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The theoretical formulation that enables calculation of quasiparticle properties of two-dimensional (2D)
semiconductors physisorbed at another 2D crystal is presented. The formulation is applied to calculate the
induced correlation self-energy ��C,S(ω) and spectral line shapes of the valence and conduction bands in
MoS2, WS2, and hBN caused by nearby pristine or doped graphenes. It is shown that graphene negligibly
shifts the valence and conduction bands in MoS2 and WS2 causing the maximum band gap reduction of
−�Eg ∼ 150 meV. The influence of graphene on hBN band structure is stronger, causing the band gap reduction
of −�Eg ∼ 700 meV. The larger number of graphene layers or doped graphene negligibly affect the valence
and conduction bands shifts, which are also approximately rigidly shifted along the entire Brillouin zone. The
spatially dependent induced self-energy of point charge ��S@2D(z0) (image potential) is much weaker in MoS2

or WS2 than in hBN indicating that transition-metal dichalcogenides electronic screening efficiently cancel
substrate polarization effects and thus protect the band structure from substrate influences. When graphene is
brought next to the hBN it induces satellites in the hBN conduction and valence bands. Graphene’s interband
π → π∗ transitions induce weak π satellites, while Dirac plasmon, present in the doped graphene, induces more
intensive D plasmaron, which might be observed in photoemission measurements.

DOI: 10.1103/PhysRevB.109.035301

I. INTRODUCTION

The relatively simple manipulation of the electronic and
optical properties of the semiconducting two-dimensional
(2D) crystals made them very attractive for applications in
microelectronics [1–4], optoelectronics, photonics [5–7], as
photodetectors, sensors, and in telecommunications [7–9].
Even since 2011, the 2D materials are being tested as transis-
tors, light-emitting diodes (LEDs), solar cells, photodetectors,
or quantum emitters [10].

The 2D crystals band gap and consequently the optical
gap can be modified quite effectively in many different ways.
For example, by stacking the different or the same types
of 2D materials in van der Waals (vdW) heterostructures
[11–15], by applying uniaxial strain [16], by intercalation of
multilayered 2D crystals by organic molecules [17], or simply
by placing the 2D crystals in different dielectric environments
[2,15,18–24].

The possibility of manipulation of the quasiparticle band
gap and exciton binding energy in 2D materials using different
dielectric substrates is intensively explored in the last ten
years. Many different groups were engaged to study the in-
fluence of various substrates such as graphene (Gr), graphene
bilayers (Gr-BL), graphene trilayers (Gr-TL), graphite, hBN,
SiO2, Au(111), and many others on the band gaps and exciton
binding energies in various TMD single layers (SLs), and
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these were mostly MoS2 or WS2 [2,18,22,24–29]. Consid-
ering that the absolute band gap in freestanding 2D crystal
(vacuum band gap) is difficult to determine experimentally,
mainly the change in the gap is measured, relative to some
reference value, which is the gap at weakly polarizable sub-
strate, such as SiO2 or hBN. For example, the angle-resolved
photoemission-spectroscopy (ARPES) measurements show
that WS2 band gap decreases about 140 meV on a graphite
substrate as compared to a hexagonal boron nitride substrate,
and that WS2 conduction and valence bands are mostly rigidly
shifted along the Brillouin zone [24]. Interestingly, optical
measurements on the Gr/hBN/WS2 composite show that
graphene reduces the WS2 band gap (relative to the band gap
at hBN) by only 60 meV [23]. Electric transport measure-
ments show that the band gap of MoS2 on a fluoropolymer
substrate is about 180 meV larger than the band gap in MoS2

on hBN substrate [2]. However, the absolute band gap change
(induced by a substrate) could in principle be determined by
taking the results of the GW calculations as a reference, even
though these results are not always consistent.

For example, the reported G0W0 band gaps in MoS2 vary
from 2.5 eV [2], 2.6 eV [30,31], 2.7 eV [27], up to more than
2.8 eV [29,32]. Taking into account that the band gap of MoS2

on graphite [measured by scanning tunneling spectroscopy
(STS)] is Eg ∼ 2.15 eV [25], and above G0W0 estimations, the
MoS2 band gap reduction caused by graphite can vary from
350 meV−650 meV. Some very recent systematic research
says that the G0W0 fundamental gap in MoS2 is sensitive on
a multitude of parameters, such as the geometrical parameters
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(cell parameters and atomic coordinates), the choice of the
initial XC functional, the choice of truncated potential, the
inclusion of spin-orbit coupling, and maybe the most impor-
tant, the treatment of the q = 0 singularity in q integration.
Depending on the choice of these parameters the fundamental
band gap can vary even between 2.31 and 2.97 eV [33].

The G0W0 band gap in self-standing WS2 vary from
2.43 eV [34] to 2.73 eV [35], while some estimations based on
optical measurement and exciton-binding energy shows that
WS2 band gap at SiO2 surface is 2.4 eV [18]. In the same
paper it is shown that coverage by Gr-SL, Gr-BL, or Gr-TL
causes an additional band gap reduction of about 140 meV,
while if WS2 is encapsulated by two graphenes gap reduction
increases to 300 meV. From this it can also be concluded that
SiO2 negligibly reduces the gap and that graphene sandwich
reduces the gap approximately twice. This is consistent with
another joint theoretical/experimental findings showing that
MoS2 band gap, regardless of whether it is physisorbed on
Gr-SL, -BL, or -TL, changes about 300 meV, and at graphite
substrate about 500 meV, while at hBN and SiO2 substrates
the gap changes are negligible [28]. Another investigation
shows that hBN surface reduces the MoS2 band gap (relative
to gap in vacuum) by about 140 meV [2] or 160 meV [29],
while SiO2 and Au(111) surfaces by 140 meV and 640 meV
[22,29], respectively. The band structure modifications includ-
ing appearance of polaron satellites in various hBN/graphene
heterostructures using angle-resolved photoemission spec-
troscopy are recently researched in detail [36–39]. We will do
the same here, but we will concentrate on the appearance of
plasmonic satellites in the hBN band structure.

The theoretical calculations of WS2 or MoS2 band gaps on
different substrates, using different G0�W methods support
the above experimental results very well [2,22,24,27–29]. The
supercell G0�W methods, in which the 2D crystal and the
substrate (e.g., another 2D crystal) forms the single crys-
tal [2,28,29] shows excellent agreement with experiments.
Moreover, these results are very useful for benchmarking
the other methods in which the 2D crystal/substrate orbital
hybridization is neglected [18,40]. The problem of supercell
method is that it can be, due to the large unit cells, com-
putationally very demanding reducing the accuracy of the
results. It seems that the supercell method overestimates the
experimental result, which is best seen on the example of
MoS2 [28] where the calculated band gap reduction caused
by graphene multilayers is about 400 meV, which is about
three times larger than band gap reduction measured at the
same conditions in WS2 [18] or five times larger than the
gap change measured in MoSe2/Gr-BL composite [26]. The
band gap renormalizations are also simulated using G�W
method where the orbitally decoupled substrate is described
by induced Coulomb interaction �W = W (εeff ) − W (εeff =
1), where the effective background dielectric constant is
εeff = (1 + εS)/2 and where εS is substrated dielectric con-
stant [22,24,27,41]. The disadvantage of this method is that
it also overestimates the band gap reduction caused by the
substrate. The reasons for that is that the εeff is constant,
i.e., frequency, momentum, and spatially independent. On the
other hand, inclusion of the lateral nonlocality, i.e., momen-
tum (Q) dependence, and perpendicular spatial dependence,
through the exponential factor e−|Q|(z+z′ ), reduce the substrate-

induced Coulomb interaction and thus band gap reduction.
For example, in Ref. [27] the MoS2/hBN gap reduction is
180 meV, which overestimate results 30–160 meV presented
in Refs. [2,28,29]. Also, in this method εS is usually treated
as a free parameter tuned to satisfy the experimental band
gap [22,24]. Finally, the GdW method [42] (the modified
G0W0 method applied to bulk crystals, where instead of sub-
tracting the local VXC operator from G0W0 self-energy, it is
shown to be much more efficient to subtract the metallic
component of self-energy iG0Wmetal) is also applied to study
influence of different substrates on the quasiparticle properties
in MoS2 [29].

Here we formulate the correlation self-energy induced
by the proximity of another 2D crystal or a composite of
2D crystals ��C,S = iG0�W . The induced Coulomb inter-
action in 2D crystal/substrate composite is �W = W [V +
�V ] − W [V ], where V and V + �V are bare and substrate
screened Coulomb propagators, respectively. The momentum,
frequency, and spatially dependent induced propagator �V is
expressed in terms of 2D dielectric functions ε2D(Q, ω) of
the 2D crystals that build the substrate [40]. This theory is
applied to study the quasiparticle properties, such as shifts
and spectral line shapes, of the valence and conduction bands
in WS2, MoS2, and hBN SLs, induced by various substrates,
such as pristine and doped graphenes, graphene multilayers,
and hBN. It should be noted here that the quasiparticle prop-
erties of various TMDs at multilayered hBN substrates are
recently studied using dielectric embedding GW approach
[43]. This method also neglects the orbital overlap, however,
it is more sophisticated because it includes the crystal lo-
cal field effect in the substrate response. Very similar to the
G�W method, where the change in the screened Coulomb
interaction �W is derived using the quantum-electrostatic
heterostructure (QEH) model [40], is used to calculate the
gap change in many multilayered vdW 2D crystals [44]. Our
obtained results are compared with many of those recent ex-
perimental and theoretical results.

The rest of the paper is organized as follows. In Sec. II
we present the geometry of the system and derivation of
substrate-induced correlation self-energy ��C,S, in Sec. III
we present the computational details. In Sec. IV we present
the results, and the conclusions are presented in Sec. V.

II. THEORETICAL FORMULATION

In the next three theoretical sections, we start with the
standard formulas within G0W0 approach for the exchange-
correlation self-energy �XC in 2D crystals (using the trun-
cated Coulomb intercation proposed in Ref. [45]). Finally we
formulate the induced correlation self-energy ��C,S caused
by interaction of 2D crystals with the adjacent substrate. All
theoretical derivations were made using the zero temperature
(T = 0) formalism and atomic units are used h̄ = 1, e = 1,
and m = 1.

