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Spatial dispersion (SD) is a nonlocal effect that can introduce optical anisotropy in an otherwise isotropic
material, causing the electromagnetic response at a given point to depend not only on the local field, but also on
the field in the vicinity of that point. In this study, we investigate the impact of SD on a cubic semiconductorlike
silicon, which is typically considered a negligible effect due to the small size of the lattice parameters with respect
to the wavelength of light. However, our findings demonstrate that SD can be significant above the band gap,
where transmission measurements are not feasible and reflection measurements are required for characterization.
We utilize Mueller matrix ellipsometry spectroscopy to quantify the anisotropy caused by SD in (110) and (100)
silicon wafers, and determine the complete permittivity tensor of silicon when spatial dispersion is included. In
the most general case, this tensor is found to depend on two complex parameters.
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I. INTRODUCTION

Spatial dispersion (SD) refers to the dependence of the
dielectric properties on the wave vector at a fixed frequency.
In essence, this means that the electromagnetic response of a
medium depends not only on the wavelength, but also on the
direction in which the wave propagates in the medium, even
in materials that by crystal symmetry are expected to have an
isotropic optical response [1].

The dielectric permittivity tensor εi j (ω, k) depending on
both temporal frequency ω and wave vector k can be ex-
panded in powers of k. This physically means that the
displacement current at a certain point depends not only on
the electric field at that same point, but also on the electric
field in an infinitesimal area surrounding the considered point.
In most cases, only the first three terms of the expansion are
written,

εi j (k) = εi j + iγi jl kl + αi jlmklkm, (1)

where repeating subscripts denote summation. The tempo-
ral frequency dependence has been omitted to simplify the
notation, but it affects all terms of the expansion. The first term
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in Eq. (1) corresponds to the permittivity tensor in the absence
of SD, which reduces to a scalar for cubic crystals, indicating
isotropic optical properties that are independent of the direc-
tion of propagation and polarization of light. The tensors γi jl

and αi jlm are third- and fourth-rank tensors, respectively, and
kl and km are the components of the wave vector k. The second
term in Eq. (1) is linear with the wave vector and vanishes in
media with inversion symmetry. This phenomenon, known as
optical activity or gyrotropy, results in circular anisotropy in
the medium, where absorption and refraction differ for left
and right circular polarizations [2]. The third term, quadratic
with the wave vector, is the one commonly associated with
spatial dispersion and can be present in all crystalline classes,
including centrosymmetric ones [3]. Optical activity scales as
a/λ, where a is the lattice constant or molecular dimensions,
and λ is the wavelength. Natural materials typically exhibit
small optical activity values as a/λ ∼ 10−3. Therefore, SD
scales as a/λ ∼ 10−6 and is usually considered to be negli-
gible for natural materials [1]. However, as demonstrated in
this work, anisotropies at Van Hove singularities in the joint
density of states can greatly enhance the SD effect, making it
much larger than these estimates.

Optical activity research has attracted significant attention
across several disciplines, including chemistry, material sci-
ence, physics, and molecular biology. In recent years, research
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on artificial optically active materials has been particularly
remarkable [4]. However, spatial dispersion has received com-
paratively less attention. Most of the works in this area focus
on studying the SD effects in metamaterials [5]. Possibly the
most prominent effect of SD in a natural material became
important in optical lithography in the far-UV [6]. Below a
wavelength of 193 nm, CaF2 is almost the sole applicable
material for refractive components [7]. Being a cubic crystal,
it was first considered isotropic. However, when the industrial
production of CaF2 crystals began, the first measurements of
the birefringence at the target wavelength of 157 nm proved
that CaF2 also shows birefringence stemming from spatial
dispersion [8,9], which was far above the specifications for
stress-induced birefringence. The SD for several cubic semi-
conductors such as GaAs [10], Ge [11], and Si [12] below the
band gap was reported decades ago from transmission mea-
surements that quantified the birefringence in single crystals.

