the exchange coupling among the K and K ′ valleys,
cf. Ref. [61]. Hence, we refer to Eq. (14) as the conical Bloch
equation. The other additional terms VQ‖Q′

‖ (zex, zpl; ω) and
SQ‖ (zpl, zex; ω) are given by

VQ‖Q′
‖ (zex, zpl; ω) = |ϕ0|2|d|2 Q2

‖
ε0ε2

Gst
Q‖ (zex, zpl )

Q′
‖

2

ε0ε1

× Gst
Q′

‖
(zpl, zex)[α‖(ω) cos(φ − φ′)

+ αz(ω)], (16)

SQ‖ (zex, zpl; ω) = Q2
‖

ε0ε2
Gst

Q‖ (zex, zpl )

× [α‖(ω)EV
0 (rpl; ω) − iαz(ω)Ez

0 (rpl; ω)].
(17)

The first of the two terms, VQ‖Q′
‖ , describes effects of the

effective exciton-exciton interaction mediated by the plas-
monic nanoparticle. This has the form of coupling between
induced dipoles, as apparent from the characteristic cosine
dependence on the relative angle φ − φ′. In the following,
it is interpreted as an additional potential for the center-of-
mass motion of the excitons. Due to the symmetry of the
system, we chose α‖ = αx = αy. The term on the right-hand
side, SQ‖ (zex, zpl; ω), represents the excitation caused by the
external electric field. This excitation is initially scattered and
enhanced by the AuNP before coupling to the TMDC. The
interaction mediated via the in-plane and the z axis of the
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FIG. 2. Dispersion. The exchange coupling causes a split in the
dispersion, resulting in parabolic dispersion for the noninteracting
pU

Q‖ , and a conical dispersion for pV
Q‖ , which experiences interaction

with the gold nanoparticle. The distinctive shape of the dispersion
has also influenced its nomenclature.

AuNP, respectively, is qualitatively different, as can be seen
from the additional imaginary unit in front of the z component.

In agreement with Ref. [61], we show in Fig. 2 that the
exchange coupling in Eq. (14) leads to the formation of a
parabolic lower band and a conical upper band in the exci-
tonic dispersion. For this reason, we have chosen U and V as
indices for the parabolic and conical dispersion, respectively.
We define their dispersion from

EU
Q‖ = E1s + h̄2Q2

‖
2M

, (18)

EV
Q‖ = E1s + h̄2Q2

‖
2M

+ XQ‖ (zex). (19)

The pronounced splitting observed in U and V branches, as
shown in Fig. 2, is facilitated by the reduced screening effect
in TMDC monolayers compared with conventional quantum
wells [76] through enhanced binding energy and exchange
coupling.

Summarizing our analytical advances so far, we use a
diagonalization [61] that reorients the wave-number coordi-
nate system in the direction of Q‖ and perpendicular to it in
Eq. (12). Therefore, this diagonalization with respect to the
exchange coupling of K or K ′ valley can effectively be seen as
a diagonalization in transverse and longitudinal components
with respect to the wave vector Q‖ orientation and leads to
the emergence of two distinct branches (U and V ): We find
one branch, where the exchange coupling contributions com-
pensate one another and result in an effectively undisturbed
parabolic excitonic dispersion (U branch). The other branch
(V branch) contains contributions from valley exchange cou-
pling. For the V branch, for small Q‖, the linear dependence
on the momentum |Q‖| (Taylor expansion) dominates and
results in the noticeable effective splitting of the dispersion in
Fig. 2 for Q‖ 
= 0. Including the contributions from the AuNP,
we find that only one of the TMDC exciton components
(V branch), Eq. (14), is coupled to the AuNP, while the other

035309-5



ROBERT SALZWEDEL et al. PHYSICAL REVIEW B 109, 035309 (2024)

component (U branch) in Eq. (13), is completely decoupled
from the AuNP and resembles the undisturbed excitonic case
in Eq. (1).

III. PLEXCITONIC STATES

Similar to identifying the Wannier equation in the semicon-
ductor Bloch equation [60,76,77] which captures the relative
motion of electron and hole, we identify an eigenvalue equa-
tion in the conical Bloch equation, Eq. (14). This eigenvalue
equation captures the modification of the dispersion due to
exchange coupling as well as the interaction of AuNP plasmon
and TMDC excitons and describes the full excitonic center-of-
mass motion with in-plane momentum Q‖:[

h̄2Q2
‖

2M
+ XQ‖ (zex)

]
�R,λ

Q‖ − 1

(2π )2

∫
d2Q′

‖

× VQ‖Q′
‖ (zex, zpl; ω) �R,λ

Q′
‖

= Eλ�R,λ
Q‖ , (20)

The nonlocal plasmon-induced potential VQ‖Q′
‖ determines

the center-of-mass motion Q‖ on the dispersion modified
by the exchange coupling [left side of Eq. (20)]. Although
the Wannier equation and the plexcitonic eigenvalue equa-
tion, Eq. (20), which we treat as a Schrödinger equation,
share formal similarities, they differ qualitatively because
the plasmon-induced potential VQ‖Q′

‖ is complex due to the
complex-valued polarizability α(ω), cf. Eq. (16).

