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Two-dimensional trion in a magnetic field revisited
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We revisit the problem of a two-dimensional trion in an external magnetic field. We demonstrate that the
approximations used previously for finding the energy spectrum of this system break down in the experimentally
accessible range of magnetic fields. It is shown that the neglect of the Coulomb-induced mixing of different
Landau levels corresponding to noninteracting particles leads to a strong underestimation of the trion binding
energies even at extremely high magnetic fields (hundreds of Tesla). Moreover, proper account of the Coulomb
effects for certain values of the parameters can lead to the appearance of additional discrete trion states, which
were overlooked previously. Finally, we provide a database of the matrix elements necessary for calculation of
the magnetotrion spectra for a wide class of materials.
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I. INTRODUCTION

Understanding of magneto-optical spectra of various quasi-
two-dimensional (2D) electron-hole (e − h) complexes in
external magnetic fields is an important problem in con-
densed matter theory [1,2]. The resonances corresponding to
such composite quasiparticles in magneto-optical spectra are
routinely observed in semiconductor quantum wells and 2D
materials. These experimental observations give strong mo-
tivation for theorists to provide a corresponding quantitative
description together with an unambiguous classification of
the spectra. The developed theoretical techniques should be
sufficiently flexible and allow one to examine a broad variety
of materials with different effective masses of carriers and
types of the screening in experimentally relevant diapasons
of magnetic fields.

The fundamental basis for theoretical description of
magneto-optic response was laid by L. D. Landau decades
ago in his seminal work introducing the concept of Landau
levels (LLs) for a single charged particle in an external homo-
geneous magnetic field [3]. The next step was consideration
of an exciton, a neutral composite particle consisting of an
electron and a hole bound together by the Coulomb attraction
[4–9]. In this case, it was demonstrated that center-of-mass
coordinates of an exciton can be separated from the internal
degrees of freedom [10,11]. This allowed one to build the the-
ory of a magnetoexciton using a perturbative approach [12],
WKB approximation [4], and brute force numerical model-
ing [5], and provide the classification of the corresponding
spectra [6].
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Besides excitons, electron-hole complexes containing
more than two particles, such as biexcitons [13–15] and trions
[16–25] can be formed. The latter case is of particular interest
as a trion (T), being a composite particle consisting of two
holes and one electron (X+) or two electrons and one hole
(X−), possesses a net electric charge, and its center-of-mass
dynamics should be thus strongly affected by an external mag-
netic field [26–42]. Although for the case of a magnetotrion
the center-of-mass coordinates cannot be straightforwardly
separated along the same lines as in the case of an exciton,
one can take advantage of the so-called magnetic translations
and reduce the number of the degrees of freedom [43]. An
additional quantum number characterizing trion states can be
thus introduced, together with the total orbital angular mo-
mentum Mz along the magnetic field direction, and the spins
of electrons Se and holes Sh [44].

A number of different techniques were employed to ana-
lyze magnetotrion spectra quantitatively, such as variational
methods with Slater-type orbitals as trial functions [39,40]
and a stochastic variational approach [35,36]. These meth-
ods, however, possess an important drawback as they do not
present a clear classification of the energy levels. Another pos-
sible approach is based on the perturbative treatment where
the mixing of the LLs due to the the Coulomb interaction is
supposed to be small [37,44–46]. However, as we will show
below, this approach neglects an entire class of the important
matrix elements, and not only gives wrong values of trion
energies, but even fails to reproduce the correct number of
the discrete states in the experimentally relevant range of
magnetic fields. Revisiting the problem is thus a relevant task.

When considering a trion in an external magnetic field,
one should analyze the regimes of strong and weak fields
separately. Indeed, on the one hand, in the case of a weak
magnetic field, the simplest natural approximation would be to
consider a trion as a single particle with the net charge QT = e
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and a mass equal to the total mass of the particles forming it,
mT = 2me + mh. In this limit, the Coulomb interaction bind-
ing the particles together dominates over the magnetic field
effects, so that

ET � h̄ωT = h̄|e|B
mTc

, (1)

where ET is the binding energy of a trion and ωT =
|e|B/(mTc) is the trion cyclotron frequency.

On the other hand, in the case of strong magnetic fields, one
can consider three particles interacting with a magnetic field
as almost independent ones. It was argued that the Coulomb
interaction in this case can be treated as a perturbation leading
to a weak mixing of the LLs corresponding to the individual
particles. This approach is expected to be valid if [44–46]

h̄ωe, h̄ωh, |h̄ωe − h̄ωh| � e2

ελ
= e2

ε

√
|e|B
h̄c

, (2)

where ωe and ωh are the cyclotron frequencies of an electron
and a hole, respectively, ε is a permittivity of a medium, and
λ = √

h̄c/(|e|B) is a magnetic length. This corresponds to
fields

B � |e|3m2
e,hc

ε2h̄2 . (3)

Here we employ the Gaussian-CGS units (the SI expressions
can be obtained by substituting ε → 4πεε0 and omitting c).
The condition (2) seems to have a clear physical meaning,
being equivalent to the requirement that the characteristic
mixing energy between the LLs were much smaller than the
distance between them.

However, one can note that there are certain problems with
this criterion. First, Eq. (3) imposes a very strong restriction
on the values of the magnetic field strength. For instance, in
the case of GaAs, it corresponds to B ∼ 1000 T or stronger,
which is out of the experimentally accessible range.

Second, even if the condition (3) is satisfied, one can argue
that the mixing of the LLs should be taken into account any-
way. Indeed, from the viewpoint of the perturbation theory, the
corresponding second-order energy correction is proportional
to the square of the Coulomb matrix element (which scales
as

√
B), divided by the distance between the LLs (which is

proportional to B). This combination is thus independent of
the magnetic field, which means that the increase of the latter
does not reduce the role of the mixing terms.

These two considerations motivated us to go beyond the
approximation used in Refs. [44–46] and treat the Coulomb
interaction terms in the magnetotrion problem exactly. In this
paper, we present the corresponding development of the op-
erator method introduced in Refs. [44–46] generalizing it for
the case when mixing of the LLs is accounted for, and provide
a reader with all necessary formulas for all relevant matrix
elements. We show that the approach used previously consid-
erably underestimates the trion binding energy and, moreover,
fails to correctly reproduce the discrete part of the spectrum.

The paper has the following structure. In Sec. II, we
briefly outline our theoretical approach (detailed derivations
are given in the Appendices). In Sec. III, we provide a quanti-
tative analysis of trion energy spectra in the cases of GaAs and

CdTe quantum wells (QWs) for various values of the magnetic
field strength. Conclusions are summarized in Sec. IV.

Throughout the text, we denote the electron (hole) charge
and mass by e < 0 and me (−e and mh).

II. THEORETICAL DESCRIPTION

In this section, we discuss the main theoretical aspects
of the calculations of trion energy spectra. We briefly de-
scribe the symmetries of the problem, the basis used, and
present the final expressions for the matrix elements of the full
trion Hamiltonian. In the main text we present only the most
important steps of the derivation, whereas detailed description
of the calculation procedures is given in the Appendices. We
tried to make the paper self-consistent, so Appendices contain
all relevant expressions for the cases of individual electrons,
excitons, trions, and unbound electron-exciton pairs placed
in external magnetic fields (see Appendix A, B, C, and D,
respectively).

The Hamiltonian of a three-particle system involving a pair
of two dimensional (2d) electrons with coordinates r1 and r2

and a hole with coordinates rh reads

Ĥ (T) = Ĥ0 + V̂eh + V̂ee, (4)

where

Ĥ0 =
∑
j=1,2

π̂2
j

2me
+ π̂2

h

2mh
, (5)

V̂eh = −
∑
j=1,2

e2

λ
V (|r j − rh|), (6)

V̂ee = e2

λ
V (|r1 − r2|). (7)

Here the momenta operators are obtained by the canon-
ical substitution π̂ j = −ih̄∇ j − (e/c)A(r j ), π̂h = −ih̄∇h +
(e/c)A(rh), λ = √

h̄c/(|e|B), and V (r) is a dimensionless
function describing the interaction potential. In the current
paper, we focus on the case of conventional semiconductor
QWs and thus employ the standard expression for a Coulomb
potential,

V (r) = λ

εr
. (8)

We did not write explicitly the terms, corresponding to the
direct action of the magnetic field on spins of individual elec-
trons and holes, as their account is trivial.

In contrast to the case of a single charged particle (an
electron or a hole), where the spectrum is given by the discrete
harmonic oscillator series (LLs), the spectrum of a multi-
particle complex is substantially modified by the Coulomb
interaction, and the problem cannot be solved analytically.
Therefore, we first construct the basis consisting of the
eigenfunctions of the free particle Hamiltonian Ĥ0 and then
diagonalize the matrix of the total Hamiltonian Ĥ (T) numer-
ically. When choosing the basis, we fully take into account
the complete symmetries of the system, which allows us to
substantially reduce the calculation costs.
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In the case of the three interacting particles, the operator of
the magnetic translations defined as [12,44–46]

K̂ =
∑
j=1,2

π̂ j + π̂h + e

c

∑
j=1,2

B × r j − e

c
B × rh (9)

commutes with the Hamiltonian Ĥ (T). However, the x and y
components of K̂ do not commute with each other, [K̂x, K̂y] =
i|e|h̄B/c, which means that in the case of a trion, when
constructing the basis, one can take advantage of only one
integral of motion (for instance, either K̂x or K̂y). Instead of
choosing a specific component of the vector K̂ (either K̂x or
K̂y), one can use the operator K̂2 [45], which commutes with
the Hamiltonian as well.

Let us perform the following coordinate transformation:

R = 1√
2

(r1 + r2), r = 1√
2

(r1 − r2). (10)

In the most straightforward approach the basis functions cor-
responding to the case of noninteracting particles can be

chosen as

ϕ(T)
n1m1n2m2nhmh

(r, R, rh)

= ϕ(e)
n1m1

(r)ϕ(e)
n2m2

(R)ϕ(h)
nhmh

(rh),
(11)

where ϕ(h)
nm (r) = [ϕ(e)

nm(r)]∗ correspond to single particle wave-
functions in a magnetic field (see Appendix A). The
quantum number n = 0, 1, 2, . . . is the LL number, and m =
0, 1, 2, . . . defines the angular momentum projection. How-
ever, this basis set completely disregards the translational
symmetry of the system as the corresponding functions are
characterized only by a well-defined projection of the total an-
gular momentum Mz = (n1 − m1) + (n2 − m2) − (nh − mh)
and total electron spin Se [Se = 0 (spin-singlet state) for even
n1 − m1 and Se = 1 (spin-triplet state) for odd n1 − m1; see
Appendix C].

