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We study Berry connection polarizability (BCP) induced electric polarization and the third-order Hall (TOH)
effect in a two-dimensional electron/hole gas (2DEG/2DHG) with Rashba-Dresselhaus (RD) spin-orbit cou-
plings in III-V semiconductor heterostructures. The electric polarization decreases with increase of the Fermi
energy and is responsive to the electric field orientation in the presence of RD spin-orbit couplings for both
systems. We determine the BCP-induced TOH conductivity (χ I

⊥) along with the TOH conductivity associated
with the band velocity (χ II

⊥). We find that the presence of an infinitesimal amount of Dresselhaus coupling in
addition to the dominant Rashba coupling results in finite TOH responses. These conductivities vanish when
the field is aligned with and/or orthogonal to the symmetry lines kx ± ky = 0 in both the systems. For typical
system parameters in a 2DEG with k-linear RD interactions, the magnitude of χ I

⊥ is smaller than that of χ II
⊥ . On

the other hand, when both the SO couplings are comparable, χ I
⊥ shows a notable increase in magnitude, owing

to the distinctive characteristics of BCP. The TOH conductivity of 2DEG remains unchanged when Rashba
and Dresselhaus spin-orbit couplings are exchanged. For 2DHG with k-cubic RD interactions, χ I,h

⊥ exhibits a
larger magnitude compared to χ II,h

⊥ . Unlike the electron case, the BCP-induced χ I,h
⊥ alters under the exchange of

spin-orbit coupling parameters, whereas χ II,h
⊥ remains the same.

DOI: 10.1103/PhysRevB.109.035202

I. INTRODUCTION

The discovery of the Hall effect [1] in 1879 signified a
crucial milestone in the field of condensed matter physics,
paving the way for numerous notable advancements, such
as the quantum Hall effect [2], the anomalous Hall effect
[3,4], the spin Hall effect [5,6], and the valley Hall effect [7].
The linear anomalous (conventional) Hall effect refers to the
emergence of a transverse voltage in response to an applied
electric current in the absence (presence) of a magnetic field.
In particular, the occurrence of the linear anomalous Hall
effect relies on the broken time-reversal symmetry, which
arises from intrinsic magnetic ordering within the system.
These transport properties are substantially influenced by the
Berry curvature, a geometrical property of the electronic wave
function [8].

Moreover, in the recent work of Sodemann and Fu, it
has been proposed that time-reversal symmetric and noncen-
trosymmetric materials can exhibit second-order nonlinear
Hall response which is mediated by the Berry curvature dipole
moment [9]. It has been observed experimentally in layered
transition metal dichalcogenides [10–12], which has subse-
quently propelled further investigations into other nonlinear
related transport phenomena [13–18].

In nonmagnetic materials characterized by inversion sym-
metry, the third-order Hall (TOH) response can prevail as the
dominant effect, as both the linear anomalous Hall effect and
second-order nonlinear Hall effect are absent in such systems.
Gao et al. introduced a semiclassical theory that incorporates
second-order accuracy in external fields. Within this frame-
work, they identified that the third-order Hall effect is induced
by a geometric quantity known as the Berry connection polar-
izability (BCP) [19,20]. The BCP is a second-rank tensor that

quantifies the change in the field-induced Berry connection
resulting from an applied electric field. Such extrinsic TOH
response has recently been studied in a 2D Dirac model [21],
the surface states of a hexagonal warped topological insu-
lator [22,23]. Experimental observations have been reported
in thick Td -MoTe2 samples [24], few-layer WTe2 flakes [25],
and the Weyl semimetal TaIrTe4 [26]. Very recent studies also
investigated the intrinsic TOH responses [27,28].

Expanding upon recent research conducted on TOH within
the realm of 2D Dirac materials with tilted Dirac cone or trig-
onal warping term, here we study the TOH effect in electron
and hole gases with Rashba-Dresselhaus spin-orbit interaction
(RSOI and DSOI) formed at the III-V semiconductor het-
erostructures. The RSOI emerges from the structure inversion
asymmetry due to the confining potential, while the DSOI
is a consequence of bulk inversion asymmetry. The transport
properties such as electrical conductivity [29–35], spin Hall
effect [36–42], spin-galvanic photocurrent [43], anomalous
Hall effect [44,45], magnetoplasmons [46], optical conduc-
tivity [47,48], and Zitterbewegung [49,50] have been studied
extensively for the charge carriers at the semiconductor het-
erojunctions. The absence of Berry curvature in these systems
prohibits both first- and second-order Hall effects, empha-
sizing the significance of the TOH response. We find that
an in-plane electric field induces electric polarization which
is related to the BCP, and the TOH response appears as the
leading contribution in both the systems.

This paper is structured as follows: In Sec. II, we present
the general formalism to calculate the electric polarization
and TOH response within the framework of second-order
semiclassical Boltzmann theory. In Sec. III, we begin with a
discussion on a 2DEG with k-linear RSOI and DSOI. Subse-
quently, we analyze the results of electric polarization and the
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transverse third-order conductivity. In Sec. IV, we present the
ground-state properties and BCP tensors of a two-dimensional
hole gas (2DHG) with k-cubic RSOI and DSOI and provide a
discussion covering various aspects of the electric polarization
and the transverse third-order conductivity of the system. Fi-
nally, we conclude and summarize our main results in Sec. V.