A. Standard G0W0 approximation applied to calculate
the Green’s function of arbitrary quantum state |n〉

Here we will first introduce some standard terms so that
later the theory can be more easily applied to 2D crystals.
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The Hamiltonian describing N electrons moving in some local
potential v(r) is

H0 =
N∑

i=1

H0(ri ), (1)

where

H0(ri ) = − 1
2∇2

i + v(ri ). (2)

Since the Hamiltonian H0 is separable, the problem can be re-
duced to problem of one electron moving in the local potential
v(r). Therefore, we suppose that the electrons fill the one-
particle states {φn(r), En} that satisfy Schrödinger equation:

H0φn(r) = Enφn(r). (3)

The propagation (or Green’s function) of an electron or hole
of energy ω from point r′ to point r is then

G0(r, r′, ω) =
∑

n

φn(r)φ∗
n (r′)Gn(ω), (4)

where the propagator of an electron or hole of energy ω in
quantum state |n〉 is

Gn(ω) = 1 − fn

ω − En + iδ
+ fn

ω − En − iδ
. (5)

Here fn = θ (EF − En) represents the Fermi-Dirac distribution
at T = 0 and δ = 0+. If the Coulomb interaction between
electrons is switched on, the Hamiltonian of the system be-
comes

H = H0 + 1

2

N∑
i �= j

V (ri, r j ), (6)

where

V (r, r′) = 1

|r − r′| , (7)

represents the propagator of bare Coulomb interaction. If the
electron-electron interaction is considered as small perturba-
tion then according to Hedin’s scheme [46,47] and standard
many-body perturbation theory [48–52] the propagator of an
electron or hole in quantum state |n〉 becomes

Gn(ω) = 1

ω − En − �n(ω)
, (8)

where the self-energy of the quantum state |n〉 in diagonal
approximation is

�n(ω) = �H
n + �XC

n (ω). (9)

Here, the Hartree self-energy is

�H
n =

∑
m

fm

∫
dr

∫
dr′

×φ∗
n (r)φn(r)V (r, r′)φ∗

m(r′)φm(r′), (10)

and exchange-correlation self-energy is

�XC
n (ω) =

∫
drdr′φ∗

n (r)�XC(r, r′, ω)φn(r′). (11)

The exchange-correlation self-energy operator in G0W0 ap-
proximation is [46]

�XC(r, r′, ω) ≈ �0
XC(r, r′, ω)

=i
∫ ∞

−∞

dν

2π
eiντ G0(r, r′, ω + ν)W0(r′, r, ν),

(12)

where τ = 0+. In terms of Hilbert-Kramers–Kronig relations
the time-ordered screened Coulomb interaction W0 can be
written as [47]

W0(r, r′, ω) =V (r, r′) +
∫ ∞

0
dω′

×
{

S0(r, r′, ω′)
ω − ω′ + iη

− S0(r′, r, ω′)
ω + ω′ − iη

}
,

(13)

where the potential-potential correlation function is

S0(r, r′, ω) =
∫ ∞

−∞
dteiωt 〈
(r, t )
(r′, 0)〉.

Here the potential operator is defined as


(r, t ) =
∫

dr1V (r, r1)ρ(r1, t ),

where ρ = �∗� is electron density operators, and the aver-
aging goes over the interacting ground state. If we assume
next symmetry S0(r′, r, ω) = S0(r, r′, ω) then the correlation
function is real [S0(r, r′, ω) ∈ R] and it can be, according
to Eq. (13), connected with the imaginary part of the time-
ordered screened Coulomb interaction as

S0(r, r′, ω) = − 1

π
ImW0(r, r′, ω)θ (ω). (14)

Relation (14) is also known as fluctuation-dissipation theorem
because it connect the correlations S0 and energy dissipations
-ImW0 (spectrum of electronic excitations in the studied sys-
tem). After the spectral representation (13) and free Green’s
function (4)–(5) are inserted in self-energy (12), integration
over ν is performed and then all is inserted in Eq. (11),
the exchange-correlation self-energy of the quantum state |n〉
becomes

�XC,0
n (ω) = �X

n + �C,0
n (ω). (15)

The bare Coulomb interaction in (13) provides the Fock or
exchange self-energy

�X
n = −

∑
m

fm

∫
dr

∫
dr′

× φ∗
n (r)φm(r)V (r′, r)φ∗

m(r′)φn(r′), (16)

while the induced Coulomb interaction provides the correla-
tion self-energy

�C,0
n (ω) =

∑
m

∫
dr

∫
dr′{(1 − fm) φ∗

n (r)φm(r)

× �0(r′, r, ω − Em)φ∗
m(r′)φn(r′)− fm φ∗

n (r)φm(r)

× �0(r′, r, Em − ω)φ∗
m(r′)φn(r′)}, (17)
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FIG. 1. Geometry of the system. The 2D crystals are periodically
repeated so that they form a superlattice of the unit cell L in z
direction.

where we introduce so-called correlation propagator

�0(r, r′, ω) =
∫ ∞

0
dω′ S0(r, r′, ω′)

ω − ω′ + iδ
. (18)

The main quantity entering the correlation self-energy is time-
ordered screened Coulomb interaction satisfying next Dyson’s
equation

W0(r, r′, ω)

= V (r, r′) +
∫

dr1dr2V (r, r1)χ0(r1, r2, ω)W0(r2, r′, ω),

(19)

where time-ordered random phase approximation (RPA) irre-
ducible polarizability is

χ0(r, r′, ω) =
∑
nm

φ∗
n (r)φm(r)φ∗

m(r′)φn(r′)

× fn − fm

ω + En − Em + iδsgn(Em − En)
. (20)

B. G0W0 approximation applied to calculate the Green’s
function of quantum state |n, K〉 in self-standing 2D crystal

Suppose that the 2D crystal occupies the x-y plane and
is periodically repeating in the z direction as illustrated in
Fig. 1. In such 2D crystal the noninteracting electrons fill the
Bloch states, so that the generic base set {φn(r), En} should be
replaced with Bloch states

φn(r) → φnK(ρ, z) = 1√
�

eiKρ unK(ρ, z),

En → EnK; K ∈ SBZ, (21)

where � is the normalization volume, SBZ denotes surface
Brillouin zone, K = (Ky, Ky) is 2D wave vector, unK(ρ +
R, z + L) = unK(ρ, z) is the periodic part of Bloch wave func-
tion, ρ = (x, y) is 2D position vector, and R = (Rx, Ry) is 2D
primitive translation vector. Here L is the unit cell in the z
direction, as shown in Fig. 1. In Sec. II A index n represented
general quantum number but in Bloch states it denotes band
index. The Bloch wave functions also satisfy the periodicity
in momentum space φnK+G‖ (ρ, z) = φnK(ρ, z), where G =

(G‖, Gz ) and G‖ = (Gx, Gy) are reciprocal wave vectors. If
the Bloch states (21) are self-consistent solution the Kohn-
Sham (KS) equation then the electron-electron interaction is
already (depending on the choice of the exchange-correlation
functional) included in that states. What is certain is that the
energies EnK already contain the exact Hartree energy �H

nK,
so that here we will exclude it from consideration and focus
on exchange and correlation contributions �X

nK and �
C,0
nK (ω),

respectively. Moreover, the energies EnK also contain density-
functional theory (DFT) exchange-correlation contribution
EXC

nK , which needs to be extracted at some point. Here we
will first briefly explain how to solve the Dyson equation for
propagator W0, which excludes spurious interaction between
the neighboring unit cells within the supercell approach, and
then how to use it to determine exchange-correlation self-
energy �

XC,0
nK . After the Bloch wave functions and energies

(21) are inserted in Eq. (20) the irreducible polarizability can
be expressed in the form of next Fourier expansion

χ0(r, r′, ω)

= 1

L

∑
G

∑
G′

∫
SBZ

dQ
(2π )2

ei(Q+G)re−i(Q+G′ )r′
χ0

GG′ (Q, ω),

(22)

where the matrix of irreducible polarizability is

χ0
GG′ (Q, ω) = 2

�

∑
nm

∑
K∈S.B.Z

( fnK − fmK+Q)

× ρnK,mK+Q(G) ρ∗
nK,mK+Q(G′)

ω + EnK − EmK+Q + iδ sgn(EmK+Q−EnK )
,

(23)

and where the charge vertices are defined as

ρnK,mK+Q(G) =
∫

�

dr φ∗
nK(r)e−i(Q+G)rφmK+Q(r). (24)

To avoid spurious interaction with 2D crystal replicas the
bare Coulomb potential should be constrained to propagate
the interactions only within the one unit of the supercell
z, z′ ∈ [−L/2, L/2], i.e., V → V C where

V C(r, r′) =
{

V (r, r′); z and z′ ∈ [−L/2, L/2]
0; z and/or z′ /∈ [−L/2, L/2]

. (25)

The potential (25) satisfies the following Fourier expansion:

V C(r, r′)

= 1

L

∑
GzG′

z

∫
dQ

(2π )2
eiQ(ρ−ρ′)eiGzz−iG′

zz′
V C

GzG′
z
(Q), (26)

where

V C
GzG′

z
(Q) = 1

L

∫ L/2

−L/2
dzdz′e−iGzzV (Q, z, z′)eiG′

zz′
, (27)

and

V (Q, z, z′) = vQe−|Q||z−z′ |,
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where vQ = 2π
|Q| . The Eq. (26) rearranged to be compatible

with the expansion of the irreducible polarizability (22) is

V C(r, r′)

= 1

L

∑
GG′

∫
SBZ

dQ
(2π )2

ei(Q+G)re−i(Q+G′ )r′
V C

GG′ (Q), (28)

where the matrix of bare truncated Coulomb interaction, de-
rived from Eq. (27), is explicitly

