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Accessing the physics of strongly coupled metals in a controlled way is a challenging problem in theoretical
condensed matter physics. In this paper, we revisit the possibility of understanding strongly coupled metals
through a holographic duality with a weakly coupled gravitational theory in one higher dimension (i.e., a suitable
generalization of the “AdS/CFT duality”). Previous attempts at devising holographic models of strongly coupled
metals have suffered from drawbacks; for example, many such models do not even seem to be able to describe
a Fermi surface that satisfies Luttinger’s theorem, which is ought to be a core requirement in any physically
reasonable model of a metal. Here, we propose a radically different approach to constructing holographic models
of strongly coupled metals. The idea is that for applications, it should be sufficient to construct a holographic
dual of the effective field theory that controls the infrared physics of the metal. We invoke recent paper that has
identified a precise criterion for such an effective field theory to be “emergeable” from a continuum ultraviolet
(UV) theory at nonzero charge density (or its equivalent in lattice models, namely an incommensurate charge
filling). We show that imposing this criterion leads to a holographic model of a strongly coupled metal with
physically reasonable properties, including a Fermi surface satisfying Luttinger’s theorem. We discuss a possible
physical interpretation of our results.
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I. INTRODUCTION

Understanding strongly coupled quantum many-body
phases of matter is a crucial problem in condensed matter
physics. One important class of such phases of matter are the
so-called “non-Fermi liquids”, which are metals that are not
described by the conventional weakly coupled Fermi liquid
theory. Non-Fermi liquid physics is believed, for example, to
be behind the exotic “strange-metal” regime seen in high-Tc

cuprates [1,2] as well as other classes of materials [3–5].
The strongly coupled nature of non-Fermi liquids has made

it challenging to find models in which any physics can be ob-
tained in a controlled way. One seemingly appealing strategy
would be to invoke the idea of holography, or “AdS/CFT”
[6], in which certain strongly coupled quantum field theories
(QFTs) are held to be dual to a weakly coupled quantum
gravity theory in one higher space-time dimension. In an
appropriate limit of the QFT, the dual gravitational theory
can be treated classically, and the physics of the strongly
coupled QFT can be extracted simply by solving the classical
equations of motion in the dual theory. Highly nontrivial quan-
tum many-body effects in the QFT, such as thermalization
and dissipation, can be “geometrized”, originating in the dual
theory from the presence of a black hole.

Although such an approach has led to powerful insights in
other areas [7–9], the situation for non-Fermi liquid metals is
not very satisfactory, despite a plethora of studies. The usual
approach is that one starts from some gravitational theory that
is supposed to be dual to a strongly coupled conformal field
theory (CFT) (or a more general strongly coupled gapless
theory without Lorentz or conformal invariance), and then
imagines perturbing the field theory by switching on a nonzero
charge density, leading to an RG flow to some new infrared

(IR) fixed point, which presumably describes some kind of
strongly coupled metal. In the dual theory this corresponds to
introducing an electric field, which backreacts on the metric,
inducing a new geometry.

In the simplest model [10–14], the bulk gravitational ge-
ometry is the so-called AdS-Reissner-Nordström metric, and
the IR regime contains a charged black hole. The problem is
that the Bekenstein-Hawking entropy of the black hole implies
that the dual QFT has a nonzero entropy density even at
zero temperature. Although this is of course similar to what
happens in the Sachdev-Ye-Kitaev (SYK) model [15,16], it
seemingly contradicts the Third Law of Thermodynamics and
seems very unlikely to occur in a realistic system without fine
tuning. By considering variants of this model with different
values of the dynamical critical exponent and hyperscaling
violation exponent [6,17–19] it is possible to eliminate the
zero-temperature entropy density, but this often comes at the
expense of introducing other pathologies such as naked singu-
larities in the gravitational theory (although these singularities
may be considered acceptable [20] in the sense that they could
be resolvable in a quantum gravity theory).

From our point of view, however, the most serious issue
with these models is that they do not seem to capture the Fermi
surface. In Fermi liquid theory, the “Fermi surface”—the
codimension-1 surface in momentum space where the low-
energy quasiparticles live—is crucial to the physics. Although
non-Fermi liquids generally do not have quasiparticles, to
the extent that we understand non-Fermi liquid physics in
nonholographic models (for example, the “Hertz-Millis” type
theories of quantum critical points [21–23]), a generalized
notion of Fermi surface still appears to be key to the physics.
Another important aspect of the Fermi surface is Luttinger’s
theorem [24,25], which relates the volume enclosed by the
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Fermi surface to the microscopic charge density; in a rough
sense, one should think of the portion of momentum space
enclosed by the Fermi surface, known as the “Fermi sea”, as
being “where the UV charge goes in the IR”. Although origi-
nally described for Fermi liquid theory, Luttinger’s theorem is
now understood to be much more general [26].

Although in some cases one finds Fermi surfaces in these
kinds of models [11–14], they are generally “small” Fermi
surfaces that do not satisfy Luttinger’s theorem on their own,
raising the question of what happened to the remainder of the
UV charge (this can be traced back to the fact that most of the
charge in the gravitational theory is hidden inside the black
hole [27]). It is possible that the Fermi surface is composed
of particles that are charged under an emergent gauge field
and therefore is difficult to detect through local operators
[19,27,28]. There are some suggestions that one does recover
a Fermi surface satisfying Luttinger’s theorem if one consid-
ers quantum corrections in the gravitational theory [29,30].
On the other hand, since the Fermi surface is presumably
central to the low-energy physics, this eliminates much of the
original appeal of the holographic approach, namely that one
can understand the physics of a strongly coupled system solely
by solving classical equations of motion.

Finally, let us mention that there is a different class of holo-
graphic models, known as “electron star” models [31–34],
in which the charge on the gravitational side is not hid-
den behind a horizon but rather exists as electronic matter.
In the simplest case where the electronic matter is treated
semiclassically via the Thomas-Fermi approximation, corre-
sponding to taking some kind of large-N limit of the dual QFT,
then in the dual QFT one obtains the somewhat undesirable
feature that there are N � 1 Fermi surfaces coexisting; nev-
ertheless, these Fermi surfaces do obey Luttinger’s theorem,
unlike the cases discussed above. By treating the electronic
matter in the bulk fully quantum mechanically, it is possible to
go beyond this. We believe that such models are likely worthy
of further study; however, in this paper we will seek to find a
simpler approach that can capture the key physics.

A. Alternative approach: holographic effective field theory

In this paper, we wish to advocate an alternative approach
to developing holographic models of non-Fermi liquids. In
condensed matter physics, one normally does not try to ex-
actly solve a microscopic lattice model at all scales. Instead,
one invokes the concept of emergence—the IR physics, i.e.,
the physics at sufficiently long wavelengths, low frequency,
and low temperature should be captured by an effective field
theory, and one seeks to understand the nature of this effective
field theory and not to worry about how exactly it emerges
from the microscopic model. In the language of RG, the
microscopic lattice model can be viewed as a UV theory,
which flows to a stable fixed point in the IR, and one seeks to
understand this IR fixed point, not the details of how exactly
the RG flow runs starting from the UV. Indeed, Fermi liquid
theory itself is best viewed from this perspective [35,36].

In holography, the additional spatial coordinate in the
higher-dimensional space-time can be interpreted with respect
to the dual QFT as an “RG parameter”. Thus, in the holo-
graphic models discussed previously, what one is effectively

attempting to do is to take a UV theory (e.g., some strongly
coupled CFT), perturb it in some way (by switching on a
nonzero charge density), and then study the entire RG flow
from the UV theory (corresponding to near-boundary region
of the bulk space-time) to the IR fixed point (corresponding to
the region of the bulk space-time far away from the boundary).
This is much more ambitious than what one typically attempts
to do in condensed matter physics. Moreover, the relevance
to condensed matter physics is in any case limited, since in
condensed matter the UV theory will always be some lattice
model, not a continuum field theory.

Therefore, what we advocate in this paper is to give up on
this goal, and instead come up with a holographic formulation
of a plausible IR effective field theory of a metal. This raises
the obvious question, however, of what criteria we should
use to judge a potential IR theory. Ultimately, of course, one
must judge it by comparisons to experiment. However, in
the meantime a useful criterion is the one which has been
dubbed “emergeability” [37]: Given a lattice model with cer-
tain properties (e.g., symmetries such as charge conservation
and lattice translation symmetry), under which circumstances
is it theoretically possible for a given effective field theory
to arise as the low-energy description of the lattice model?
Specifically, there are certain matching conditions between
the UV and IR that must be satisfied.

An important example of such matching conditions are
the so-called “filling constraints” [24–26,38–43]. If we have
a lattice system in d spatial dimensions with U(1) charge
conservation symmetry and Zd lattice translation symmetry,
then one can define a real number ν, called the filling which
describes the average charge per unit cell in the ground state.
In general there is a matching condition between the fractional
part of ν and properties of the low-energy theory. An example
of such a constraint is Luttinger’s theorem, which we already
mentioned above; in the case of lattice translation symmetry,
the precise statement is that in a spinless Fermi liquid,

VFVunit

(2π )d
= ν mod 1, (1)

where VF is the volume in momentum space enclosed by the
Fermi surface, and Vunit is the volume of a translation unit cell.