Accordingly, the eigenvalue equation, Eq. (20), becomes
non-Hermitian which results in complex-valued eigenvalues
and requires to distinguish left and right eigenvectors �L,λ

Q′
‖

and

�R,λ

Q′
‖

[78,79] as will be done in Sec. III B. We refer to these

new eigenstates as plexcitonic states because they describe the
hybridized plasmon-exciton states of plasmonic and excitonic
character.

In this section, we study the eigenvalue equation numeri-
cally and analyze the eigenvalues and eigenvectors in detail
which we use in subsequent sections to define macroscopic
quantities. For this purpose, we choose an oblate spheroid as
depicted in Fig. 1. The explicit parameters can be found in
Table I.

A. Eigenvalues of hybrid structure

The eigenvalue analysis of Eq. (20) by numerical eigen-
decomposition in analogy to established methods for the
Wannier equation [55,80] reveals a finite number of eigen-
values with negative real part representing bound states
(discussion below). The eigenvalues with positive real part
distribute quasicontinuously along EU/V

Q‖ . Figure 2 shows the

dispersion: EV
Q‖ is conical for the parameter range of interest,

consistent with recent work [61]. For increasing background
permittivity ε2, the dispersion interpolates between a cone and
a parabola. Further discussion on this behavior can be found
in Appendix D 2.

Through a parameter study of the background permittivi-
ties ε1 and ε2, the aspect ratio of the ellipsoid rxy/rz, and the
distance between AuNP and TMDC |zpl − zex|, we observe up
to three eigenvalues with negative real part up to 100 meV
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FIG. 3. Excitonic density of states. Comparison of the excitonic
density of states for the interacting plexcitonic and the purely ex-
citonic system where the potential VQ‖Q′

‖ in Eq. (20) was set to
zero artificially for a spheroid with rxy = 8 nm and rz = 4 nm. The
plexcitonic plot exhibits two additional peaks at negative energy,
corresponding to the coupling via the in-plane component α‖ of the
AuNP, with a multiplicity of two, and the z component αz with a
multiplicity of one. The peak at ≈ − 39 meV corresponds to the
in-plane coupling, while the one at ≈ − 8 meV is caused the interac-
tion via the z component. For the graphical representation, we used
γ� =1 meV .

as well as associated eigenvectors (discussion below). The
imaginary contribution (broadening in the spectrum) is on
the same order of magnitude. These eigenvalues correspond
to an attractive interaction mediated by the plasmon-induced
potential VQ‖Q′

‖ in Eq. (20) that spatially localize excitons.
We found that each of these eigenvalues originates from the
interaction with the plasmonic mode along one of the three
Cartesian axes of the nanoparticle. The frequency dependence
of the binding energies is discussed in Appendix D 2. To
illustrate these results, we calculate the excitonic density of
states (DOS),

DOS(E ) = 1

A

∑
λ

δ(E − Eλ), (21)

by evaluating the Dirac delta distribution δ(E − Eλ) for the
real part of the eigenvalues only. To be able to plot the DOS,
we approximate the delta distribution with Lorentzian func-
tions Lγ�

(E , Eλ), which introduces an artificial linewidth γ�.
The introduced linewidth γ� serves the visual purpose of pre-
sentation of the numerically observed dense continuum states
and the discrete states at negative energy compared with the 1s
exciton resonance and should not be interpreted as a physical
quantity.

Using γ� = 1 meV, Fig. 3 shows that only the eigenval-
ues with negative real parts deviate from the quasicontinuous
spectrum. By switching the interaction with the external
particle on and off in our numerical implementation, we
can compare the purely excitonic system to the interacting
plexcitonic one that includes the effective exciton-exciton in-
teraction VQ‖Q′

‖ , mediated via the plasmonic nanoparticle. For
our choice of parameters (oblate spheroid), cf. Table I, we find
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two interaction-induced peaks at negative energies that results
in a nonvanishing density of states at the respective eigenvalue
energy. Due to the symmetry of the spheroid, we find that
the eigenvalues corresponding to the interaction via the in-
plane axes are degenerate and cause the peak at −39 meV,
while the peak at −8 meV originates from interaction via
the out-of-plane AuNP axis. A detailed parameter study for
which parameters we obtain negative eigenvalues and local-
ized eigenstates is provided in Appendix D.

Figure 3 displays the excitonic DOS for the conical ex-
citonic dispersion without interaction with the nanoparticle,
represented by the blue line. The real and positive eigenval-
ues are quasicontinuously distributed among the dispersion
EV

Q‖ . In contrast with strictly two-dimensional systems with
parabolic dispersion, the DOS is not a step function due to
the presence of a linear term in the dispersion relation, cf.
Eq. (19), that depends on the center-of-mass momentum Q‖.