Silicon, being the most widely used semiconductor ma-
terial, plays a crucial role in numerous applications such
as photovoltaic cells and microelectronics due to its unique
optical properties. Furthermore, silicon is often used as a
reference material in ellipsometry experiments due to the wide
availability of high-quality wafers of crystalline silicon and
the existence of extensive studies on its optical constants by
various authors [13–16]. Traditionally, silicon has been con-
sidered a fully isotropic material with its permittivity reported
as a scalar across the ultraviolet to infrared ranges, owing to its
cubic crystal structure. However, silicon has a diamond cubic
crystal lattice structure, which is a face-centered-cubic (fcc)
arrangement of silicon atoms. The SD-induced anisotropy in
silicon is primarily due to the orientation-dependent bond
lengths and bond angles between neighboring silicon atoms
in the crystal lattice, with crystallographic directions [100],
[110], and [111] exhibiting different properties. For exam-
ple, in terms of mechanical properties, the elastic constants,
such as Young’s modulus and Poisson’s ratio, can vary with
crystallographic direction [17]. Similarly, in terms of optical
properties, the anisotropy of the crystal lattice can also result
in different electromagnetic responses to the incident light.
We believe this is most likely the reason why, in some works
[18,19], slightly different optical constants have been reported
from spectroscopic ellipsometry measurements depending on
the crystal plane that was studied. The anisotropy of silicon
was also detected from spectroscopic ellipsometry measure-
ments by the group of Collins [20,21], although the effect was
not attributed to SD.

This work employs Mueller matrix (MM) spectroscopic
ellipsometry, a technique that measures the linear optical

response of samples or interfaces encoded in MM by ana-
lyzing the evolution of light reflected at the specular angle.
MM ellipsometry is particularly suitable for characterizing
anisotropic media, as standard ellipsometry may not capture
cross-polarization phenomena that can arise in materials with
an anisotropic optical response [22].

The organization of this work is as follows. First, we dis-
cuss the formal form for the permittivity tensor of silicon
when SD is taken into account to analyze ellipsometry mea-
surements with the Berreman 4 × 4 formalism. Illustrative
simulations are provided in Sec. II for two common orien-
tations of single-crystal silicon wafers: (110) plane and (100)
plane. MM ellipsometry experiments of light reflected on Si
wafers at different angles of incidence (AOIs) and azimuths
are described in Sec. III. Finally, Sec. IV provides the optical
constants, including the effects of SD, that we have measured
for silicon.

II. DIELECTRIC TENSOR OF SPATIALLY
DISPERSIVE SILICON

Silicon belongs to the cubic class m3m or Oh, a cen-
trosymmetric structure, and thus the second term in Eq. (1)
vanishes. The SD tensor in Eq. (1) takes the same form as
the elasto-optic tensor and thanks to invariance with respect
to permutation of indices within the first (i j) and second (ln)
pairs are usually presented as a 6 × 6 matrix using Voigt nota-
tion. We denote this matrix as α(i j)(ln), where indices grouped
in parentheses, e.g., (i j), would represent one single index in
Voigt notation under the equivalences (11) → 1, (22) → 2,
(33) → 3, (23) = (32) → 4, (31) = (13) → 5, and (21) =
(12) → 6. For the cubic class m3m, it takes the following
matrix form:

α(i j)(ln) =

⎛
⎜⎜⎜⎜⎜⎜⎝

α11 α12 α12 0 0 0
α12 α11 α12 0 0 0
α12 α12 α11 0 0 0
0 0 0 α44 0 0
0 0 0 0 α44 0
0 0 0 0 0 α44

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Equation (1) can be directly used in infinite media, but not
in calculations for layered media, which are the required ones
for ellipsometry measurements [3]. Following the method
in [3], it is possible to separate the electric and magnetic
contributions in the expansion of the SD dispersion term in
Eq. (1). The effective electric SD tensor αe, calculated by
subtracting the effective magnetic SD contribution to the
tensor, is given by

αe(ik)(ln) =

⎛
⎜⎜⎜⎜⎜⎜⎝

α11 α12 + 2α44 α12 + 2α44 0 0 0
α12 + 2α44 α11 α12 + 2α44 0 0 0
α12 + 2α44 α12 + 2α44 α11 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

whereas the effect of magnetic contribution is a simple offset of the inverse permeability, μ−1 = 1 + 2α44. Once the elec-
tric and magnetic contributions are decoupled and the optical activity term is omitted, the permittivity in Eq. (1) can be
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redefined as

ε′
(i j)(m) = ε0

(i j) + εSD
(i j) = ε0

(i j) + αe(i j)(ln)mlmn. (4)

The term ε0
(i j) is the permittivity tensor in absence of SD, while the term εSD

(i j) accounts for the contribution of electric SD. m is

the refraction vector: m = (m1 m2 m3)T = n(c1 c2 c3)T , where n is the complex refractive index and ci are the direction
cosines of the wave vector. m, the modulus of the refraction vector, coincides with the refractive index: m2 = m2

1 + m2
2 + m2

3 = n2.
If the components of εSD

(i j) are cast in a vector, they can be calculated from the following matrix-vector multiplication:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εSD
11

εSD
22

εSD
33

εSD
23

εSD
13

εSD
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 + 2α44 α12 + 2α44 0 0 0