V C
GG′ (Q) =V 3D

GG′ (Q) − pGz pG′
z

4π (1 − e−|Q+G‖|L )

|Q + G‖|L

× |Q + G‖|2 − GzG′
z(|Q + G‖|2 + G2

z

)(|Q + G‖|2 + G′2
z

)δG‖G′
‖ ,

(29)

where

V 3D
GG′ (Q) = 4π

|Q + G|2 δGG′ (30)

and pGz = (−1)n, where Gz = 2πn
L ; n = 0,±1,±2, . . .. Trun-

cated Coulomb interaction (29) has a more complicated form
than those proposed in Refs. [53,54], however, it is obviously
more constrained (in the sense that both source (z′) and poten-
tial (z) are limited in z, z′ ∈ [−L/2, L/2]), which enables the
use of much fewer vacuum layers in supercell calculations.
Considering that χ0 and V C [the main ingredients entering in
Dyson’s equation (19)] satisfy equivalent Fourier expansions
(22) and (28) the same Fourier expansion applies to screened
Coulomb interaction W0

W0(r, r′, ω)

= 1

L

∑
GG′

∫
SBZ

dQ
(2π )2

ei(Q+G)re−i(Q+G′ )r′
W 0

GG′ (Q, ω). (31)

After the expansions (22), (28), and (31) are inserted in
Dyson’s equation (19) it converts into matrix equation

W 0
GG′ (Q, ω)

= V C
GG′ (Q) +

∑
G1G2

V C
GG1

(Q)χ0
G1G2

(Q, ω)W 0
G2G′ (Q, ω),

(32)

where χ0
GG′ and V C

GG′ are explicit matrices (23) and (29),
respectively. The solution of the equation (32) has the form

W 0
GG′ (Q, ω) =

∑
G1

E−1
GG1

(Q, ω)V C
G1G′ (Q), (33)

where the dielectric matrix is

EGG′ (Q, ω) = δGG′ −
∑
G1

V C
GG1

(Q)χ0
G1G′ (Q, ω). (34)

Now we have all ingredients required to determine the
exchange-correlation self-energy �XC,0. After the Bloch wave
functions and energies (21) and Fourier expansion (28) are

inserted in exchange self-energy (16), it becomes

�X
nK = − 1

L

∑
m

∫
SBZ

dQ
(2π )2

fmK+Q

×
∑
GG′

ρ∗
nK,mK+Q(G)V C

GG′ (Q)ρnK,mK+Q(G′), (35)

where we have also used the definition of charge vertices (24).
It can be shown that if the 2D crystal possesses the center of
inversion, i.e., W0(r, r′) = W0(−r,−r′), then the propagator
W0 satisfies the following property:

ImW0(r, r′, ω) = 1

L

∑
GG′

∫
SBZ

dQ
(2π )2

× ei(Q+G)re−i(Q+G′ )r′
ImW 0

GG′ (Q, ω). (36)

This enables that the correlation propagator (18), according to
definition (14), satisfies next Fourier expansion

�0(r, r′, ω) = 1

L

∑
GG′

∫
SBZ

dQ
(2π )2

× ei(Q+G)re−i(Q+G′ )r′
�0

GG′ (Q, ω), (37)

where

�0
GG′ (Q, ω) =

∫ ∞

0
dω′ S0

GG′ (Q, ω′)
ω − ω′ + iδ

, (38)

and where the spectral matrix is

S0
GG′ (Q, ω) = − 1

π
ImW 0

GG′ (Q, ω). (39)

Although center of inversion symmetry is not always satisfied,
and especially not when 2D crystal is in interaction with
the substrate (substrate screening evidently breaks the center
of inversion), we will still assume that the expansion (37)–
(39) is always valid. This makes the derivation of correlation
self-energy �C

nK(ω) equivalent to derivation of exchange self-
energy �X

nK. After the Bloch wave functions and energies
(21) and Fourier expansion (37) are inserted in correlation
self-energy (17), it becomes

�
C,0
nK (ω) = 1

L

∑
m

∫
SBZ

dQ
(2π )2

∑
GG′

ρ∗
nK,mK+Q(G)ρnK,mK+Q(G′)

× {
(1 − fmK+Q) �0

GG′ (Q, ω − EmK+Q)

− fmK+Q �0
GG′ (Q, EmK+Q − ω)

}
. (40)

Finally, after the exchange and correlation self-energies (35)
and (40) are inserted in Eq. (8) the Green’s function of Bloch
state |n, K〉 is

GnK(ω) = 1

ω − EnK + EXC
nK − �X

nK − �
C,0
nK (ω)

, (41)

where in KS energy EnK the DFT exchange-correlation con-
tribution EXC

nK is extracted, to avoid double counting. In next
sections we will describe the derivation of the correlation
self-energy induced by proximity of substrate crystal ��

C,S
nK .
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FIG. 2. The 2D-CRY centered in z = 0 plane is physisorbed
at S-CRY consisting of n S-2D-CRYs occupying z1 = −� − (n −
1)c, . . . , zn−1 = −� − c, zn = −� planes.

C. G0WS approximation applied to calculate the Green’s
function of quantum state |n, K〉 in supported 2D crystal

Very often a 2D crystal is physisorbed on substrate crystal,
which can be a van der Waals heterostructure of several 2D
crystals, as illustrated in Fig. 2. For simplicity, from now
on, the 2D crystal whose quasiparticle (QP) properties is
calculated is abbreviated as 2D-CRY and supporting crystal
or substrate is abbreviated as S-CRY. We also suppose that
S-CRY is homogeneous van der Waals heterostructure con-
sisting of equal elementary blocks (substrate 2D crystal) we
abbreviate as S-2D-CRY. The 2D-CRY is centered in z = 0
plane and S-CRY is composed of n S-2D-CRYs occupying
z1 = −� − (n − 1)c, . . . , zn−1 = −� − c, zn = −� planes,
as illustrated in Fig. 2. We assume that the chemical bonding
between 2D-CRY and S-CRY has vdW character, so that the
orbital hybridization between the two crystals is neglected.
Therefore the S-CRY and 2D-CRY are here considered as
two chemically independent crystals, which interact only via
long-range Coulomb interaction. More specifically, when the
S-CRY is brought close to 2D-CRY then it causes next modi-
fication of screened Coulomb interaction in 2D-CRY

W0 → WS, (42)

where the renormalized propagator WS satisfies the following
Dyson’s equation:

WS(r, r′, ω)

= VS(r, r′)+
∫

dr1dr2VS(r, r1)χ0(r1, r2, ω)WS(r2, r′, ω).

(43)

The Dyson’s equation (43) is basically equal to Eq. (19) with
the only difference that bare propagator V must be replaced
with the substrate screened propagator

VS(r, r′, ω) = V (r, r′) + �V (r, r′, ω), (44)

where the substrate polarization effects are included in the
induced propagator �V (r, r′, ω). If we suppose that S-CRY
is homogeneous in x-y plane, then the substrate screened
propagator can be Fourier transformed as

VS(r, r′, ω) =
∫

dQ
(2π )2

eiQ(ρ−ρ′ )VS(Q, ω, z, z′) (45)

so that it satisfies next Dyson’s equation

VS(Q, ω, z, z′) =V (Q, z, z′) +
∫

dz1dz2V (Q, z, z1)χS
0

× (Q, ω, z1, z2)VS(Q, ω, z2, z′), (46)

where χS
0 is S-CRY irreducible polarizability. If the overlap

between electronic orbitals in the neighboring S-2D-CRYs
(in S-CRY) is negligible then it means that irreducible po-
larizabilities of individual S-2D-CRYs (elementary building
block) remains almost unchanged even after S-2D-CRYs are
stacked into S-CRY. Moreover if we assume that S-2D-CRYs
are 2D sheets occupying z = zi planes then the irreducible
polarizability of entire S-CRY can be approximated as [55]

χS
0 (Q, ω, z, z′) = χS2D

0 (Q, ω)
∑
i=1,n

δ(z − zi )δ(z′ − zi ). (47)

The integrated nonlocal S-2D-CRY irreducible polarizability,
also called 2D irreducible polarizability, is then

χS2D
0 (Q, ω) =

∫ LS2D/2

−LS2D/2
dz

∫ LS2D/2

−LS2D/2
dz′χS2D

0 (Q, ω, z, z′)

= LS2Dχ
0,S2D
G=0G′=0(Q, ω), (48)

where the irreducible polarizability matrix χ
0,S2D
GG′ has the same

form (23), except that the KS wave functions φnK, energies
EnK, and other parameters now correspond to S-2D-CRY. For
example, LS2D in Eq. (48) represents the supercell parameter
used in S-2D-CRY ground-state calculations. Using above
assumptions the Dysons equation (46) can be converted into
next matrix equation [55]

V S
i j (Q, ω)

= Vi j (Q) +
∑

i j=1,n

Vik (Q)χ0,S
kl (Q, ω)V S

l j (Q, ω), (49)

where Vi j (Q, ω) = vQe−|Q||zi−z j | propagates bare and V S
i j =

VS(Q, ω, zi, z j ) propagates screened Coulomb interaction be-
tween S-2D-CRYs i and j and χ0,S

i j (Q, ω) = χS2D
0 (Q, ω)δi j .

The spatially dependent screened Coulomb propagator in the
region z, z′ > −� is then [40,45,55,56]

VS(Q, ω, z, z′) = V (Q, ω, z, z′) + �V (Q, ω, z, z′)

= vQe−|Q||z−z′ | + �V (Q, ω)e−|Q|(z+z′ ), (50)

where the (x-y) Fourier transform of the induced potential at
z = 0 plane is

�V (Q, ω) = vQD(Q, ω)e−2|Q|�, (51)

and the surface excitations propagator is

D(Q, ω) = V S
nn(Q, ω)/vQ − 1. (52)
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FIG. 3. The penetration of the induced potential (50) in the 2D-
CRY localized in the interval z ∈ [−L/2, L/2], where L represents
the 2D-CRY unit cell in the z direction, as also illustrated in Fig. 1.
The S-CRY, regardless of its thickness (number of S-2D-CRY layers
n), is located in the region z � −�, as also illustrated in Fig. 2.