A particularly interesting case is when the filling ν can be
tuned to be an irrational number; we call such systems “com-
pressible”. Compressibility implies very strong constraint on
the low-energy physics [26,43,44]. Specifically, it was argued
in Refs. [26,43] that the only way for the IR theory to be
compatible with compressibility in spatial dimension d > 1 is
that either there must be an emergent higher-form symmetry,
or there must be an infinite-dimensional emergent symmetry
group. The former possibility is realized in superfluids where
the charge U(1) is spontaneously broken and there is an emer-
gent (d − 1)-form symmetry. The latter possibility is realized
in Fermi liquid theory, where in the IR theory the charge
at every point on the Fermi surface is separately conserved,
corresponding to an infinite-dimensional symmetry group.

An empirical observation that one can make is that all
metals, including non-Fermi liquids seem to be compressible.
Therefore, in seeking to identify a plausible IR theory for a
metal, it is reasonable to demand that it should be compatible
with compressibility. In particular, we can consider systems in

035163-2



HOLOGRAPHIC MODELS OF NON-FERMI LIQUID METALS … PHYSICAL REVIEW B 109, 035163 (2024)

which the compressibility is activated in the same way as in
Fermi liquid theory, through an infinite-dimensional symme-
try group (which for simplicity, we will assume takes the same
form as in Fermi liquid theory). Such IR theories were referred
to in Ref. [26] as “ersatz Fermi liquids”. Thus, we arrive at the
main goal of this paper: to formulate a holographic model of
an ersatz Fermi liquid.

What we will see is that such an approach indeed allows
us to obtain a holographic model that seems to have physi-
cally reasonable properties for a metal. Moreover, it explicitly
builds in a Fermi surface that satisfies Luttinger’s theorem.

B. Outline

The remainder of the paper is organized as follows. In
Sec. II, we review general properties of ersatz Fermi liquids.
In Sec. III, we define the holographic model of an ersatz Fermi
liquid we are considering. In Sec. IV, we present the results
from a solution of the model. In Sec. V we discuss a possible
interpretation of the model in terms of a characterization of the
dual QFT. In Sec. VI, we discuss the scaling of entanglement
entropy and charge fluctuations in the ground state and com-
pare with Fermi liquid theory. Finally, in Sec. VII we discuss
future directions.

II. REVIEW: ERSATZ FERMI LIQUIDS

A. Emergent symmetry, conservation laws,
and ’t Hooft anomaly

Fermi liquids, and hence, by definition, ersatz Fermi liq-
uids, have an infinite-dimensional emergent symmetry group,
which, in d = 2 spatial dimensions, we call LU(1) [26]. It
is an example of what mathematicians call a “loop group”.
Specifically, LU(1) is the group comprising all smooth func-
tions from the circle S1 into U(1). [The group law applies
pointwise, i.e., if f , g ∈ LU(1) are functions from S1 into
U(1), then ( f · g)(s) = f (s)g(s), where the right-hand side
refers to multiplication in U(1)]. Roughly, the fact that LU(1)
is an emergent symmetry reflects the fact that the charge at
every point on the Fermi surface is individually conserved—in
Fermi liquid theory this is attributed to the absence of quasi-
particle scattering (that is, the interactions that would lead to
such scattering are irrelevant in the RG sense). The circle S1

represents the Fermi surface. In this paper we will parametrize
the circle, and hence the Fermi surface, by a coordinate θ

(all of the statements we make will hold for an arbitrary
parametrization). Notice that LU(1) contains a U(1) subgroup
comprising the constant functions; we can identify this with
the microscopic U(1) charge conservation symmetry.

The charges of LU(1) correspond to irreducible representa-
tions, which, since the group is Abelian, are one-dimensional.
Such irreps can be labeled by real-valued distributions N (θ )
(that is to say, real-valued functions, except that we also allow
proper distributions such as delta functions), such that an
element f ∈ LU(1) acts as a phase factor

exp

(
i
∫

f (θ )N (θ )dθ

)
, (2)

where here we view the U(1) target of elements of LU(1) as
R/(2πZ). The fact that f (θ ) has a mod 2π ambiguity requires

us to impose the condition that
∫

N (θ )dθ is an integer to en-
sure that the phase factor, Eq. (2), is well defined. Physically,
N (θ ) can be interpreted as the charge distribution on the Fermi
surface, such that

∫
N (θ )dθ is the total U(1) charge. Going

beyond the one-dimensional irreps, we can define an operator-
valued distribution N̂ (θ ) such that an element f ∈ LU(1) acts
on the whole Hilbert space as

exp

(
i
∫

f (θ )N̂ (θ )dθ

)
. (3)

We can (roughly) think of N̂ (θ ) as the generators of the action
of LU(1) on the Hilbert space, and viewed as observables
they measure the (conserved) charge distribution on the Fermi
surface. In the rest of the paper we will drop the hats on N̂ (θ ).

In Fermi liquid theory the emergent LU(1) symmetry has
a so-called ’t Hooft anomaly, meaning that there is an ob-
struction to gauging the symmetry. This is reflected in the fact
that when a background gauge field of the LU(1) symmetry is
applied, the LU(1) charge can become nonconserved. In order
to explain this, let us first define what we mean by an LU(1)
gauge field. In general, a gauge field for a continuous group
on a space-time M is a covariant vector field on M valued
in the algebra of infinitesimal transformations of the group.
Concretely, given the definition of LU(1), this suggests that an
LU(1) gauge field on M is a family Aμ(θ ) of covariant vector
fields on M that smoothly depends on the parameter θ ∈ S1,
with the gauge transformation

Aμ(θ ) → Aμ(θ ) + ∂μλ(θ ), (4)

In fact, however, as pointed out in Ref. [26], this is not the
entire story—there is an additional wrinkle in the definition
of gauge field that applies only to infinite-dimensional groups
such as LU(1). One actually needs to include an additional
component Aθ that transforms under gauge transformations as
Aθ → Aθ + ∂θλ. In Fermi liquid theory, where one can talk
about quasiparticles that are localized both in space and in
momentum space, the spatial components of A describe the
quantum phase accumulated as the quasiparticle is moved in
space, while Aθ describes the quantum phase accumulated as
the quasiparticle is moved along the Fermi surface in mo-
mentum space. [One can argue that Aθ is still a necessary
ingredient for an LU(1) gauge field even beyond Fermi liquid
theory.] We can now make the observation that an LU(1)
gauge field on M looks formally equivalent to a U(1) gauge
field on a higher-dimensional space M × S1 (one should be
careful, however, about taking this analogy too far, as we will
see later).

We can now state the nature of a ’t Hooft anomaly of the
LU(1) symmetry [26]. We can introduce the LU(1) current jμ,
which is a contravariant vector field on M × S1. For example,
one could define jμ = δS

δAμ
, where S is the action of the system

coupled to the LU(1) gauge field (in particular, in principle
j includes a component jθ ; we discuss this further below).
The time component jt can be viewed as the spatial density of
the N (θ ) defined above. Then the anomaly equation takes the
form

∂μ jμ = m

8π2
εμνλσ [∂μAν][∂λAσ ]. (5)
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Note that in these equations, we allow the greek-letter in-
dices to vary not just over the directions of space-time, but
also over the θ coordinate (hence how we are able to use
the four-dimensional Levi-Civita symbol ε, even though we
began with a three-dimensional space-time). The anomaly
coefficient m is quantized to be an integer through general ar-
guments; in single-component Fermi liquid theory it takes the
values ±1 depending on an (arbitrary) choice of orientation
of the Fermi surface. Observe that this anomaly equation has
the same structure as for a U(1) gauge field in a four-
dimensional space-time; for a LU(1) gauge field in three-
dimensional space-time, the Fermi surface plays the role of
an “extra dimension”.

Finally, let us return to the issue of the jθ component of the
current. In order to really be able to say that the system has an
LU(1) symmetry, jθ must obey some strong restrictions. If jθ

is nonzero it implies a flow of charge along the Fermi surface.
In general this will imply that the total charge N (θ ) at each
point on the Fermi surface is no longer conserved individ-
ually. Therefore, a system with LU(1) symmetry must obey
the property that jθ is identically zero. An exception to this
could occur in the presence of a magnetic field; for example,
it is well known that in Fermi liquid theory, a magnetic field
induces a precession of quasiparticles along the Fermi surface,
which would correspond to jθ �= 0. This allows for the N (θ )
to become nonconserved in the presence of a magnetic field.
This may not be too shocking given the ’t Hooft anomaly, but
we note that in this case the nonconservation actually arises
from the ∂θ jθ term in Eq. (5), not the right-hand side of Eq. (5)
as one might have expected.