α12 + 2α44 α11 α12 + 2α44 0 0 0

α12 + 2α44 α12 + 2α44 α11 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2
1

m2
2

m2
3

2m2m3

2m1m3

2m1m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Therefore, the following nonvanishing terms are obtained:

εSD
11 = α11m2

1 + (α12 + 2α44)
(
m2

2 + m2
3

) = (α12 + 2α44)n2 + (α11 − α12 − 2α44)m2
1, (6a)

εSD
22 = α11m2

2 + (α12 + 2α44)
(
m2

1 + m2
3

) = (α12 + 2α44)n2 + (α11 − α12 − 2α44)m2
2, (6b)

εSD
33 = α11m2

3 + (α12 + 2α44)
(
m2

1 + m2
2

) = (α12 + 2α44)n2 + (α11 − α12 − 2α44)m2
3. (6c)

In the above results, it is evident that SD also generates
an “isotropic” contribution to all εSD

(ii) components that
is wave-vector independent [it is produced by the term
(α12 + 2α44)n2 in Eqs. (6)]. As this term is, in practice,
fully indistinguishable from ε0

(i j) both from transmission or
reflection measurements, we may reorganize Eq. (4) as

ε(m) = εI +
⎛
⎝

p1m2
1 0 0

0 p1m2
2 0

0 0 p1m2
3

⎞
⎠

� εI + εp1

⎛
⎝

c2
1 0 0

0 c2
2 0

0 0 c2
3

⎞
⎠, (7)

where I is the 3 × 3 identity matrix, ε ≡ ε0 + (α12 +
2α44)n2 � ε0(1 + α12 + 2α44), and p1 ≡ α11 − α12 − 2α44.
However, due to μ−1 = 1 + 2α44, μ−1 and ε cannot be disen-
tangled from fits of our experimental data, being both offset
by the same quantity 2α44 and independent of the wave-vector
direction. In all fits, we therefore set μ−1 = 1, in agreement
with Si being nonmagnetic, even though exhibiting SD. With
this parametrization, ε and p1 are the two experimentally
measurable parameters that define the permittivity tensor of
silicon. Specifically, ε represents the part of the permittivity
that is not affected by the direction of the wave vector or,
in other words, is unaffected by the crystal cut for a given
wave vector. On the other hand, p1 represents the part of
the permittivity that depends on the direction of the wave
vector. It could be stated that ε is the dielectric tensor usually
reported in the literature, but this is only “approximately”
true, as the lack of consideration of SD in previous studies
does not necessarily imply that the reported values of the
dielectric constant were, in all cases, unaffected by SD.

Next, we describe how the tensor ε(m) can be incorporated
into Berreman’s matrix formalism [23] to model the experi-
mental optical response in the presence of SD. With the usual
description of Berreman’s formalism where the direction of
the stratification is along the positive z axis, the direction
cosines of the wave vector inside the material are⎡

⎣
c1

c2

c3

⎤
⎦ = S

⎡
⎣

0
sin θ

cos θ

⎤
⎦ = S

1√
ε

⎡
⎣

0
sin θ0√

ε − sin2 θ0

⎤
⎦, (8)

where θ is the complex refraction angle and θ0 is the real angle
of incidence (AOI) of the ellipsometry experiment. As SD is a
small effect, Snell’s law can be applied without considering
the impact that SD may have on the direction of the wave
vector. S is a 3 × 3 matrix defining a three-dimensional (3D)
rotation. It can be written as

S = T(abc)

⎡
⎣

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦, (9)

where φ is the experimental azimuth angle (rotation about the
sample surface normal) in the laboratory coordinate frame and
T(abc) is given by the wafer cut. For the (100) and (110) planes,

T(100) = I, T(110) =

⎡
⎢⎢⎣

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

⎤
⎥⎥⎦, (10)

where T(110) is calculated from a 3D rotation with Euler angles
180◦, 90◦, and 45◦ when given in the ZXZ order. This means
that for the (110) wafer, the [001] crystal direction is parallel
to the p polarization when φ = 0◦. As a final step, to put
the tensor in the laboratory reference frame, a transformation
given by ST εS must be applied to it.
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TABLE I. Effective dielectric tensor in a cubic m3m crystal assuming ε = 14.5 and p1 = 0.1 (these values have been chosen for illustration
purposes only as realistic p1 values in silicon are complex and smaller) once applied to the crystallographic planes (110) and (100) for various
θ0 and φ.