It should be noted here that the induced potential �V
in (50), also illustrated in Fig. 3, obviously violates 2D-
CRY inversion symmetry. However, because its form �V ∼
(2π/Q)e−2Q�2e−Q(z+z′ ) favors small wave vectors Q, it is
mostly homogeneous potential that just weakly violates the in-
version symmetry [44]. The surface excitations propagator D
defines the strength of the dynamic potential, which emerges
from z = −� surface and decreases according to the expo-
nential law e−|Q|(z+z′ ), as illustrated in Fig. 3. It should be thus
noted that we have broken the translation-invariant symmetry
in the z direction by introducing the substrate, as the Coulomb
interaction has a z + z′ term and not only |z − z′| as before.
Here we will mostly consider the case when n = 1, i.e., when
the 2D-CRY is physisorbed at the single S-2D-CRY. In that
case, solving the Dyson’s equation (49) becomes trivial, so
that the surface excitations propagator is

D(Q, ω) = 1 − ε2D(Q, ω)

ε2D(Q, ω)
, (53)

where

ε2D(Q, ω) = 1 − vQχS2D
0 (Q, ω) (54)

represents the 2D dielectric function of the S-2D-CRY. Analo-
gously to the bare potential (25) the potential (44) still needs to
be constrained to propagate interactions only within the region
z, z′ ∈ [−L/2, L/2], i.e., the next transformation should be
done VS → V C

S where

V C
S (r, r′, ω) =

{
VS(r, r′, ω); z and z′ ∈ [−L/2, L/2]

0; z and/or z′ /∈ [−L/2, L/2]
.

(55)

It is easy to show that V C
S satisfies [also according to assump-

tion (45)] next Fourier expansion

V C
S (r, r′, ω)

= 1

L

∑
GzG′

z

∫
dQ

(2π )2
eiQ(ρ−ρ′)eiGzz−iG′

zz′
V S,C

GzG′
z
(Q, ω), (56)

where the Fourier coefficients are

V S,C
GzG′

z
(Q, ω)

= 1

L

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′e−iGzz+iG′

zz′
VS(Q, ω, z, z′). (57)

Using (50) in (57) and then in (56) one obtains the Fourier
transform of propagator V C

S which, also rearranged to be com-
patible to the irreducible polarizability (22), becomes

V C
S (r, r′, ω)

= 1

L

∑
GG′

∫
SBZ

dQ
(2π )2

ei(Q+G)re−i(Q+G′ )r′
V S,C

GG′ (Q, ω), (58)

where

V S,C
GG′ (Q, ω) = V C

GG′ (Q) + �V C
GG′ (Q, ω), (59)

the matrix of truncated induced propagator is

�V C
GG′ (Q, ω)

= �V (Q + G‖, ω)FGz (Q + G‖)F ∗
G′

z
(Q + G‖)δG‖G′

‖ ,

(60)

and the form factors are

FGz (Q) = 2pGz√
L

sh(|Q|L/2)

|Q| + iGz
. (61)

The matrix of truncated bare propagator V C
GG′ is given

by Eq. (29). The substrate screened propagator (58)–
(61) is constrained to propagate the Coulomb interac-
tion in the region z, z′ ∈ [−L/2, L/2], but in the absence
of 2D-CRY. After the 2D-CRY is introduced, the total
screened Coulomb interaction can be derived by solv-
ing Dyson’s equation (43) whose solution, in the matrix
representation, is

W S
GG′ (Q, ω) =

∑
G1

[ES(Q, ω)]−1
GG1

V S,C
G1G′ (Q), (62)

where the dielectric matrix in 2D-CRY, now modified due to
the presence of nearby S-CRY, is

ES
GG′ (Q, ω) = δGG′ −

∑
G1

V S,C
GG1

(Q)χ0
G1G′ (Q, ω). (63)

It should be emphasized that the propagator (62) represents
the potential between test charges in the constrained region
z, z′ ∈ [−L/2, L/2], also including the polarization of the S-
CRY. Once the matrix W S

GG′ is derived, the derivation of the
correlation self-energy �C,S becomes analogous to derivation
of bare self-energy �C,0, as described in Sec. II B. Accord-
ing to Eqs. (38)–(40) and modification (42) the correlation
self-energy in supported 2D-CRY becomes

�
C,S
nK (ω) = 1

L

∑
m

∫
SBZ

dQ
(2π )2

∑
GG′

ρ∗
nK,mK+Q(G)ρnK,mK+Q(G′)

× {
(1 − fmK+Q) �S

GG′ (Q, ω − EmK+Q)

− fmK+Q �S
GG′ (Q, EmK+Q − ω)

}
, (64)
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where

�S
GG′ (Q, ω) =

∫ ∞

0
dω′ SS

GG′ (Q, ω′)
ω − ω′ + iδ

, (65)

and the spectrum of electronic excitations in 2D-CRY, includ-
ing the polarization of S-CRY, is

SS
GG′ (Q, ω) = − 1

π
ImW S

GG′ (Q, ω). (66)

From the definitions (43)–(44) it is obvious that WS can be
divided to bare and induced contributions WS = V C + �WS,
which means that the exchange self-energy �X

nK remains
unchanged and is given by Eq. (35). The Green’s function
of Bloch state |n, K〉 in 2D-CRY supported by S-CRY is
then

GnK(ω) = 1

ω − EnK + EXC
nK − �

XC,S
nK (ω)

, (67)

where

�
XC,S
nK (ω) = �X

nK + �
C,S
nK (ω). (68)

Very similar GW procedure was used to study the molec-
ular electronic levels shifts induced by different solvents
using polarizable continuum model (PCM) [57–59], or en-
ergy levels and photoluminescence in various defects in
hexagonal boron nitride using many-body finite-size cluster
GW -BSE approach [60,61]. The main idea there is division
into subsystems (e.g., solution, system 1 and solvent, sys-
tem 2) and neglecting the overlap between subsystems. Then
the screened Coulomb interaction W (entering the GW -BSE
scheme), which accounts the polarizability of both subsys-
tems is simple W = ṽ + ṽχ1

0W and ṽ = v + vχ2
0 ṽ, where

χ1,2
0 are subsystems irreducible polarizabilities and v is bare

Coulomb potential. Exactly the same idea in modeling W S

is used here, see, for example, Eq. (43) and Eq. (49), where
our subsystems 1 and 2 are 2D-CRY and S-CRY, respec-
tively. Moreover, very similar derivation of the screened
interaction W , including the division into two nonoverlapping
polarizabilities χ1,2

0 , was proposed in order to solve the Bethe-
Salpeter equation (using significantly reduced computer
resources) in molecule/substrate [62] or in various 2D vdW
heterostructures [63].

D. G0�WS approximation

So far we have considered the total exchange-correlation
self-energy in 2D-CRY supported by S-CRY. The total in the
sense that it consists of bare (intrinsic) self-energy �XC,0 plus
induced self-energy ��C,S caused by the presence of support-
ing crystals. However, because the �XC,0 can be calculated
very accurately using many existing ab initio packages the real
advantage of the above method is determination of induced
correlation self-energy

��
C,S
nK (ω) = �

XC,S
nK (ω) − �

XC,0
nK (ω)

= �
C,S
nK (ω) − �

C,0
nK (ω). (69)

Because in both cases the �X contributions are equal they
cancel, which enables bypassing the calculation of compu-
tationally demanding exchange self-energy (35). After using

(40) and (64) in (69) we get

��
C,S
nK (ω) = 1

L

∑
m

∫
SBZ

dQ
(2π )2

∑
GG′

ρ∗
nK,mK+Q(G)ρnK,mK+Q(G′)

× {
(1 − fmK+Q) ��S

GG′ (Q, ω − EmK+Q)

− fmK+Q ��S
GG′ (Q, EmK+Q − ω)

}
, (70)

where

��S
GG′ (Q, ω) =

∫ ∞

0
dω′ �SS

GG′ (Q, ω′)
ω − ω′ + iδ

. (71)

The spectrum of electronic excitations induced by presence of
S-CRY is then

�SS
GG′ (Q, ω) = − 1

π
Im�W S

GG′ (Q, ω), (72)

where

�W S
GG′ (Q, ω) = W S

GG′ (Q, ω) − W 0
GG′ (Q, ω). (73)

So, the only values, which essentially need to be calcu-
lated, are screened Coulomb interactions in self-standing and
in supported 2D-CRY, i.e., W0 and WS, respectively. Here
we calculate the full frequency-dependent induced correla-
tion self-energy ��C,S exactly according to the formulas
Eqs. (70)–(73). The static Coulomb-hole plus screened ex-
change (COHSEX) approximation [47] will be used only for
the calculation of self-energy of point (test) charge, in Sec. IV.
Finally, the total exchange-correlation self-energy can be, us-
ing Eq. (69), determined as

�
XC,S
nK (ω) = �

XC,0
nK (ω) + ��

C,S
nK (ω), (74)

where �XC,0 can be obtained, for example, using some of the
existing ab initio packages. According to (67) and (74) the
Green’s function of an electron or hole in quantum state |n, K〉
in G0WS approximation is

GnK(ω) = 1

ω − EnK + EXC
nK − �

XC,0
nK (ω) − ��

C,S
nK (ω)

. (75)

In this paper we will use two approximations. The first ap-
proximation is

�
XC,0
nK (ω) ≈ EXC

nK . (76)

In this approximation, which does not include intrinsic self-
energy corrections, the DFT energies EnK are used to calculate
the irreducible polarizability (23) and thus the induced self-
energy ��C,S. In the second approximation