To account for the translational symmetry, one can perform
a unitary transformation making the basis functions (11) also
eigenfunctions of K̂2 [45] (see Appendix C for details), and
get the following set of the basis functions:

ψn1n2nhml (r, R, rh) = 1√
Nn1n2nhml

[
1√
2

(
ξ − ∂

∂ξ ∗

)]n1
[

1√
2

(
ξR − ∂

∂ξ ∗
R

)]n2
[

1√
2

(
ξ ∗

h − ∂

∂ξh

)]nh

ψml (r, R, rh), (12)

where

ψml (r, R, rh) = (ξ ∗)m(ξh)l
̃
(T)
0 (r,R, rh) (13)

and


̃
(T)
0 (r,R, rh)= exp(−ξξ ∗−ξRξ ∗

R −ξhξ
∗
h +√

2ξhξ
∗
R )√

2(2π )3/2λ3
, (14)

is a normalized wave function of the ground state. The nor-
malization factors Nn1n2nhml are calculated in Appendix C. The
dimensionless coordinates read ξ = z/(2λ), ξR = zR/(2λ),
and ξh = zh/(2λ), where z = x + iy. The angular momentum
projection of the state (12) reads

Mz = n1 − m + n2 − (nh − l ), (15)

while the spin quantum number is Se = 0 (Se = 1) if n1 − m is
even (odd). Note that the energies are degenerate with respect
to the quantum number k associated with the operator K2, so
we have set k = 0.

The matrix elements of the full Hamiltonian (4) are defined
by the following expression:

H (T)
n1n2nhml;n′

1n′
2n′

hm′l ′ = E (T,0)
n1+n2,nh

δn1n′
1
δn2n′

2
δnhn′

h
δmm′δll ′

+ V (eh)
n1n2nhml;n′

1n′
2n′

hm′l ′

+ V (ee)
n1n2nhml;n′

1n′
2n′

hm′l ′ , (16)

where

E (T,0)
ne,nh

= h̄ωe(1 + ne) + h̄ωh
(

1
2 + nh

)
(17)

corresponds to the LLs of noninteracting particles, ne = n1 +
n2 and ωe,h = |e|B/(me,hc). The Coulomb interaction matrix
elements V (eh)

n1n2nhml;n′
1n′

2n′
hm′l ′ and V (ee)

n1n2nhml;n′
1n′

2n′
hm′l ′ are cumber-

some and given in Eqs. (C41) and (C53), respectively.

In Ref. [45] the Coulomb mixing was taken into account
only within the subspaces corresponding to ne = n′

e and nh =
n′

h, i.e., it was thus assumed that ne, nh remain good quantum
numbers of the full interaction problem. It was argued that
this approximation should be valid in the case of very strong
magnetic fields, where the magnetic energy dominates over
the Coulomb energy. However, as was discussed in the Intro-
duction [see Eq. (3) and below], this approach can hardly be
justified in any physically relevant situation and exact treat-
ment of the Coulomb mixing is necessary.

The resulting spectrum contains discrete levels and con-
tinuous regions, corresponding to the states of unbound
electron-exciton pairs. To identify the onset of the energy con-
tinuum, we additionally perform the independent calculations
for the case of an uncoupled electron and an exciton (see
Appendix D).

III. RESULTS AND DISCUSSION

In this section, we examine the trion spectra for GaAs and
CdTe QWs for different values of the external magnetic field
strengths. For these conventional semiconductors, the interac-
tion among charge carriers is well described by the standard
Coulomb potential (8).

For the case of GaAs, we use the following parameters: ef-
fective masses of carriers me = 0.063m0, mh = 0.51m0 (m0 is
the free electron mass), static dielectric permittivity ε = 12.9.

Our results for B = 30 T are shown in Fig. 1. The corre-
sponding spectrum is presented in the fourth vertical panel
from the left. Constructing the matrix of the Hamiltonian, we
accounted for the LLs with nh and ne = n1 + n2 spanning
from 0 to 4 (see the discussion of the convergence of the
procedure in Appendix G). We compared our results with
those obtained in Refs. [44–46], where the Coulomb mixing
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FIG. 1. Lower part of the energy spectrum for a trion in a GaAs
QW for B = 30 T. The first vertical panel corresponds to the-single-
composite particle (SCP) approximation, where the energies are
calculated by means of Eq. (18). The second vertical panel displays
the free LLs obtained via Eq. (17). Near each horizontal line, we
indicate the values of the pair (ne = n1 + n2, nh ). In the third panel,
we present the results obtained with use of the technique proposed
in Ref. [44], where Coulomb mixing of different LLs was neglected.
The fourth panel displays the spectrum obtained in this paper by di-
agonalization of the matrix of the full Hamiltonian, (16), accounting
for the LLs mixing. In the third and fourth panels thin horizontal
lines correspond to the discrete energy state of magnetotrions, and
color bars display energy continuums corresponding to unbound
electron-hole pairs. To make the figure less cumbersome, we have
not plotted all regions of the energy continuums in the third panel,
which should start down from every LL of noninteracting particles
presented in the second panel.

of the different LLs was neglected, see third vertical panel
from the left. The thin horizontal lines correspond to the dis-
crete energy state of magnetotrions, and the color bars display
the energy continua corresponding to unbound electron-hole
pairs. For comparison we also illustrated the simple case of a
trion as a single composite particle (left panel) with a spec-
trum given by

ESCP
n = h̄ωT

(
n + 1

2

)
, (18)

where the trion cyclotron frequency ωT is defined in Eq. (1),
and LLs corresponding to three noninteracting particles with
spectrum given by Eq. (17) (second panel from the left). Both
of these approximations yield obviously only discrete energy
levels.

Comparing third and fourth panels of Fig. 1 one can note
that even for the value of a magnetic field equal to several
tens of Tesla, the account of the Coulomb mixing is crucial.
It substantially affects the boundary of the energy continuum,
which shifts down by 5.688 meV). The magnetotrion binding
energy, defined as the distance between the discrete trion state
and the boundary of the energy continuum, is increased from
1.298 meV (Mz = −1 and Se = 1) to 4.680 meV (Mz = 0 and
Se = 0). For details, see Appendices E and F.

Moreover, exact treatment of the Coulomb mixing of LLs
modifies the spectrum quantitatively, leading to the appear-
ance of an additional discrete trion state below the energetic
continuum with binding energy of 1.043 meV. This state cor-
responds to Mz = −1 and Se = 1.

Here we would like to make a short digression and
provide a brief remark on the accuracy of our numerical esti-
mates. Throughout the paper, we assume that the uncertainty
amounts to 1 µeV, i.e., if the number is given as follows
1.123 meV, then it is equivalent to 1.123(1) meV. We empha-
size that each estimate is given for a fixed set of the Landau
levels taken into account within our computations. It means
that the corresponding convergence is achieved with respect
to the maximal value M of the quantum numbers m̃ and m̃′
(see Appendix F).

We also considered the case of B = 5 T, which is illus-
trated in Fig. 2. Here the energy continuum moves down
by 5.329 meV, and the trion binding energy increases from
0.530 meV to 1.604 meV. Interestingly, for this value of the
magnetic field, an additional trion level does not appear.

In experiments, the appearance of a second peak is ob-
served starting from a certain magnetic field strength [47].
Remarkably, this peak arises in the vicinity of B ≈ 9 T as
in our calculations (see Fig. 4 below). Moreover, the singlet
state observed in the experiment has a binding energy of
2.1 meV, while within the approximation disregarding the
Coulomb mixing of the LLs (as in Ref. [44]) it does not
appear at all; there is only a triplet state with binding energy
changing from 0.976 meV at 17 T to 1.804 meV at 58 T. In
the experiment, the triplet state has a lower binding energies
changing from 0.6 meV at 17 T to 1.2 meV at 58 T, while
within the full calculation (see Fig. 12 below) we received
0.506 meV and 1.821 meV, respectively. Comparing our pre-
dictions with another experimental study [17], we notice the
qualitative similarity of the behavior of the energy levels with
increasing magnetic field strength: a local minimum for the
trion level, appearance of an additional triplet peak and typical
growth (see Fig. 1(b) in Ref. [17]). In the absence of the
magnetic field, the trion binding energies are below 2.1 meV
(see Ref. [48] and references therein).

For comparison, we also present the results for another
widely used semiconductor material, CdTe. It has effective
masses me = 0.11m0, mh = 0.40m0 and relative permittivity
ε = 11.0. We show the spectrum for B = 30 T only (see
Fig. 3). As in the case of GaAs, our findings demonstrate
that proper account for the Coulomb mixing of the LLs is
important and leads to the shift of the energy continuum by
11.796 meV and of the trion binding energy by 2.735 meV.

In Fig. 4 we show the energy spectrum of the system as
a function of the magnetic field B. We display the positions
of the two discrete trion states, which were identified in our
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FIG. 2. Lower part of the energy spectrum for a trion in a GaAs
QW for B = 5 T. The first vertical panel corresponds to the-single-
composite particle (SCP) approximation, where the energies are
calculated by means of Eq. (18). The second vertical panel displays
the free LLs obtained via Eq. (17). Near each horizontal line, we
indicate the values of the pair (ne = n1 + n2, nh ). In the third panel,
we present the results obtained with use of the technique proposed in
Ref. [44], where Coulomb mixing of different LLs was neglected.
The fourth panel displays the spectrum obtained in this paper by
diagonalizing the matrix of the full Hamiltonian, (16), accounting
for the LLs mixing. In the third and fourth panels thin horizontal
lines correspond to the discrete energy state of magnetotrions, and
color bars display energy continuums corresponding to unbound
electron-hole pairs. One clearly sees the substantial shift of both the
energy continuum and the trion binding energy.

calculations (thin and thick solid green lines), the lower
boundary of the energy continuum (dashed green line) and
compare them to the results, presented in Ref. [45] shown by
the solid blue line (bound trion) and dashed line (continuum
boundary). The position of the lowest LL corresponding to
noninteracting particles is represented by the solid black line.

As one can clearly see, the increase of the magnetic field
does not lead to merging of the green and blue curves, which
means that the role of the Coulomb mixing between the
different LLs does not decrease with increasing B. This is
in agreement with a qualitative argument that although the
increase of the magnetic field leads to LL separation, it also
enhances the Coulomb matrix elements due to the reduction
of cyclotron radii (λ ∼ 1/

√
B), and these two effects com-

pensate each other [see the discussion after Eq. (3) in the
Introduction].

FIG. 3. Lower part of the energy spectrum for a trion in a CdTe
QW for B = 30 T. The first vertical panel corresponds to the-single-
composite particle (SCP) approximation, where the energies are
calculated by means of Eq. (18). The second vertical panel displays
the free LLs obtained via Eq. (17). Near each horizontal line, we
indicate the values of the pair (ne = n1 + n2, nh ). In the third panel,
we present the results obtained by means of the technique proposed
in Ref. [44], where Coulomb mixing of different LLs was neglected.
The fourth displays the spectrum obtained in this paper by diagonal-
izing the matrix of the full Hamiltonian, (16), accounting for the LLs
mixing. In the third and fourth panels thin horizontal lines correspond
to the discrete energy state of magnetotrions, and color bars display
energy continuums corresponding to unbound electron-hole pairs.
One clearly sees the substantial shift of both the energy continuum
and the trion binding energy.

Note that our formalism relies on the effective-mass ap-
proximation, which is well justified if the magnetic field
strength is sufficiently weak, so that the lowest LL of the non-
interacting system is not pushed in the region of the energies,
where the deviation of the dispersion law from a parabolic one
becomes important.

Moreover, we point out once more that in our calculations
the spin structure of the wave functions was not presented
explicitly. The electron spin state Se only defines the parity of
the coordinate part of the wave function. The account of the
interaction of spin with magnetic field is trivial, and will lead
to the splitting of a state with Se into (2Sh + 1)(2Se + 1) =
2(2Se + 1) sublevels.