For the plexcitonic case (red), a numerical analysis shows
that all eigenvalues with positive real part distribute on the
conical dispersion and have negligible imaginary parts (on the
order of the numerical accuracy). However, the eigenvalues
with negative real part deviate significantly from the conical
excitonic case, as seen in Fig. 3, and have non-negligible
imaginary parts. The imaginary parts of the eigenvalues
originate from nature of the lossy plasmon resonance and
Förster-type processes between TMDC exciton and AuNP
plasmon and introduce additional dephasing channels [12,14].

Based on our findings, we can conclude that the plasmon-
mediated exciton-exciton interaction leads to the formation of
plexcitonic states, exhibiting negative real part of the eigen-
value. We interpret this feature as the formation of bound
states, where the real part of the eigenvalue represents the
binding energy. These states cause the deviation in the density
of states from the conical excitonic case in Fig. 3.

B. Eigenvectors and probability density

In this section, we analyze the eigenvectors corresponding
to the negative eigenvalues presented in the previous section.
In the usual excitonic picture, solutions of the Wannier equa-
tion [57] describe the relative electron-hole motion and their
wave functions represent the probability amplitudes of their
motion.

Due to its non-Hermitian nature, the physical interpretation
of the plexcitonic eigenvalue equation is not straightforward.
It generates left and right eigenvectors �L,λ

Q‖ , �R,λ
Q‖ . To address

this issue, and to calculate observables, we follow the ap-
proach presented in Ref. [81] and define the complex-valued
probability density,

ρλ(r‖) ≡ �L,λ(r‖)�R,λ(r‖), (22)

where we use a normalization scheme:〈
�L,λ

Q‖ |�R,μ

Q‖

〉
= δλμ, (23)

for the left and right eigenvectors �L,λ
Q‖ , �R,λ

Q‖ with the scalar
product defined as a 2D momentum integral over Q‖.

We further normalize the real-space probability density
ρλ(r‖), ensuring its real part integrates to one while its imagi-
nary component vanishes when integrated over space. Within

FIG. 4. Probability density in real space. The eigenvalues cor-
responding to in-plane interaction are degenerate, here we plot the
superposition of the two probability densities corresponding to this
attractive in-plane interaction. The inset shows the radial profile of
the probability density.

the scope of this work, the real component is associated with a
probability distribution, while the interpretation of the imagi-
nary component is open but both parts need to be considered
in the calculation of observables.

Our analysis reveals that the eigenvectors �L,λ
Q‖ and �R,λ

Q‖ ,
respectively, belonging to the three negative eigenvalues
(bound states), correspond to the degeneracy of the spatial
axes of the gold nanoparticle polarizability α(ω). They ac-
curately reflect the symmetry of the coupling axis, showing
either an x or y orientation or a radial symmetry for coupling
via the out-of-plane component. As expected, we observe that
these eigenvectors related to negative eigenvalues are local-
ized near the origin, thus representing bound states, while the
eigenvectors corresponding to positive eigenvalues are spread
out throughout momentum space and represent the discretiza-
tion of the considered Hilbert space. Therefore, the AuNP
allows us to study exciton localization in the vicinity of the
AuNP. To illustrate this, we discuss the real-space probability
density ρλ(r‖), defined in Eq. (22). In Fig. 4, we plot the
real part of the sum of the probability densities, cf. Eq. (22),
associated with the degenerate eigenvalue from the in-plane
coupling, resulting in a ring-shaped distribution around the
origin. The x and y components individually exhibit orienta-
tion along their respective axes.

The ring-shaped feature is a result of the in-plane dipole-
dipole interaction between the spatially fixed dipole (plasmon)
and the dipole that is free to move in a 2D plane (exciton). The
interaction that results from dipole-dipole interaction via the z
component of the plasmon is studied in Appendix D 4.

In summary, we find that the additional states in the density
of states reveal negative eigenenergies, cf. Fig. 3. These states
are spatially confined near the gold nanoparticle, indicating
that they correspond to bound states. In Secs. IV and V,
we analyze the implications of these states on macroscopic
observables such as the macroscopic TMDC polarization and
the electric near-field in more detail.
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IV. LOCALIZATION

In this section, we analyze the impact of the exter-
nal nanoparticle on the macroscopic polarization within
the TMDC layer, contributing to optical observables via
Maxwell’s equations. As a macroscopic observable, we use
the absolute value of the TMDC polarization in Eq. (2), that
we map on the plexcitonic eigenstates defined by Eq. (20),
using the plexcitonic expansion

pV
Q‖ (ω) =

∑
λ

�R,λ
Q‖ pλ(ω), (24)

with suitable expansion coefficients pλ. We expand Eq. (14)
using the plexcitonic expansion in Eq. (24), expressing it
in terms of right eigenvectors �R,λ

Q‖ which form a complete
basis in momentum space. We then project this expanded
equation onto the corresponding left eigenvectors �L,λ

Q‖ and
utilize the biorthonormality relation [see Eq. (23)].