B. Fermi surface and phase space magnetic field

We can write the anomaly equation (5) as

∂μ jμ = m

(2π )2
[BFθt + εi jEiFθ j], (6)

where we defined the field strength tensor Fμν = ∂μAν −
∂νAμ; t denotes the time direction; i and j range over the
two spatial directions; and we have defined the magnetic
field B = 1

2εi jFi j and electric field Ei = Fti. If we set Ei and
B to be independent of θ , this will correspond to applying
a background gauge field for the U(1) subgroup of LU(1).
Suppose in particular that we just consider an electric field
and set B = 0. In that case, it is known that in Fermi liquid
theory (in which we can set the anomaly coefficient m = 1),
the nonconservation of LU(1) charge takes the form

∂μ jμ = 1

(2π )2
εi jEi∂θk j (θ ), (7)

where the vector k(θ ) denotes the (vector) Fermi momentum
as a function of position on the Fermi surface.

In order for Eqs. (6) and (7) to agree, it appears that we
must identify

Fθ j = ∂θk j (θ ). (8)

The necessity of this identification was previously pointed out
in Ref. [43] (and was somewhat implicit in Ref. [26]). A nice
interpretation was suggested in Ref. [45]: Since moving in θ

space amounts to moving along the Fermi surface, and the

Fermi surface lives in momentum space, Eq. (8) reflects the
noncommutativity between position and momentum coordi-
nates, which can be encoded by a “magnetic field” in phase
space.

We will take it for granted that the identification Eq. (8)
will continue to hold even beyond Fermi liquid theory, in any
ersatz Fermi liquid. Indeed, in a general ersatz Fermi liquid
we can simply define Fermi surface in such a way that Eq. (8)
is identically satisfied. More precisely, suppose we consider
a translationally invariant configuration of the system; in that
case, we should be able to choose a gauge such that ∂iAθ = 0.
Then Eq. (8) tells us that ∂θ [Ai(θ ) − ki(θ )] = 0, so we can
define the Fermi surface momentum (up to an overall additive
constant) according to ki(θ ) = Ai(θ ).

C. Luttinger’s theorem and compressibility

Suppose that our ersatz Fermi liquid, with emergent LU(1)
symmetry, describes the emergent IR physics of a microscopic
system that has a global U(1) symmetry, as well as either a
lattice or continuous translation symmetry. Then it turns out
that there is a “UV-IR” matching condition that one can derive
between the properties of the IR theory and the microscopic
density of the charge of the global U(1) symmetry [26]. In the
context of Fermi liquid theory, this is known as Luttinger’s
theorem. In the case of continuous translation symmetry, the
relation takes the form

ρ = mVF

(2π )2
, (9)

where ρ is the microscopic charge density, and VF is the vol-
ume enclosed by the Fermi surface. [Recall from the previous
subsection that in a general ersatz Fermi liquid, the Fermi
surface can be defined in terms of the background LU(1)
gauge field.] For a system with lattice translation symmetry,
the statement instead takes the form

ν = mVFVunit

(2π )2
[mod 1], (10)

where Vunit is the volume of a translation unit cell, and the
dimensionless number ν, known as the “filling”, is the average
charge per unit cell.

From the above relations, we see that in the case of contin-
uous microscopic translation symmetry, an ersatz Fermi liquid
is compatible with a nonzero microscopic charge density;
while in the case of discrete microscopic translation symme-
try, an ersatz Fermi liquid is “compressible”, in the sense that
the microscopic filling ν can be continuously tuned simply by
varying the Fermi surface volume.

D. Hydrodynamics

The infinitely many conservation laws of an ersatz Fermi
liquid have very strong consequences for the dynamics. In par-
ticular, Ref. [46] studied the dynamics in the “hydrodynamic”
regime. In this regime one assumes that the system is locally in
thermal equilibrium at each point in space and time. Here the
concept of “thermal equilibrium” needs to take into account
all the conserved quantities. Thus, the local equilibrium state
will depend on the local densities of the conserved quantities
N (θ ), which might vary as a function of space and time.
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Hydrodynamics gives an equation of motion for how these
densities evolve in time.

Reference [46] showed that, at zeroth order in a gradient
expansion, and working to linear order in the perturbation
from the global equilibrium state, one obtains, in a general
ersatz Fermi liquid, an equation of motion that depends only
on certain thermodynamic susceptibilities ξ (θ, θ ′) of the con-
served charges N (θ ). Let us focus on the case where these
susceptibilities contain only a contact term, i.e., ξ (θ, θ ′) =
vF (θ )δ(θ − θ ′). This certainly need not be true in general
(and is not even true in Fermi liquid theory when the Landau
interactions are nonzero), but we will see later that it actually
is what happens in our particular holographic model. In this
case, the equations of motion of Ref. [46] reduce to

∂n(θ )

∂t
+ vF (θ ) · ∇n(θ ) = m

(2π )2
E · w(θ ), (11)

where E is an applied background electric field, and we
defined the vectors w(θ ) and vF (θ ) according to wi(θ ) =
εi j∂θk j (θ ) [recall that k(θ ) is the Fermi momentum vector],
and vF (θ ) = vF (θ )w(θ )/|w(θ )|. This happens to be (if we set
m = 1) the same equations of motion that one would get in a
Fermi liquid with the Landau interactions set to zero.

The fact that the derivation of Ref. [46] was based on
hydrodynamics, which in turn is based on the assumption
of local thermal equilibrium, suggests that there could in
principle be some limitations to the validity of Eq. (11). In
particular, if we consider dynamics at frequency ω, hydro-
dynamics does not necessarily apply when ω is larger than
the inverse local thermalization time, for which ∼T is a good
guess at low temperatures in a strongly coupled system. Thus,
in principle we should only expect Eq. (11) to hold when
ω 	 T . However, in Fermi liquid theory Eq. (11) actually
holds without any such restriction; we will see that this also
ends up being the case in our holographic model.

III. A HOLOGRAPHIC MODEL OF AN ERSATZ
FERMI LIQUID

A. The bulk action

We refer the reader to Ref. [6] for an accessible introduc-
tion to the basic framework of holographic models. In this
paper, we wish to find a bulk gravitational theory that is holo-
graphically dual to a boundary QFT that has a global LU(1)
symmetry. According to the standard holographic dictionary,
the way to achieve this is clear: We need the bulk theory to
have a dynamical LU(1) gauge field.

As mentioned in Sec. II A, an LU(1) gauge field on a four-
dimensional space-time M can in a certain sense be thought
of as a vector field A on the five-dimensional space M × S1.
We emphasize, however, that the S1 should not be thought
of as an additional, compactified dimension of space-time,
such that, for example, the metric in the gravitational the-
ory obeys the Einstein equations for the five-dimensional
space-time. The S1 represents a “flavor” index for the LU(1)
symmetry; it happens that it is continuous because LU(1) is
an infinite-dimensional group. Treating the S1 as a space-time
dimension would be akin to saying that if there is a global
U(1) × U(1) symmetry, then the bulk space-time should con-
tain two disconnected components corresponding to the two

factors of U(1), which is certainly not how the holographic
dictionary normally works. These considerations suggest that
we should instead identify the four-dimensional manifold M
as the space-time manifold, and require that the metric in the
bulk gravitational theory obeys the Einstein equations on M.

A related subtlety is that we need to make sure that the
gauge field in the bulk really can be interpreted as an LU(1)
gauge field on M, rather than a U(1) gauge field on M × S1.
According to the discussion at the end of Sec. II A, this means
that the action must have the property that jθ = δS

δAμ
is identi-

cally zero (at least in the absence of a magnetic field). If we
just wrote down the Maxwell action for a U(1) gauge field on
M × S1, it would not satisfy this property.

Instead, we will employ a Maxwell action of the form

SMaxwell = −1

4

∫
M×S1

1

α(θ )
fμν f μν

√−gd4xdθ, (12)

fμν = ∂μaν − ∂νaμ,

where here the Greek letters range over the four dimensions
of the space-time manifold M, but not over the θ direction
(we will follow this index convention throughout the rest of
the paper). Here g with no subscripts refers to the metric on
the four-dimensional space-time, which obeys the Einstein
equations (and

√−g is the square-root of its determinant).
For generality, we have allowed the coupling constant α(θ )
for this Maxwell Lagrangian to be θ dependent.

As a side note, let us remark that there are some intrigu-
ing suggestions [45] that for a system with a global U(1)
symmetry on a space-time ∂M × S1, with a ’t Hooft anomaly
described by Eq. (5) with m �= 0, the condition jθ = 0 may
in fact be enforced automatically once one applies the “phase-
space magnetic field” Eq. (8), so that the global symmetry gets
upgraded to LU(1) automatically. Reference [45] only consid-
ered systems of noninteracting fermions, but if the result does
hold more generally, it would suggest that in a holographic
model we could just take the gauge field in the bulk theory
to be a U(1) gauge field on M × S1, which would mean we
could use the usual Maxwell action for a U(1) gauge field
rather than Eq. (12). We leave exploration of this possibility
for future work.