Finally, we would like to underline that the model
Hamiltonian (4) is intrinsically nonrelativistic, whereas the
relativistic treatment of the problem incorporates, e.g., the
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FIG. 4. The energy spectrum of GaAs based system as function
of the magnetic field B. Solid green lines correspond to the two
discrete trion states obtained in this work, the dashed green line
corresponds to the lower boundary of the energy continuum, solid
blue line corresponds to the trion bound state reported in Ref. [45],
dashed blue line indicates the corresponding energetic continuum
boundary. We also plot the position of the lowest LL corresponding
to noninteracting particles (solid black line). The increase of mag-
netic field does not lead to the merging of green and blue lines, which
means that the role of the Coulomb mixing between different LLs
does not decrease with magnetic field. We accounted for LLs with
nh and ne = n1 + n2 spanning from 0 to 4. In Appendix H, we also
present the similar dependence extracted on the basis of extrapolating
procedure described there (see Fig. 12 below).

spin-orbit interaction (SOI). In the latter case, Mz is no longer
a well-defined quantum number, but the analysis of the SOI
effects is beyond the scope of the present paper.

IV. CONCLUSIONS

In this study, we revisited the problem of a trion in 2d semi-
conductor quantum wells in an external magnetic field. We
demonstrated, that the mixing between different Landau levels
induced by Coulomb interaction plays crucial role in the de-
termination of the energy spectrum of the problem and can not
be neglected even in the limit of very strong magnetic fields.
This is because magnetic field increases not only the distance
between the Landau levels, but Coulomb matrix elements as
well via decrease of the magnetic length. We have shown that
proper account of the Coulomb mixing not only leads to the
substantial increase of magnetotrion binding energy, but can
also lead to qualitative reshaping of the spectrum, resulting in
the appearance of additional discrete energy states.
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APPENDIX A: SINGLE ELECTRON IN
A MAGNETIC FIELD

Here and in Appendices B and C, we first briefly outline
how the energy spectrum can be computed and then provide
a detailed theoretical description of the corresponding prob-
lems. In Appendix D, we give a direct recipe for calculating
the spectrum for an unbound electron-exciton pair, since we
presented all the necessary theoretical calculations in the pre-
vious sections.

1. Energy spectrum

In the case of a single electron (hole) in a magnetic
field, the energy is given by a simple formula describing the
spectrum of a harmonic oscillator. The corresponding wave
functions ϕ(e)

nm(r) are constructed explicitly and form a basis
in which the Hamiltonian is diagonal,

H (e)
n′;n = E (e)

n δnn′ , (A1)

where n, n′ = 0, 1, 2, . . . and the eigenvalues correspond to
the Landau levels (LLs),

E (e)
n = h̄ωe

(
1
2 + n

)
. (A2)

Here ωe = |e|B/(mec) is the electron cyclotron frequency.
The energy is degenerate with respect to the second quantum
number m. The z projection of the orbital angular momentum
is mz = n − m.

2. Details

We start with the Hamiltonian, which in the case of a single
electron interacting with a constant uniform magnetic field
reads

Ĥ (e) = π̂2
e

2me
, (A3)

where π̂e = −ih̄∇ − (e/c)A(r) and we employ a symmetric
gauge, A(r) = (B × r)/2 with B directed along the z axis. We
assume that the particle is confined within the xy plane and
its quantum state is described by a wave function depending
solely on x and y (or polar coordinates r and ϕ).

In the external field specified above, the Hamiltonian (A3)
obviously commutes with the operator of the angular momen-
tum projection �̂z = −ih̄∂ϕ , so the eigenfunctions of H (e) will
also be characterized by the corresponding quantum number
mz, i.e., one can utilize the ansatz ψ (r, ϕ) = eimzϕR(r). The
ordinary differential equation for R(r) can then be solved
analytically (see, e.g., Ref. [49]). Here we will use another
approach based on the formalism of creation and annihilation
operators (see, e.g., Ref. [45]).

First, let us introduce the one-particle normalized vacuum
state in the coordinate representation,



(e)
0 (r) = 〈r|0〉 = 1

λ
√

2π
e−r2/(4λ2 ), (A4)

where

λ =
√

h̄c

|e|B (A5)
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is the so-called magnetic length, which was also introduced
in the main text. It is convenient to use a complex variable
z = reiϕ = x + iy and its complex conjugate z∗. We will also
need the following creation operators in the coordinate repre-
sentation:

Â†
e = 1√

2

(
z

2λ
− 2λ

∂

∂z∗

)
, (A6)

B̂†
e = 1√

2

(
z∗

2λ
− 2λ

∂

∂z

)
. (A7)

Together with the annihilation operators Âe and B̂e, they
obey the relations [Âe, Â†

e] = 1, [B̂e, B̂†
e] = 1, and [Âe, B̂e] =

[Âe, B̂†
e] = 0. These operators allow one to generate the fol-

lowing wave functions:

ϕ(e)
nm(r) = 1√

n!m!
(Â†

e )n(B̂†
e )m


(e)
0 (r), (A8)

where n, m = 0, 1, 2,... One can explicitly verify that these
functions form an orthonormal and complete set of the
Hamiltonian eigenfunctions and the corresponding energies
are given by Eq. (A2). Instead of the non-negative integers
n and m, one can also label the solutions by the following
numbers:

ñ = min (n, m), (A9)

m̃ = m − n. (A10)

These allow one to provide the following explicit form of the
functions (A8):

ϕ(e)
nm(r) = (−1)ñ

λ

√
2|m̃|ñ!

2π (ñ + |m̃|)!
(

r

2λ

)|m̃|

× e−im̃ϕL|m̃|
ñ

(
r2

2λ2

)
e−r2/(4λ2 ), (A11)

where L|m̃|
ñ are the Laguerre polynomials. In terms of n and m,

the explicit form (A11) strongly depends on whether n > m or
not, so using ñ and m̃ is often more convenient. The angular
momentum projection reads mz = −m̃ = n − m.

APPENDIX B: EXCITON (X) IN A MAGNETIC FIELD

In the case of two- and there-particle systems considered in
what follows, the free LLs are modified due to the Coulomb
interaction and the Hamiltonian eigenfunctions cannot be
found analytically. Next, we will discuss how the energy
eigenvalues can be obtained by diagonalizing the correspond-
ing matrix.

1. Spectrum calculation recipe

The exciton energy spectrum turns out to be striped—it
contains continuous regions separated by empty areas. To
evaluate the energies, one has first to separate the center-of-
mass motion by introducing a conserved vector K (see the
next section for details). Using then the basis set (B10), one

obtains the matrix elements in the form

H (X)
K,n′m′;nm = E (X,0)

nm δnn′δmm′ + VK,n′m′;nm, (B1)

where n and m are non-negative integer numbers, E (X,0)
nm is

defined in Eq. (B11), while the expression for VK,n′m′;nm is
presented in Eq. (B23). The Hamiltonian is block diagonal
in Mz = n − m, due to the angular momentum conservation.
Having constructed the matrix (B1), we should diagonalize it
varying K and Mz. In fact, the matrix elements depend only on
the magnitude |K| and Mz. Within numerical computations,
one has to make sure that for given |K| and Mz, the quantum
numbers n and m change in a sufficiently large range, so that
the results converge to a desired accuracy.

2. Details

As will be seen below, in the case of a two-dimensional
electron-hole (e − h) system, it is possible to separate the
center-of-mass coordinates and make use of the one-particle
solutions (A11). The two-particle Hamiltonian has the form

Ĥ (X) = π̂2
e

2me
+ π̂2

h

2mh
− e2

λ
V (|re − rh|), (B2)

where π̂e = −ih̄∇e − (e/c)A(re), π̂h = −ih̄∇h + (e/c)
A(rh), and V (r) is a dimensionless function governing the
interaction potential [for the usual Coulomb interaction
without the screening effects, it reads V (r) = λ/(εr)].
Although the interparticle-interaction law has nothing to do
with the magnetic length, its typical values does involve
λ due to the localization of the wave functions in the
external magnetic field [for instance, the matrix elements of
V (r) = λ/(εr) computed in the basis of the Landau wave
functions are λ independent].

Let us now take advantage of the translational symmetry of
the problem and separate the center-of-mass motion. As was
shown in Ref. [10], the Hamiltonian (B2) commutes with the
following vector operator:

K̂ = π̂e + π̂h + e

c
B × (re − rh)

= −ih̄∇e − ih̄∇h + e

c
[A(re) − A(rh)]. (B3)

Since K̂x and K̂y also commute with each other, the
Hamiltonian eigenfunctions can be characterized by the cor-
responding vectors K consisting of two quantum numbers
Kx and Ky. Note that in the absence of the external field, K
is the total momentum of the particles. Let us introduce the
center-of-mass position R and relative position r,

R = mere + mhrh

me + mh
, (B4)

r = re − rh. (B5)

The operator (B3) takes the form

K̂ = −ih̄∇R + e

2c
B × r. (B6)
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The Hamiltonian (B2) now reads

Ĥ (X) = − h̄2

2meh
R − h̄2

2μ
r

+ ieh̄

2c

{
1

meh
(B × r)∇R + 1

μ
[B × (R + γ r)]∇r

}

+ e2B2

8μc2
(R2 + βr2 + 2γ rR) − e2

λ
V (r), (B7)

where meh = me + mh, μ = memh/meh, γ = (mh − me)/meh,
and β = (m3

e + m3
h )/m3

eh. The wave function can then be rep-
resented as [10]

ϕ
(X)
K (r, R) = exp

[
i

h̄

(
K − e

2c
B × r

)
R

]
× exp

(
iγ

2h̄
Kr

)
ϕ(X)(r − r0).

(B8)

It is convenient to choose r0 = −c(B × K)/(eB2) in order to
obtain the following equation for ϕ(X)(r):[

− h̄2

2μ
 + ieh̄γ

2μc
(B × r)∇ + e2B2

8μc2
r2

− e2

λ
V (|r + r0|) − E

]
ϕ(X)(r) = 0.

(B9)

Note that the wave function ϕ(X)(r) does not involve K.
First, we will neglect the Coulomb interaction V and find

the corresponding two-particle wave functions and energy
eigenvalues (free LLs). The total Hamiltonian Ĥ (X) will be
then considered in this basis, and the corresponding matrix
elements are given by Eq. (B1). The solutions of Eq. (B9)
without the V term are exactly those given in Eq. (A11), so
the normalized two-particle wave functions within the zeroth
order with respect to the Coulomb interaction have the form

ϕ
(X)
K,nm(r, R) = 1√

2π h̄
exp

[
i

h̄

(
K − e

2c
B × r

)
R

]
× exp

(
iγ

2h̄
Kr

)
ϕ(e)

nm(r − r0).

(B10)

The corresponding energies involve the cyclotron frequency
with the reduced mass, ω0 = |e|B/(μc), and read

E (X,0)
nm = h̄ω0

(
1

2
+ 1 + γ

2
n + 1 − γ

2
m

)
= h̄ω0

(
1

2
+ ñ + |m̃| − γ m̃

2

)
. (B11)

Here the superscript “0” indicates that the corresponding
energies are obtained to zeroth order in the Coulomb inter-
action. Note that ω0 = ωe + ωh, where ωh = |e|B/(mhc). In
the heavy-hole limit mh = ∞, one obtains γ = 1, μ = me,
ωh = 0 and recovers the electron LLs (A2). The angular mo-
mentum projection of the two-particle system is again Mz =
−m̃ = n − m.