This approach yields a dynamical equation for the expan-
sion coefficient pλ, which we term the plexcitonic polarization
equation:

pλ(ω) = d∗ϕ∗
0

(2π )2

∫
d2Q′

‖

(
�L,λ

Q′
‖

)∗(
E0,V

Q′
‖

(zex) + SQ′
‖

)
E1s + Eλ − h̄ω − iγ

. (25)

We observe that the plexcitonic polarization pλ can be excited
by two external source terms: the external field at the position
of the TMDC, E0,V

Q′
‖

(zex), and the field scattered by the AuNP,

SQ′
‖ , as described in Eq. (17). The latter carries a nonvanish-

ing in-plane momentum Q‖. To simplify the notation, we no
longer explicitly mention the dependencies of SQ′

‖ . Notably,

the complex-valued plexcitonic eigenvalues Eλ renormalize
not only the resonance energy, as seen in the denominator, but
also the dephasing of the nanostructure, through their imag-
inary part which are negative and thus increase the effective
dephasing of the nanostructure.

By Fourier transformation of Eq. (2), we find that the
macroscopic TMDC polarization, including all contributions
from pU

Q‖ (ω) and pV
Q‖ (ω), can be written as

P±
TMDC(r; ω) =|d|2|ϕ0|2

2

1

(2π )2

∫
d2Q‖

⎧⎨
⎩eiQ‖·r‖

⎡
⎣ 1

E1s + h̄2Q‖2

2M − h̄ω − iγ

(
1 −e−2iφ

−e2iφ 1

)
· E0,±

Q‖ (zex)

+ 1

(2π )2

∫
d2Q′

‖
∑

λ

�R,λ
Q‖

(
�L,λ

Q′
‖

)∗

E1s + Eλ − h̄ω − iγ

(
e−iφeiφ′

e−iφe−iφ′

eiφeiφ′
eiφe−iφ′

)
· E0,±

Q′
‖

(zex)

+ 1

(2π )2

∫
d2Q′

‖
∑

λ

Q2
‖

ε0ε2

�R,λ
Q‖

(
�L,λ

Q′
‖

)∗
Gst

Q‖

E1s + Eλ − h̄ω − iγ

(
e−iφeiφ′

e−iφe−iφ′ −e−iφ

eiφeiφ′
eiφe−iφ′ −eiφ

)
·

⎛
⎜⎝

α‖ E+
0

(
rpl
)

α‖ E−
0

(
rpl
)

i
√

2 αzE
z
0

(
rpl
)
⎞
⎟⎠
⎤
⎥⎦+ c.c.

⎫⎪⎬
⎪⎭.

(26)

In Eq. (26), we can identify three distinct contributions to the
macroscopic TMDC polarization. The first term corresponds
to half the unperturbed response of the TMDC, which is in-
dependent of any interaction with the AuNP. The second term
captures the interaction between the TMDC and the AuNP, as
well as the TMDC self-interaction which is described by the
plexcitonic eigenvalues Eλ and eigenvectors �L,λ

Q‖ and �R,λ
Q‖ .

The third term represents the external electric field scattered
and enhanced by the AuNP and subsequently transferred to
the TMDC position where it contributes to the TMDC po-
larization. In the limit of vanishing AuNP, the third term
vanishes and the second one reproduces the second half of
the unperturbed TMDC response.

In Fig. 5, we plot the resulting macroscopic polarization
of the TMDC from Eq. (26) when excited by a σ+-polarized
plane wave and find a radially symmetric distribution of
the polarization around the nanoparticle location. According
to Eq. (26), the spatial localization is mainly attributed to
two key processes. The first one is the dipole-dipole inter-
action between the TMDC exciton and the AuNP plasmon,
leading to the localized plexcitonic states discussed in Sec. III.
The second one is the locally enhanced electric field in the

TMDC layer, which occurs due to the scattering of the field
by the AuNP. These processes are discussed individually in
Appendix E 1.

This analysis reveals that proper selection of parameters,
positioning a gold nanoparticle on a TMDC monolayer can
induce the formation of plexcitonic states through dipole-
dipole interactions. The resulting polarization enhancement in
the TMDC underneath the nanoparticle effectively localizes
carriers in the vicinity of the AuNP.

V. STRONG COUPLING

This section focuses on the study of the electric field emit-
ted by the nanostructure in response to an external electric
field. To calculate the electric field outside the nanostructure,
we use the Green’s method to solve the wave equation de-
scribed in Eq. (6). We find for the electric field distribution
surrounding the nanostructure:

EQ‖ (z; ω) =Gst
Q‖ (z, zex) · PTMDC

Q‖ (zex; ω)

+ Gst
Q‖ (z, zpl) · PAuNP

Q‖ (zpl; ω) + E0
Q‖ (z; ω).