Next, it is also necessary to take into account the ’t Hooft
anomaly of LU(1). The standard way to implement a ’t Hooft
anomaly in the dual boundary theory is to include a Chern-
Simons term for the bulk dynamical gauge field [47]. In
particular, the anomaly equation Eq. (5) is obtained at the
boundary of the 5D Chern-Simons term

SCS = m

24π2

∫
M×S1

a ∧ da ∧ da. (13)

Note that, strictly speaking, the Chern-Simons term is not
well defined on a manifold with boundary, unless one imposes
specific boundary conditions. However, the difference in the
action between two gauge-field configurations that have the
same values on the boundary ∂M × S1 is well defined, since
this is equivalent to evaluating the Chern-Simons term on a
closed manifold. For our purposes this will mostly be suffi-
cient, but it will cause some difficulties in defining the relation
between the bulk fields and the currents in the dual boundary
theory, since according to the holographic dictionary, these are
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defined through variations of the bulk partition function with
respect to the boundary values of the gauge field. We return to
these issues in Sec. III B.

In summary, the dynamical gauge fields in the bulk are the
metric g and the LU(1) gauge field a, and the total action is
given by

S[g, a] = SCS + SMaxwell + SEH, (14)

where the Chern-Simons action SCS and the Maxwell action
were defined above, and SEH is the usual Einstein-Hilbert
action for the metric,

S = 1

2κ2

∫
M

√−g

(
R + 6

L2

)
d4x, (15)

where R is the Ricci scalar computed from the metric and
−6/L2 is the cosmological constant. Note that since the
Maxwell action does not depend on aθ , it is not possible to
treat aθ as a dynamical field in the bulk. Instead, we will just
treat it as a fixed background.

B. Boundary conditions and identification
of the currents in the dual QFT

To properly define the holographic correspondence, one
needs to carefully consider the boundary conditions. Let us
first observe that the classical equations of motion for the
metric admit a solution, which is asymptotically AdS4 near
the boundary. We will adopt a coordinate system in which the
asymptotic metric can be expressed as

ds2 = L2

r2
(−dt2 + dx2 + dy2 + dr2), (16)

where the boundary is located at r = 0.
Next we need to consider the asymptotic solutions for

the LU(1) gauge field a near r = 0. Here our task is com-
plicated by the presence of the Chern-Simons term in the
action. For example, in the case of a U(1) gauge field in
AdS3 with a Chern-Simons term ∼ ∫

a ∧ da, understanding
the boundary conditions for holography becomes a somewhat
involved topic, see Ref. [48]. Fortunately, our task here is
easier because in our case (unlike in the case of Maxwell-
Chern-Simons in AdS3), one finds that the solutions have
the same asymptotic scaling as r → 0 with or without the
Chern-Simons term, namely

aμ = a(0)
μ + a(1)

μ r + · · · , (17)

although the constraints on the coefficients a(0) and a(1) from
the equations of motion may differ depending on the presence
of the Chern-Simons term. [To see that the solutions always
have the asymptotic form Eq. (17), just observe that with
the metric Eq. (16), the equations of motion do not have
any singularity at r = 0, hence the solutions must be analytic
functions of r at r = 0.] This suggests that the holographic
dictionary for a bulk Maxwell theory without a Chern-Simons
term should simply carry over; that is, we should identify a(0)

μ

as the background gauge field applied in the dual boundary
theory, while a(1)

μ is the expectation value of the current oper-
ator in the boundary theory.

To make this argument more precise, first observe that in
defining the action of the bulk theory, the asymptotic form

Eq. (17) ensures that it will not be necessary to introduce
any counterterms on the boundary to cancel divergent con-
tributions at r = 0, as is sometimes necessary in defining
holographic duality. However, another difficulty arises from
the fact that to properly define the action, we need to define
the Chern-Simons term in the presence of boundary, which
has a certain ambiguity.

In this paper, we will seek to sidestep the issue in the
following way. Suppose we consider two copies of our sys-
tem, with opposite sign of the anomaly coefficient m, and
we impose that the background gauge field A felt by the two
copies should be the same. Then the combined system is dual
to two copies of the gravitational theory, with opposite signs
of the Chern-Simons level m in Eq. (13), but with identical
boundary values of the bulk gauge field a. Due to the different
value of m, the bulk fields will evolve differently in the two
copies. But the sum of the contributions to the action from
the Chern-Simons terms of the two copies will not suffer
from the ambiguity of a single copy, since evaluating this
term is equivalent to evaluating the Chern-Simons action on
a closed manifold obtained by gluing the two space-time
manifolds together at their boundary. The doubled theory is
only sensitive to responses of the original theory that are even
under changing the sign of the anomaly coefficient m. Observe
that in a microscopic lattice model of a metal, acting with a
unitary particle-hole (i.e., “charge conjugation”) operator on
the microscopic Hamiltonian will lead to an opposite value
of m in the low-energy emergent theory without affecting the
location of the Fermi surface. Therefore, we expect that any
response that is even under such a particle-hole transforma-
tion, such as the linear electrical conductivity, will indeed
be even under changing the sign of m. Responses that are
odd under a particle-hole transformation, and hence under
a change of sign of m, cannot be captured by the doubled
theory, and would likely require more careful attention to the
boundary conditions for the Chern-Simons term.

In any case, let us consider how to identify the currents
of the dual boundary theory in the doubled system. First we
observe that if we introduce the variation δa of the gauge field,
then by integrating by parts we see that the variation of the
Maxwell term Eq. (12) (in one of the copies) takes the form∫

∂M
d3x

∫
dθ

√−gα(θ )−1Aμ f rμ

+ 1

α

∫
M

d4x
∫

dθ
√−gα(θ )−1Aμ∂μ f rμ. (18)

If we impose the classical equations of motion, then by defi-
nition the second term in Eq. (18) has to cancel the variation
of the Chern-Simons term (one can verify that there is no
boundary contribution coming from the Chern-Simons term
in the doubled theory). Therefore, by taking the functional
derivative with respect to Aμ, the current in the doubled theory
is just given by sum of the contributions from the first term of
Eq. (18) in the two copies, which gives

jμ = − δS

δAμ

= −
√−g

α(θ )

(
f rμ
(1) + f rμ

(2)

)∣∣∣∣
r=0

(19)

where the subscripts (1) and (2) refer to the fields in the two
copies. This suggests that one should identify the current in
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the undoubled theory (modulo the caveats discussed above)
as

jμ = −
√−g

α(θ )
f rμ

∣∣
r=0 (20)

(which is the same as it would be in the absence of the
Chern-Simons term). Observe that the classical equations of
motion in the bulk, Eq. (A1) imply that this current obeys the
anomalous conservation equation Eq. (5), with jθ = 0.

C. The equilibrium solution in the bulk

To describe the equilibrium properties of the system, we
want to consider the dual QFT with global LU(1) symmetry at
zero charge density (recall that if our theory represents the IR
effective theory for some UV theory at nonzero charge den-
sity, this nonzero charge density is reflected in the emergent
symmetry and anomaly of the IR theory, not its charge den-
sity). Moreover, we will switch off all the background LU(1)
gauge field, except that we still need to set Ai(θ ) = ki(θ ),
where the spatial vector k(θ ) represents the Fermi surface
momentum. In the gravitational theory this translates into the
boundary condition for the bulk gauge field a. Recall that the
necessity of including this “phase space magnetic field” was
discussed in Sec. II B.

In this case, the solution of the classical equations of
motion in the bulk are as follows. Firstly, the AdS4 metric
Eq. (16) holds in the entire space-time, i.e., for all r � 0. Sec-
ondly, in the coordinate system in which the metric takes the
form Eq. (16), the LU(1) gauge field has components ax(θ ) =
kx(θ ), ay(θ ) = ky(θ ) (independently of x, y, r,and t), and the
other components are zero. [Note that, while this gauge field
has nontrivial gauge curvature Fθ i, from the Maxwell action
Eq. (12) one sees that this component of the gauge curvature
does not actually contribute to the stress tensor, hence why the
AdS4 metric remains a solution to Einstein’s equations.]

The remainder of this paper will be devoted to computing
responses of the dual QFT by considering perturbations to the
equilibrium solutions. In order to make progress, we will only
consider linear responses; this will allow us to linearize the
equations of motion about the equilibrium solution.

IV. RESULTS

A. A preliminary remark: the UV cutoff scale

In this section we will present the results of solving the
linearized classical equations of motion in the bulk. There is
one point that needs to be kept in mind when interpreting these
results, as follows. With respect to a physical lattice model
of a metal, the model of an ersatz Fermi liquid that we have
constructed is only supposed to be the effective IR theory.
This places limitations on the regime in which the results we
obtain will be meaningful. Specifically, we should focus on
the response at frequency ω, wavevectors q, and temperature
T , such that |ω|, |q|, T are much smaller than some cut-off
scale.