Next, one has to compute the matrix elements of the V
operator in Eq. (B2) using the basis functions (B10). The
integration over R is trivial and the matrix is diagonal with

respect to K,

VK′,n′m′;K,nm

≡ −(e2/λ)
〈
ϕ

(X)
K′,n′m′

∣∣V (r)
∣∣ϕ(X)

K,nm

〉
= −(e2/λ)δ(K − K′)

∫
dr

[
ϕ

(e)
n′m′ (r)

]∗
V (|r + r0|)ϕ(e)

nm(r)

≡ δ(K − K′)VK,n′m′;nm. (B12)

There are several technical difficulties, which one encounters
in evaluating the integral over r. First, note that the function
V (|r + r0|) is symmetric about r = −r0, whereas the wave
functions are symmetric about the origin (apart from the angu-
lar part e−im̃ϕ). Second, the radial parts of the wave functions
involve special functions (Laguerre polynomials), which com-
plicates the calculations. Moreover, the explicit form of the
electrostatic potential may also be highly complex.

In the present study, we compute integrals containing
monomials instead of the Laguerre polynomials and then
combine the results taking into account the corresponding
coefficients. In order to do this, it is necessary to inspect
the structure of the wave functions. First, it is convenient
to introduce non-normalized wave functions, which will be
denoted by ψ (normalized functions are denoted by ϕ). Sec-
ond, we rewrite the creation operators (A6) in terms of a new
dimensionless variable ξ = z/(2λ),

Â†
e = 1√

2

(
ξ − ∂

∂ξ ∗

)
, B̂†

e = 1√
2

(
ξ ∗ − ∂

∂ξ

)
. (B13)

The vacuum state (A4) in terms of ξ reads



(e)
0 (r) = 1

λ
√

2π
e−ξξ∗

. (B14)

The arbitrary wave function can be obtained via

ϕ
(X)
K,nm(r, R) = φ

(X)
K (r, R)

ψnm(r)√
Nnm

, (B15)

where

φ
(X)
K (r, R) = 1√

2π h̄
exp

(
iγ

2h̄
Kr

)
× exp

[
i

h̄

(
K − e

2c
B × r

)
R

]
,

(B16)

and the relative-motion wave function has the form

ψnm(r) = 1

2(n+m)/2

(
ξ − ∂

∂ξ ∗

)n(
ξ ∗ − ∂

∂ξ

)m



(e)
0 (r).

(B17)

The part of Eq. (B16) concerning the center-of-mass motion
already includes the necessary normalization factor, so Nnm

should be evaluated as

Nnm =
∫

drψ∗
nm(r)ψnm(r). (B18)

Applying operators Â†
e and B̂†

e to the vacuum state according
to Eq. (B17), we obtain the following structure of the wave
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function ψnm:

ψnm(r) =
∑
a1,a2

Bnm
a1a2

(ξ ∗)a1 (ξ )a2

(e)
0 (r). (B19)

The coefficients Bnm
a1a2

can be found directly by means of
Eq. (B17). We have implemented the corresponding procedure
within the Wolfram Mathematica subroutine (for the details
see Appendix I).

Taking into account Eq. (B19), the normalization factor can
be calculated as follows (we do not display the summation

indices explicitly):

Nnm =
∑ ∑

Bnm∗
a′

1a′
2
Bnm

a1a2

×
∫

dr
[



(e)
0 (r)

]∗



(e)
0 (r)(ξ ∗)a1+a′

2 (ξ )a2+a′
1

=
∑ ∑

Bnm∗
a′

1a′
2
Bnm

a1a2
I (X,N)
a1+a′

2,a2+a′
1
.

(B20)

Here we have defined the normalization master integral (MI)
I (X,N)

p1,p2
involving a monomial,

I (X,N)
p1,p2

=
∫

dr
[



(e)
0 (r)

]∗



(e)
0 (r)(ξ ∗)p1 (ξ )p2 = 1

2πλ2

∫ ∞

0
drre−r2/(2λ2 )

( r

2λ

)p1+p2
∫ 2π

0
dϕeiϕ(p2−p1 ) = p1!

2p1
δp1 p2 . (B21)

With the aid of the normalization factor (B20), one can con-
struct now the normalized wave functions

ϕ(e)
nm(r) = ψnm(r)√

Nnm
, (B22)

which coincide with the expression (A11), and also obtain the
full two-particle wave function (B15).

Having described how to calculate the normalization factor
Nnm using the normalization MI (B21), we can proceed in the
same way and compute the matrix element of the electron-

hole interaction VK,n′m′;nm, defined in Eq. (B12),

VK,n′m′;nm = −e2

λ

∫
dr

[
ϕ

(e)
n′m′ (r)

]∗
V (|r + r0|)ϕ(e)

nm(r)

=
∑∑

Bnm∗
a′

1a′
2
Bnm

a1a2
I (X,eh)
a1+a′

2,a2+a′
1√

Nn′m′
√

Nnm
.

(B23)

Here we have introduced the electron-hole interaction MI
I (X,eh)

p1 p2
,

I (X,eh)
p1 p2

= −e2

λ

∫
dr

[



(e)
0 (r)

]∗



(e)
0 (r)V (|r + r0|)(ξ ∗)p1 (ξ )p2 = − 1

2π

1

2p1+p2

e2

λ

( r0

λ

)2+p1+p2

×
∫ ∞

0
dxxp1+p2+1exp

[
−

( r0

λ

)2 x2

2

] ∫ 2π

0
dϕeiϕ(p2−p1 )V (r0

√
1 + x2 + 2x cos ϕ),

(B24)

which in the case of the Coulomb potential V (r) = λ/(εr) reads

I (X,eh,C)
p1 p2

= − E0

π
√

2π

1

2p1+p2

( r0

λ

)1+p1+p2
∫ ∞

0
dxxp1+p2+1exp

[
−

( r0

λ

)2 x2

2

] ∫ 2π

0
dϕ

exp[iϕ(p2 − p1)]√
1 + x2 + 2x cos ϕ

. (B25)

Here E0 = √
π/2(e2/ελ). With this expression in hands, we are now able to calculate an arbitrary matrix element (B1).

APPENDIX C: TRION (T) IN A MAGNETIC FIELD

1. Spectrum calculation recipe

In contrast to exciton, this three-particle system is not
electrically neutral, so we only partially separate the center-of-
mass degrees of freedom (for the details see the next section).
Instead of a conserved vector K, one has in this case an
integer quantum number k, which can be set to zero due to
the degeneracy of the energy levels. The matrix elements read

H (T)
n1n2nhml;n′

1n′
2n′

hm′l ′ = E (T,0)
n1+n2,nh

δn1n′
1
δn2n′

2
δnhn′

h
δmm′δll ′

+ V (eh)
n1n2nhml;n′

1n′
2n′

hm′l ′ + V (ee)
n1n2nhml;n′

1n′
2n′

hm′l ′ ,

(C1)

where each index is a non-negative integer, E (T,0)
ne,nh

is given in
Eq. (C40). The matrix elements of the interparticle interaction
are displayed in Eqs. (C41) and (C53). Note that in what
follows, we will compute the whole matrix by independently
varying all of the indices and taking into account the Coulomb

mixing of the free LLs, i.e. incorporating the V terms in
Eq. (16) with n1 = n′

1, n2 = n′
2, and nh = n′

h.

2. Details

A three-particle system involving two electrons with posi-
tions r1 and r2 and a hole with position rh is described by the
following Hamiltonian:

Ĥ (T) = Ĥ0 + V̂eh + V̂ee, (C2)

where

Ĥ0 =
∑
j=1,2

π̂2
j

2me
+ π̂2

h

2mh
, (C3)

V̂eh = −
∑
j=1,2

e2

λ
V (|r j − rh|), (C4)

V̂ee = e2

λ
V (|r1 − r2|). (C5)
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Here π̂ j = −ih̄∇ j − (e/c)A(r j ). In what follows, we will
again construct first the eigenfunctions of the Hamiltonian
Ĥ0 without the interparticle interaction and then use the
corresponding wave functions as a basis to subsequently di-
agonalize the total Hamiltonian Ĥ (T).

The most straightforward approach is to employ the one-
particle solutions (A8) and simply multiply the functions
depending on r1, r2, and rh, respectively. However, this basis
set completely disregards the translational symmetry of the
system as the functions have only a well-defined projection
of the total angular momentum Mz. First, let us inspect a
three-particle generalization of the vector operator (B3),

K̂ =
∑
j=1,2

π̂ j + π̂h + e

c

∑
j=1,2

B × r j − e

c
B × rh. (C6)

This operator (so-called operator of the magnetic translations
[12,44–46]) commutes with both Ĥ0 and Ĥ (T), but the crucial
difference between an exciton and trion is that in the latter
case the x and y components of K̂ do not commute with each
other. It turns out that [K̂x, K̂y] = i|e|h̄B/c and generally this
commutator is proportional to the total electric charge of the
system (an exciton is neutral). This means that one can take
advantage only of one integral of motion (for instance, either
Kx or Ky). In fact, it is convenient to consider the operator
K̂2 [45]. It obviously commutes with the Hamiltonian. Let us
normalize the vector operator according to

k̂ =
√

c

|e|h̄B
K̂, (C7)

so that [k̂x, k̂y] = i. Introducing then operator κ̂ = (ik̂x −
k̂y)/

√
2, one obtains

[κ̂, κ̂
†] = 1, (C8)

k̂2 = 2κ̂
†
κ̂ + 1. (C9)

Therefore, the eigenvalues of k̂2 are 2k + 1, where k = 0,
1,... The solutions of the Schrödinger equation can be char-
acterized by the quantum number k, which allows one to
partially separate the center-of-mass motion. We note that
in some specific many-particle systems one is able to per-
form further separation of variables by directly inspecting
the Schrödinger equation in some particular coordinates (see,
e.g., Refs. [50,51]). Here we will instead rely on the magnetic
translational symmetry, so the question now is how to utilize it
in practical calculations, i.e., how to construct the eigenfunc-
tions of K̂2.

Let us briefly outline the procedure proposed in Ref. [45].
First, we perform the following coordinate transformation:

R = 1√
2

(r1 + r2), r = 1√
2

(r1 − r2). (C10)

Introducing then the three-particle vacuum state



(T)
0 (r, R, rh) = 


(e)
0 (r)
(e)

0 (R)
(e)
0 (rh), (C11)

one can generate naive solutions by the corresponding cre-
ation operators of the form (A6) and (A7) and obtain

ϕ(T)
n1m1n2m2nhmh

(r, R, rh) = ϕ(e)
n1m1

(r)ϕ(e)
n2m2

(R)ϕ(h)
nhmh

(rh), (C12)

where ϕ(h)
nm (r) = [ϕ(e)

nm(r)]∗. The z projection of the angu-
lar momentum equals Mz = (n1 − m1) + (n2 − m2) − (nh −
mh). Moreover, the reflection r → −r, which is equivalent
to exchanging the positions of the electrons, yields the factor
(−1)n1−m1 , so the spin wave function of the electron subsys-
tem (not displayed here explicitly) is even (odd) if n1 − m1 is
odd (even). In other words, the total electron spin is Se = 0
(spin-singlet state) for even n1 − m1 and Se = 1 (spin-triplet
state) for odd n1 − m1. As was shown in Ref. [45], the func-
tions (C12) can be unitary transformed, so that they become
eigenfunctions of K̂2, i.e., they gain additional quantum num-
ber k preserving Mz and Se.