�
XC,0
nK (ω) ≈

{
EXC

nK − �g/2; EnK < EF

EXC
nK + �g/2; EnK > EF

, (77)

where �g is rigid energy shift set to satisfy the G0W0 or
experimental band gap, and EF is Fermi energy. In this ap-
proximation the corrected energies EnK ± �g/2 are used to
calculate the irreducible polarizability (23) and thus the in-
duced self-energy ��C,S. Of course, it would be better instead
of using the approximations (76) and (77) in Eq. (75) to
insert the exact �XC,0 derived by formula Eq. (40). However,
we have noticed that the energy shifts �EC,V,g significantly
depend on which quasiparticle energies ẼnK are inserted in
2D-CRY irreducible polarizability (23), or better said, on
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which initial QP energies ẼnK were used in the calculation
of the screened Coulomb interaction (62). To put it even more
simply; the energy shifts �EC,V,g are very sensitive to which
band gap Eg we use to calculate W S but they are not so
sensitive to the details of energy bands ẼnK along the Brillouin
zone, so that the scissor operator (77) is the most efficient
approximation. More specifically; suppose that Hamiltonian
representing the electron-electron interaction is split to intra-
contribution (representing the interaction of electrons within
2D-CRY) and intercontribution (representing the interaction
between the electrons in 2D-CRY and electrons in S-CRY).
Since there is no electronic overlap between 2D-CRY and S-
CRY, this division is exact. Suppose that intraelectron-electron
interaction is a part of the unperturbed Hamiltonian H0, and
that interelectron-electron interaction represents perturbation.
Moreover, suppose that we force H0 to be single-particle (bi-
linear) operator, as in Eq. (1), which can be diagonalized. This
means that all intraelectron-electron interaction is stored in
unperturbed QP energies and wave functions from which new
Green’s functions G1 can be constructed. This is of course not
exact but also not a bad approximation if the QP approxima-
tion is satisfied (which is the case for the 2D semiconductors).
Then according the many-body perturbation theory the in-
duced self-energy ��

C,S
nK is given by exactly the same formula

Eq. (70) but in which enters new Green’s function G1. There-
fore, if in ��

C,S
nK we use Green’s function G0, it means that

all intraelectron-electron interaction is stored in KS energies
and this corresponds to approximation Eq. (76), and if we
use G1, it means that all intraelectron-electron interaction is
stored in G0W0 QP energies ẼnK and it corresponds to aprox-
imation Eq. (77). If we choose this second option, it implies
a calculation of �XC,0 for all wave vectors K and bands n,
which is computationally extremely demanding and perhaps
unnecessary. So this is the reason why here we use the scis-
sor operator approximation Eq. (77). Using (76) or standard
G0W0 �XC,0 in (75), because then only the Green’s function
G0 are used in W S, provide identical shifts �EC,V,g. However,
the approximation (77), because then an already corrected
energies are used in both G1 and in screened propagator W S

1 ,
represents a kind of G1�W S

1 approximation so that it provides
significantly more accurate shifts �EC,V,g. Although it is not a
G1�W S

1 approximation entirely, because in G1 and �W S
1 the

only energies are updated, but not the wave functions.
The electron/hole line shape of Bloch state |nK〉 is then

defined by next spectral function

AnK(ω)

= − 1

π

Im��
C,S
nK (ω)[

ω − ẼnK − Re��
C,S
nK (ω)

]2 + [
Im��

C,S
nK (ω)

]2 ,

(78)

where ẼnK = EnK in first, and ẼnK = EnK ± �g/2 in second
approximation. The energy shift of Bloch state |nK〉, caused
by S-CRY, will be determined from the position of the main
peak in the spectral function (78) relative to the energy ẼnK.
The imaginary part of the induced self-energy Im��C,S deter-
mines the decay rate of the Bloch state |nK〉 or, for this paper
more important, the plasmonic satellites in the spectrum, in-
duced by nearby graphene.

Here it is also important to note that a very similar G�W
method was used to calculate the band gap in MoSe2/Gr-BL
composite [26]. There in order to include graphene polariza-
tion effects, the MoSe2 polarizability is corrected by adding
the graphene polarizability χ0,MoSe2 → χ0,MoSe2 + χ0,bilayer,
which is also mapped to MoSe2 unit cell. On the other hand,
we correct the bare Coulomb interaction V C (propagating the
interactions within TMD unit cell) by the induced graphene
Coulomb interaction �V C penetrating the TMD unit cell [see
Eq. (59)]. In Ref. [26] the CLFE are excluded in the parallel
direction in the χ0,bilayer, and we exclude them in the �V C

potential. However, we also exclude the CLFE in χS
0 in all

three directions [see Eq. (47)], which make the method devel-
oped in Ref. [26] superior. The advantage of our method is that
potential �W S spreads only within the TMD unit cell, while
the inverted dielectric function �ε−1 in Ref. [26] spreads
throughout the entire graphene/MoSe2 supercell. This allows
the dimension of the matrices, in G space, to be significantly
smaller in our case.

III. COMPUTATIONAL DETAILS

The ground-state wave functions φnK and energies EnK
of 2D crystals WS2, MoS2, graphene, and hBN (above
named 2D-CRY or S-2D-CRY) were calculated using a plane-
wave self-consistent field DFT code (PWSCF) within the
QUANTUM ESPRESSO (QE) package [64]. For all four 2D crys-
tals the core-electrons interaction was approximated by the
standard Martins-Troulier norm-conserving pseudopotential
where semicore electrons are treated as valence electrons
[65,66] and the exchange correlation (XC) potentials were ap-
proximated by the scalar-relativistic Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) functional
[67]. The Bravais lattices of all 2D crystals are hexagonal,
where the experimental unit cells a = 3.19 Å, a = 3.16 Å,
a = 2.46 Å, and a = 2.51 Å for WS2, MoS2, graphene, and
hBN, respectively, are used. The superlattice constants are
L = 5a for all four crystals. Because of similar unit cells a,
the ground-state electronic densities were calculated by using
the same 12 × 12 × 1 Monkhorst-Pack K meshes [68] and the
plane-wave cutoff energy was 50 Ry. During the calculation
of the RPA irreducible polarizabilities (23) in WS2, MoS2,
and hBN the crystal local field effects are included only in
z direction [i.e., G = (G‖ = 0, Gz )], where used cutoff en-
ergy was Ecut = 20 Ry. The wave vector (K) summations
were performed by using the 51 × 51 × 1 K mesh and the
bands (n, m) summations were performed over 40, 50, and
30 bands in WS2, MoS2, and hBN, respectively. The same
number of bands is used in the calculation of the induced
self-energy Eq. (70). Although the standard G0W0 method
requires a much larger number of unoccupied bands it is
not the case for the G0�WS method. Namely, the induced
Coulomb potential �WS in the 2D-CRY region changes more
slowly than the intrinsic potential W0, so that the matrix ele-
ments [ρ’s in (70)] representing the transitions between Bloch
states, decrease rapidly for transitions to higher bands. The 2D
irreducible polarizabilities (48) of the S-2D-CRYs (graphene
and hBN) are determined using G = 0, G′ = 0 component of
RPA irreducible polarizabilities (23). The band summations
were performed over 20 and 30 bands, for graphene and
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TABLE I. The band gap shifts −�Eg in WS2 caused by the vicinity of various S-CRYs (listed in the first row). (second row) The simulated
−�Eg obtained using first approximation Eq. (76), i.e. relative to DFT band gap Eg(DFT) = 1.82 eV in self-standing WS2. (third row) The
simulated −�Eg obtained using second approximation [Eq. (77)], i.e., relative to the experimental band gap Eg = 2.4 eV in WS2/SiO2.
(fourth row) Theoretical −�Eg relative to the theoretical band gap Eg(GW) = 2.38 eV [18] in WS2/SiO2. (fifth row) The experimental −�Eg

relative to experimental band gap Eg(EXPT) = 2.4 eV in WS2/SiO2 [18] and relative to band gaps in WS2/hBN-∞ [23,24].

−�Eg[meV] in WS2/S-CRY

S-CRY Gr-SL Gr-BL Gr-TL Gr-∞ hBN-∞
App. 1 [Eq. (76)] 103 124 124 124
App. 2 [Eq. (77)] 147 151 152 152 51
Theor. 170 [18] 195 [18] 205 [18]
Expt. 60 [23] 135 [18] 150 [18] 140 [24]

140 [18]

hBN, respectively. The graphenes are pristine or doped by
electrons, where chosen concentrations of injected electrons
are n = 1013 cm−2, n = 1014 cm−2, or n = 1.76 × 1014 cm−2,
per graphene layer. The inclusion of graphene doping does
not change the proposed formalism. The doping effects are
included at the level of the self-consistent ground-state cal-
culation; the extra electrons (of concentrations n) are injected
into the graphene unit cell and then the electronic degrees of
freedom are relaxed. The obtained KS states are then used in
exactly the same expression Eq. (23) to calculate the graphene
irreducible polarizability with very large precision, so that
the wave vector (K) summations were performed by using
201 × 201 × 1 K mesh. This large precision is necessary in
order to include as accurately as possible the contribution of
intraband (π∗ → π∗) and interband (π → π∗) electron-hole
excitations in the vicinity of the Dirac point. This finally
influences the accuracy of the calculation (the intensity and
dispersion relation) of Dirac plasmon, and thus, here the most
relevant, the Dirac plasmaron that appears in the quasiparti-
cle spectrum. The gr-gr or hBN-hBN distances are fixed to
c = 3.3 Å, as in natural graphite or in bulk hBN [69,70].
The separation between topmost graphene or hBN (in S-
CRY) and closer sulfur plane (in WS2 or in MoS2) is fixed
to 3.0 Å, so that � = 4.6 Å in both cases. If 2D-CRY is
hBN, the separation between topmost graphene and hBN is
fixed to � = 3.0 Å. Small variation of parameter �, e.g.,
of about ±0.1 Å, causes negligible shifts �EC,V,g of just
several meV, which is less than the numerical accuracy in
this calculation. This is the reason why here we do not vary
parameter �.

IV. RESULTS AND DISCUSSION

In order to test the accuracy of the derived theory, in
Sec. IV A we compare the results for the change of the band
gap −�Eg in WS2, MoS2, and hBN physisorbed on various
substrates, with recent experimental and theoretical results.
Also, we will discuss why the polarization shifts are smaller in
TMDs than in hBN. In Sec. IV B we compare the band-shifts
in different points of the Brillouin zone. Finally, in Sec. IV C
we discuss the effect of graphene doping on the π satellite
and the D plasmaron appearing in hBN quasiparticle spectra
(-ImGnK) along the �-M-K-� path in the Brillouin zone, for
two graphene dopings (n = 0 and n > 1014). In order to check
the impact of inversion symmetry violation we calculated the

shifts �EV,C,g in the 2D-CRY, which is exactly in the middle
between two identical S-CRYs (recovering the inversion sym-
metry). The obtained shifts are exactly two times larger than
those we get when we remove one S-CRY. This undoubtedly
proves that the presented formulation tolerates the inversion
symmetry violation.