II. THEORETICAL FORMULATION

In this section, we outline the general formalism to evaluate
the electric polarization and third-order Hall conductivity re-
sulting from BCP in the absence of an external magnetic field.
This formalism is based on the Boltzmann transport frame-
work, employing the relaxation time approximation. The total
current density is defined as

j = q
∑

λ

∫
[dk]ṙλ f λ

k , (1)

where q is the charge of the current carriers, [dk] =
d2k/(2π )2, and f λ

k denotes the nonequilibrium distribution
function (NDF). The summation over λ indicates the sum over
different bands. Gao et al. developed a second-order semi-
classical theory to calculate the third-order current response
to an electric field [19]. In this theory, the perturbation caused
by a uniform electric field E is described as HE = −qE · r,
resulting in a positional shift of the wave packet. The semi-
classical equations of motion incorporating the second-order
corrections in electric field can be written as [19,20]

ṙλ = 1

h̄

(
∂ε̃λ

∂k

)
− k̇ × �̃λ and h̄k̇ = qE. (2)

To account for ṙ ∝ E2, the band energy ε̃λ is corrected to
second order in E , while the Berry curvature �̃λ is corrected
to first order in E . These corrections can be expressed as

ε̃λ = ελ + ε
(1)
λ + ε

(2)
λ and �̃λ = �λ + �

(1)
λ , (3)

where ελ and �λ are the unperturbed band energy and Berry
curvature, respectively. The first-order correction to band
energy can be obtained as ε

(1)
λ = 〈uλ|HE |uλ〉 = −qE · Aλλ,

where Aλλ = 〈uλ|i∇k|uλ〉 is the intraband Berry connection
with |uλ〉 the cell-periodic unperturbed Bloch eigenstate. We
omit the term ε

(1)
λ in our further calculations due to its gauge-

dependent nature. Additionally, it can also be shown that
ε

(1)
λ = 0 in the wave-packet picture [19,22]. This is similar

to the linear Stark effect, implying that the intrinsic dipole
moment of the system is zero as expected [51].

The second-order energy correction is given by

ε
(2)
λ =

∑
λ′ �=λ

|〈uλ′ |HE |uλ〉|2
ελ − ελ′

≡ q2
∑
λ′ �=λ

(E · Aλλ′ )(E · Aλ′λ)

ελ − ελ′
.

(4)

Here, Aλλ′ = 〈uλ|i∇k|uλ′ 〉 represents the interband Berry con-
nection. The first-order correction to the Berry curvature is
given by �

(1)
λ = ∇k × A(1)

λ , where A(1)
λ corresponds to the

first-order Berry connection. It can be expressed as A(1)
λ =

〈u(1)
λ |i∇k|uλ〉 + c.c., with the first-order correction to the

eigenstate described as

∣∣u(1)
λ

〉 =
∑
λ′ �=λ

−q(E · Aλ′λ)|uλ′ 〉
ελ − ελ′

. (5)

The field-induced Berry connection effectively captures the
band geometric quantity, BCP, and takes the form

A(1)
λ,a = Gλ

abEb, (6)

where indices a and b denote the Cartesian coordinates and
the BCP tensor is defined as [24]

Gλ
ab = −2q Re

∑
λ′ �=λ

(Aλλ′,a)(Aλ′λ,b)

ελ − ελ′
. (7)

Under an in-plane electric field, the second-order energy cor-
rection can be expressed in terms of the BCP tensor as

ε
(2)
λ = −q

2

(
Gλ

xxE2
x + 2Gλ

xyExEy + Gλ
yyE2

y

)
. (8)

It is to be noted that Eq. (8) resembles the second-order
Stark effect [51]. So the BCP-induced dipole moment can be
defined as Dλ(k) = −∂ε

(2)
λ /∂E . Quantum mechanically, the

total electric polarization would be the sum over the polar-
izations of the occupied states in all the bands [52]. Thus the
electric polarization of a 2D system at zero temperature can
be expressed as

P =
∑

λ

∫
[dk]Dλ(k). (9)

The electric polarization is simply the surface integral of BCP
over all the occupied states in k space. For an in-plane elec-
tric field E = E (cos θ, sin θ, 0), the electric polarization of a
system can be written as

P = qE
∑

λ

∫
[dk]

(
Gλ

xx cos2 θ + Gλ
xy sin 2θ + Gλ

yy sin2 θ
)
.

(10)

Next we move to calculate the NDF as a prerequisite
for calculating the current. The Boltzmann transport equa-
tion within the relaxation time approximation to evaluate the
NDF f λ

k is given by [53]

k̇ · ∇k f λ
k = − f λ

k − f̃ λ
eq

τ
. (11)

The NDF can be obtained as

f λ
k =

∞∑
η=0

(−qτ

h̄
E · ∇k

)η

f̃ λ
eq. (12)

Here, τ is the relaxation time, and the Fermi-Dirac distribution
function is given by f̃ λ

eq = 1/[1 + eβ(ε̃λ−μ)]. The distribution
function encompasses the E dependence resulting from the
band energy, accurate up to second order in the electric field.
One can expand it as f̃ λ

eq = f λ
eq + ε

(2)
λ f ′λ

eq , where f λ
eq is the

equilibrium distribution function defined in the absence of
external electric field and f ′λ

eq ≡ ∂ f λ
eq/∂ελ.

We can derive the current by substituting the expres-
sions of ṙλ and f λ

k from Eqs. (2) and (12), respectively, into
Eq. (1). To obtain the third-order current, we collect the terms
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proportional to E3, resulting in the following form [21]:

j(3) = −q2

h̄

∑
λ

∫
[dk](E × �λ)

[
ε

(2)
λ f ′λ

eq

] − q2τ

h̄2

∑
λ

∫
[dk]

{∇kελ(E · ∇k )
[
ε

(2)
λ f ′λ

eq

] + [ − q
(
E × �

(1)
λ

) + ∇kε
(2)
λ

]
(E · ∇k ) f λ

eq

}

− q4τ 2

h̄3

∑
λ

∫
[dk](E × �λ)(E · ∇k )2 f λ

eq − q4τ 3

h̄4

∑
λ

∫
[dk]∇kελ(E · ∇k )3 f λ

eq. (13)

In the context of relaxation time, the first term, which is
independent of τ , and the term proportional to τ 2 are both
odd under time-reversal symmetry, causing them to vanish
completely. Thus the third-order current exhibits dependen-
cies on both τ and τ 3. In Eq. (13), the second term is attributed
to the second-order energy correction within the distribution
function, the third term arises due to the anomalous velocity
generated by the first-order field correction to the Berry cur-
vature, and the fourth term emerges as a consequence of the
second-order field correction to the band velocity. Finally, the
last term originates from the gradient term in the distribution
function, which is cubic in the field. The third-order current
response can be characterized as a Fermi surface property,
as all the terms involved in its expression depend on the
gradient of the equilibrium distribution function feq. We are
interested in the third-order current induced by BCP, which
is proportional to τ , whereas j (3) ∝ τ 3 is solely related to the
band dispersion.