To perform this unitary transformation, let us again intro-
duce dimensionless variables ξ = z/(2λ), ξR = zR/(2λ), and
ξh = zh/(2λ) and consider the following creation operators:

Â†
e (r) =

(
ξ − ∂

∂ξ∗
)

√
2

, B̂†
e (r) =

(
ξ ∗ − ∂

∂ξ

)
√

2
, (C13)

Â†
e (R) =

(
ξR − ∂

∂ξ∗
R

)
√

2
, B̂†

e (R) =
(
ξ ∗

R − ∂
∂ξR

)
√

2
, (C14)

Â†
h(rh) =

(
ξ ∗

h − ∂
∂ξh

)
√

2
, B̂†

h(rh) =
(
ξh − ∂

∂ξ∗
h

)
√

2
. (C15)

Let us note that

κ̂
† =

√
2B̂†

e (R) − B̂h(rh). (C16)

This relation can be interpreted as a Bogoliubov transforma-
tion of B†

e (R),

ˆ̃B
†

e (R) = κ̂
† =

√
2B̂†

e (R) − B̂h(rh) = ŜB̂†
e (R)Ŝ†. (C17)

The corresponding unitary operator is

Ŝ = exp(−�[B̂e(R)B̂h(rh) − B̂†
h(rh)B̂†

e (R)]), (C18)

where sinh � = 1 and cosh � = √
2. Another operator that

does not commute with Ŝ and should be transformed is B̂†
h(rh),

ˆ̃B
†

h(rh) =
√

2B̂†
h(rh) − B̂e(R). (C19)

In addition to the operators, the wave functions themselves
also have to be transformed. Thus, up to the normalization
factor the new basis is

Â†
e (r)n1Â†

e (R)n2Â†
h(rh)nh ˆ̃B

†

e (R)kB̂†
e (r)mˆ̃B

†

h(rh)l�
(T)
0 , (C20)

where we used a new vacuum state �
(T)
0 = Ŝ


(T)
0 . In this ba-

sis, three well-defined quantum numbers are k, Mz, and Se, i.e.,
the Hamiltonian is block diagonal in terms of these quantum
numbers. The projection of the total angular momentum reads

Mz = n1 − m︸ ︷︷ ︸
from r

+ n2 − k︸ ︷︷ ︸
from R

− (nh − l )︸ ︷︷ ︸
from rh

. (C21)

The spin quantum number is Se = 0 (Se = 1) if n1 − m is even
(odd). Moreover, hereinafter we will assume k = 0 since the
Hamiltonian H (T) commutes with B̃†

e (R). The matrix elements
do not depend on k, so the energy also turns out to be k
independent.

In order to obtain an explicit form of the new vacuum
state, it is necessary to rewrite the expression for the oper-
ator Ŝ. Using the Baker-Campbell-Hausdorff formula (see,
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e.g., Ref. [52]) for the operator equality exp[�(â + b̂)] =
exp(�d̂ ), one can present the operator Ŝ in the following
form:

Ŝ = exp[tanh �B̂†
h(rh)B̂†

e (R)] exp(− ln (cosh �)

×[B̂†
e (R)B̂e(R) + B̂†

h(rh)B̂h(rh) + 1])

×exp[− tanh �B̂e(R)B̂h(rh)].

The new vacuum state then reads

�
(T)
0 = Ŝ


(T)
0 = 1

cosh �
exp[tanh �B̂†

h(rh)B̂†
e (R)]
(T)

0 .

(C22)

The state (C11) is given by



(T)
0 (r, R, rh) = exp(−ξξ ∗ − ξRξ ∗

R − ξhξ
∗
h )

(2π )3/2λ3
. (C23)

Taking into account the explicit form of the operators B†
h(rh)

and B†
e (R), one obtains

�
(T)
0 = exp

[
1

2
√

2

(
ξh − ∂

∂ξ ∗
h

)(
ξ ∗

R − ∂

∂ξR

)]
× exp(−ξξ ∗ − ξRξ ∗

R − ξhξ
∗
h )√

2(2π )3/2λ3
. (C24)

Let us label the function
√

2�
(T)
0 (r, R, rh) as a new normal-

ized vacuum state 
̃
(T)
0 (r, R, rh), which reads


̃
(T)
0 (r,R, rh)= exp(−ξξ ∗−ξRξ ∗

R −ξhξ
∗
h +√

2ξhξ
∗
R )√

2(2π )3/2λ3
. (C25)

Now one can generate an arbitrary wave function by means
of the creation operators in Eq. (C20). Regarding the normal-
ization of the wave functions, we prefer to keep only factor
1/[(2π )3/2λ3] explicitly in contrast to other normalization
factors, which will be taken into account at the very end. Thus,

we first employ the operator B̂†
e (r)m ˆ̃B

†

h(rh)l . Note that

ˆ̃B
†

h(rh)l
̃
(T)
0 (r,R, rh)= (ξh)l
̃

(T)
0 (r,R, rh)√

2
. (C26)

Then, we obtain

B̂†
e (r)m ˆ̃B

†

h(rh)l
̃
(T)
0 (r,R, rh)

= 2(m−1)/2(ξ ∗)m(ξh)l
̃
(T)
0 (r,R, rh).

(C27)

It is convenient to introduce the following function:

ψml (r, R, rh) = (ξ ∗)m(ξh)l
̃
(T)
0 (r,R, rh). (C28)

According to Eq. (C20), the general wave function up to the
normalization factor reads

ψn1n2nhml (r, R, rh) =
[

1√
2

(
ξ − ∂

∂ξ ∗

)]n1
[

1√
2

(
ξR − ∂

∂ξ ∗
R

)]n2
[

1√
2

(
ξ ∗

h − ∂

∂ξh

)]nh

ψml (r, R, rh). (C29)

Let us now calculate the normalization factor

Nn1n2nhml = 〈ψn1n2nhml |ψn1n2nhml〉. (C30)

This expression involves three 2D integrals (over r, R, and rh). Any wave function can be represented as the following linear
combination involving products of 
̃

(T)
0 (r, R, rh) and monomials:

ψn1n2nhml (r, R, rh) =
∑

Cn1n2nhml
a1a2b1b2c1c2

(ξ ∗)a1 (ξ )a2 (ξh)b1 (ξ ∗
h )b2 (ξR)c1 (ξ ∗

R )c2
̃
(T)
0 (r,R, rh). (C31)

Therefore,

Nn1n2nhml =
∑ ∑

Cn1n2nhml∗
a′

1a′
2b′

1b′
2c′

1c′
2
Cn1n2nhml

a1a2b1b2c1c2

∫
dr

∫
dR

∫
drh

∣∣
̃(T)
0 (r,R, rh)

∣∣2

× (ξ ∗)a1+a′
2 (ξ )a2+a′

1 (ξh)b1+b′
2 (ξ ∗

h )b2+b′
1 (ξR)c1+c′

2 (ξ ∗
R )c2+c′

1

=
∑ ∑

Cn1n2nhml∗
a′

1a′
2b′

1b′
2c′

1c′
2
Cn1n2nhml

a1a2b1b2c1c2
I (T,N)
a1+a′

2,a2+a′
1,b1+b′

2,b2+b′
1,c1+c′

2,c2+c′
1
, (C32)

where we define the master integral I (T,N)
p1 p2q1q2r1r2

as

I (T,N)
p1 p2q1q2r1r2

= 1

(2π )3λ6

∫
dr

∫
dR

∫
drh(ξ ∗)p1 (ξ )p2 (ξh)q1 (ξ ∗

h )q2 (ξR)r1 (ξ ∗
R )r2

× exp[−2(ξξ ∗ + ξRξ ∗
R + ξhξ

∗
h ) +

√
2(ξhξ

∗
R + ξ ∗

h ξR)]. (C33)

The expansion coefficients Cn1n2nhml
a1a2b1b2c1c2

for an arbitrary wave function in terms of monomials (ξ ∗)a1 (ξ )a2 (ξh)b1 (ξ ∗
h )b2 (ξR)c1 (ξ ∗

R )c2

can be obtained automatically. We attach the corresponding subroutine in Wolfram Mathematica format. Thus, we should evaluate
only the master integral (C33). First, taking into account ξ = reiϕ/(2λ), we integrate out the r-dependent part,∫

dr(ξ ∗)p1 (ξ )p2 exp(−2ξξ ∗) =
∫ ∞

0
rdr

∫ 2π

0
dϕ exp[iϕ(p2 − p1)]

(
r

2λ

)p1+p2

exp

(
− r2

2λ2

)
= 2πδp1 p2

p1!λ2

2p1
.
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Equation (C33) takes the form

I (T,N)
p1 p2q1q2r1r2

= 2πδp1 p2 p1!

(2π )32p1λ4

∫ ∞

0
RdR

∫ ∞

0
rhdrh

( rh

2λ

)q1+q2
(

R

2λ

)r1+r2
∫ 2π

0
dϕh

∫ 2π

0
dϕR exp[iϕh(q1 − q2)] exp[iϕR(r1 − r2)]

× exp

[
− R2

2λ2
− r2

h

2λ2
+ rhR cos (ϕR − ϕh)√

2λ2

]
. (C34)

Using the Jacobi-Anger relation exp(iz cos ϕ) = ∑∞
n=−∞ inJn(z)exp(inϕ), we can integrate over the angles as follows:∫ 2π

0
dϕR

∫ 2π

0
dϕh exp[iϕh(q1 − q2)] exp[iϕR(r1 − r2)] exp[in(ϕR − ϕh)] = (2π )2δ0,q1−q2−nδ0,r1−r2+n. (C35)

Let us assume that q1 � q2. One obtains

I (T,N)
p1 p2q1q2r1r2

= 1

λ4
δp1 p2δq1−q2,r2−r1

p1!

2p1
iq1−q2

∫ ∞

0
dRR

(
R

2λ

)r1+r2

exp

(
− R2

2λ2

)
×

∫ ∞

0
drhrh

( rh

2λ

)q1+q2

exp

(
− r2

h

2λ2

)
Jq1−q2

(
−i

rhR

λ2
√

2

)
= δp1 p2δq1−q2,r2−r1 p1!

2p1+q1+r1+ q1−q2
2 −2

∫ ∞

0
d

(
R√
2λ

)(
R√
2λ

)

×
∫ ∞

0
d

(
rh√
2λ

)(
rh√
2λ

) ∞∑
m=0

1

2mm!

1

(q1 − q2 + m)!
exp

(
− r2

h

2λ2

)
exp

(
− R2

2λ2

)(
rh√
2λ

)2q1+2m

×
(

R√
2λ

)2r1+2m+2q1−2q2

= δp1 p2δq1−q2,r2−r1 p1!

2p1+q1+r1+ q1−q2
2

∫ ∞

0
dx

∫ ∞

0
dy

∞∑
m=0

yq1+m exp(−y)xm+r1+q1−q2 exp(−x)

2mm!(q1 − q2 + m)!

= δp1 p2δq1−q2,r2−r1 p1!

2p1+q1+r1+ q1−q2
2

∞∑
m=0

(q1 + m)!(r1 + m + q1 − q2)!

m!2m(q1 − q2 + m)!
= δp1 p2δq1−q2,r2−r1 p1!q1!r2!