(110) wafer (100) wafer

θ0 φ = 0◦ φ = 45◦ φ = 0◦ φ = 45◦

0◦

⎡
⎣

15.23 0 0
0 14.50 0
0 0 15.23

⎤
⎦

⎡
⎣

14.86 0.36 0
0.36 14.86 0

0 0 15.23

⎤
⎦

⎡
⎣

14.5 0 0
0 14.50 0
0 0 15.95

⎤
⎦

⎡
⎣

14.50 0 0
0 14.50 0
0 0 15.95

⎤
⎦

70◦

⎡
⎣

15.18 0 0
0 14.58 0
0 0 15.18

⎤
⎦

⎡
⎣

14.87 0.33 0.17
0.33 14.87 0.17
0.17 0.17 15.20

⎤
⎦

⎡
⎣

14.50 0 0
0 14.59 0
0 0 15.86

⎤
⎦

⎡
⎣

14.54 0 0
0 14.54 0
0 0 15.86

⎤
⎦

After these calculations, the following symmetric tensor is obtained for the (100) plane:

ε(100) = εI + εp1

⎡
⎢⎢⎣

sin2(φ)
(
c2

2 − c2
1

) + c2
1

sin(2φ)(c2
1−c2

2 )
2 0

sin(2φ)(c2
1−c2

2 )
2 sin2(φ)

(
c2

1 − c2
2

) + c2
2 0

0 0 c2
3

⎤
⎥⎥⎦, (11)

where c1 = sin θ0 sin φ/
√

ε, c2 = sin θ0 cos φ/
√

ε and c3 =
√

ε − sin2 θ0/
√

ε; while for the (110) plane,

ε(110) = εI + εp1

2

⎡
⎢⎢⎢⎢⎣

cos2(φ)
(
c2

1 + c2
2 − 2c2

3

) + 2c2
3

sin(2φ)
(

c2
1+c2

2−2c2
3

)
2 − cos(φ)

(
c2

1 − c2
2

)

sin(2φ)(c2
1+c2

2−2c2
3 )

2 sin2(φ)
(
c2

1 + c2
2 − 2c2

3

) + 2c2
3 − sin(φ)

(
c2

1 − c2
2

)

− cos(φ)
(
c2

1 − c2
2

) − sin(φ)
(
c2

1 − c2
2

)
c2

1 + c2
2

⎤
⎥⎥⎥⎥⎦

, (12)

where c1 = (
√

ε − sin2 θ0 − sin θ0 sin φ)/
√

2ε, c2 =
(
√

ε − sin2 θ0 + sin θ0 sin φ)/
√

2ε, and c3 = cos φ sin θ0/
√

ε.
Table I presents a comparison of the effective dielectric

tensor for crystallographic planes (110) and (100) of silicon,
assuming real-only optical constants ε = 14.5 and p1 = 0.1.
At normal incidence (θ0 = 0◦), the (100) plane shows no
anisotropy as ε11 = ε22, while the (110) plane exhibits clear
in-plane anisotropy, with the tensor changing with azimuthal
rotation φ. At oblique incidence (θ0 = 70◦), the in-plane
anisotropy of the (100) plane is negligible, but the out-
of-plane response is anisotropic with ε11 � ε22 	= ε33. This
response can be linked to that of a uniaxial crystal with the
optic axis perpendicular to the surface. However, the (110)
plane still retains strong in-plane anisotropy even at oblique
incidence.

In an ellipsometry experiment, the presence of SD in sil-
icon will be detectable only if the measured data cannot
be explained by a fully isotropic model within the experi-
mental error. Therefore, prior to discussing the experimental
measurements, it is important to assess how the redefined
dielectric tensor for the (100) plane, given by Eq. (11), and the
(110) plane, given by Eq. (12), may impact MM ellipsometry
measurements. Using the Berreman formalism, we simulate
the Mueller matrices corresponding to a hypothetical medium
with SD (for this simulation, we have assumed ε = 14.5 + 1i
and p1 = 0.1 + 0.1i at the wavelength of λ = 660 nm) studied
as a function of the azimuth φ and the AOI θ0 [MSim

SD (θ0, φ)].
Next, we check how well those simulations can be fit by a sim-
pler model in which SD is neglected (i.e., p1 = 0) and only ε

is fitted, generating Mfit
NoSD(θ0). We quantify the difference as

D = ‖MSim
SD (θ0, φ) − MFit

noSD(θ0)‖F , (13)

where ‖ · ‖F denotes the Frobenious norm. MFit
noSD(θ0) is

always a block-diagonal Mueller matrix (or 	 − 
 matrix),
but MSim

SD (θ0, φ) not necessarily. In general, larger values of
D are better for the determination of SD since they imply
that the experiments cannot be explained by an isotropic
permittivity tensor. Values of D smaller than the experimental
resolution indicate SD becoming undetectable.