As we will see, the solutions that we obtain appear to have
a characteristic scale u, where

u ∼ α(θ )|m||∂θk(θ )|. (21)

For example, if we assume an isotropic Fermi surface such
that k(θ ) = kF (cos θ, sin θ ) and α(θ ) = α is independent of
θ , then we have

u ∼ |m|αkF . (22)

Thus, in this paper we will focus on the results in the regime
|ω|, |q|, T 	 u. In other words, our goal will be to character-
ize the effective field theory that emerges in the deep IR at
scales below u.

One could ask whether the results obtained in the holo-
graphic model are still meaningful for scales above u. We
expect that the Fermi wavevector kF will place an upper bound
on the scales for which the holographic model can be a useful
description of the original microscopic lattice model. How-
ever, a condition for the electrodynamics of the bulk theory
to be weakly coupled is [say in the isotropic case so that
Eq. (22) holds] that α 	 1. Therefore, if m ∼ 1 then u 	
kF . The holographic model could thus conceivably describe
meaningful physics on scales greater than u. However, we will
not focus on this regime in the current paper.

B. Charge responses at zero temperature

The linearized equations of motion for the LU(1) gauge
field a obtained from the action, Eq. (14), do not contain any
derivatives with respect to θ . Therefore, they can be solved
independently at each θ . Moreover, as the linearized equa-
tions of motion for the case of an AdS4 metric turn out to be a
system of ODEs with constant coefficients, they can be solved
analytically in a straightforward way. However, as the form
of the solution ends up being somewhat complicated in the
general case, we will focus on the behavior for |ω|, |q| 	 u
as previously discussed in Sec. IV A. In that case, we show
in Appendix A that one finds for the currents in the boundary
theory in response to applied background gauge field [49],

〈 jt 〉 = 〈 j⊥〉 = m|∂θk(θ )|
(2π )2

i

ω − q⊥
E⊥

− iα(θ )−1 (ω + q⊥)q‖

(ω − q⊥)
√

−ω2 + q2
⊥

(E‖ + B) + · · · ,

(23)

〈 j‖〉 = −iα(θ )−1 ω + q⊥√
−ω2 + q2

⊥
(E‖ + B) + · · · , (24)

where we defined the electric field Ei = −i(qiAt + ωAi ), and
the magnetic field B = i(qxAy − qyAx ). Here we have written
the spatial components of the vectors in terms of the com-
ponents perpendicular to (⊥) and parallel to (‖) the Fermi
surface, that is,

q‖ = qiw
i(θ )√

w j (θ )w j (θ )
, etc. (25)

where Roman letter indices such as i take values in the two
spatial dimensions, and we have defined wi(θ ) = εi j∂θk j (θ )
as before. To raise and lower spatial indices, we use the unit
metric in the coordinate system (x, y) in which the bulk met-
ric takes the form Eq. (16), i.e., the metric ds2 = dx2 + dy2

(which is not the same as the bulk metric evaluated at the
boundary, whose components diverge). This is also the metric
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that we use to evaluate |∂θk(θ )| = wi(θ )wi(θ ) in Eq. (23). In
writing Eqs. (23) and (24) we have assumed that the Chern-
Simons level m is positive; there are similar equations for
m < 0 but with different signs.

Let us be more precise about what we mean by the “· · · ” in
Eqs. (23) and (24). One can argue from the general structure
of the equations of motion (see Appendix A) that the currents
in linear response can be written as

〈 jμ〉 = α(θ )−1J μν (ω, q, u)Aν, (26)

where the function J depends only on its explicit parameters
ω, q, and u, and we have defined

u = mα(θ )|∂θk(θ )|
(2π )2

. (27)

Then we can expand J μν in a power series in 1/u,

J μν (ω, q, u) =
∞∑

p=−1

J μν
(p) (ω, q)u−p. (28)

Dropping the “· · · ” terms in Eqs. (23) and (24) corresponds to
keeping only the p = 0 and p = −1 terms in this expansion.
The first term in Eq. (24) and the second term in Eq. (23)
correspond to p = 0 in Eq. (28), while the first term in Eq. (23)
corresponds to p = −1.

In the language of the renormalization group, u serves as
a UV cutoff for an effective field theory, and the p > 0 terms
will describe the effect of irrelevant operators, corresponding
to the fact that they go to zero as ω/u, q/u go to zero. The fact
that there is a p = −1 term as well as a p = 0 term is likely
analogous to the following statement in Fermi liquid theory:
when one defines the appropriate RG scaling, the effective
theory contains a parameter kF /�, where � is the momentum
cutoff scale, which flows to infinity under the RG flow. In
this sense, Fermi liquid theory is not, strictly speaking, a
fixed point under RG [in which case one would have expected
only the p = 0 term to be present in the expansion Eq. (28)]
but rather a one-parameter trajectory. As this behavior is tied
to the fact that the low-energy excitations live on the Fermi
surface rather than at zero momentum, one should expect a
similar property to be true in our holographic model as well.

If we keep only the leading-order term, i.e., the p = −1
term in Eq. (28), in which case only the first term in Eq. (23)
remains, then this exactly agrees with the result that would be
obtained from the hydrodynamic equation of motion Eq. (11),
with the Fermi velocity vF equal to the speed of light c in the
bulk theory (set to 1 in our units). In particular, the pole at
ω = q⊥ indicates a gapless propagating mode with velocity
vF = 1, but one which is chiral and directional since it can
only move in one direction, perpendicular to the Fermi sur-
face. In particular, as we noted in Sec. II D, this is the same
result that would obtain in Fermi liquid theory, with the Lan-
dau interactions set to zero. [However, one should not view
this result as suggesting that our theory is somehow “weakly
coupled” like Fermi liquid theory, because as described in
Sec. II D, the equation of motion Eq. (11) can be viewed as
a general consequence of hydrodynamics, taking into account
the conserved quantities associated with the LU(1) symme-
try.] Meanwhile, the p = 0 terms in the expansion have no

analog in Fermi liquid theory and reflect non-Fermi liquid
behavior.

Let us consider some particular limits of the general ex-
pressions Eqs. (23) and (24). First of all, we compute the static
susceptibility χ (θ, θ ′) for the N (θ ) charges, which is defined
by

χ (θ, θ ′) := lim
q→0

lim
ω→0

δ〈 jt (θ ′)〉
δAt (θ )

(ω, q). (29)

From Eq. (23) we find

χ (θ, θ ′) = m|∂θk(θ )|
(2π )2

δ(θ − θ ′). (30)

In particular, we find that the total charge compressibility [i.e.,
the susceptibility of the total U(1) charge] is given by

χ =
∫∫

χ (θ, θ ′)dθdθ ′ = m

(2π )2
�F > 0, (31)

where �F = ∫ |∂θk(θ )|dθ is the total length of the Fermi
surface. The condition χ > 0 is often used as a definition of
“compressibility”. In general this need not be equivalent to
the definition of compressibility we gave in Sec. II C and in
the Introduction, but in this model we find that the system is
compressible in both senses.

Another interesting case to look at is the regime of optical
conductivity, where we set B = 0 and then take the limit of
q → 0 at fixed ω. Then Eqs. (23) and (24) (upon dropping the
“· · · ”) become

〈 jt 〉 = 〈 j⊥〉 = m|∂θk(θ )|
(2π )2

i

ω
E⊥, (32)

〈 j‖〉 = α(θ )−1E‖. (33)

Recall that these are the contributions to the currents from a
particular point on the Fermi surface. To get the total current,
we have to integrate over the whole Fermi surface; we assume
that the electric and magnetic fields E and B are background
gauge fields of the U(1) symmetry, which is to say that they
are independent of θ . One finds that the total charge density is
zero, while the total current density is given by

〈 ji〉 = σ i j (ω)Ej, (34)

with the conductivity tensor σ (ω) of the form

σ (ω) = D i

ω
+ σinc, (35)

with the “Drude weight”

Di j = m

(2π )2

∫
wi(θ )w j (θ )

|w(θ )| dθ, (36)

and the frequency-independent “incoherent conductivity”

σ
i j
inc =

∫
vi(θ )v j (θ )

|w(θ )|2 α(θ )−1 dθ, (37)

where we defined wi(θ ) = εi j∂θk j (θ ) and vi(θ ) = ∂θki(θ ),
and we use the unit metric to raise and lower spatial indices as
described below Eq. (25).

Note that, as can be seen from Eqs. (32) and (33), the two
terms appearing in the conductivity Eq. (35) have physically
different origins—the first term comes from the current that,
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at each point of the Fermi surface, flows perpendicular to the
Fermi surface; while the second term comes from the current
that flows parallel to the Fermi surface. In a Fermi liquid the
current only ever flows perpendicular to the Fermi surface, so
this is another reflection of non-Fermi liquid behavior. Also,
it is apparent from the solutions described in Appendix A
that the first term, which is nondissipative, arises from a
bulk mode, which decays exponentially with r away from the
boundary, while the second term, which is dissipative, arises
from a mode, which does not decay exponentially with r. This
makes sense because in the bulk theory one can think of the
energy lost in a dissipative process as falling into a black hole
located (in the limit of zero temperature) at r = ∞, so a mode
that decays exponentially with r never reaches r = ∞ and
hence will always be nondissipative.