(q1 − q2)!2p1+q1+r1+ q1−q2
2

× 2F1

(
q1 + 1, r2 + 1, q1 − q2 + 1;

1

2

)
. (C36)

If q1 < q2, then one can perform complex conjugation of the initial expression for I (T,N)
p1 p2q1q2r1r2

and calculate it via the same steps
as described above. The result can also be obtained by simply substituting q1 ↔ q2 and r1 ↔ r2. Then, for universality, we
introduce q> = max(q1, q2), r> = max(r1, r2), and r< = min(r1, r2). In terms of these quantities, the master integral reads

I (T,N)
p1 p2q1q2r1r2

= δp1 p2δq1−q2,r2−r1 p1!q>!r>!

|q1 − q2|!2p1+q>+r<+ |q1−q2 |
2

2F1

(
q> + 1, r> + 1, |q1 − q2| + 1;

1

2

)
. (C37)

Having obtained the expression for the normalization factor Nn1n2nhml , we introduce the normalized wave functions as

ϕ
(T)
n1n2nhml (r, R, rh) = ψn1n2nhml (r, R, rh)√

Nn1n2nhml
. (C38)

With these wave functions, we can calculate the matrix elements of interest. First, it immediately follows that the matrix elements
of the operator Ĥ0 read 〈

ϕ
(T)
n1n2nhml

∣∣Ĥ0

∣∣ϕ(T)
n′

1n′
2n′

hm′l ′
〉 = δn1n′

1
δn2n′

2
δnhn′

h
δmm′δll ′E

(T,0)
n1+n2,nh

, (C39)

where

E (T,0)
nenh

= h̄ωe(1 + ne) + h̄ωh
(

1
2 + nh

)
. (C40)

Next, one has to compute the matrix elements involving the interparticle-interaction terms. Let us start with the contribution V̂eh.
Taking into account Eq. (C31), we obtain

V (eh)
n1n2nhml;n′

1n′
2n′

hm′l ′=〈ϕ(T)
n1n2nhml |V̂eh|ϕ(T)

n′
1n′

2n′
hm′l ′ 〉=

∑ ∑
Cn1n2nhml∗

a′
1a′

2b′
1b′

2c′
1c′

2
Cn1n2nhml

a1a2b1b2c1c2
I (T,eh)
a1+a′

2,a2+a′
1,b1+b′

2,b2+b′
1,c1+c′

2,c2+c′
1√

Nn1n2nhml
√

Nn′
1n′

2n′
hm′l ′

, (C41)

where

I (T,eh)
p1 p2q1q2r1r2

= −e2

λ

∫
dr

∫
dR

∫
drh(ξ ∗)p1 (ξ )p2 (ξh)q1 (ξ ∗

h )q2 (ξR)r1 (ξ ∗
R )r2

× exp(−2(ξξ ∗ + ξRξ ∗
R + ξhξ

∗
h ) + √

2(ξhξ
∗
R + ξ ∗

h ξR))

(2π )3λ6
[V (|rh − r1|) + V (|rh − r2|)]. (C42)
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It is convenient to introduce the variable r̃ = √
2rh − R. We perform further calculations for an arbitrary spherically symmetric

potential, while the Coulomb potential will be considered only at the very end of our calculations. In terms of r̃, the sum
in square brackets can be written as V (|̃r − r|/√2) + V (|̃r + r|/2). Passing to the coordinates {̃r, r, R} and also making an
additional change of variables in the second term [reflection r → −r leading to the factor (−1)p1+p2 ], we obtain the following
expression:

I (T,eh)
p1 p2q1q2r1r2

= −e2[1 + (−1)p1+p2 ]

2λ(2π )3λ6

∫
dr

∫
dR

∫
d r̃(ξ )p2 (ξ ∗)p1 (ξR)r1 (ξ ∗

R )r2

(
ξ̃ + ξR√

2

)q1
(

ξ̃ ∗ + ξ ∗
R√

2

)q2

× V

( |̃r − r|√
2

)
exp

(
− r2

2λ2
− r̃2

4λ2
− R2

4λ2

)
= − e2(1 + (−1)p1+p2 )

2λ(2π )3λ62(q1+q2 )/2

q1∑
k=0

q2∑
n=0

Ck
q1

Cn
q2

∫
dr

∫
d r̃

× V

( |̃r − r|√
2

)
exp

(
− r2

2λ2
− r̃2

4λ2

)
(ξ )p2 (ξ ∗)p1 (̃ξ )q1−k (̃ξ ∗)q2−n

∫
dR(ξR)r1+k (ξ ∗

R )r2+n exp

(
− R2

4λ2

)
, (C43)

where ξ̃ = √
2ξh − ξR. Let us separately consider R and r̃ − r parts. For the R integration, we obtain the following expression:∫ ∞

0
dRR exp

(
− R2

4λ2

)(
R

2λ

)r1+r2+k+n ∫ 2π

0
dϕRexp(iϕR[r1 + k − (r2 + n)]) = 4πλ2δr1+k,r2+n(k + r1)!. (C44)

Now we consider the r̃ − r integration in Eq. (C43). In order to factorize the expression, it suffices here to perform the following
change of variables: r = ρ1/3 + ρ2/3, r̃ = ρ1/3 − 2ρ2/3. Then, the corresponding integral reads∫

dr
∫

d r̃V

( |̃r − r|√
2

)
exp(− r2

2λ2
− r̃2

4λ2
)(ξ )p2 (ξ ∗)p1 (̃ξ )q1−k (̃ξ ∗)q2−n = 1

32+p2+p1+q1+q2−k−n

∫
dρ1

∫
dρ2V

( |ρ2|√
2

)
× exp(−ρ2

1 + 2ρ2
2

12λ2
)
(
ξρ1 + ξρ2

)p2
(
ξ ∗
ρ1

+ ξ ∗
ρ2

)p1
(
ξρ1 − 2ξρ2

)q1−k(
ξ ∗
ρ1

− 2ξ ∗
ρ2

)q2−n = 1

32+p2+p1+q1+q2−k−n

×
p2∑

t2=0

p1∑
t1=0

q1−k∑
s1=0

q2−n∑
s2=0

Ct2
p2

Ct1
p1

Cs1
q1−kC

s2
q2−n

∫ ∞

0
ρ2dρ2V

(
ρ2√

2

)
exp(− ρ2

2

6λ2
)(ξρ2 )p2−t2 (ξ ∗

ρ2
)p1−t1 (−2ξρ2 )q1−l−s1

× (−2ξ ∗
ρ2

)q2−n−s2

∫
ρ1dρ1(ξρ1 )t2+s1 (ξ ∗

ρ1
)t1+s2 exp(− ρ2

1

12λ2
) = (∗). (C45)

The ρ1 and ρ2 integrals are factorized, so they can be easily evaluated separately. First,∫ ∞

0
dρ1ρ1

( ρ1

2λ

)t2+t1+s1+s2

exp

(
− ρ2

1

12λ2

)∫ 2π

0
dϕρ1 exp[iϕρ1 (t2+s1−(t1+s2))] = 12πλ23t1+s2 (t1 + s2)!δt2+s1,t1+s2 . (C46)

Second, ∫ ∞

0
dρ2ρ2V

(
ρ2√

2

)(
ρ2

2λ

)p2−t2+p1−t1+q1−k−s1+q2−n−s2

exp

(
− ρ2

2

6λ2

) ∫ 2π

0
dϕρ2 (−2)q1−k−s1+q2−n−s2

× exp[iϕρ2 (p2 − t1 + q1 − k − s1 − (p1 − t1 + q2 − n − s2))]

= 2πδp2+q1−k,p1+q2−n(−2)q1−k−s1+q2−n−s2

∫ ∞

0
dρ2V

(
ρ2√

2

)
ρ2 exp

(
− ρ2

2

6λ2

)(
ρ2

2

4λ2

)p2−t2+q1−k−s1

= 2πδp2+q1−k,p1+q2−n(−2)q1−k−s1+q2−n−s2λ2Ieh(p2 − t2 + q1 − k − s1), (C47)

where we have introduced

Ieh(α) = 1

λ2

∫ ∞

0
V

(
ρ2√

2

)
exp

(
− ρ2

2

6λ2

)(
ρ2

2

4λ2

)α

ρ2dρ2. (C48)

In the case of Coulomb potential, this integral yields

IC
eh(α) =

√
3π

ε

(
3

4

)α

(2α − 1)!!. (C49)
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Collecting the contributions for the r̃ − r part, for the expression (C45), we finally obtain

(∗) = 1

32+p2+p1+q1+q2−k−n

p2∑
t2=0

p1∑
t1=0

q1−k∑
s1=0

q2−n∑
s2=0

Ct2
p2

Ct1
p1

Cs1
q1−kC

s2
q2−n12πλ23t1+s2 (t1 + s2)!δt2+s1,t1+s2

× 2πδp2+q1−k,p1+q2−n(−2)q1−k−s1+q2−n−s2λ2Ieh(p2 − t2 + q1 − k − s1). (C50)

Thus, we find the final expression for I (T,eh)
p1 p2q1q2r1r2

. Continuing the Eq. (C43), we come to the following expression:

I (T,eh)
p1 p2q1q2r1r2

= −δp2+q1+r1,p1+q2+r2

2e2

3λ

(1 + (−1)p1+p2 )
2(q1+q2 )/2

q1∑
k=0

q2∑
n=0

Ck
q1

Cn
q2

δr1+k,r2+n(k + r1)!

3p1+p2+q1+q2−k−n

×
p2∑

t2=0

p1∑
t1=0

q1−k∑
s1=0

q2−n∑
s2=0

Ct2
p2

Ct1
p1

Cs1
q1−kC

s2
q2−n3t1+s2 (t1 + s2)!δt2+s1,t1+s2 (−2)q1−k−s1+q2−n−s2

× Ieh(p2 − t2 + q1 − k − s1). (C51)

This is the most general expression allowing one to obtain the matrix element (C41) for any spherically symmetric potential. In
the case of the Coulomb one, it takes the following form:

I (T,eh,C)
p1 p2q1q2r1r2

= −δp2+q1+r1,p1+q2+r2

2
√

2E0√
3

(−1)q1+q2 [1 + (−1)p1+p2 ]

3p1+q2 2p1+p2+(q1+q2 )/2

q1∑
k=0

q2∑
n=0

Ck
q1

Cn
q2

δr1+k,r2+n(k + r1)!

×
p2∑

t2=0

p1∑
t1=0

q1−k∑
s1=0

q2−n∑
s2=0

Ct2
p2

Ct1
p1

Cs1
q1−kC

s2
q2−nδt2+s1,t1+s2 (−1)k+s1+n+s2 3t1+s2+n2t1+t2 (t1 + s2)![2(p2 − t2 + q1 − k − s1) − 1]!!.