For each plane, we calculate D for two types of simula-
tions:

(ii) Setting the azimuth at 0◦ and varying the AOI between
0◦ and 89◦.

(ii) Fixing the AOI at 70◦ and varying the azimuth from 0◦
to 180◦.

The calculated values of D are depicted in Fig. 1. For the
(110) plane, D exhibits values up to 0.03 in both variable
AOI measurements [Fig. 1(a)] and variable azimuth measure-
ments [Fig. 1(b)]. However, variable azimuth measurements
are advantageous for determining SD compared to variable
AOI measurements, as the latter can result in an incidental fit
at a specific AOI, where D does not exceed 0.01 within the
experimentally available angles of incidence (50◦ and 80◦).
Figure 1(a) indicates that normal incidence is a favorable
configuration for detecting SD in a (110) wafer, which is
why some studies employing the reflection anisotropy spec-
troscopy (RAS) technique have reported anisotropic readings
on (110) Si wafers attributed to surface anisotropy effects
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FIG. 1. Calculated D values for different simulation conditions:
(a) (110) plane at 0◦ azimuth angle over AOIs from 0◦ to 89◦;
(b) (110) wafer at 70◦ AOI over azimuths from 0◦ to 180◦; (c) (100)
plane at 0◦ azimuth angle over AOIs from 0◦ to 89◦; (d) (100) plane
at 70◦ AOI over azimuths from 0◦ to 180◦.

rather than SD [13,19,24,25]. When SD is disregarded, the
best-fit values for Figs. 1(a) and 1(b) are εNoSD = 14.80 +
1.34i and εNoSD = 15.24 + 0.89i, respectively, which sub-
stantially differ from the ε value used in the simulation.

In the case of the (001) plane, the D values are consistently
less than 0.002, which is more than an order of magnitude
smaller than those of the (110) plane using the same optical
constants. This indicates that this wafer cut is much less fa-
vorable for the determination of SD, as its optical response is
much closer to the fully isotropic model. Another difference
is that the plot of the variation of AOI [Fig. 1(c)] shows that
the (001) wafer exhibits no anisotropy at normal incidence,
as anticipated in Table I, indicating that only at oblique inci-
dence is there some contribution from SD. As the anisotropy
in the (001) wafer is out of plane, one would expect that
measurements with varying AOI (particularly grazing angle
measurements) would be most favorable for sensing SD; how-
ever, the large value of ε causes the wave-vector direction
inside the crystal to always be close to the normal direction,
thereby reducing sensitivity to the out-of-plane component.
When SD is disregarded, the best-fit values for Figs. 1(c)
and 1(d) are, respectively, εNoSD = 14.39 + 0.91i and εNoSD =
14.42 + 0.94i, which differ only slightly from the ε value used
in the simulation.

Based on the obtained results, our approach for deter-
mining SD in silicon involved performing spectroscopic
measurements at different azimuthal angles for a (110) Si
wafer. Additionally, we conducted measurements on a (100)
wafer to investigate if SD can also be detected in this crystal
cut, despite our previous simulations showing that the SD
effect in this wafer is more than 10 times smaller. In the case of
the (100) wafer, the analysis was performed at variable AOI.

III. EXPERIMENTS

The wafers investigated in this study are double-sided
polished silicon wafers with (110) and (100) plane orien-
tations, provided by Photon Export and Si-Mat companies,

respectively. For the ellipsometry measurements, we utilized a
home-built four-photoelastic modulator (4PEM) Mueller ma-
trix (MM) ellipsometer with a sensitivity better than 0.0005
in all MM elements, operating in the spectral range from
200 to 800 nm [26,27]. SD measurements are challenging
due to their small effect, but the sensitivity of our system
was generally sufficient. Perhaps the most challenging task
was maintaining proper sample alignment during azimuthal
rotation or changing the AOI, as even minor misalignments
could affect MM values and potentially mask the effects of
spatial dispersion.

The (110) silicon wafer was measured at an AOI of 70◦
with azimuthal angles ranging from 0◦ to 180◦, with 15◦
intervals. Figure 2 displays the measurements at 0◦, 45◦, 90◦,
and 135◦ azimuthal angles. It is evident that SD affects not
only the block-diagonal elements of the Mueller matrix, but
also causes significant deviations from zero in the off-block
diagonal elements at φ = 45◦ and 135◦ in the UV region,
indicating cross polarization. To enhance visibility, the scale
of the off-block-diagonal elements is magnified by a factor
of 100.