The third-order current can be expressed in terms of
third-order conductivity χ as j (3)

a = χabcd EbEcEd , where the
subscripts a, b, c, d ∈ {x, y}, and χabcd is a rank-4 tensor. The
third-order conductivity tensor comprises two contributions,
given by χabcd = χ I

abcd + χ II
abcd , where χ I

abcd is linear in τ , and
χ II

abcd is proportional to τ 3. These components can be derived
as

χ I
abcd = −q3τ

h̄2

∑
λ

∫
[dk]

{
∂a∂bGλ

cd + ∂a∂d Gλ
bc − ∂b∂d Gλ

ac

}
f λ
eq

+ q3τ

2

∑
λ

∫
[dk]va,λvb,λGλ

cd f ′′λ
eq (14)

and

χ II
abcd = −q4τ 3

h̄3

∑
λ

∫
[dk]va,λ∂b∂c∂d f λ

eq. (15)

Here, h̄vk,λ = ∇kελ is the unperturbed band velocity. It is
evident from Eqs. (14) and (15) that χ I

abcd is associated with
BCP, and χ II

abcd is connected to the band dispersion. Next,
we consider an in-plane electric field E = (E cos θ, E sin θ, 0)
such that the applied electric field forms an angle θ with
respect to the x axis. The third-order current within the plane
can be described as⎛

⎝ j (3)
x

j (3)
y

⎞
⎠ =

⎛
⎝χ11E3

x + 3χ12ExE2
y + 3χ13E2

x Ey + χ14E3
y

χ41E3
x + 3χ31ExE2

y + 3χ21E2
x Ey + χ22E3

y

⎞
⎠,

(16)
where we define χ11 = χxxxx, χ12 = (χxyyx + χxyxy +
χxxyy)/3, χ13 = (χxxxy + χxyxx + χxxyx )/3, χ14 =
χxyyy, χ41 = χyxxx, χ31 = (χyyyx + χyxyy + χyyxy)/3,

χ21 = (χyxxy + χyxyx + χyyxx )/3, and χ22 = χyyyy. In nonlinear
transport experiments, one measures the current response that
is transverse to the electric field. Therefore, our focus lies
in the third-order transverse current, which can be written
as j (3)

⊥ (θ ) = j(3) · (ẑ × Ê), and the associated third-order
transverse conductivity is defined as χ⊥(θ ) = j (3)

⊥ /E3. For a
2D system, the explicit form of χ⊥(θ ) is given by

χ⊥(θ ) = (3χ21 − χ11) cos3 θ sin θ + (χ22 − 3χ12) sin3 θ cos θ

+ 3(χ31 − χ13) cos2 θ sin2 θ + χ41 cos4 θ

− χ14 sin4 θ. (17)

Importantly, the transverse third-order conductivities χ I
⊥ and

χ II
⊥, proportional to τ and τ 3, adopt the same form as that

of χ⊥. This modification involves substituting χabcd by χ I
abcd

for χ I
⊥, and with χ II

abcd for χ II
⊥. In the next section, we will

apply this formalism to the Rashba-Dresselhaus system and
investigate its third-order transverse conductivity.

III. TWO-DIMENSIONAL ELECTRON GAS
WITH k-LINEAR RASHBA-DRESSELHAUS

SPIN-ORBIT COUPLING

The Hamiltonian for a 2DEG with k-linear RSOI and DSOI
is given by [29,36]

H = h̄2k2

2me
+ α(σxky − σykx ) + β(σxkx − σyky). (18)

Here, α and β represent the strengths of RSOI and DSOI, me

denotes the effective mass of an electron, and the σ ′s are the
Pauli matrices. The energy spectrum consists of two bands
(λ = ±) of the following form,

ελ(k) = h̄2k2

2me
+ λ

√
(αky + βkx )2 + (αkx + βky)2. (19)

The corresponding eigenspinors can be ob-
tained as |uλ〉 = (1/

√
2)[1 λieiϕ]T , where ϕ =

tan−1[(αky + βkx )/(αkx + βky)] with kx = k cos φ and
ky = k sin φ and T being the transpose operation.

The two bands ελ(k) meet at k = 0, commonly called a
band touching point (BTP). The energy difference between
the two bands is given by εg(k) = 2�k with �k ≡ � =√

(αky + βkx )2 + (αkx + βky)2. The maximum value of εg(k)
at φ = π/4 and 5π/4 is 2k(α + β ), while the minimum value
of εg(k) at φ = 3π/4 and 7π/4 is 2k|α − β|. These values
of φ also coincide with the symmetry lines kx ± ky = 0 of the
system. There is a line degeneracy along the symmetry line
ky + kx = 0 for the α = β case as shown Fig. 1.

The wave vectors corresponding to ε > 0 are
given by k̃λ(φ) = −λ

√
γ + √

2ε̃ + γ , where we define
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FIG. 1. Fermi contours along with the two mirror symmetric lines ky = ±kx of a 2DEG with k-linear Rashba-Dresselhaus spin-orbit
couplings for (a) α �= β and (b) α = β. Here, kx and ky are plotted in units of k0.