(C52)

The matrix elements corresponding to the electron-electron interaction is determined via

V (ee)
n1n2nhmln′

1n′
2n′

hm′l ′=〈ϕ(T)
n1n2nhml |V̂ee|ϕ(T)

n′
1n′

2n′
hm′l ′ 〉=

∑ ∑
Cn1n2nhml∗

a′
1a′

2b′
1b′

2c′
1c′

2
Cn1n2nhml

a1a2b1b2c1c2
I (T,ee)
a1+a′

2,a2+a′
1,b1+b′

2,b2+b′
1,c1+c′

2,c2+c′
1√

Nn1n2nhml
√

Nn′
1n′

2n′
hm′l ′

, (C53)

where

I (T,ee)
p1 p2q1q2r1r2

=−e2

λ

∫
dr

∫
dR

∫
drh(ξ ∗)p1 (ξ )p2 (ξh)q1 (ξ ∗

h )q2 (ξR)r1 (ξ ∗
R )r2

exp[−2(ξξ ∗+ξRξ ∗
R+ξhξ

∗
h )+√

2(ξhξ
∗
R + ξ ∗

h ξR)]

(2π )3λ6
V (|r2 − r1|).

(C54)
One then obtains

I (T,ee)
p1 p2q1q2r1r2

= 1

(2π )3λ6

e2

λ

∫ ∞

0
rdr

∫ 2π

0
dϕV (

√
2r)

( r

2λ

)p1+p2
exp

(
− r2

2λ2

)
exp[iϕ(p2 − p1)]

∫
rhdrh

( rh

2λ

)q1+q2

× exp

(
− r2

h

2λ2

) ∫ ∞

0
dRR

(
R

2λ

)r1+r2

exp

(
− R2

2λ2

)∫ 2π

0
dϕR

∫ ∞

0
dϕh exp[iϕR(r1 − r2)] exp[iϕh(q1 − q2)]

× exp[iu cos (ϕR − ϕh)], (C55)

where u = −iRrh/(
√

2λ2). The integration over the angles yields∫ 2π

0
dϕr exp[iϕr (p2 − p1)]

∫ 2π

0
dϕR

∫ ∞

0
dϕrh exp[iϕR(r1 − r2)] exp[iϕrh (q1 − q2)] exp[iu cos (ϕR − ϕrh )]

= δp1 p2δq1−q2,r1−r2 ir2−r1 (2π )3Jr2−r1 (u). (C56)

Expanding the Bessel function in a power series and integrating over R and rh, we obtain the final expression for an arbitrary
spherically symmetric potential,

I (T,ee)
p1 p2q1q2r1r2

= e2

λ

1

2q2+(r2+r1 )/2
δp1 p2δr2−r1,q1−q2Iee(2p1)

∞∑
m=0

1

2mm!

(m + q1)!(m + r2)!

(m + r2 − r1)!
, (C57)

where we define the r part via

Iee(α) = 1

λ2

∫ ∞

0
rdrV (

√
2r)

(
r

2λ

)α

exp

(
− r2

2λ2

)
. (C58)
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In the case of the Coulomb potential, this integral is given by

IC
ee(α) =

√
π

2ε

(α − 1)!!

2α
. (C59)

Thus, for the Coulomb potential, the master integral of the electron-electron interaction reads

I (T,ee,C)
p1 p2q1q2r1r2

= E0√
2

(2p1 − 1)!!

2q2+(r2+r1 )/2+2p1
δp1 p2δr2−r1,q1−q2

∞∑
m=0

1

2mm!

(m + q1)!(m + r2)!

(m + r2 − r1)!
. (C60)

Now we have all of the necessary ingredients for the
Hamiltonian matrix elements (C1).

APPENDIX D: EXCITON AND A FREE ELECTRON (X, e)

When solving the three-particle problem discussed in
Appendix C, one obtains discrete energy levels corresponding
to bound trion states and a continuous spectrum. The lower
boundary of the latter indicates the energy at which the trion
disintegrates and turns into a combination of an exciton and a
free electron. Since these two constituents do not interact with
each other, the free electron contributes to the total energy
according to Eq. (A2), while the exciton contribution can be
extracted from the matrix problem (B1). Let the free-electron
LL be characterized by quantum number n0. The Hamiltonian
is diagonal with respect to n0 because the Coulomb interaction
relates solely to the exciton part. The matrix has the following
form:

H (X,e)
K,n0,n′m′;nm = E (X,0)

nm δnn′δmm′ + VK,n′−n0,m′;n−n0,m. (D1)

Here the second term is present only for n0 � min (n, n′). To
obtain the lower energy level of the continuous spectrum, one
also has to minimize the resulting energy by varying |K|. If
the Coulomb mixing among different LLs of the three-particle
problem is neglected, then for given ne ≡ n1 + n2 and nh in
Eq. (C1) one should choose n = n′ = ne and m = m′ = nh

in Eq. (D1). In order to fully take into account the Coulomb
interaction, it is necessary to vary n, n′, m, m′ in Eq. (D1) from
zero to sufficiently large numbers, so the energy eigenvalues
converge.

APPENDIX E: EXAMPLES OF CALCULATING THE
CONTINUUM ONSET IN THE SIMPLEST CASES

Let us discuss here the quantitative features of the energy
spectrum of the third panel in Fig. 1. First, we observe the
regions of a discrete spectrum and continuous bands. The
discrete levels correspond to the trion states, while the lower
boundary of each continuous region (blue, violet, orange,
pink) relates to the onset of the exciton continuum. For in-
stance, in the case nh = 0 and ne = 1, there are no discrete
levels. To find the lower bound of each continuous region,
we consider the problem involving noninteracting exciton and
electron (see Appendix D). Let us illustrate this approach
for (ne, nh) = (0, 0) and (0,1). In these simplest cases all
calculations are reduced to the analytical formula instead of
diagonalization of matrix. The lower border EX

00 for the region

(0,0) can be found by means of the following relation:

EX
00 = E (X,0)

00 + VK→Kmin,00;00

= 1
2 h̄ω0 + I (X,eh,C)

00 |r0→rmin , (E1)

where E (X,0)
00 is the corresponding free LL [Eq. (B11)], VK,00;00

is the Coulomb matrix element [Eq. (B23)], ω0 = ωe + ωh,
and I (X,eh,C)

00 is defined in Eq. (B25). As was mentioned above,
since an exciton is a neutral system, the translational sym-
metry gives rise to a conservation law for vector K. Then
we introduce r0 = −c(B × K)/(eB2) and vary the magnitude
of r0 because the energy is independent of its direction (see
Appendix B). In Eq. (E1), the energy as a function of r0 is
minimal (see Fig. 5). For (ne, nh) = (0, 0), one finds rmin = 0.
In the case (1,0), we have the following relation:

EX
01 = E (X,0)

01 + VK→Kmin,01;01

= 1
2 (h̄ωe + 3h̄ωh) + 2I (X,eh,C)

11 |r0→rmin , (E2)

where factor 2 in the last term comes from the coefficient B01
10

introduced in Eq. (B17). In Fig. 5 we display the functions
I (X,eh,C)
00 , and 2I (X,eh,C)

11 versus the dimensionless parameter
r0/λ in units of E0 = √

π/2(e2/ελ), which represents a

FIG. 5. Functions Ĩ (X,eh,C)
00 = I (X,eh,C)

00 and Ĩ (X,eh,C)
11 = 2I (X,eh,C)

11

governing the Coulomb matrix elements and defined in Eq. (B25)
vs r0 = |r0| in units of λ. These quantities entering Eqs. (E1) and
(E2) determine the exciton energy. The vector r0 is defined via r0 =
−c(B × K)/(eB2), where K is a conserved vector arising due to the
translational symmetry of the system. Such a continuous dependence
on the parameter r0 leads to a band structure of the exciton spectrum.
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characteristic energy scale of all of the matrix elements. Since
the Coulomb contributions to the exciton energy can be con-
tinuously varied by changing the parameter r0, the exciton
spectrum contains continuous bands, which are clearly seen
in the third panel of Fig. 1. For GaAs at B = 30 T, we obtain
EX

00 = 28.665 meV and EX
01 = 48.207 meV.

APPENDIX F: RULES FOR FILLING
THE TRION HAMILTONIAN

In order to obtain the spectrum of a trion, it is nec-
essary to construct the Hamiltonian correctly. Let us look
at the filling of the Hamiltonian using the example of the
Fig. 1. First, we analyze the third panel, where the matrix
(C1) is diagonalized neglecting the matrix elements between
different LLs. Here, we employ the method proposed in
Refs. [44–46]. In practice, the matrix is filled in such a way
that we do not get negative values of the indices, and also
keep in mind that the parity and the projection of the total
orbital angular momentum are preserved. Thus, if the arbi-
trary matrix element is given by H (T)

n1n2nhml;n′
1n′

2n′
hm′l ′ , then the

indices should satisfy the following conditions: n2 = ne −
n1, n′

2 = n′
e − n′

1, m = m̃ + (1 + (−1)n1+Se )/2, m′ = m̃′ +
(1 + (−1)n′

1+Se )/2, l = m̃ + (1 + (−1)n1+Se )/2 + Mz − ne +
nh, l ′ = m̃′ + (1 + (−1)n′

1+Se )/2 + Mz − n′
e + n′

h, where ne

and n′
e change in the range [ne,min, ne,max] with step 1, n1

and n′
1 change in the range [0, ne,max], nh and n′

h change
in the range [nh,min, nh,max] with step 1, m̃ and m̃′ change
in the range [0, M] with step 2. Moreover, the follow-
ing additional requirements should be verified: ne − n1 �
0, n′

e − n′
1 � 0, m̃ + (1 + (−1)n1+Se )/2 + Mz − ne + nh � 0,

m̃′ + (1 + (−1)n′
1+Se )/2 + Mz − n′

e + n′
h � 0. The parameter

M is responsible for the convergence of the results affecting
the size of the model Hilbert space.

Thus, we should choose the following parameters: the
value of the projection of the angular momentum Mz, the spin
quantum number Se = 0 or Se = 1, M (for the calculations
at third panel in Fig. 1 it is up to 90), and the range of the
parameters associated with the free LLs (nh,min, nh,max, ne,min,
ne,max). For instance, in order to obtain the blue region of the
spectra, we fix nh,min = nh,max = ne,min = ne,max = 0, M = 90
and collect the eigenvalues for different Mz ∈ {−7, . . . , 0}
and Se = 0, 1. The same steps we do for other colored parts
presented in the third vertical panel in Fig. 1, the difference is
only in the choice of nh,min, nh,max, ne,min, ne,max.

If the Coulomb mixing is taken into account, the corre-
sponding spectrum is presented in the fourth vertical panel
in Fig. 1. Here, we chose nh,min = ne,min = 0, and nh,max =
ne,max = 4, while M is varied from 0 to 12. The smaller values
of M are employed due to the larger dimension of the model
Hilbert space and corresponding computational complexity.
Note that despite such a reduction in the dimension, this turns
out to be sufficient for the convergence of the lower discrete
levels.

To present a more detailed spectrum structure, we provided
two examples of spectra where different parts corresponding
to specific values of Mz and Se are distinguished. One of them
(Fig. 6) relates to the purple part of the third vertical panel
in Fig. 1, while the second example (Fig. 7) corresponds to

FIG. 6. Detailed spectrum, which corresponds to the second
(purple) part of the third vertical panel in Fig. 1 for GaAs and
B = 30 T. The points are grouped in accordance with specific values
of Mz (changes along the x axis). The gray points are associated with
triplets (Se = 1), while purple points correspond to singlets Se = 0.
Recall that the indices associated with the free LLs are fixed and have
the following values: ne = 0, nh = 1. For each integer Mz we have 50
points for each energy level.

the lower part of the fourth vertical panel in the same figure,
where we take into account the Coulomb-induced mixing of
the different LLs. The corresponding details can be found in
Appendix G.