C. Nonzero temperature

To describe the model at nonzero temperature, we just
need to replace the time direction of space-time by a compact
Euclidean direction [6]. As in Sec. III C, one finds that in the
equilibrium state, the LU(1) gauge field does not enter into
the equations of motion for the metric. As a result, the AdS4

metric Eq. (16) will simply be replaced by a thermal metric
that has the same form as for a theory dual to a strongly-
coupled (2 + 1)-D CFT, namely

ds2 = L2

r2

[
f (r)dτ 2 + 1

f (r)
dr2 + dx2 + dy2

]
, (38)

with

f (r) = 1 −
(

r

r+

)3

, (39)

and r+ determined in terms of the temperature T by

r+ = 3

4π

1

T
. (40)

This reduces to asymptotic (Euclidean) Ads4 near the bound-
ary, r → 0, but the space-time ends at r = r+, corresponding
to a Euclidean version of a black hole event horizon.

The equations of motion for the LU(1) gauge field with the
metric Eq. (38) are no longer analytically solvable. However,
we expect that the p = −1 term in the expansion Eq. (28)
[that is, the Fermi-liquid-like term in Eq. (23)] will remain
roughly unchanged for T 	 u. The reason is that this term
arises from a mode that exponentially decays in the bulk for
r � u. Meanwhile, the thermal metric Eq. (38) only differs ap-
preciably from the Euclidean version of the zero-temperature
metric when r � T −1. Therefore, if T 	 u the mode should
be unaffected by the nonzero temperature.

By contrast, the subleading contributions will likely be
affected by nonzero temperature. Let us focus specifically on
the optical conductivity. The “Drude” part of the optical con-
ductivity, i.e., the first term in Eq. (35), should be unaffected
for T 	 u for the reasons described above. Meanwhile, one
can check that if one sets q = 0, then the a‖ component of
the gauge field decouples from a⊥ and at , and obeys the same
equation of motion as U(1) gauge field with a Maxwell action.
Since it is the a‖ component that is responsible for giving rise
to the σincoherent term in Eq. (35), therefore this σincoherent will

have the same dependence on ω and T as in a holographic
model of a (2 + 1)-D CFT at zero charge density, in which
the bulk theory just has a U(1) gauge field with the Maxwell
action and the metric Eq. (38). One can show [50] that in fact,
this always has the form

σincoherent (ω, T ) = σ0, (41)

i.e., a constant independent of ω and T . This, however,
is due to the special property of the self-duality of the
Maxwell action and in general will not be the case if
one introduces additional terms in the bulk action [51].
But more generally, the conductivity will obey the scale-
invariance property of a quantum critical point in two spatial
dimensions, i.e.,

σincoherent (ω, T ) = f (ω/T ), (42)

for some scaling function f .

V. INTERPRETATION: WHAT IS THE GRAVITATIONAL
THEORY DUAL TO?

A difficulty with holographic models is that if, as we are
doing here, one simply postulates an action for a bulk gravita-
tional theory, it may be rather obscure what is the nature of the
dual QFT. Nevertheless, in this instance we feel we are able to
make a fairly good guess. The key observation is that, as we
noted in Sec. III C, the metric takes the AdS4 form Eq. (16)
throughout the entire bulk space-time, not just asymptotically
near the boundary. This is the same form that one would
expect for a quantum field theory that is dual to a strongly
coupled (2 + 1)-D CFT (at zero charge density) in some
large-N limit. However, the charge response that we found in
Sec. IV B does not take the form that one would expect in such
a CFT. On the other hand, if we compute, for example, the
entropy density as a function of temperature, then the entropy
density will be dominated by the gravitational contribution
coming from the black hole in the metric Eq. (38), and there-
fore will have the same scaling with temperature as in such
a CFT.

This motivates us to make the following proposal for the
dual QFT, in the case where we set the Chern-Simons level m
(and hence, the anomaly coefficient of the dual QFT) equal
to one: it corresponds to the IR effective theory resulting
from coupling a spinless single-component Fermi liquid to a
large-N strongly coupled CFT. The fluctuations of the CFT
will destroy the quasiparticles of the Fermi liquid, leading
to a non-Fermi liquid, while still (one presumes) preserving
the global LU(1) symmetry, at least in an emergent sense.
Meanwhile, since m ∼ 1 but N � 1, the Fermi liquid does
not have enough degrees of freedom to significantly backreact
on the CFT, corresponding to the statement in the dual theory
that the bulk metric in equilibrium is unaffected by the LU(1)
gauge field. Furthermore, the entropy density of the CFT will
scale with some power of N , and therefore in the large-N
limit will dominate over any contribution from the Fermi
surface.

The picture described above is also very reminiscent of
the “semiholographic” picture [52] that was developed in the
context of some previous holographic models. In these models
there is a small Fermi surface that does not satisfy Luttinger’s
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theorem on its own. It was argued that the physics can be
understood in terms of a Fermi liquid with the small Fermi
surface coupled to a strongly coupled sector that contains most
of the charge. By contrast, in the picture described above, the
Fermi surface does contain all of the charge and the strongly
coupled sector is at zero charge density. On the other hand,
there may be a way to make a connection with the “electron
star” models of Refs. [31–34] where Luttinger’s theorem is
satisfied.

One can compare this picture with other routes to ob-
taining non-Fermi liquids. For example, in Hertz-Millis type
theories [21–23], one couples a Fermi liquid to a free boson
rather than a strongly coupled CFT; all the strong-coupling
physics in such theories comes from the boson-fermion
interactions.

Finally, let us also remark on the distinction with the
SYK-inspired “large-N random-flavor” models described in
Ref. [53–57,59], which are large-N deformations of Hertz-
Millis models. These seem to be natural candidates to have
a holographic dual; for example, it has been argued that these
models exhibit maximal quantum chaos in the large-N limit
[60]. However, the holographic model described in this paper
cannot be dual to these theories. For one thing, in the random-
flavor models one sends the number of fermion species [and
hence, the anomaly coefficient m for the LU(1) symmetry]
to infinity. Meanwhile, in our holographic model we are free
to just set m = 1. Moreover, in the random-flavor models, in
general the LU(1) charges will always have diverging sus-
ceptibilities in certain channels [61], while in our holographic
model the susceptibility remains finite, see Eq. (30). Finally,
we note that in these models one does not expect to have any
current flowing in the direction parallel to the Fermi surface
in the fixed-point theory [61], in contrast to what we found in
Sec. IV B.

VI. ENTANGLEMENT ENTROPY AND CHARGE
FLUCTUATIONS

A famous property of Fermi liquid theory [62–67] in d
spatial dimensions is that the entanglement entropy in the
ground state in a spatial region M scales like ∼Ld−1 log L,
where L is a characteristic length scale of M; thus, the usual
area law for entanglement entropy is violated logarithmically.
One might ask whether our holographic model obeys the same
property.

In holography, it is believed [68,69] that if the gravitational
theory is sufficiently weakly coupled, such that one can ignore
quantum fluctuations of the area, the entanglement entropy of
the dual QFT in a spatial region M is given by

S(M ) = 2π

κ
A(X ) + Sent (X ), (43)

where κ is the gravitational constant appearing in the Einstein-
Hilbert action Eq. (15), X is a codimension 1 surface in an
equal-time slice of the bulk space-time, such that the boundary
of X coincides with the boundary of M, A(X ) is the area of
X computed according to the metric of the bulk gravitational
theory, and Sent (X ) is the entanglement entropy of the bulk
quantum fields in the region delimited by the surface X . One

is supposed to choose the extremal surface, i.e., the surface,
which minimizes the right-hand side.

In order for the bulk theory to be weakly coupled, one
is supposed to send κ → 0. Therefore, in this limit, the first
term of Eq. (43) will dominate and one recovers the so-called
“Ryu-Takanagi” formula [70]. In this limit, the entanglement
entropy is solely determined by the minimal area surfaces
in the gravitational theory. Since in our model, with d = 2,
the metric takes the same form Eq. (16) as in theories dual
to a (2 + 1)-D CFT, it follows that the contribution to the
entanglement entropy coming from the first term of Eq. (43)
will obey the area law, S(M ) ∼ L = Ld−1.

However, it is still possible, and indeed we believe very
likely, that there will be a ∼Ld−1 log L contribution from
the entanglement entropy coming from the second term in
Eq. (43) and in particular from the entanglement of the bulk
LU(1) gauge field. [Note that this would imply that κ → 0
and L → ∞ limits do not commute for the entanglement
entropy.] This is consistent with the picture of Sec. V, in
which one indeed expects the fermion contribution to the
entanglement entropy to be subleading in 1/N compared to
the contribution from the strongly coupled QFT. We will not
attempt to compute this contribution to the entanglement en-
tropy in the current paper. Instead, we will consider a related
quantity, namely the charge fluctuations.