γ = 1 + ζ 2 + 2ζ sin 2φ, with ζ = β/α. We introduce
the scaled parameters k̃ = k/k0 and ε̃ = ε/ε0 with
k0 = mα/h̄2 and ε0 = mα2/h̄2 as scaled wave vector and
energy, respectively. For ε < 0, only one energy band
with λ = − contributes and it attains a minimum value of
ε̃min = −γ /2. The associated wave vectors can be expressed
as k̃η(φ) = √

γ − (−1)η−1√2ε̃ + γ , where η = 1, 2 is the
branch index.

We consider the following key points in order to study
the TOH response of this system. The conventional Berry
curvature of the system vanishes everywhere except for a
singular nature at the degenerate point k = 0. As a result,
the linear anomalous Hall effect and Berry curvature dipole
induced second-order Hall response vanish. Hence, the BCP
induced third-order Hall response will be the dominant one
in the k-linear Rashba-Dresselhaus system. To determine the
third-order conductivity, one can compute the different com-
ponents of the BCP tensor using Eq. (7) as

Gλ
ab = λ

e(α2 − β2)2

4�5

(
k2

y −kxky

−kxky k2
x

)
. (20)

We have plotted the density plots of these BCP tensor el-
ements Gxx, Gyy, and Gxy for β � α in Figs. 2(a)–2(c),
respectively. The diagonal elements Gxx and Gyy exhibit
a dumbbell-like pattern, whereas the off-diagonal element
Gxy shows a quadrupole-like structure. Under an in-plane
electric field, the field-induced Berry curvature can be writ-
ten in terms of the BCP tensor as [24] �

(1)
λ = [(∂kx G

λ
yx −

∂ky G
λ
xx )Ex + (∂kx G

λ
yy − ∂ky G

λ
xy)Ey]ẑ. We find that for this sys-

tem, the second-order energy correction and field-induced
Berry curvature can be obtained as

ε
(2)
λ = λ

e2(α2 − β2)2

8�5
(E × k)2 (21)

and

�
(1)
λ (k) = λ

e(α2 − β2)2

2�5
(E × k). (22)

It should be mentioned here that expressions of ε
(2)
λ and

�
(1)
λ (k) are obtained using the nondegenerate perturbation

theory. Therefore Eqs. (21) and (22) are not valid at the α = β

case, since there is a line degeneracy along the symmetry line
ky + kx = 0 for α = β case.

Unlike the Berry curvature, the field-induced Berry cur-
vature remains finite and exhibits a dipole-like structure. It
is directed out-of-plane, but its orientation is sensitive to the
applied electric field. Figures 2(f)–2(j) further depict that as
the values of α approach close to β, the lobes in the diagonal
element of BCP and �(1)

z undergo substantial elongation. In
the case of Gxy, the lobes experience stretching in one di-
rection, accompanied by a corresponding contraction in the
orthogonal direction. Note that these BCP tensor elements
and �(1)

z are concentrated around the BTP. Figure 2 clearly
demonstrates that the lobes in diagonal components of BCP
and �(1)

z are confined in the x-y plane. This observation can
be understood from the system’s anisotropic nature resulting
from α �= β. For the pure Rashba system (β = 0), the lobes
are exclusively aligned along the x and y directions.

A. Polarization

For the pure Rashba system (β = 0), an analytical ex-
pression of the electric polarization can be obtained using
Eq. (10) as

P = P0

16π

{
1

Ne−1 , Ne > 1,
2Ne

1−N2
e
, Ne < 1,

(23)

where P0 = e2E/ε0 and Ne = π l2
e ne with le = h̄2/(meα). Note

that the Fermi energy is zero at the BTP which can be reached
if Ne = π l2

e ne = 1. For α = 0 but β �= 0, the polarization can
be obtained from Eq. (23) with α replaced by β. We find that
the polarization decreases with the increase in Fermi energy,
reflecting the behavior of the BCP. It is important to note that
the polarization does not vary with the angle θ (between the
electric field and x axis) since the contribution from Gxy ∝
kxky vanishes upon angular integration, as

∫ 2π

0 sin 2φdφ = 0.
Both Gxx and Gyy contribute equally, rendering it insensitive
to orientation of the electric field in the case of β = 0.

We have also illustrated the dependence of polarization
on θ under the influence of both the couplings in Figs. 3(a)
and 3(b) for εF > 0 and εF < 0, respectively. This demon-
strates that adding an infinitesimal DSOI to the RSOI makes
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FIG. 2. We present density plots of the band geometric quantities and the field-induced Berry curvature of the 2DEG with linear Rashba-
Dresselhaus spin-orbit interactions. Top panels: α = 6 × 10−9 eV cm and β = 1 × 10−9 eV cm. Bottom panels: α = 6 × 10−9 eV cm and
β = 5 × 10−9 eV cm. Here, [(a)–(c)] and [(f)–(h)] display the density plots of the BCP tensor components (in units of e/αk3

0 ); [(d)–(e)] and
[(i)–(j)] display the field-induced Berry curvature �(1)

z (in units of eE/αk4
0 ) for two orientations of the electric field along the y and x directions,

respectively. The plots are given for the upper (+) band. We consider me = 0.024m0, where m0 is the free electron mass [38]. In both panels,
kx and ky are in units of k0.

polarization responsive to the electric field orientation, as
Gxy also contributes. Therefore, the polarization takes the
following form: P = −eE

∑
λ

∫
[dk](Gλ

xx + Gλ
xy sin 2θ ). The

integration of Gxx and Gxy yields the positive values for the
given set of parameters. Consequently, the polarization is
maximum at θ = π/4 and 5π/4 and minimum at θ = 3π/4
and 7π/4. These values of θ coincide with the symmetry lines
of the system. The magnitude of polarization increases with
an increase in β for a given α. The electric polarization in
the εF < 0 region is large as compared to εF > 0. This is due
to the Van Hove singularity in the density of states as Fermi
energy approaches the band minimum, εF → εmin.