In the case of (100) silicon, we initially attempted to in-
vestigate SD using an azimuthal rotation of the wafer, i.e.,
the same approach used for (110) silicon in Fig. 2. In the
(100) plane, the MM is strictly block diagonal with no cross-
polarizing elements at every 45◦ azimuthal angle (φ = 0◦,
45◦, 90◦, 135◦, etc.), but there may be slight cross-polarizing
elements between these values (e.g., for φ = 22.5◦, 67.5◦,
etc.). However, setting azimuthal rotations to such angles did
not yield any measurable deviation in the off-block-diagonal
elements within the noise of our ellipsometer and its align-
ment capabilities. This is not unexpected, considering the very
small in-plane anisotropy of this crystallographic plane (as
shown in Table I) compared to the (110) plane. Therefore,
we conducted measurements on the (100) wafer at fixed az-
imuthal angles while varying the AOI (θ0). In Fig. 3, we
present the MM results obtained when the (100) wafer was
measured at AOIs of 60◦, 70◦, and 85◦. In this case, the
off-block-diagonal elements are also magnified by a factor of
100 for improved visualization.

IV. ANALYSIS AND DISCUSSION

For the analysis of the experiments, we employed the
Berreman formalism considering the dielectric tensors pro-
vided in Eq. (11) and Eq. (12) to model the optical response
of the wafers. The unknowns were ε and p1, and all the fits
described in this section were performed wavelength by wave-
length, without assuming any predefined dispersion function.
We initiated the fitting process in the near-infrared (NIR)
(800 nm) and progressively moved towards shorter wave-
lengths so that the initial guess of the fitting parameters at each
new wavelength was based on the fit result of the previous
wavelength. The azimuthal angle φ (with an error of ±0.5◦)
and the AOI θ0 (with an error of ±0.1◦) were fixed at their
nominal experimental values and were not included in the
fitting process. The native SiO2 overlayer, typically present
on Si wafers, was taken into account by performing a pre-
liminary fit limited to wavelengths above 500 nm, where SD
is expected to have a negligible effect in reflection, using the
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FIG. 2. MM of (110) silicon measured at 70◦ AOI, at the azimuth angles over wavelengths from 200 to 800 nm. The off-diagonal elements
are magnified by 100.

FIG. 3. Spectroscopic MM of (100) silicon (φ = 0), over AOIs from 60◦ to 85◦. The off-block-diagonal elements are magnified by 100 to
improve the visualization.
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FIG. 4. Jones matrix elements corresponding to the MM given in Fig. 2. Experimental data (dashed line) and best fits (solid line) of (110)
plane at 70◦ AOI over the azimuth angle from 0◦ to 180◦. The scale of ρps and ρsp is magnified by 200.

optical constants of silicon determined by Jellison [18]. The
thickness of the overlayer was determined to be 2.71 ± 0.05
nm for the (110) wafer and 2.32 ± 0.05 nm for the (100)
wafer. It should be noted that the variation of the thickness of
the overlayer and AOIs has a subtle but non-negligible impact
on the magnitude of p1, but without influencing the position
of the peaks. As measurements were always performed on
wafers with the native oxide overlayer, the likely small role of
surface-only contributions from chemisorbed and physisorbed
species [24] was not studied in this work.

A. (110) wafer

ε(110) from Eq. (12) was fitted from the experimental data
at variable azimuth. The formalism used generates a nondepo-
larizing Mueller matrix which can be equivalently expressed
as a Jones matrix. Therefore, for ease of visualization, the
experimental MMs in Fig. 2, which were completely non-
depolarizing, have been transformed into normalized Jones
matrices and compared with the fitting results in Fig. 4. The
weak cross-polarization terms ρps and ρsp that result from SD
were accurately captured.

From this fit, the real and imaginary parts of ε were ex-
tracted and are displayed in Fig. 5(a). For comparison, we
also executed an additional fit with only one fitting parame-
ter, εNoSD, fully disregarding SD. Although, in the full scale
of Fig. 5(a), ε and εNoSD seem to overlap, upon calculating
their difference, there is a clear difference between them that
is highly wavelength dependent, as shown in Fig. 5(b). In
Fig. 5(c), the real and imaginary parts of p1 are presented,
which take smaller values (below 0.1) compared to the scale
of ε. Above 500 nm, the value of p1 is vanishingly small. The
reduced χ2 error function of the wavelength-by-wavelength
fits is shown in Fig. 5(d). Clearly, without considering the
SD dispersion term, it is not possible to get a good fit of the
measurements in the UV region. However, for wavelengths
above ∼500 nm, it is not necessary to include SD to get a
good fit. This is indicative that above this wavelength, SD

effects essentially become smaller than the overall sensitivity
of our ellipsometer, and therefore they have no influence on
our experimental measurements.