Let QM be the operator that measures the total U(1)
charge in the region M. Then we can consider the variance
(�QM )2 := 〈Q2

M〉 − 〈QM〉2. In Fermi liquid theory, it turns out
[63,66] that (�QM )2 ∼ Ld−1 log L. This result tells us some-
thing about the correlations between M and its complement,
because at zero temperature the fluctuation of the total charge
of the ground state is zero, so (�QM )2 > 0 shows that the
region M and its complement must be correlated. Indeed, the
fact that the charge fluctuations have the same scaling as the
entanglement entropy suggests that the correlations between
M and its complement, which the entanglement entropy mea-
sures, are dominated by the charge fluctuations. Heuristically,
one can view the fact that charge fluctuations grow faster
than area law as related to the fact that (clean) Fermi liquids
have zero DC resistivity in the limit of zero temperature, so
it is very easy for the charge to “slosh around”, as opposed to
being bound locally in place as it would be in an insulator.

To compute the charge fluctuations in our holographic
model, we can use the fluctuation-dissipation theorem to
express the connected correlator 〈n(q)n(−q)〉c [or more gen-
erally, the θ -resolved correlator 〈n(q, θ )n(−q, θ ′)〉c] in terms
of the retarded Green’s function GR

n(q,θ )n(−q,θ ′ )(ω), which can
be derived from the results in Sec. IV B. In the spirit of the
renormalization group, the leading contribution to the equal-
time correlator as q → 0 [and hence, the leading contribution
to (�QM )2 as L → ∞] should come from the most relevant
operator. Therefore, we will keep only the p = −1 term in
the expansion Eq. (28). Observe that this term has exactly the
same form as one would find in a noninteracting Fermi gas.
Therefore, one expects to the get the same result for (�QM )2

as in a noninteracting Fermi gas.
In a noninteracting Fermi gas, it has been shown that the

coefficient of Ld−1 log L can be obtained exactly and has an
elegant geometric expression [63,65]. Suppose that M is ob-
tained by scaling a region � ⊆ Rd by a factor of L. Then one
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finds that

(�QM )2 = λ�Ld−1 log L + o(Ld−1 log L), (44)

with [71]

λ� = m

(2π )d+1

∫
∂�

dAx

∫
F

dAk|nx · nk|, (45)

where m is the multiplicity of the Fermi surface (i.e., the
number of bands, which have a Fermi surface at the same
location),

∫
∂�

dAx and
∫
F dAk denote surface integrals, F is

the Fermi surface in momentum space, and nx and nk are the
local unit normal vectors to the respective surfaces. We show
in Appendix B that Eqs. (44) and (45) are indeed precisely
what we get from the retarded Green’s function computed in
Sec. IV B, keeping only the p = −1 term in the expansion
Eq. (28).

In noninteracting Fermi gases, there are stronger results
one can show regarding charge fluctuations. In particular [65],
all the higher cumulants of QM fail to pick up any ∼Ld−1 log L
contribution and hence are suppressed relative to the variance
(�QM )2 as L → ∞. In other words, the charge fluctuations
obey an approximately Gaussian distribution as L → ∞. It
would be interesting to verify whether or not this holds in our
holographic model. This would require computing nonlinear
responses.

VII. OUTLOOK

We do not want to claim that the particular model that we
have studied here will itself explain everything about non-
Fermi liquids. Nevertheless, it seems a much more viable
starting point for studying non-Fermi liquids than holographic
models that lack a Fermi surface satisfying Luttinger’s theo-
rem, since it explicitly builds in this property. An interesting
future direction will be to consider adding perturbations to the
strongly coupled quantum field theory that explicitly break the
LU(1) symmetry, in order to model umklapp or disorder scat-
tering; such perturbations have natural correspondences on
the gravitational side through the holographic dictionary. One
could also try to find perturbations that lead to an instability
to a superconductor, or to another kind of ordered phase such
as Ising nematic.

One can also hope to use the model as a testing ground
for hypothesized general statements about compressible met-
als; for example, according to the claims of Ref. [26], if
we explicitly break LU(1) but retain a Z2 × U(1) subgroup
corresponding to lattice translation symmetry and charge con-
servation, then the system should flow under RG to one in
which the LU(1) symmetry is restored in an emergent sense,
since compressible systems with lattice translation symmetry
are supposed to have an infinite-dimensional emergent sym-
metry group. This should be a testable statement in our model.

Finally, the approach of designing holographic IR effective
theories based on emergeability conditions or by targeting
particular emergent symmetries and anomalies may be use-
ful in other contexts beyond non-Fermi liquid metals. For
example, a superfluid can be characterized [72] by its emer-
gent higher-form symmetry [73], which has a mixed anomaly
with the 0-form charge U(1). Thus, one could hope to find a
holographic model of a strongly coupled superfluid by study-
ing an appropriate dynamical gauge field in the bulk with a

Chern-Simons term. This idea was previously proposed as a
future direction in Ref. [72].
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APPENDIX A: SOLVING THE LINEARIZED
EQUATIONS OF MOTION

From the bulk action described in Sec. III A, we obtain the
classical equations of motion for the gauge field in the bulk,

∂μ[(
√−g) f μν] = α(θ )−1 m

(2π )2
ενλγ σ (∂θaλ)(∂γ aσ ), (A1)

where the indices range over the dimensions of space-time,
but not the θ direction. For the AdS4 metric Eq. (16), this
conveniently reduces to the same equations of motion as in flat
space (when expressed in terms of the covariant field-strength
tensor fμν) since the (

√−g) factor in the left-hand side exactly
cancels the components of the inverse metric that appear when
we raise the indices of fμν .

According to the discussion in Sec. III C, we introduce the
equilibrium configuration of the gauge field,

a(0)
i = ki(θ ), (A2)

and then linearize Eq. (A1) in perturbations about this config-
uration. Furthermore, we take all fields to vary as ∼e−iωt+kixi

in the t, x, y directions, and we choose a gauge in which we
set ar = 0. We obtain four equations of motion corresponding
to setting ν = x, y, t , or r in Eq. (A1). The first three can be
collectively expressed as

∂2
r A + M∂rA + �A = 0, (A3)

where we defined

A =
⎡
⎣at

ax

ay

⎤
⎦ (A4)

and

� =

⎡
⎢⎣

−(
q2

x + q2
y

) −ωqx −ωqy

ωqx ω2 − q2
y qxqy

ωqy qxqy ω2 − q2
x

⎤
⎥⎦ (A5)

and

M =
⎡
⎣ 0 −ux −uy

−ux 0 0
−uy 0 0

⎤
⎦, (A6)

with

ui = mα(θ )

(2π )2
εi j d

dθ
k j (θ ). (A7)
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We will henceforth work in a coordinate system such that ux =
u > 0, uy = 0.

The fourth equation of motion can be written as

iqiF
ri − iωF rt = −uiei, (A8)

where ei = −iωai − iqiat are the components of the elec-
tric field in the x and y directions. Given the identifications
Eq. (20), at r = 0 this is precisely the statement of the anoma-
lous conservation equation (5) in the dual boundary theory.
Observe that if we take the derivative of Eq. (A8) with respect
to r, then it follows from the other three equations of motion.
Therefore, the only effect of Eq. (A8) will be to a fix a constant
of integration. For the moment, therefore, we just consider the
solutions of Eq. (A3).

Since this is a system of ODEs with constant coefficients,
we can seek solutions of the form A ∝ eλr , which gives

(λ2 + λM + �)A = 0. (A9)

This has a nontrivial solution for A when

det(λ2I + λM + �) = 0. (A10)

Solving this equation gives a double root at λ = 0, and the
other four solutions are

λ = σ1

√
−ω2 + q2

x + q2
y + u

2

(
u + σ2

√
4q2

y + u2
)
, (A11)

where σ1 and σ2 can take the values ±1. If the argument of
the outer square root is positive, then the boundary conditions
at r → ∞ require us to discard the solutions corresponding
to σ1 = +1 in Eq. (A11), since they blow up exponentially as
r → ∞, and retain only the exponentially decaying solutions
corresponding to σ1 = −1. If the argument of the outer square
root is negative, then λ is pure imaginary and the solutions
correspond to radiative modes in the gravitational bulk that
can propagate out to r → ∞. In that case, the appropriate
boundary condition to impose, consistent with causality, is
that we keep only the mode that is radiating outwards from
r = 0, where the external fields are applied, towards r = ∞.
This amounts to imposing that sgn(Im λ) = sgn(ω). To allow
us to handle both cases at once, we will take the convention
that when the argument of the square root is negative, we
choose the branch such that

√
U = −i sgn(ω)

√−U . Then we
can always take the root with σ1 = −1.