B. Third-order transverse conductivity

In the Rashba-Dresselhaus system, where both α and β are
nonzero, the lines kx = ±ky serve as symmetry axes of the sys-
tem. Due to the underlying symmetry axes of the system, we
have χ11 = χ22, χ12 = χ21, χ31 = χ13, and χ14 = χ41, which
reduces Eq. (17) to

χ⊥(θ ) = 1
4 (3χ21 − χ11) sin 4θ + χ41 cos 2θ. (24)

The vanishing behavior of χ⊥ along or perpendicular to
the symmetry lines of the system can be understood
well from the above equation. Both the terms sin 4θ and

FIG. 3. Polarization (in units of P0 = e2E/ε0) as a function of angle θ for different Dresselhaus coupling strengths (in units of 10−9 eV
cm) at a fixed Rashba coupling strength of α = 6 × 10−9 eV cm: (a) εF > 0 at a fixed electron density of ne = 5.7 × 1010/cm2 and (b) εF < 0
at ne = 1010/cm2. The other parameters used are the same as in Fig. 2.
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FIG. 4. Variation of the transverse third-order conductivities with angle θ for different Dresselhaus coupling strengths, while keeping the
Rashba coupling strength fixed at α = 6 × 10−9 eV cm. The conductivities χ I

⊥ and χ II
⊥ correspond to transverse third-order conductivities

proportional to τ and τ 3, respectively. The total transverse conductivity is given by χ⊥ = χ I
⊥ + χ II

⊥ . The top panel [(a)–(c)] represents the case
for εF > 0, and the bottom panel [(d)–(f)] corresponds to the scenario where εF < 0. The normalization parameters for conductivities, χ I

⊥ and
χ II

⊥ , are given by χ1 = τe4 h̄4/m3
eα

4 and χ2 = e4τ 3/meh̄2, respectively. The value of β is given in units of 10−9 eV cm. The β = 5 curve is
scaled by factors of 50 in (a) and 5 in (b) and (c), while the β = 3 curve is scaled down by factors of 5 in (d) and (f). The parameters used are
the same as in Fig. 3.

cos 2θ of Eq. (24) vanish simultaneously whenever θ ∈
{π/4, 3π/4, 5π/4, 7π/4}, independently of the system pa-
rameters. These four angles coincide with the symmetry lines
of the systems. If we consider θ = 0, then χ⊥ = χ41 = χyxxx.
Below, we will discuss the contributions to transverse conduc-
tivity based on their scaling relation with τ .

τ -scaling conductivity (χ I
⊥). We numerically evaluate χ I

⊥
for the system, considering both εF > 0 and εF < 0. For
the isotropic Rashba system (β = 0), we observe that χ11 =
3χ21 and χ41 = 0. Consequently, χ I

⊥ vanishes for all Fermi
energies. For Fermi energies above the BTP, we perform
the calculations at a constant electron density of ne = 5.7 ×
1010/cm2 and a fixed Rashba coupling strength of α = 6 ×
10−9 eV cm, while systematically varying the Dresselhaus
coupling parameter β. The variation of χ I

⊥ as a function of
the angle θ for different values of β is shown in Fig. 4(a).
We find that when the value of β is much smaller than α, let
us say β = 1, we obtain a finite χ I

⊥ that exhibits significant
dependence on the cos 4θ term. The system exhibits more
anisotropic behavior as we further increase β; a competition
arises between the coefficients of sin 4θ and cos 2θ , which
is clearly illustrated in Fig. 4(a). We also observe the pres-
ence of additional angles θ at which χ I

⊥ vanishes. Note that
these angles of additional zeros depend on the system pa-
rameters. They manifest symmetrically around the zeros that
originate from the inherent symmetry of the system, i.e., θ =
π/4, 3π/4, 5π/4, 7π/4. Additionally, it can be noted that the
magnitude of χ I

⊥ increases significantly as β approaches close
to α (as shown here for β = 5). At α = β, χ I

⊥ = 0. This
behavior can be attributed to the characteristics of the BCP
tensor. The variation of χ I

⊥ with θ exhibits a periodicity of π .
On the other hand, the magnitude of χ I

⊥ for εF < 0 (εmin <

εF < 0) is notably larger compared to εF > 0, as depicted in
Fig. 4(d). At Fermi energies below the BTP, the conductivity

increases significantly as the Fermi energy approaches the
band minimum, attributed to the Van Hove singularity in the
density of states as εF → εmin.

One can determine the maxima and minima of χ⊥ by
differentiating Eq. (24) with respect to θ and set it zero.
Then we obtain locations of maxima and minima for various
system parameters. The values of the coefficients of sin 4θ and
cos 2θ of Eq. (24) change with α and β, leading to shifts in
the positions of maxima and minima and emphasizing their
dependence on system parameters.

It is important to emphasize that the magnitude and sign
of χ I

⊥ remain unaltered when the values of α and β are inter-
changed. For instance, χ I

⊥(α = 2, β = 6) = χ I
⊥(α = 6, β =

2). This finding can be explained by the invariance of the
Hamiltonian under α ↔ β and rotation by the unitary ro-
tation operator, U = e−i π

4 σz e−i π
2 σy , which transforms σx →

−σy, σy → −σx, and σz → −σz. Both the unperturbed veloc-
ity operator and the velocity resulting from the second-order
energy correction, which is related to the BCP tensor, also
remain invariant under these transformations. Thus the third-
order current is the same when α and β are exchanged.

We also explore the dependence of third-order conductivity
on the Fermi energy. Keeping the electron density and Rashba
coupling α fixed, an increase in β leads to a reduction in the
Fermi energy. Consequently, we find that the magnitude of χ I

⊥
increases as the Fermi energy decreases. This understanding
can be derived from the behavior of the BCP tensors, which
exhibit a maximal value at the degenerate point and gradually
decrease as one moves away from it.