(27)
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FIG. 5. TMDC polarization in real space. In the figure, we see
for σ+ excitation that full TMDC polarization localizes in a radially
symmetric way below the metal nanoparticle.

The TMDC polarization is defined in Eq. (26) and the gold
polarization can be found in Appendix E 2. Importantly, our
analysis in Sec. II relies on the quasistatic approximation,
which accurately describes the electric near-field where Q‖ 
=
0 is dominant. Therefore, our analysis is limited to the electric
near-field, which is well-captured by our approach. Note, that
to accurately describe the electric far-field and account for ra-
diative processes, it would be necessary to include the Q‖ = 0
case in the calculation. Numerical evaluation of the electric
near-field from Eq. (27) yields an optical near-field spectrum.

In Fig. 6, we plot the Fourier-transformed (purely real
space) absolute value of the electric field intensity |E(r; ω)|2
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FIG. 6. Peak splitting. For comparable excitonic and plasmonic
resonance energies, the response of the joint system splits into two
distinct peaks at lower and higher energy compared with the shared
resonance. The scattered electric field is detected at x = 2 nm, y =
0 nm, and z = −5 nm. The excitonic resonance energy is E 1s =
1.93 eV, other parameters for room temperature can be found in
Table I. The plasmonic and plexcitonic spectra are presented in the
correct ratio, the excitonic spectrum is scaled for display in the same
plot.
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FIG. 7. Avoided crossing. Numerically tuning the excitonic res-
onance allows investigating the peak splitting in the plexcitonic
spectrum and shows the avoided crossing behavior of the system,
indicating a strong-coupling regime. The given spectrum displays
the peak positions, cf. Fig. 6, over a wide exciton resonance range.
The inset illustrates the peak separation with its lowest value being
the Rabi splitting that is approximately 110 meV in this case. All
parameters used in the numerical implementation can be found in
Table I.

for excitation by plane waves. In contrast with TMDC exci-
tation with a plane wave that only has a vanishing in-plane
momentum, scattering off the AuNP generates electric field
components in the near-field that possess a nonvanishing
center-of-mass momentum Q‖ 
= 0. These components can
interact with momentum-dark excitonic states Q‖ 
= 0 in the
TMDC illustrating that the observed features result from dark
excitons. The spectra in Fig. 6 show that the individual non-
interacting energy transitions of TMDC exciton and AuNP
plasmon are designed so that their respective resonances, ex-
citonic and plasmonic, occur at the same spectral location,
cf. Table I, as depicted in the individual plasmon and exciton
plots presented in Fig. 1. However, for both systems in contact
we observe spectral peak splitting, which is a sign of strong
coupling between the individual TMDC exciton and AuNP
plasmon oscillators [49,50]. Since our description relies on
the excitation of dark excitons in the near-field, we attribute
the occurrence of strong coupling to the spatial localization of
near-field excited dark excitons.

We also highlight that our numerical approach allows us
to artificially tune the excitonic resonance while keeping the
plasmonic resonance fixed. Figure 7 shows the two peak posi-
tions with varying 1s excitonic resonance. Resonance energies
far from each other have little influence on one another, while
we observe a significant peak splitting once the spectral sep-
aration of their peaks approaches their linewidths. Compared
with the uncoupled case, the interaction leads to a minimum
value of the spectral splitting of the observed spectral peaks,
which we call effective Rabi splitting. This can be interpreted
as avoided crossing behavior and supports the finding that the
system behaves in a strong-coupling regime.

Experimentally observed effective spectral Rabi splittings
are in the same range, i.e., 50–150 meV, as predicted by our
parameter-free description. This is a very reasonable result
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compared with the very different ranges of Rabi splittings on
the order of 100 µeV [82–84] occurring in atomic systems and
offers a justification for the used approximations.

VI. CONCLUSION AND PERSPECTIVES

We have presented a self-consistent theoretical approach
for the near-field optical interaction between a monolayer of
TMDC and a gold nanoparticle. Starting from the excitonic
and plasmonic picture, we identified a novel eigenvalue equa-
tion that describes the center-of-mass motion of the excitons
in an effective potential that features hybridized exciton-
plasmon states. In this context, strong coupling is related to
the excitation of momentum-dark excitons and their spatial
localization in the monolayer near the AuNP: the density of
states contains bound states below the excitonic 1s resonance.
This interpretation is supported by the plexcitonic probability
density and its influence on the spectral and spatial properties
of the macroscopic TMDC polarization.