We remark that, since λ = 0 is a double root, we have
the solutions A = A0 and A = A0r + A1, where A0 and A1

satisfy �A0 = 0 and MA0 + �A1 = 0. One can show that

A0 =
⎡
⎣−ω

qx

qy

⎤
⎦, (A12)

and

A1 = u

ω2 − (
q2

x + q2
y

)
⎡
⎣ qx

−ω

0

⎤
⎦. (A13)

Therefore, so far we have shown is that the general solution
will take the form

A = c0A0 + c1(A0r + A1) + c2A2eλ2r + c3A3eλ3r, (A14)

for some integration constants c1, c2, c3, c4. Here, λ and λ′
correspond to Eq. (A11) upon setting σ1 = −1 and [σ2 = 1
(for λ) or −1 (for λ′)], and A2 and A3 are the corresponding
eigenvectors. Next we need to impose Eq. (A8). Because, as
already mentioned, the r derivative of Eq. (A8) follows from
the other three equations of motion, imposing Eq. (A8) at
one value of r will be enough to imply that it is satisfied at
all values of r. By sending r → ∞, we find that we must
set c1 = 0.

The eigenvectors A2 and A3 have a somewhat complicated
form, making the general calculation rather burdensome.
However, a general statement that one can make is that the
equations of motion only depend on u and (ω, qx, qy). This
justifies our statement that the result for the currents will be of
the form Eq. (26) [the factor of α(θ )−1 comes from the final
identification of the currents in the boundary theory, Eq. (20)].
We ultimately relied on MATHEMATICA to handle the tedious
algebra, perform the expansion in 1/u described in Sec. IV B,
and finally obtain the result given in Sec. IV B for the p = −1
and p = 0 terms of the expansion Eq. (28). (The Mathematica
notebook file used for the computations can be found in the
Supplemental Material [74].) Here, however, in order to facil-
itate physical interpretation, we describe a simplified version
of the calculation that can reproduce the leading-order terms
in the result, i.e., the p = −1 term in Eq. (28).

As u → ∞, to leading order Eq. (A11) becomes and

λ = ±u, (A15)

λ = ±
√

−ω2 + q2
x . (A16)

One can show that to leading order, the corresponding eigen-
vectors take the form ⎡

⎣ 1
±1
0

⎤
⎦ (A17)

and ⎡
⎣0

0
1

⎤
⎦ (A18)

respectively [to this order, the eigenvectors corresponding to
the pair of eigenvalues Eq. (A16) with opposite signs are
equal]. Thus, the λ = ±u modes are “radial” modes that in-
volve the component of the gauge field perpendicular to the
Fermi surface (i.e., in the coordinate system we are using,
the ax component) as well as the time component, while the
λ = ±√−ω2 + q2

x modes are “circumferential” modes that
involve the component of the gauge field parallel to the Fermi
surface.

Thus, to leading order, the general solution Eq. (A14) (set-
ting c1 = 0) becomes

at = c2e−ur − c0ω, (A19)

ax = −c2e−ur + c0qx, (A20)

ay = c3e−
√

q2
x −ω2r + c0qy. (A21)
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We demand that at r = 0, at , ax, ay are equal to the applied
background field At , Ax, Ay. This gives

c0 = At + Ax

qx − ω
, c2 = qxAt + ωax

qx − ω
,

c3 = Ay + (At + Ax )qy

ω − qx
. (A22)

Finally, substituting into Eq. (20) and keeping only the terms
that are formally of order p = −1 in the expansion Eq. (28)
gives the leading-order term in Eq. (23).

APPENDIX B: COMPUTING CHARGE FLUCTUATIONS

In this Appendix we will derive the formulas Eqs. (44) and
(45) from the leading term in the retarded Green’s function of
the densities. From the results in Sec. IV B, keeping only the
p = −1 term in the expansion Eq. (28), we obtain

GR
n(θ )n(θ ′ )(q, ω) = m

(2π )2

q · w(θ )

ω − q⊥
δ(θ − θ ′). (B1)

This has the same form as a noninteracting Fermi gas in d = 2
spatial dimensions, with the Fermi velocity equal to 1. For
generality, let us consider general spatial dimension d [in
which case the Fermi surface is a (d − 1)-dimensional mani-
fold], and general Fermi velocity vF (θ ). Then the equivalent
of Eq. (B1) is

GR
n(θ )n(θ ′ )(q, ω) = m

(2π )d

q · w(θ )

ω − q · vF (θ )
δd−1(θ − θ ′), (B2)

where we defined vF (θ ) = vF (θ )w(θ )/|w(θ )|. In general di-
mension w(θ ) is defined according to

wi(θ ) = εi j1· jd−1∂θ1 k j1 (θ ) · · · ∂θd−1 k jd (θ ), (B3)

where (θ1, · · · , θd ) is some coordinate chart for the Fermi
surface, and k(θ ) is the momentum of the Fermi surface as
a function of θ .

Now from the fluctuation-dissipation theorem, we have
that the equal-time connected correlator of the densities is
given by

〈n(θ, q)n(θ ′,−q′)〉 = 1

2π

∫ ∞

−∞
dω 2[1 + nB(ω)]

× Im GR
n(θ ),n(θ ′ )(ω, q) × δd (q − q′),

(B4)

where the Bose factor nB(ω) is defined by nB(ω) :=
1/(eω/T − 1). The only contribution to the imaginary part of
Eq. (B2) comes from the pole at ω = q · vF (θ ) (which has to
be resolved in the usual way by shifting ω infinitesimally off
the real axis), so we obtain

Im GR
n(θ ),n(θ ′ )(ω, q)

= πm

(2π )d
q · w(θ ) δ[ω − q · vF (θ )] δd−1(θ − θ ′). (B5)

Hence, at zero temperature where 1 + nB(ω) is just a Heavi-
side step function, we find

〈n(θ, q)n(θ ′,−q′)〉
= m

(2π )d
q · w(θ )�(q⊥) × δd−1(θ − θ ′) δd (q − q′), (B6)

where � is the Heaviside step function, and as before q⊥ is
the component of q parallel to w(θ ) (i.e., perpendicular to the
Fermi surface). To avoid UV divergences, we will introduce a
UV cutoff by multiplying the right-hand side of Eq. (B6) by
an additional factor of e−aq⊥ , which defines the cutoff scale a.
Then, taking the Fourier transform gives

〈n(θ, x)n(θ ′, x′)〉c = m|w(θ )|
(2π )d+1

1

(x⊥ − x′
⊥ + ia)2

× δd−1(x‖ − x′
‖)δd−1(θ − θ ′). (B7)

where x⊥ is the component of x parallel to w(θ ), and x‖ is the
projection of x into the plane parallel to the Fermi surface, i.e.,
normal to w(θ ).

Finally, we can compute the charge fluctuation in a
region M,

(�QM )2 =
∫

M
dd x

∫
M

dd x′
∫

dd−1θ

∫
dd−1θ ′〈n(θ, x)n(θ ′, x′)〉c. (B8)

Substituting Eq. (B7), we find

(�QM )2 = m

(2π )d+1

∫
dd−1θ |w(θ )|

∫
Md−1

dd−1x‖
∫ x+

⊥ (x‖ )M

x−
⊥ (x‖ )M

dx⊥
∫ x+

⊥ (x‖ )M

x−
⊥ (x‖ )M

dx′
⊥

1

(x⊥ − x′
⊥ + ia)2

, (B9)

where [x−
⊥ (x‖)M, x+

⊥ (x‖)M] denotes the intersection of M with the one-dimensional line of fixed x‖ (here for simplicity we have
assumed that the Fermi surface is convex so that this intersection is just a single interval, but this is not essential), and we only
integrate x‖ over the region Md−1 ⊆ Rd−1 such that this intersection is nonempty. Performing the integral over dx⊥ and dx′

⊥
gives

log(x+
⊥ − x−

⊥ + ia) + log(x−
⊥ − x+

⊥ + ia) − 2 log(ia). (B10)

Up to subleading contributions this is just 2 log[(x+
⊥ − x−

⊥ )/a]. Hence, we find

(�QM )2 = 2m

(2π )d+1

∫
dd−1θ |w(θ )|

∫
Md−1

dd−1x‖ log

(
�x⊥(x‖)M

a

)
. (B11)
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Now suppose that our region M is obtained from a region � by rescaling by a factor L. Then we can write Eq. (B11) as

(�QM )2 = 2m

(2π )d+1
Ld−1

∫
dd−1θ |w(θ )|

∫
�d−1

dd−1x‖

[
log L + log

(
�x⊥(x‖)�

a

)]
. (B12)

Hence we find that

(�QM )2 = λ�Ld−1 log L + o(Ld−1 log L), (B13)

with the coefficient

λ� = 2m

(2π )d+1

∫
dd−1θ

∫
�d−1

dd−1x‖|w(θ )|. (B14)

We can recognize this as an equivalent way of writing Eq. (45).
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