τ 3-scaling conductivity (χ II
⊥). We also evaluate the trans-

verse third-order conductivity χ II
⊥, which is proportional to

τ 3 and solely arises from the band velocity. We find that χ II
⊥

also vanishes for a pure Rashba system, as χ11 = 3χ21 and
χ41 = 0. The dependence of χ II

⊥ on θ for different coupling
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strengths is illustrated in Figs. 4(b) and 4(e), corresponding
to εF > 0 and εF < 0, respectively. For εF > 0, using the
same parameters as those employed for χ I

⊥, we note that
with increasing β, the magnitude of χ II

⊥ increases and ex-
hibits a more pronounced anisotropic growth. We highlight
two distinct behaviors of χ II

⊥: (i) there are no additional zeros
observed for any values of β, and (ii) in contrast to the case of
χ I

⊥, the magnitude of χ II
⊥ does not show a drastic increase as

β approaches α. This occurs because the BCP increases more
rapidly as β approaches α, compared to the band velocity,
which straightforwardly affects their respective contributions
to the conductivity. The magnitude of χ II

⊥ is greater for εF < 0
when compared to the case of εF > 0. The magnitude and sign
of χ II

⊥ also remain unchanged upon the interchange of α and
β, along with a similar unitary transformation.

Net transverse conductivity (χ⊥). We also explore the
third-order transverse conductivity, which comprises two
components proportional to τ and τ 3, denoted as χ⊥ = χ I

⊥ +
χ II

⊥. Extracting these two conductivities individually in an
experimental setting proves challenging. Therefore, providing
their combined contributions becomes a valuable approach at
very low temperatures. However, the separation of these con-
tributions has been demonstrated through temperature scaling
analysis [26]. We present the variation of χ⊥/χ1 as a function
of θ for both εF > 0 and εF < 0 in Figs. 4(c) and 4(f). We
have χ⊥/χ1 = χ I

⊥/χ1 + (χ II
⊥/χ2)(χ2/χ1) with χ2/χ1 = 3.29

for τ = 1 ps. When β is significantly smaller than α, the mag-
nitude of χ II

⊥ surpasses that of χ I
⊥, resulting in the behavior of

χ⊥ resembling that of χ II
⊥. When β approaches values close

to α, both χ I
⊥ and χ II

⊥ become comparable. Consequently, we
also observe additional zeros in the behavior of χ⊥, mirroring
the pattern seen in χ I

⊥ for β = 5.
Based on our calculations, we provide an estimate of the

third-order Hall current that can potentially manifest during
experimental observations. The third-order Hall current can be
defined as I = j (3)

⊥ l0, where j (3)
⊥ = χ⊥E3 and l0 represents the

length of the sample. For a uniform electric field of 100 V/cm,
l0 = 1 mm, τ = 1 ps, θ = π/2, and utilizing system parame-
ters such as α = 6 × 10−9 eV cm, β = 1 × 10−9 eV cm, and
εF = 4.27 meV, the third-order Hall current can be calculated
as I ∼ 15 µA.

IV. TWO-DIMENSIONAL HOLE GAS WITH k-CUBIC
RASHBA-DRESSELHAUS SPIN-ORBIT COUPLING

The effective Hamiltonian of a heavy-hole gas with k-cubic
RSOI and DSOI formed at the p-type III-V semiconductor
heterostructures is given by [39,41,54]

H = h̄2k2

2mh
+ iαh(k3

−σ+ − k3
+σ−)

− βh(k−k+k−σ+ + k+k−k+σ−), (25)

where k± = kx ± iky, σ± = (σx ± iσy)/2, with σ ′
i s as the Pauli

spin matrices and mh is the effective heavy-hole mass. Also,
αh and βh are the strength of RSOI and DSOI, respectively.
The energy spectrum is given by

ελ(k) = h̄2k2

2mh
+ λk2

√
(αhkx − βhky)2 + (αhky − βhkx )2,

(26)

where λ = ± denotes the two dispersive branches.
The corresponding eigenspinors can be calcu-
lated as |uλ〉 = (1/

√
2)[1 λei(2φ−φ′ )]T , where φ′ =

tan−1[(αhkx − βhky)/(αhky − βhkx )] with kx = k cos φ

and ky = k sin φ. The spin-splitting energy between the
two branches, εg(k) = ε+(k) − ε−(k) = 2k2�k, with

�k ≡ � =
√

(αhkx − βhky)2 + (αhky − βhkx )2. In polar
form, it can be expressed as εg(k) = 2k3ϑ (φ), where

ϑ (φ) ≡ ϑ =
√

α2
h + β2

h − 2αhβh sin 2φ. It is to be noted
that the lower branch of the Hamiltonian is valid for the wave
numbers k � h̄2/(2mhϑ ). The maximum value of εg(k) at
φ = 3π/4 and 7π/4 is 2k3(αh + βh), and the minimum value
of εg(k) at φ = π/4 and 5π/4 is 2k3|αh − βh|. These values
of φ also coincide with the symmetry lines kx ± ky = 0 of the
system. There is a line degeneracy along the symmetry line
ky − kx = 0 for the αh = βh case as shown in Fig. 5.

The analytical derivation of wave vectors is not feasi-
ble for the anisotropic hole system. Hence, we numerically
evaluate the wave vectors by solving the cubic equation,
h̄2k2/2mh + λk3ϑ − ε = 0. However, when βh is set to zero,
exact expressions for the Fermi wave vectors can be obtained
analytically [39]. The scaled wave vector and energy are de-
fined as k̃h = k/kh and ε̃ = ε/εh, where kh = h̄2/(mhαh) and
εh = αhk3

h .
The Berry connection for the system can be calcu-

lated as Ak = δ
2k2�2 (kyx̂ − kxŷ), where δ = [(3α2

h + β2
h )(k2

x +
k2

y ) − 8αhβhkxky]. The Berry curvature is zero, which leads to
the absence of linear and second-order Hall responses, making
the third-order Hall response dominant for the hole system
as well. To calculate the third-order conductivity, one can
evaluate the different components of the BCP tensor for the
system as

Gλ
ab = −λ

eδ2

4�5k6

(
k2

y −kxky

−kxky k2
x

)
. (27)

Similar to the electron case, Eq. (27) is not valid for αh = βh

because of the presence of the line degeneracy along the
symmetry line ky − kx = 0. The distribution of the BCP ten-
sor components in the kx-ky plane for αh = 0.1 eV nm3 and
βh = 0.6αh is plotted in Figs. 6(a)–6(c). The diagonal com-
ponents Gxx and Gyy show a dumbbell-like structure, whereas
Gxy exhibits quadrupole-like features. On applying an in-plane
electric field, the second-order energy correction and the field-
induced Berry curvature can be obtained as

ε
(2)
λ = λ

e2δ2

8k6�5
(E × k)2 and �

(1)
λ (k) = −λ

eδ2

k6�5
(E × k).