Our analysis shows that the strong localization near the
external particle leads to a strong coupling behavior visible
in the electric near-field. Through a detailed parameter study,
we establish a connection between the existence of these com-
mon states and an avoided crossing behavior in the spectral
representation of the system. Our findings provide evidence
that metal nanoparticles can be used to effectively localize
excitons in two-dimensional TMDC layers.
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APPENDIX A: ANALYTICAL MODEL OF THE OPTICAL
RESPONSE OF A GOLD NANOPARTICLE

We model the gold permittivity εAu(ω) using the analytical
expression provided in Ref. [51]. It reads

εAu(ω) = ε∞ − ω2
p

ω(ω + iγp)

+
∑
j=1,2

Ajω j

[
eiϕ j

ω j − ω − iγ j
+ e−iϕ j

ωi + ω + iγ j

]
,

(A1)

where the first two terms describe a standard Drude model and
the last terms additional interband transitions at the respective
energies. The parameter values are given in Table I and were
obtained by the authors of Ref. [51] as fits to the experimental
data in Ref. [62].

To incorporate the geometry of the nanoparticle, we em-
ploy Mie-Gans theory [52,53] as we allow the AuNP to
be spheroidal and obtain the AuNP polarizability given in
Eq. (3). The impact of the aspect ratio is contained in the
depolarization factors Li, which change the optical response
via the respective semi-axes,

Lx = Ly = 1

2e2
0

⎛
⎜⎝
√

1 − e2
0

e0
arcsin (e0) − (1 − e2

0

)
⎞
⎟⎠, (A2)

and Lz = 1

e2
0

⎛
⎜⎝1 −

√
1 − e2

0

e0
arcsin (e0)

⎞
⎟⎠. (A3)

For the oblate spheroid the x and y component coincide due
to symmetry. The eccentricity e0 is defined to be

e0 = 1 − r2
z

r2
xy

, (A4)

and features the lengths of the semi-axes ri.

APPENDIX B: SCREENED POTENTIAL

For our model structure, we use a Rytova-Keldysh-type
approach [6,7] in order to calculate the potential that is later
used in the Wannier equation in order to incorporate substrate
effects on the carrier localization. The potential for our effec-
tive four-layer system of ε1-ε2-TMDC-ε2 reads

Vk = q

2ε0ε̃k

e2kL + ekL(δε̃,ε2 + δε̃,ε2,ε1 ) + δε̃,ε2δε̃,ε2,ε1

e2kL − δε̃,ε2δε̃,ε2,ε1

, (B1)

with the definitions

δε̃,ε2 = ε̃ − ε2

ε̃ + ε2
, (B2)

δε̃,ε2,ε1 = ε̃ − ε2ξ

ε̃ + ε2ξ
, ξ = e2kR − δε2,ε1

e2kR + δε2,ε1

, (B3)

where L is the thickness of the TMDC layer and R is the
thickness of the intermediate layer between the TMDC and
the z = 0 plane, cf. Fig. 1.

APPENDIX C: GREEN’S FUNCTION

For our specific geometry depicted in Fig. 1, including
the interface of two background permittivities ε1 and ε2 and
assuming the TMDC to be effectively two dimensional, the
Green’s function can be calculated. We find, in agreement
with Refs. [75,86],

Gst
Q‖ (z, z′) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2Q‖

e−Q‖|z−z′ | − 1
2Q‖

ε1−ε2
ε1+ε2

e−Q‖|z+z′ |, z, z′ > 0

− 1
Q‖

ε(z)
ε1+ε2

e−Q‖|z−z′ |, sgn(z) 
= sgn(z′)

− 1
2Q‖

e−Q‖|z−z′ | − 1
2Q‖

ε2−ε1
ε1+ε2

e−Q‖|z+z′ |, z, z′ < 0.

(C1)

035309-10



SPATIAL EXCITON LOCALIZATION AT INTERFACES OF … PHYSICAL REVIEW B 109, 035309 (2024)

−1.0 −0.5 0.0 0.5 1.0

wave number Q‖ [nm−1]

0

20

40

60

80

100

120

d
is

p
er

si
o
n
E Q

‖
-E

1
s

[m
eV

]

free ε2 = 1 ε2 = 3 ε2 = 5

FIG. 8. Dispersion relation. The interacting dispersion EV
Q‖ ,

cf. Eq. (19), is plotted for varying background permittivity ε2 from
yellow to red. One can see that the dispersion interpolates between
linear and parabolic behavior. The free dispersion EU

Q‖ [cf. Eq. (18)]
is plotted for reference in (dark) blue.

This Green’s function is derived for the quasistatic case of
c → ∞ which is caused by the proximity of the AuNP and
TMDC. Hence, to a good approximation, we can neglect
radiative interactions. We find that the Green’s function is
defined piecewise depending on the position of the source z′
and the observation location z.