A. Substrate-induced band gap shifts −�Eg in
WS2, MoS2, and hBN SLs

WS2. The second row in Table I shows the change of band
gap −�Eg in WS2 caused by adjacent Gr-SL, gr-BL, gr-TL,
gr-∞, and hBN-∞ denoted in first row. Here, SL represents
a single layer (n = 1), BL is a bilayer (n = 2), TL is a tri-
layer (n = 3), and ∞ signifies that S-CRY is a semi-infinite
substrate (n = ∞). Shifts −�Eg were calculated based on the
shifts of the valence and conduction bands (at the K point)
calculated using, what we called, the first approximation [see
Eq. (76)]. In other words, −�Eg is band gap shift relative to
the DFT band gap in WS2 Eg(DFT) = 1.82 eV. We notice that
−�Eg saturates very quickly with the increase of graphene
layers n. This is because the already single-layer graphene
provides very efficient metallic screening so that adding new
layers (behind the first, the closest one) represents a negligible
effect. The third row shows the same as second, but here
−�Eg were calculated based on the shifts of the valence and
conduction bands calculated using, what we called, the second
approximation [see Eq. (77)]. More precisely, here −�Eg is
band gap shift relative to the experimental band gap Eg(EXP) =
2.4 eV for WS2 at SiO2 surface, i.e., here is chosen �g =
0.58 eV. The larger band gap reduces the WS2 polarizability
(its polarization becomes more rigid), which results that the
polarization of S-CRY have a stronger (more direct) impact to
2D-CRY quasiparticle properties causing an additional reduc-
tion of the band gap, by about 50 meV. The fourth row shows
−�Eg obtained using quantum electrostatic heterostructure
(QEH) approach [18], relative to Eg(GW) = 2.38 eV, obtained
using G0W0 method. We notice that our results slightly under-
estimate the theoretical results taken from Ref. [18]. However,
the agreement with the various experimental results listed
in the fifth row of Table I is satisfactorily good. We will
see later that doped graphene further reduces the band gap,
which brings the result even closer to the experimental val-
ues. The last column shows the −�Eg in WS2 caused by
hBN-∞ surface, also relative to the experimental band gap
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TABLE II. The band gap shifts −�Eg in MoS2 caused by vicinity of various S-CRYs (listed in first row). (second row) The simulated
−�Eg obtained using first approximation [Eq. (76)], i.e., relative to DFT band gap Eg(DFT) = 1.81 eV. (third row) The simulated −�Eg obtained
using second approximation [Eq. (77)], i.e., relative to G0W0 band gap Eg(GW) = 2.75 eV [28]. (fourth row) Theoretical −�Eg relative to the
GW band gaps Eg(GW) = 2.68 eV [27] and Eg(GW) = 2.75 eV [28]. (fifth row) The experimental −�Eg relative to GW band gap Eg(GW) = 2.6 eV
[31]. All band gaps Eg refer to self-standing MoS2.

−�Eg[meV] in MoS2/S-CRY

S-CRY Gr-SL Gr-BL Gr-TL Gr-∞ hBN-∞
App. 1 [Eq. (76)] 101 109 109 109
App. 2 [Eq. (77)] 150 153 153 153 53
Theor. 350 [28] 390 [28] 400 [28] 540 [28] 180 [27]

50 [28]
Expt. 70 [71] 200 [15] 140 [2]

400 [72] 450 [25] 160 [29]

Eg(EXP) = 2.4 eV in WS2/SiO2. It can be seen that the hBN-∞
surface, as expected, affects the band gap significantly less
than graphenes. The spectroscopic measurements in Ref. [18]
and in Refs. [23,24] are performed at T = 70 K and at room
temperature, respectively, in ultrahigh vacuum.

MoS2. The second and third rows in Table II show the
−�Eg in MoS2 caused by adjacent Gr-SL, gr-BL, gr-TL,
gr-∞, and hBN-∞. Similar to Table I, the −�Eg in sec-
ond row is calculated using first approximation, i.e., relative
to DFT band gap Eg(DFT) = 1.81 eV, while in third row us-
ing second approximation, i.e., relative to G0W0 band gap
Eg(GW) = 2.75 eV, i.e., �g = 0.94 eV was used. Very similar
to WS2, larger band gap reduces the MoS2 polarizability and
thus allows the S-CRY to have more direct impact on 2D-CRY
quasiparticle properties, resulting in 50 meV reduction of the
band gap in the third row. Also, −�Eg saturates very quickly
with the increase of graphene layers. The fourth row shows
the theoretical results taken from Ref. [28] where −�Eg are
calculated relative to G0W0 band gap Eg(GW) = 2.75 eV in
self-standing MoS2. One can notice that our results signifi-
cantly underestimate these theoretical results, even about three
times. It is possible that effects of overlap between graphene
and MoS2 orbitals, which we do not include here but are
included in Ref. [28], significantly increases the band gap
reduction. The above could be the truth if the covalent bond
between the 2D crystals would be the case, however, here the
2D crystals are bound by a vdW chemical bond, which is
the result of a long-range fluctuation-fluctuation interaction.
However, precisely that long-range interaction is considered
in this G0�WS method. In other words, this band gap re-
duction −�Eg (or more precisely, the entire band structure
correction) provides the vdW attraction between 2D-CRY and
2D-CRY and can replace the huge cell calculations using vdW
functionals. Hence, the incorporation of orbital overlap effects
is expected to have no influence on −�Eg. Moreover, some
experimental results as well as comparisons with −�Eg in
other 2D crystals support above explanation. The fifth row
shows some experimental results for −�Eg relative to G0W0

band gap Eg(GW) = 2.6 eV in self-standing MoS2. The band
gap value is taken to be 2.6 eV [31] because it is the lat-
est and, in our opinion, the most accurately calculated band
gap in self-standing MoS2 [31], which is finally confirmed
by other recent calculations [27]. Taking Eg(GW) = 2.6 eV
as a reference, a minor −�Eg = 70 meV is measured in

MoS2/graphene/Ir(111) heterostructure [71], while −�Eg =
200 meV is measured in MoS2 on graphite substrate [15].
However, there are also results that significantly overestimate
these values, for example −�Eg = 400 meV in MoS2/Gr-SL
[72] or −�Eg = 450 meV in MoS2/Gr-∞ [25]. Finally, there
is no reason why the −�Eg in MoS2 would be even three
times larger than in the isoelectronic WS2, see fifth row in
Table I. Moreover, the similarly small −�Eg = 80 meV is
measured in MoSe2/Gr-BL composite [26]. We will show
later that doped graphene, the same as in WS2, increases
−�Eg for an additional 50 meV. Also, as in WS2 the hBN
substrate (third row, last column in Table II) negligibly af-
fects the MoS2 band gap. The results of other theoretical and
experimental investigations for −�Eg in MoS2/hBN-∞ are
shown in fourth and fifth row. The obtained −�Eg of even
more than 150 meV are probably overestimated considering
that hBN is, opposite to graphite, a rigid insulator. Similar to
graphene, the gap changes negligibly as the number of hBN
layers increases. This contradicts the results of sophisticated
GW calculations where the MoS2 gap at hBN-TL decreases by
even −�Eg ∼ 500 meV [43]. On the other hand, MoS2 gap
reduction of −�Eg � 50 meV caused by hBN-SL perfectly
agrees with results of above GW calculations. It seems that
the inclusion of the crystal local field effects in the response
of multilayered substrates can significantly modify their po-
larizability and thereby modify the band gap Eg. Still, the gap
reduction of 500 meV caused by an insulating surface is com-
parable to typical gap reduction caused by metal surfaces [27],
which is at least unusual. All spectroscopic measurements
(presented in Table II) were performed in ultrahigh vacuum at
temperatures; 200 K [2], 77 K [15], 79–299 K [25], 5 K [71],
and in Ref. [72] at room temperature.

hBN. The second and third rows in Table III show the
−�Eg in hBN caused by adjacent Gr-SL, gr-BL, gr-TL, and
gr-∞. The −�Eg in second row is calculated using first
approximation, i.e., relative to DFT band gap Eg = 4.48 eV,
while in third row using second approximation, i.e., relative to
G0W0 band gap Eg(GW) = 7.3 eV [73], i.e., �g = 2.82 eV was
used. Larger G0W0 band gap reduces the hBN polarizability so
that the impact of the nearby graphenes is stronger resulting
larger −�Eg. The fourth row shows the band gap change cal-
culated using supercell G0W0 method and AA′ hBN-graphene
stacking [73,74], which best matches our model. The −�Eg

is calculated relative to G0W0 band gaps Eg(GW) = 7.3 eV
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TABLE III. Band gap shifts −�Eg in hBN caused by vicinity of various S-CRYs (listed in first row). (second row) The simulated −�Eg

obtained using first approximation [Eq. (76)], i.e., relative to DFT band gap Eg = 4.48 eV. (third row) The simulated −�Eg obtained using
second approximation [Eq. (77)], i.e., relative to G0W0 band gap Eg(GW) = 7.3 eV [73]. (fourth row) Theoretical −�Eg relative to the G0W0

band gaps Eg = 7.3 eV [44,73] and Eg = 7.98 eV [74]. (fifth row) The experimental −�Eg relative to G0W0 band gaps Eg(GW) = 7.3 eV
(Eg(GW) = 7.98 eV). All band gaps Eg refer to self-standing hBN.