(28)

Similar to the electron gas case, we observe that �(1)
z exhibits

a dipole-like structure with its orientation changing relative
to the electric field direction, as depicted in Figs. 6(d)–6(e).
When βh is zero, the lobes align precisely along the x and
y axes. As we increase βh, anisotropy is introduced into the
system, causing the lobes in the BCP components and �(1)

z to
align within the x-y plane. Further increase of βh results in the
stretching of lobes, as shown in Figs. 6(f)–6(j).
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FIG. 5. Fermi contours along with the two mirror symmetric lines ky = ±kx of the 2DHG with k-cubic Rashba-Dresselhaus spin-orbit
couplings for (a) αh �= βh and (b) αh = βh. Here, kx and ky are plotted in units of kh.

A. Polarization

Similar to the electron case, we obtain an analytical expres-
sion for the electric polarization of 2DHG with k-cubic RSOI
(βh = 0),

P = 3Ph

2π

[
3
(
1 +

√
1 − 16πnhl2

h

) − 32πnhl2
h

16πnhl2
h

(
1 − 16πnhl2

h

)3/2

]
, (29)

where Ph = e2E/εh and lh = mhαh/h̄2. For αh = 0 and βh �=
0, the polarization is reduced by a factor of nine. Here as
well, polarization remains constant with θ when either one
of the spin-orbit couplings is absent, for similar reasons as
specified in the electron case. The variation of polarization
with θ in the presence of both the couplings is depicted in
Fig. 7. The polarization increases with βh, while it decreases

with the Fermi energy. When both αh and βh are nonzero, the
integration of Gxx and Gxy yields positive and negative values,
respectively. Thus, the maximum of polarization is observed
at θ = 3π/4 and 7π/4 and minimum at θ = π/4 and 5π/4.
This is in contrast to the electron case.

For a positive Fermi energy, the polarization of a k-linear
electron gas with RSOI and DSOI is of an order of magnitude
smaller than that for a hole gas with k-cubic couplings.

B. Third-order transverse conductivity

The k-cubic Rashba-Dresselhaus system acquires the same
form of χ⊥ as described in Eq. (24), owing to the same
symmetry lines kx ± ky = 0. Next, we discuss the contribution
of χ⊥ proportional to τ and τ 3 given by Eqs. (14) and (15) for
the hole system.

FIG. 6. Distribution of the BCP tensors and the field-induced Berry curvature for + branch of a 2DHG with k-cubic Rashba-Dresselhaus
spin-orbit interactions. Top panel: αh = 0.1 eV nm3 and βh = 0.6αh. Bottom panel: αh = 0.1 eV nm3 and βh = 0.9αh. Here, [(a)–(c)] and
[(f)–(h)] represent the density plots of the BCP tensor components (in units of −e/αhk5

h ); [(d)–(e)] and [(i)–(j)] represent the field-induced
Berry curvature �(1)

z (in units of −eE/αhk6
h ) for two orientations of the electric field along the y and x directions, respectively. In both panels,

kx and ky are plotted in units of kh. We consider mh = 0.41m0, where m0 is the free electron mass.
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FIG. 7. Polarization (in units of Ph = e2E/εh) for a hole gas with
angle θ for different Dresselhaus coupling strengths (given in units of
eV nm3) at a fixed Rashba coupling strength αh = 0.1 eV nm3. The
other parameters used are charge carrier density nh = 2 × 1015 m−2

and mh = 0.41m0 [47].

τ -scaling conductivity (χ I,h
⊥ ). We evaluate χ I,h

⊥ numerically
for different values of αh and βh, and its variation with respect
to θ is depicted in Fig. 8(a). In our calculations, we consider
the parameters representing p-type InAs heterostructures [47]:
hole density nh = 2 × 1015 m−2 and mh = 0.41m0, and αh =
0.1 eV nm3, while varying βh. In an isotropic cubic Rashba
system, χ I,h

⊥ is zero since 3χ21 = χ11 and χ41 = 0. However,
when a finite small value of βh is introduced, χ I,h

⊥ becomes
finite and exhibits a significant dependence on the cos 2θ term.
It is important to note that as we increase βh from 0.1αh to
0.5αh, the curve of χ I,h

⊥ follows qualitatively a similar pattern
but with an increased magnitude. This happens because the
BCP is proportional to δ2 and more specifically, the coefficient
associated with αh is three times that of βh. Therefore, as βh

is increased, the impact on δ2 is less pronounced compared to
changes in αh, resulting in the observed pattern of χ I,h

⊥ with
a higher magnitude but similar overall shape. As βh is fur-
ther increased, anisotropic curves emerge from the interplay
between the coefficients of sin 4θ and cos 2θ . Similar to the
electron scenario, we notice additional angles at which χ I,h

⊥
vanishes, beyond those dictated by the system’s inherent sym-
metry. Note that these angles of additional zeros depend on

the system parameters. The positions of maxima and minima
shift as one varies αh and βh, emphasizing their dependence
on system parameters.

Upon applying a unitary transformation U similar to that
used for the electron case and interchanging the values of αh

and βh, the transformed Hamiltonian no longer remains invari-
ant. The perturbed velocity resulting from ε

(2)
λ changes under

such transformations. Therefore, the third-order conductivity
(∝ τ ) ceases to remain invariant under αh ↔ βh, as evident in
Fig. 8(a).