In our wavelength-by-wavelength fittings, we leverage
experimental data collected at many azimuth angles φ to en-
hance the resilience and accuracy of our fits. However, it is
worth noticing that a single spectroscopic MM measurement
taken at an appropriate azimuth angle where the MM is not
block diagonal (e.g., φ = 45◦) suffices for the simultaneous
determination of the real and imaginary components of both ε

and p1.
The largest values of SD that we have obtained are in the

critical points near 3.4 and 4.2 eV, where p1 reaches values
around 0.06. This is orders of magnitude larger than the values
previously reported from transmission measurements below

the band gap, where the birefringence [
n =
√

ε(1 + p1

2 ) −√
ε] of silicon has been reported to be of the order of 10−6

[12]. These very small values can still be measured from
transmission measurements because 
n is amplified by the
large factor resulting from 2π l/λ, where l is the path length
or thickness of the crystal and λ is the wavelength.

B. (100) wafer

The MM measured for the (100) wafer (Fig. 3) exhibits
a block-diagonal form, indicating that the corresponding off-
diagonal elements of the Jones matrix are zero. Unlike the
(110) wafer, it is not feasible to perform a simultaneous fitting
of ε and p1 for this wafer orientation: during the least-squares
fitting process, a strong coupling between ε and p1 consis-
tently emerges. We attempted to tackle this issue by splitting
the fitting into two steps. First, we fitted ε while setting p1

to zero. Subsequently, we held the ε values fixed and fitted
only p1. However, introducing p1 into the second fit resulted
in a minimal improvement in the reduced χ2. Furthermore,
the standard deviation errors associated with parameter p1

were much larger than those determined for the (110 plane), as
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FIG. 5. Fit results of silicon (110). (a) Real and imaginary parts of the permittivity ε values, i.e., one when considering spatial dispersion
(dots) and the other when disregarding spatial dispersion (line) εNoSD. (b) Difference between ε and εNoSD. (c) Real part and imaginary parts of
p1. (d) χ 2 of the fits with or without considering SD.

illustrated in Fig. 6. Consequently, we can conclude that the
effects of SD on our experimental results for this crystallo-
graphic plane are virtually negligible within our experimental
noise level and cannot be accurately quantified. This outcome
is not surprising, as it aligns with our earlier simulations
presented in Fig. 1, where the manifestation of SD in the (100)

FIG. 6. Standard deviations of p1 extracted from (110) and (100)
wafers (red and blue lines, respectively). The error in the determina-
tion from (100) is much larger than that from (110).

plane was more than an order of magnitude smaller compared
to the (110) plane.

C. Comparison with literature values

In previous studies, the permittivity tensor of silicon has
been reported from various crystallographic planes, revealing
subtle but systematic deviations, particularly in the case of the
(110) plane. However, in our analysis that takes into account
SD, we found that the optical constants (n and k) obtained
from the (110) and (100) wafers show good agreement within
our error levels. In Tables II and III, we respectively present
a comparison between the n and k values obtained in this
work and previous results from Jellison’s work [18,28] as a
reference. Notably, at UV wavelengths close to the critical
points (e.g., 292 and 362 nm), the inclusion of SD effects
in our study has resulted in an improved agreement between
the n and k values obtained from the (110) and (100) wafers
compared to previous works.

Another potential comparison lies in the relative re-
flectance difference of a (110) silicon wafer at near-normal
incidence, investigated by Aspnes using the RAS technique
[24]. Aspnes quantified the reflectance difference (RD) in
a (110) Si wafer at near-normal incidence for light polar-
ized along the directions [110] and [001] of the crystal. The
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TABLE II. Comparison between selected values of the real (n)
part of the refractive index of (100) and (110) silicon from this work
and those reported by Jellison in [28].