−�Eg[meV] in hBN/S-CRY

S-CRY Gr-SL Gr-BL Gr-TL Gr-∞
App. 1 Eq. (76) 600 627 627 627
App.2 Eq. (77) 704 747 761 761
Theor. 800 [44] 1075 [73] 930 [74] 980 [74]

800 [74]
Expt. 500(1180) [75]

[44,73] and Eg(GW) = 7.98 eV [74], as also pointed out in
Table III. It can be noticed that our results slightly underes-
timate the result of (similar) QEH-G�W method [44], while
it significantly underestimates the results of more sophis-
ticated supercell G0W0 method [73], that includes a small
but perhaps not negligible orbital overlap. Even though the
latter method may give a more accurate results, there are
still some inconsistencies with the recent STS and optical
measurements of hBN at graphite. Namely, by combined STS
and optical measurements it was obtained that the band gap
in hBN at graphite is Eg(EXPT) = 6.8 ± 0.2 eV, and optical
gap is ∼6.1 eV, providing the exciton binding energy of
0.7 ± 0.2 eV [75]. Similarly, by combined photoluminescence
and reflectance spectroscopy measurements it was obtained
that the optical gap in hBN on graphite is 6.1 eV [76], which,
after adding the 0.7 eV of exciton binding energy, obtained in
Ref. [75], provides the band gap of exactly Eg(EXPT) = 6.8 eV.
In both experiments [75,76] measurements were performed
in ultrahigh vacuum and in cryogenic conditions (T ≈ 10 K).
According to above-mentioned G0W0 band gaps in vacuum,
i.e., Eg(GW) = 7.3 eV and Eg = 7.98 eV, the graphite induces
the band gap shift between −�Eg ∼ 500 meV and 1180 meV,
respectively, as also shown in fifth row in Table III. Therefore,
this obvious inconsistency in theoretical calculations of the
band gap in self-standing hBN and the inability to determine
it experimentally provides a wide fluctuation of the results for
−�Eg, but also put our result in the middle of that fluctuation.

We notice that the graphene substrates generally have a
very weak impact on the band gap in WS2 and MoS2 caus-
ing −�Eg ∼ 150 meV, while the band gap reduction in hBN
is −�Eg ∼ 700 meV. This indicates that TMDs effectively
screen the potential produced by the S-CRY and thus protects
their electronic states from the influence of the substrate,
while this is not the case in hBN.

In order to prove this assumption, below we will compare
the spatially dependent induced self-energy of a point charge
placed at z0, which includes the polarizations of both the S-
CRY and the 2D-CRY [45]

��S@2D(z0) = 1

2

∫
dQ

(2π )2
�WS(Q, ω = 0, z0, z0)

and which includes only the polarizations of the S-CRY

��S(z0) = 1

2

∫
dQ

(2π )2
�V (Q, ω = 0)e−2|Q|z0 . (79)

Here �WS(z0, z0) can be obtained by the Fourier transfor-
mation of Eq. (73) in z direction, but excluding the crystal
local field in x-y plane (i.e., G‖ = G′

‖ = 0), and �V (Q, ω)
is given by Eq. (51). Also, one can notice that formula
(79) in the perfect screening approximation �V (Q, ω =
0) ≈ −vQe−2|Q|� (i.e., D ≈ −1) reduces to image potential
��S(z0) ≈ −1/4(z0 + �). It should be pointed out here
that ��S@2D is not the total but the substrate-induced self-
energy, analogous to Eq. (70), i.e., it does not include
the direct polarization of 2D-CRY, so that, for example,
lim�→∞ ��S@2D(−L/2 < z0 < L/2) = 0. Figure 4 shows
the induced self-energies ��S (black dashed) and ��S@2D

(blue solid) along [Fig. 4(a)] WS2-SL and along [Fig. 4(b)]
hBN-SL. The cyan dashed line in Fig. 4(a) shows ��S@2D

along MoS2-SL. The positions of the substrate, which is here
Gr-SL, and S, W, Mo, and hBN atomic planes are denoted
by vertical dotted lines. It is clearly evident that the presence
of WS2 or MoS2 significantly reduces the potential produced
by Gr-SL, especially inside of 2D-CRYs (between S atoms),
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FIG. 4. The substrate-induced self-energies of a point charge
��S (black dashed) and ��S@2D (blue solid) along (a) WS2-SL
and (b) hBN-SL. The cyan dashed line in (a) shows ��S@2D along
MoS2-SL. The positions of S-CRY, which is here Gr-SL, and S, W,
Mo, and hBN atomic planes are denoted by vertical dotted lines. Note
that ��S does not include, and ��S@2D includes, the presence of
2D-CRY.
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FIG. 5. The valence band shift �EV, the conduction band shift �EC, and band gap shift −�Eg at �, K, and M points of Brillouin zone
in (a) WS2, (b) MoS2, and (c) hBN caused by nearby doped graphenes. The shifts corresponding to different graphene electron dopings n are
denoted by orange dots ( ) n = 0, blue squares (�) n = 1013cm−2, and magenta diamonds ( ) n = 1014cm−2. (d) The top panels show the
induced correlation self-energy ��C,S

nK (ω) in hBN/Gr composite for two graphene dopings n = 0 (solid lines) and n = 1014cm−2 (dashed lines)
in K point of Brillouin zone. The left and right panels correspond to valence and conduction bands, respectively. The bottom panels in (d) show
the spectral functions AnK(ω) corresponding to top panels in (d) where the shaded spectra corresponds to pristine (n = 0) and unshaded to
doped graphene (n = 1014cm−2). The energies of valence and conduction bands, EV and EC , at K point, are denoted by dashed-dotted lines.

where, for example, at z0 = 0, ��S@2D/��S ∼ 0.15. It can
also be seen that just after entering the TMD, ��S@2D sat-
urates at a very small constant value, which means that any
orbital extending through the TMD should be well protected
from the influence of the substrate screening. This is because
TMDs have more pronounced 3D character, in comparison
with monoatomic 2D crystals. Namely, the orbital character
of the conduction and valence bands is dominated by d or-
bitals localized on molybdenum or tungsten atoms at z0 = 0.
On the other hand if Mo(d) ↔ S(p) electron-hole excitations
are more localized in the sulfur layers (z0 ≈ ±1.8 Å), we
can assume that these layers screen and thus protect the in-
ner d orbitals responsible for the semiconductor band gap.
The presence of hBN also noticeably reduces the potential
��S, but that reduction inside of hBN is not as radical as
in TMDs, so that at z0 = 0 ��S@2D/��S ∼ 0.5. As already
discussed, wide band gap in hBN results its rigid electronic
polarization and thus much weaker electronic screening com-

pared to TMDs. For example, static screening in 2D crystals
is usually approximated as W (Q) = vQ/(1 + αQ), where α =
10 and 76 in hBN and MoS2, respectively [30]. This clearly
demonstrates strong MoS2 and weak hBN polarizability. But
as already noted, also more pronounced 3D character of
TMDs (three atomic layers), results that electrons in TMDs
screen the substrate more efficiently than in hBN.

B. Conduction and valence bands shifts
�EV,C along the Brillouin zone

Until now we were looking at the changes of the 2D semi-
conductor band gap Eg induced by the presence of different
substrates. For that we were looking only at the energy shifts
of the electron states in the K point of the Brillouin zone. But
is this energy shift quantitatively the same along the entire
Brillouin zone?
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Figures 5(a)–5(c) show the valence band shift �EV, the
conduction band shift �EC and band gap shift −�Eg not
only at K but also at � and M points of the Brillouin zone
in WS2, MoS2, and hBN, respectively, caused by nearby
doped graphenes. The shifts �EV,C are defined as difference
between the main peaks in electron/hole spectral function
(78) and energies ẼnK derived in second approximation (77),
i.e., using the parameters �g = 0.58, 0.94, and 2.82 eV for
WS2, MoS2, and hBN, respectively. The shifts correspond-
ing to different graphene electron dopings n are denoted by
orange dots ( ) n = 0, blue squares (�) n = 1013cm−2, and
magenta diamonds ( ) n = 1014cm−2. What is common to all
systems, but also the expected result, is that the valence band
always shifts up �EV > 0, and the conduction band always
shifts down �EC < 0, which results the band gap reduction
−�Eg > 0.

It can be noticed that for fixed doping n the shifts �EV,C

do not change much along the Brillouin zone. However, even
though this change is a maximum of ∼20 meV, it can be up
to 40% of the total shift (for example �EV in � and K point
for WS2 and n = 0), which makes the rigid shift theory [24]
somehow debatable. Mathematically the expression for the
self-energy shift ��

C,S
nK (ω) (70) (n being here the index of

the considered band) has apparently a K dependence because
of the correlation propagator term ��S

GG′ (Q, EmK+Q − ω),
where the K can not be neglected by redefining Q. Further-
more, Eq. (71) shows how this K dependence is linked to
the variations in Q in the spectral function �SS

GG′ (Q, ω′)
or ImW S

GG′ (Q, ω), which can change significantly. In other
words, the phase space of real excitations (stored in �S), that
efficiently contribute to the shifts �EV,C, should change as
K change through the Brillouin zone. However, these energy
shifts variations in the WS2 band structure are very small
absolute amounts that are barely within or below the exper-
imental resolution, so that from an experimental point of view
the band shifts are rigid. This is especially true for the hBN
valence band (visible in ARPES experiments), where the �EV

change along the zone for only 5% of the total change. Small
electronic doping (n = 1013 cm−2) causes a negligible raising
of the valence band and a negligible lowering of the conduc-
tion band. This is expected behavior because already pristine
graphene (due to the avalanche of soft interband π → π∗ tran-
sitions) provides strong metallic screening, so that small extra
electronic charge does not cause any significant difference. In-
terestingly, tiny graphene doping still causes 20 meV shifts of
valence and/or conduction bands in WS2 and MoS2, at the �

point. Heavy electronic doping (n = 1014 cm−2) significantly
shifts the valence band up and the conduction band down.
For example, in MoS2 at K point, the valence band raises
for additional 25 meV while the conduction band lowers for
additional 25 meV resulting in band gap reduction of −�Eg =
200 meV, which is 50 meV larger than in pristine graphene
(see also third row and first column in Table II). A similar
behavior can be observed for WS2. However, although these
changes (caused by doping) seem large compared to the total
nominal change −�Eg, compared to the absolute band gap Eg

they are negligible, i.e., only about 2%. For hBN the similar
trend occur; in K point the strong doping rises the valence
band for additionally 50 meV and lower the conduction band
for additional 25 meV resulting in band gap reduction for

additional 75 meV, so that the total band gap shift (induced
by doped graphene) is almost −�Eg = 780 meV.