APPENDIX D: EIGENSYSTEM

Our numerical implementation enables a comprehensive
investigation of various parameter configurations for our sys-
tem, which we explore in the following sections. First, we
analyze the dispersion relation for varying background per-
mittivity ε2 in Sec. D 1. We then study the spectral eigenvalue
distribution in Sec. D 2. In Sec. D 3, we analyze the depen-
dence of the lowest eigenvalue on the nanoparticle aspect ratio
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FIG. 9. Lowest eigenvalues. The lowest eigenvalue of the plexci-
tonic eigenvalue equation, cf. Eq. (20), highly depends on the choice
of the spectral position of the excitonic 1s resonance. Here, the lowest
eigenvalue for interacting via the in-plane or out-of-plane axis is
given.
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FIG. 10. Influence of aspect ratio on lowest eigenvalue. By vary-
ing the aspect ratio, we can adjust the effective distance between the
AuNP and the TMDC layer for a fixed volume and thus modify the
interaction strength. This plot displays the dependence of the lowest
eigenvalue on the aspect ratio while maintaining a fixed volume.

to quantify the interaction strength. Finally, we investigate
the corresponding eigenvectors (plexcitonic wave functions)
in Sec. D 4.

1. Dispersion

The eigenvalues of the plexcitonic eigenvalue equation,
Eq. (20), quasicontinuously distribute among the dispersion
relation EV

Q‖ . Only the negative eigenvalues differ from this
distribution. Thus, we begin studying this dispersion relation
for varying background permittivity ε2 in Fig. 8. The purely
excitonic dispersion EU

Q‖ is not affected by changing the back-

ground permittivity ε2 while the plexcitonic dispersion EV
Q‖ is

conical [61] for small ε2 but becomes predominantly parabolic
for larger ε2.

2. Eigenvalues

In the following analysis, we examine the plexcitonic
eigenvalues that deviate from the dispersion and become nega-
tive. This occurs when the TMDC exciton and AuNP plasmon
are in resonance. Here, we focus on the distribution of the
lowest eigenvalues, which we present in Fig. 9. Specifically,
we explore two distinct distributions based on the interaction
through the in-plane polarizability axis α‖ of the nanoparticle
and the out-of-plane axis αz.

As anticipated, one can clearly distinguish the distribu-
tions of eigenvalues resulting from in-plane and out-of-plane
interaction, respectively. We observe spectral ranges where
negative eigenvalues are absent, either due to interaction via a
single axis or in a narrow spectral range for both axes. In the
absence of negative eigenvalues, the individual components
are out of resonance, which prevents attractive interactions.
However, when the components are in resonance, we detect
negative eigenvalues, which we interpret as the binding energy
of the exciton in the potential induced by the AuNP. Notably,
at certain spectral positions, these binding energies amount to
several tens of meV.
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FIG. 11. Macroscopic TMDC polarization. We plot σ+ polarization in panel (a) and σ− polarization in panel (b) for the case of σ+

excitation. In panel (a), the σ+ contribution is centered around the origin, while in panel (b), the σ− contribution forms a ring around the
origin. The full polarization, shown in Fig. 5, is obtained as the sum of both contributions.

3. Au nanoparticle aspect ratio

In our numerical analysis presented in the main article,
we consider spheroidal nanoparticles with an aspect ratio
rxy/rz = 2. This choice of aspect ratio allows us to increase
the nanoparticle volume while simultaneously decreasing the
effective separation between the nanoparticle and TMDC
layer. To investigate the influence of the aspect ratio rxy/rz on
the coupling strength and quantify its effects, we recalculate
the lowest eigenvalue for varying aspect ratio while keeping
the nanoparticle volume fixed and position it right at the
interface. The real part of the lowest eigenvalue as a function
of aspect ratio is plotted in Fig. 10.

Our analysis shows that the binding strength increases as
the aspect ratio of the spheroidal nanoparticle increases, re-
sulting in a more negative lowest eigenvalue. This trend arises
from the exponential dependence of the interaction strength

FIG. 12. Probability density in real space. Here, we plot the
probability corresponding to interaction via the out-of-plane axis
of the AuNP. The inset shows the radial profile of the probability
density.

on the separation, while the increase in volume with respect
to the semi-axis in the out-of-plane direction is only linear.
Therefore, we demonstrate that oblate spheroids exhibit a
stronger interaction compared with a sphere of equal volume.

4. Eigenvectors

In Sec. III B, we presented the probability density resulting
from interaction via the in-plane components of the AuNP.
This probability density is ring-shaped around the origin due
to dipole-dipole interaction. For completeness, we now pro-
vide the probability density corresponding to interaction via
the out-of-plane component. In contrast with the probability
density resulting from in-plane interaction, the probability
density for out-of-plane interaction exhibits a Gaussian dis-
tribution centered around the origin of the AuNP position.
This outcome can also be derived from the minimization of
the dipole-dipole potential for dipoles that are perpendicular
to one another.