APPENDIX G: DETAILING OF SPECTRUM STRUCTURE

Here we would like to illuminate the technicalities of our
spectrum calculations. Of course, in practical trion computa-
tions, the regions that we associate with the exciton continuum
are not continuous since the basis set employed is always
finite, if huge. However, in order to correctly determine
the continuous zones of the spectrum and establish the true
discrete levels that we associate with the trion states, it is

FIG. 7. Detailed spectrum, which corresponds to the lower part
of the fourth vertical panel in Fig. 1 for GaAs and B = 30 T. The
points are grouped in accordance with specific values of Mz (changes
along the x axis). The gray points are associated with triplets (Se =
1), while black points correspond to singlets Se = 0. The indices
associated with the free LLs change as ne = 0 . . . 4, nh = 0 . . . 4. For
each integer Mz we have four points for each energy level.
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sufficient to (i) follow the behavior of the levels as the ba-
sis increases with increasing parameter M and (ii) carry out
independent calculations of the lower exciton level in order
to verify the lower border of the exciton continuum. Let us
consider the first example in Fig. 6. In order to construct
it, we resolved the details of the purple sector of the third
vertical panel in Fig. 1 with respect to the values of the
projection of the total angular momentum Mz. The points
are not merged into a single area as was done previously (in
Fig. 1 we assigned a horizontal line of the same width to each
point). In Fig. 6, we indicate the corresponding values of the
projection Mz below each group of the points at the horizontal
axis. Blurring is due to the fact that when moving along the
x axis in the vicinity of each value of Mz, we change the
value of the parameter M demonstrating (i) the emergence of
new levels and (ii) how the existing levels change their posi-
tions. Moreover, levels that have different spin number Se are
marked by different colors (gray and purple). The spectrum
shows two qualitatively different types of behavior. Above
a certain level, with increasing parameter M, we observe a
significant change in levels and the appearance of more and
more new ones. However, in the region below the mentioned
border, the levels practically do not change from the very
beginning and stand apart from each other. Furthermore, new
levels do not appear there. As one might guess, the upper
part is associated with the exciton continuum, while the lower
part yields the trion levels. Let us also note that the upper
region tends to fill the entire part of the spectrum up to the
corresponding free LL, which is also marked by the upper
horizontal line. As was already mentioned, to confirm this
qualitative separation, we calculated the lower exciton level
within the analysis of noninteracting exciton and electron (see
Appendix D). In Fig. 6 this level is labeled by EX

01. In Fig. 7
we show another example of detailing the projection of the
total angular momentum Mz and Se in the case of a more
complicated consideration when mixing of various free LLs
is taken into account. In order to obtain a clear structure of
the discrete levels (trion ones), we limit ourselves only by the
lower part of the spectrum presented in Fig. 1 within the fourth
vertical panel. It is evident that with the inclusion of higher
values of the free LLs ne and nh, the dimension of the model
Hilbert space grows significantly. For this reason, we did not
achieve such values of M as in the previous case. However,
as it turned out, this was not necessary. Moreover, it is easier
to identify the discrete levels since they demonstrate stability
with respect to increasing M from the very beginning. An
example of such stability is demonstrated for the two lower
trion levels. Moreover, for the lowest one, we display an inset
in Fig. 7, which clearly shows the converged value of the
energy level.

APPENDIX H: CONVERGENCE OF ENERGY LEVELS
AND EXTRAPOLATION PROCEDURE

Our predictions should converge with respect to the num-
ber of the LLs incorporated within the model Hilbert space. It
turns out that even within the setup that takes into account all
levels up to the fifth ones (ne = 0, . . . , 5 and nh = 0, . . . , 5),
we cannot conclude that the convergence has been achieved.

FIG. 8. Dependence of the lowest trion level (gray circles) and
lowest exciton level (gray stars) on the maximal value of the LLs
taken into account when constructing the model Hilbert space in the
case of GaAs at B = 10 T. Here we assume nmax

e = nmax
h = nmax.

In order to overcome this problem, we utilize an extrapolation
procedure described below. In Fig. 8, we demonstrate the
energy of one of the lowest trion levels and the lowest exciton
level as functions of the number of LLs included within the
model Hilbert space in the case of GaAs at B = 10 T. We
depict first the energies calculated in the zero approximation
(nmax

e = nmax
h = 0, blue dots), as was done in Ref. [44], and

then we present the results computed via our general tech-
nique: for the trion problem we reached nmax

e = nmax
h = 5,

while for the exciton problem we took into account the states
up to nmax

e = nmax
h = 9. One observes that the convergence is

very slow and, based on the existing number of points, it is
difficult to precisely determine the values of the true trion and
exciton levels. However, using these points, we performed an
extrapolation procedure allowing us to obtain more accurate
predictions. In Fig. 8, they are depicted by the horizontal lines.
We note that although extrapolating the data can never yield
absolutely accurate values, it is not possible to extract the
energy levels without extrapolation since the convergence is
unlikely to be achieved by a brute-force approach, i.e., by
simply increasing the dimension of the model Hilbert space
via including additional LLs, due to the slow convergence rate
and computational limitations.

Thus, to overcome this problem, we extrapolate the energy
values in order to determine more accurate estimates. This
procedure is obviously not unambiguous, so the predictions
will always possess, in fact, some uncertainties. Here we will
describe the approach we used for Fig. 12 (see below). Below,
we consider one point for GaAs where B = 10 T.

The basis size is governed by the number nmax, which is
a maximal value of the LL quantum numbers ne and nh. Let
us first analyze the behavior of the lowest exciton level. The
change in its position as a function of nmax is shown in Fig. 9
(see gray dots). An important issue here is the choice of the
form of the approximation function. Our analysis of the data
obtained suggests that the natural approximation reads

fX(nmax, n)=aX(nmax) + bX(nmax)

nkX(nmax ) + cX(nmax)
. (H1)
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FIG. 9. Behavior of the lowest exciton level with growth of
Hilbert space (gray dots) for GaAs at B = 10 T. By the increasing
we mean the number of LLs n taken into account. These points are
fitted using different extrapolations, built on the basis of the data
of different length. The horizontal (dashed-dotted) lines indicate the
values of corresponding aX(nmax), for nmax = 3, 5, 7, 9.

It is clear that the fitting constants should alter with the
appearance of new data points regarding nmax. If these con-
stants converge relatively well, we could conclude that the
approximation formula is chosen correctly. Here we are
only interested in the parameter aX and its asymptotic value
aX(n → ∞), which gives us the final estimate for the lowest
exciton level.

In Fig. 10, we present values of aX(nmax) involved in the
different extrapolation formulas fX(nmax, n). Since the dimen-
sion of the model Hilbert space increases, the value of the
constant itself also changes but the shifts are observed in a
convergent manner. We construct a similar extrapolation for
aX(nmax), which we plot in the figure. The corresponding

FIG. 10. Gray dots show the behavior of the free constant aX(n)
entering extrapolation formula (H1) with the growth of Hilbert space
(increasing the number of taken into account LLs) for GaAs at
B = 10 T. The dotted green line presents the highest extrapolation
faX (9, n) obtained on the basis of all gray dots, while the red dashed
line is the asymptotic value of the corresponding free constant, which
is interpreted by us as the final estimate for EX

∞.

FIG. 11. Gray dots demonstrate the behavior of one of the dis-
crete trion levels with growth of Hilbert space (increasing of nmax) for
GaAs at B = 10 T. These points are fitted using different extrapola-
tions, built on the basis of the data of different length. The horizontal
(dashed-dotted) lines indicate the values of corresponding aT(nmax),
for nmax = 2, 3, 4. The value of aT(5) is identified separately by solid
red line and considered by us as the final estimate of ET,1

∞ at fixed B.

extrapolation function is labeled by faX . In the figure we
also depict the red line, which gives the asymptotic value
aX(n → ∞) and is considered as a final estimate for EX

∞. The
same steps were applied for extracting EX

∞ for other values of
the magnetic field B presented in Fig. 12.

Finally, let us analyze the behavior of one of the lowest
trion level. The dependence of its position as a function of
nmax is demonstrated in Fig. 11. In Table I, we also provide the
numbers we will extrapolate. The form of the approximation

FIG. 12. The dependence of the energy spectrum of GaAs as
function of the magnetic field B. Solid red lines correspond to the
two discrete trion states, that we get in our calculation the dashed red
line corresponds to the lower boundary of the energy continuum solid
blue line corresponds to the trion bound state reported in Ref. [45],
and dashed blue line to corresponding energetic continuum bound-
ary. Solid black line shows the position of the lowest Landau level
corresponding to noninteracting particles. The increase of magnetic
field does not lead to the merging of red and blue lines, which means,
that the role of the Coulomb mixing between different Landau levels
does not decrease with magnetic field.
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TABLE I. Values of one of the lowest trion levels calculated
at B = 10 T for GaAs. The numbers correspond to different values
of the LLs quantum number n. The corresponding values of the
conserved quantities Se and Mz are also shown.

n ET,1
nn (meV) Mz Se n ET,1

nn (meV) Mz Se

0 1.517 −1 1 3 −4.885 0 0
1 −1.089 0 0 4 −5.981 0 0
2 −3.355 0 0 5 −6.806 0 0

function is chosen the same way as in the exciton case,

fT,1(nmax, n)=aT(nmax) + bT(nmax)

nkT(nmax ) + cT(nmax)
. (H2)

As in the case of the lowest exciton level, it is necessary to
monitor the convergence of the extrapolation constants when
nmax increases. If they converge relatively well, we can con-
clude that the approximation formula is chosen correctly. We
are only interested in the parameter aT. For the approxima-
tions that are available to us, we extract the following val-
ues: aT(2) = −7.990 meV, aT(3) = −9.859 meV, aT(4) =
−10.400 meV, aT(5) = −10.783 meV. Unfortunately, in con-
trast to the exciton problem, such a number of points is not
enough to construct an extrapolation for the behavior of the
constant itself; here we decided to limit ourselves to only
its upper estimate and consider aT(5) = −10.783 meV as the

final estimate for the lowest trion level ET,1
∞ for B = 10 T. The

same procedure is repeated for all points in Fig. 12.
Finally, let us discuss the intersection between the two trion

levels revealed in Fig. 12. First, we note that they may indeed
intersect since they have different values of the spin quantum
number Se. Second, we underline that the exact treatment
of the three-particle problem is very complicated from the
computational viewpoint, so the quantitative predictions are,
in fact, not sufficiently accurate to properly resolve the relative
position of the two levels. Although one can evidently observe
both of them, it might be difficult to identify the corresponding
energy difference for a given value of the magnetic field
strength and, therefore, to accurately localize the intersec-
tion point. Providing a high-resolution picture represents a
formidable task and an important challenge for future studies.

APPENDIX I: MATHEMATICA SUBROUTINE

As additional material, we attach Mathematica
files with the help of which one can calculate any
matrix elements and the spectra presented in the paper.
The archive contains two files: func_spec.m, which
includes basic functions and a Mathematica notebook
Trion_exciton_spectrum_in_magnetic_field.nb,
which contains examples of calculations. To speed up the
computations, we calculated an extensive database of the
matrix elements for exciton and trion problems, which are
located in directories data_ex and data_tr.
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