As we have already commented, the presence of graphene
affects the states in hBN more than the states in TMDs, so
below we will consider how graphene affects the spectral
properties of valence and conduction electrons in hBN. A
similar effect occurs at the M point, and the reduction of
the gap increases up to −�Eg = 820 meV. The influence on
spectral properties of TMD states is very weak, so we do not
show it here.

The top panels in Fig. 5(d) show the induced correla-
tion self-energies ��

C,S
nK (ω) in hBN/Gr composite for two

graphene dopings n = 0 (solid lines) and n = 1014 cm−2

(dashed lines) in K point of Brillouin zone. The left panel
corresponds to valence band, and right panel corresponds
to conduction band. The bottom panels show the spectral
functions corresponding to top panels, where the shaded
spectra correspond to pristine (n = 0) and unshaded spectra
correspond to doped graphene (n = 1014 cm−2). The top of
the valence band (EV) and the bottom of the conduction
band (EC) are denoted by dashed-dotted lines. For pristine
graphene, the Im��

C,S
nK (ω) shows onset, which appears just

below the valence band (ω � EV) or just above conduction
band (ω � EC). These onsets are a consequence of the real
excitation of the soft π → π∗ interband electron-hole transi-
tions in graphene. For example, a hole created deeper in the
valence band can emit an electron-hole pair in graphene and
jump to the upper edge of the valence band. At about 5 eV
below EV or above EC, a second onset appears representing
the excitation of the graphene π plasmon. For doped graphene
Im��

C,S
nK (ω) shows strong peaks, which appear about 1.0 eV

below or above onsets ω = EV or ω = EC, and which are
a consequence of the excitation of the Dirac plasmon in
graphene. In the quasiparticle spectrum AnK, these structures
manifest as satellites, which are labeled as π satellite in the
case of pristine graphene and D plasmaron in the case of
doped graphene. The position of the satellite can easily be
estimated by the following simple approximation. According
to Eq. (70), no-recoil approximation m = n, plasmon-pole
approximation �SS ∼ δ(ω − ωQ), and if the plasmon has a
flat dispersion ωQ = ωp (e.g., as LO phonon) it is easy to show
that the plasmon satellite should appear the most intensively
in valence band at ω ≈ EV − ωp and in conduction band
at ω ≈ EC + ωp. Here the Dirac plasmon has a square-root
dispersion ωQ ∼ √

Q and taking into account that its inten-
sity (oscillatory strength) increases with Q, the D-plasmaron
intensity should increase much more gradually for ω < EV

and ω > EC. Nevertheless, as can be see at bottom panels of
Fig. 5(d), the D plasmarons are well separated (about 1.5 eV)
from the main peaks.

It should be emphasized here that all these structures are
the results of the G0�WS theory, however, if one wants to
achieve more physical (closer to the experiment) spectral line
shapes, it is necessary to carry out a higher-order calculations,
e.g., G1�W S

1 , etc. For example, it is expected that the main
lines in Fig. 5(d) (bottom panel) will have an asymmetric
shape due to the decay into soft intraband (π∗ → π∗) and
interband (π → π∗) transitions in graphene. This does not
occur here because (in the lowest G0�WS order) the decay into
real excitations (Im��C,S �= 0) starts only for ω < EV and
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FIG. 6. The spectral intensities AnK(ω) of hBN valence and conduction bands along Brillouin zone when hBN is brought into interaction
with (a) pristine (n = 0) and (b) doped (n = 1.76 × 1014 cm−2) graphene. The dotted lines represent the valence and conduction bands in
self-standing hBN, i.e., when there is no interaction with graphene.

ω > EC [as can be seen in Fig. 5(d), top panels], and the new
corrected states are shifted in the gap, above (ω > EV) and be-
low (ω < EC), respectively, which means that the new shifted
states (because then Im��C,S = 0) are infinitely living states
(the δ functions rather than asymmetric Lorentzians) [as can
be seen in Fig. 5(d), bottom panels]. The more physical result
can be achieved in the second iteration, when already cor-
rected Green’s function G1 (in which the corrected energies
EV,C + �EV,C are inserted) is used in ��

C,S
1 = iG1�W S

1 .
Then the new (renormalized) onsets for which Im��C,S

1 �= 0
are at ω < EV + �EV and ω > EC + �EC, while the new QP
energies (because already G0�WS provides good shift) are
EV,C + �E1

V,C ≈ EV,C + �EV,C. Therefore, new corrected V or
C state will decay just below or above its energy, respectively,
having correct asymmetrical line shape. It should be noted that
the above analysis is equally valid if, instead of the initial DFT
energies EV,C [approximation (76)], we use already corrected
QP energies ẼV,C [approximation (77)]. It is also possible to
carry out more iterations in which the new corrected Green’s
functions G2, G3 are used, although this would probably
not significantly correct the result. However, it is a much
more complex calculation that goes beyond the scope of this
research.

C. Plasmarons in hBN/Gr(n) heterostructures

In this section, we will present the spectral intensities of
the valence and conduction bands along the Brillouin zone in
the hBN/Gr(n) composite for two marginal graphene dopings
n = 0 and n = 1.76 × 1014 cm−2. We will pay special atten-
tion to investigate behavior of satellites, D and π plasmarons,
along the Brillouin zone.

Figure 6 shows the spectral intensities (or quasiparticle
spectra) of hBN valence and conduction bands when they
are brought into interaction with [Fig. 6(a)] pristine and
[Fig, 6(b)] doped graphene. Graphene doping is here chosen to
be very large, n = 1.76 × 1014 cm−2, which usually occur in
alkali atoms doped graphene [77]. The dotted lines represent
the valence and conduction bands in self-standing hBN, i.e.,

when the interaction with graphene is switched off. It should
be noted that the valence and conduction band change their
orbital character, from π (in the region between K and M and
beyond) to σ around the � point, as also denoted in Fig. 6,
thus these segments had to be calculated separately. To limit
computational time the σ segment in the conduction band was
not calculated.

The spectral intensities in Fig. 6 are calculated using
first approximation (76), i.e., relative to DFT band gap
Eg = 4.48 eV. One can notice that when the interaction with
graphene is switched on, the main peaks in valence or conduc-
tion bands move up or down, respectively. In Fig. 6(a), weakly
intense π satellite replicates the entire valence band (very
uniformly regardless of its π or σ character), and the same
situation occurs in conductive π band. However, it appears
that the presence of graphene significantly affects the con-
ducting σ band, or more precisely, it significantly increases
the real part of induced self-energy Re��

C,S
nK (ω) resulting a

nonphysically large energy shift. This trend can be seen at the
discontinuities (where the π and σ bands cross) where the
energy shifts are already significantly larger than shifts at M
or K points. However, how this effect is still being considered,
the spectral line shapes of the conduction σ bands around the
� point are rather not presented in this paper.

In Fig. 6(b), one can clearly see the D plasmarons, which
rigidly (at a distance of about 1.5 eV) follow the valence and
conduction bands. It can be noticed that the D plasmaron
also reduces the main line spectral weight (between M and K
points), relative to the pristine graphene case in Fig. 6(a). So
even though very strong graphene doping causes a negligible
change of the hBN band gap [e.g., Fig. 5(c) shows that doped
graphene reduces the band gap by 75 meV, which is only
about 1% of the absolute gap], it causes a noticeable change of
the valence and conduction bands spectral line shape so that
π satellite turns into D plasmaron, which is also accompanied
by the main peak spectral weight reduction. Changes of the
spectral line shapes in WS2 and MoS2 caused by pristine or
doped graphenes are much less pronounced, so there is no
need to present these results here.
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Finally, it should be noted that in the above spectra only the
induced correlation self-energy ��

C,S
nK is included. However,

the actual (measurable) line shapes correspond to total cor-
relation self-energy �

C,S
nK = �

C,0
nK + ��

C,S
nK , which includes

intrinsic decay mechanisms [see Eq. (69)], which can gener-
ally overlap with π satelite and D plasmaron and destroy its
visibility. Luckily, since in the semiconductors Im�

C,0
nK �= 0

at ω < EV − Eg and ω > EC + Eg, and since hBN has wide
band gap (Eg > 7 eV) the overlap between intrinsic satellites
and D plasmaron will not occur. This implies that it is very
possible that D plasmaron can be measured by ARPES in
hBN/Gr composites [36–39], or, e.g., in hBN intercalated by
alkali atoms [78].

V. CONCLUSIONS

The proposed G0�WS theory is applied to study the va-
lence and conduction bands renormalization in WS2, MoS2,
and hBN physisorbed at multilayered and doped graphenes.
Although our results for band gap shifts −�Eg underestimate
other theoretical results, agreement with experimental results
is satisfactorily good. It is demonstrated that graphene weakly
influences the band gaps in TMDs (−�Eg ∼ 150 meV), while
this change in hBN is more significant (−�Eg ∼ 700 meV).
This effect is proved by performing the calculation of spatially
dependent induced self-energy of point charge ��S@2D(z0).
It is demonstrated that the test charge feels the influence of
graphene much less in TMDs than in hBN. Therefore the

TMDs provides more efficient electronic screening than hBN
resulting very weak renormalization (or protection) of the
conduction and valence bands in TMDs and finally very small
−�Eg � 150 meV. We also point out that semiconducting
substrates such as SiO2 or hBN have a negligible effect on
the TMD band structure (−�Eg � 50 meV), of course only
in case of vdW binding between TMD and substrate. Mul-
tiplication of graphene layers in S-CRY or graphene doping
insignificantly affect the energy shift of valence and conduc-
tion bands. Also, it is shown that the valence and conduction
bands shifts through Brillouin zone are nonrigid but small.

The spectral lines shapes of valence and conduction bands
in the hBN interacting with pristine and doped graphenes are
calculated. It is shown that the presence of graphene intro-
duces satellites, which replicate the valence and conduction
bands. Pristine graphene introduces weak π satellites (re-
sult of the excitation of soft interband π → π∗ transitions)
while doped graphene introduces more intensive D plasmaron
(result of the excitation of Dirac plasmon), which could po-
tentially be seen in ARPES measurements.
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