Wavelength (nm) plane n (Ref. [28]) n (this work)

248 100 1.669 ± 0.008 1.706 ± 0.005
248 110 1.698 ± 0.014 1.718 ± 0.007
292 100 4.745 ± 0.022 4.641 ± 0.015
292 110 4.737 ± 0.027 4.642 ± 0.023
362 100 6.279 ± 0.021 6.212 ± 0.011
362 110 6.259 ± 0.037 6.209 ± 0.010
400 100 5.595 ± 0.009 5.585 ± 0.006
400 110 5.572 ± 0.032 5.591 ± 0.014
450 100 4.675 ± 0.006 4.676 ± 0.009
450 110 4.669 ± 0.024 4.662 ± 0.008
515 100 4.218 ± 0.005 4.204 ± 0.005
515 110 4.211 ± 0.020 4.219 ± 0.005
635 100 3.864 ± 0.004 3.853 ± 0.003
635 110 3.866 ± 0.017 3.861 ± 0.005

experimental results he obtained are depicted in Fig. 7,
alongside our calculated values derived from our previously
determined ε and p1 complex values and also incorporating
the native SiO2 overlayer in the calculus. These RD values
at normal incidence can be readily calculated from Eq. (12)
when both θ and φ are set to zero: in this scenario, ε(110)

is a diagonal tensor, and its first diagonal element can be
utilized to compute the reflectivity for polarization along the
[001] direction, while the second diagonal element can pro-
vide the reflectivity for polarization along the [110] direction.
The comparison in Fig. 7 demonstrates a strong correspon-
dence between the experimental data obtained via the RAS
technique and our results, indicating that spatial dispersion
consistently accounts for the observed reflectance anisotropy
values. Notably, spectroscopic ellipsometry offers an advan-
tage over the RAS technique as it enables the simultaneous
determination of the real and imaginary parts of both ε and p1.

TABLE III. Comparison between selected values of the imagi-
nary (k) part of the refractive index of (100) and (110) silicon from
this work and those reported by Jellison in [28].

Wavelength (nm) Plane k (Ref. [28]) k (this work)

248 100 3.593 ± 0.009 3.551 ± 0.005
248 110 3.630 ± 0.011 3.556 ± 0.007
292 100 4.863 ± 0.022 4.930 ± 0.015
292 110 4.938 ± 0.037 4.908 ± 0.023
362 100 2.860 ± 0.020 2.840 ± 0.011
362 110 2.798 ± 0.029 2.861 ± 0.010
400 100 0.304 ± 0.006 0.291 ± 0.004
400 110 0.297 ± 0.004 0.308 ± 0.014
450 100 0.093 ± 0.004 0.092 ± 0.009
450 110 0.092 ± 0.002 0.083 ± 0.008
515 100 0.039 ± 0.003 0.034 ± 0.005
515 110 0.039 ± 0.002 0.037 ± 0.005
635 100 0.015 ± 0.003 0.013 ± 0.003
635 110 0.015 ± 0.001 0.014 ± 0.005

FIG. 7. Relative reflectance difference spectra for normal in-
cidence light polarized along [110] (reflectance R110) and [001]
(reflectance R001) in a naturally oxidized (110) Si surface. R is the
average of these two reflectances. Black circles are experimental val-
ues from Ref. [24] and the red line is calculated from our measured
values of ε and p1.

Our results suggest that the anisotropy of the silicon’s
permittivity, as described by the parameter p1, can influence
various aspects of its electronic properties. It most likely
has a translation into properties of the band structure, joint
density of states, distribution of electronic bond charges, and
charge transport properties along different crystallographic
directions. Among these directions, the [110] direction (or
other equivalent directions along the diagonals of the faces
of the cubic fcc lattice) stands out as the most anisotropic in
ellipsometry or polarimetry measurements. X-ray studies have
also revealed a slight skewing or asymmetry of the electron
cloud towards the [110] direction [29,30]. This deviation in
the sp3 electronic states of the silicon atom, which we also
attribute to SD, correlates with the relatively significant values
of p1 observed at critical points. These findings suggest that
the anisotropy of the crystal lattice can have a non-negligible
impact on the electronic properties of silicon. However, the
microscopic models that underlie this phenomenon and their
implications on the band structure are beyond the scope of this
study.

V. SUMMARY

In this work, we present a complete experimental determi-
nation of the spectroscopic permittivity tensor of crystalline
silicon when taking into account the SD effect. The tensor is
described by two complex terms, ε and p1, where p1 is the
wave-vector-dependent term responsible for SD. We observe
that in the UV region, the anisotropy of silicon is clearly
visible from spectroscopic ellipsometry measurements on a
(110) silicon wafer, indicating an effect up to five orders of
magnitude larger than in the transparent NIR region, where
spatial dispersion can only be observed from transmission
measurements. Measurements of the (100) crystallographic
plane showed a vanishing anisotropy effect, in agreement with
the tensor form that we present. Our comparative analysis
between (100) and (110) wafers indicates that once SD is
taken into account, the values of ε obtained from the (100)
and (110) planes are in good agreement. The measurement of
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p1 from spectroscopic ellipsometry measurements was only
possible for (110) wafers.
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