τ 3-scaling conductivity (χ II,h
⊥ ). The variation of χ II,h

⊥ as
a function of θ for the same set of parameters is shown in
Fig. 8(b). We find that the χ II,h

⊥ vanishes for an isotropic
Rashba system (βh = 0), for the same underlying reason
observed for χ I,h

⊥ . The magnitude of χ II,h
⊥ increases with

βh, while keeping αh fixed. When αh = βh, χ II,h
⊥ becomes

zero due to equal and opposite contributions from both the
branches. The magnitude and sign of χ II,h

⊥ remains unchanged
upon interchanging αh and βh, which is a direct consequence
of its origin in the unperturbed velocity, which remains insen-
sitive to such transformations.

Net transverse conductivity (χh
⊥). In Fig. 8(c), we present

the variation of the net contribution χh
⊥ arising from τ and

τ 3. It is worth noting that the magnitude of χ II,h
⊥ is smaller

than that of χ I,h
⊥ for a hole gas. As a result, the behavior of

χh
⊥ exhibits similarity to that of χ I,h

⊥ . Like χ I,h
⊥ and χ II,h

⊥ , χh
⊥

varies with θ with a period of π .
For the Hall setup with the same parameters as those

employed for the electron case and the system parameters
specified as αh = 0.1 eV nm3 and βh = 0.3αh, the estimated
third-order Hall current for the hole gas with k-cubic RSOI
and DSOI is Ih ∼ 12 µA.

V. CONCLUSION

In this study, we investigated the electric polarization
and third-order Hall response in a 2D electron/hole gas
with k-linear/k-cubic RSOI and DSOI present at III-V semi-
conductor heterostructures. We have obtained the analytical
expressions of the BCP tensors and the field-induced Berry
curvature. We have also obtained analytical expressions for

FIG. 8. [(a)–(c)] Variation of the transverse third-order conductivities for the heavy-hole gas with k-cubic Rashba-Dresselhaus spin-orbit
interactions as a function of the angle θ between the electric field and the x axis. The conductivities χ I,h

⊥ and χ II,h
⊥ represent the transverse

third-order conductivities of the hole gas proportional to τ and τ 3, respectively. The total transverse conductivity is given by χh
⊥ = χ I,h

⊥ + χ II,h
⊥ .

In (b), χ II,h
⊥ (αh = 0.1 and βh = 0.06) = χ II,h

⊥ (βh = 0.1 and αh = 0.06). The normalization parameters for conductivities, χ I,h
⊥ and χ II,h

⊥ , are
given by χ h

1 = τe4m5
hα

4/h̄12 and χ h
2 = e4τ 3/mhh̄2, respectively. The values of αh and βh are given in units of eV nm3. The parameters used are

the same as in Fig. 7.
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the BCP-induced electric polarization when either Rashba
or Dresselhaus spin-orbit interaction is present. The electric
polarization decreases with an increase in the Fermi energy,
while it increases with the Dresselhaus coupling for a given
Rashba coupling. We find that the polarization is sensitive
to the orientation of the electric field when both Rashba and
Dresselhaus spin-orbit couplings are present. For the Fermi
energy above the BTP, the polarization of 2DEG with Rashba-
Dresselhaus spin-orbit interaction is of an order of magnitude
smaller than that for the 2DHG.

The Berry curvature of such time-reversal symmetric sys-
tem is zero. Consequently, both the linear Hall effect and
the second-order nonlinear Hall effect (induced by the Berry
curvature dipole) are absent. As a result, the third-order re-
sponse becomes the dominant Hall effect in these systems.
Using second-order semiclassical formalism, we have com-
puted the third-order conductivity induced by the BCP, which
is linearly proportional to τ . Furthermore, we extended our
analysis to the third-order conductivity stemming from band
velocity, which is cubic in τ , and also studied their cumulative
effects.

Next, we examine the effect of an in-plane electric field
and calculate the transverse third-order conductivities, namely
χ I

⊥, χ II
⊥, and χ⊥ (χ I,h

⊥ , χ II,h
⊥ , and χh

⊥) for electron (hole) sys-
tem, while varying the coupling strengths. We find that these
conductivities vanish along or perpendicular to the symmetry
lines kx ± ky = 0 of the system, specifically at odd multiples
of π/4. These responses exhibit π periodicity with respect
to the direction of the electric field. In the absence of either

coupling, energy dispersions become isotropic with concen-
tric circular Fermi contours. As a result, all contributions
involving τ and τ 3 to transverse third-order conductivities
vanish across all angles. Thus it is the interplay between
RSOI and DSOI that engenders to finite transverse third-order
conductivity.

For the case of an electron gas with k-linear RSOI and
DSOI, we find that χ I

⊥ exhibits a smaller magnitude compared
to χ II

⊥ for β < α. However, the magnitude of χ I
⊥ significantly

increases as β approaches proximity to α in comparison to χ II
⊥.

This is attributed to the nature of BCP and the band velocity.
The magnitudes of conductivities are larger for εF < 0 than
for εF > 0. The third-order conductivity (χ I

⊥ and χ II
⊥) remains

invariant under the interchange of α and β. This is due to the
invariance of both the unperturbed velocity and the velocity
resulting from the second-order energy correction when α and
β are exchanged.

Comparing a 2DHG with k-cubic RSOI and DSOI to the
k-linear electron model, we observe that the magnitude of
χ I,h

⊥ is larger compared to χ II,h
⊥ . Therefore, χh

⊥ shows a curve
similar to that of χ I,h

⊥ . When αh and βh are exchanged, χ I,h
⊥

undergoes a change due to the sensitivity of the BCP tensor to
such transformations. In contrast, χ II,h

⊥ remains invariant since
the unperturbed velocity remains constant.
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