APPENDIX E: MACROSCOPIC QUANTITIES

In this section, we shift our focus from the microscopic
quantities discussed in the previous section to observable
macroscopic quantities that can be derived from our calcu-
lations. Specifically, in Sec. E 1, we examine the circularly
polarized components of the macroscopic TMDC polarization
in real space. Additionally, in Sec. E 2, we provide an analyt-
ical expression for the AuNP polarization, which serves as a
source in the Green’s function approach used to calculate the
electric field. In Sec. E 3, we analyze the parameter depen-
dence of the Rabi splitting that was obtained in Sec. V.

1. Transition-metal dichalcogenide polarization

In Sec. IV, we presented the full TMDC polarization fol-
lowing excitation with a σ+ pulse. In this section, we analyze
the individual σ+ or σ− components of the polarization after
excitation with a σ+ pulse (see Fig. 11). The results are
analogous for σ− excitation.
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FIG. 13. Rabi splitting. The graphs display the dependence of the Rabi splitting over a parameter range that results in strong coupling. Panel
(a) illustrates that an increase of the separation of TMDC and AuNP results in a decrease of the splitting. (b) For an increasing background
permittivity ε1 in the upper half space, the Rabi splitting decreases. (c) For an increasing AuNP radius rz, the Rabi splitting reaches a maximum
at ≈4 nm. This behavior qualitatively agrees with the dependence of the lowest eigenvalue on the AuNP radius.

Our analysis reveals two distinct shapes for the spatial
distribution of the macroscopic TMDC polarization. The ab-
solute value of the σ+ polarization is Gaussian distributed
and centered around the origin. For the absolute value of
the σ− polarization, a ring-shaped feature is observed, sim-
ilar to the probability density investigated in Sec. III B, with
vanishing polarization at the origin. These findings suggest
that the selection rules are modified in the electric near-field
[87], enabling the excitation of oppositely polarized light.
Furthermore, we interpret our results as indicating that po-
larization of the same direction is primarily induced by the
external field that scatters off the AuNP, whereas polarization
of the opposite direction mostly originates from the dipole-

dipole interaction between the TMDC exciton and AuNP
plasmon, reproducing the shape of the probability density
from Sec. III B.

2. Gold polarization

In Sec.V, we use Eq. (27) to propagate the material po-
larizations to the surroundings. This material polarization
includes an effective polarization originating from the TMDC,
whose Fourier-transformed version we provided in Eq. (26).
Here, we provide the AuNP polarization in the mixed basis
(Q‖, z; ω) (see Fig. 12), which is only defined at the spatial
position of the AuNP,

PAuNP,±
Q‖ (zpl; ω) = 1

(2π )2

∫
d2Q′

‖

⎛
⎜⎜⎝

α‖E+
Q′

‖
(zpl)

α‖E−
Q′

‖
(zpl)

αzE
z
Q′

‖
(zpl)

⎞
⎟⎟⎠+ |d|2|ϕ0|2

2

∑
λ

1

E + Eλ − h̄ω − iγ

1

(2π )2

×
∫

d2Q′
‖ψ

R
Q′

‖

Q′
‖

2

ε0ε1
Gst

Q′
‖
(zpl, zex)

⎛
⎝e−iφ′

α‖
eiφ′

α‖
iαz

⎞
⎠ α‖

(2π )2

∫
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‖
(
ψL
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‖
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E+
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‖
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E−
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‖
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‖

ε0ε2
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Q′′
‖
(zex, zpl )(e

iφ′′
E+(rpl) + e−iφ′′

E−(rpl))

]
. (E1)

The polarization of the system is composed of three
contributions. The first one is the dipole response of the
AuNP, which is determined by its polarizability α and the
external electric field at the AuNP position EQ′

‖ (zpl). The
second contribution arises from the interaction of the ex-
ternal electric field with the TMDC layer, which is then
mediated to the AuNP. The third contribution arises from
the effective self-interaction of the plasmon, mediated via the
TMDC layer.

3. Rabi splitting

In Fig. 7, we observed that our system reveals a Rabi
splitting of several tens of meV and thus clearly operates in
the strong-coupling regime. The Rabi splitting can be tuned
via various system parameters, which we analyze individually
to understand their impact on � in Fig. 13.

In our study, we observe a decrease in the Rabi splitting
as the TMDC or AuNP spacing decreases, consistent with
the findings in Ref. [50]. This decrease can be attributed to
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the significant reduction in the interaction strength as the
separation between the materials increases.

Furthermore, we investigate the impact of increasing back-
ground permittivity ε1 in the upper half space on the Rabi
splitting. We find that as the background permittivity in-
creases, the Rabi splitting decreases. This can be interpreted
as the enhanced screening effect resulting from the in-
creased background permittivity, which weakens the overall
interaction.

Lastly, we consider the influence of particle radius on
the Rabi splitting, which exhibits a scaling behavior simi-
lar to the dependence of the plexcitonic eigenvalues Eλ on
the radius. Increasing the radius leads to a cubic increase
in volume, enhancing the interaction strength. However,
this is counteracted by the increase in effective separa-
tion, leading to an exponential decrease in the interaction
strength.
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