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Surface magnon spectra of nodal loop semimetals
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In this paper, we establish a connection between the bulk topological structure and the magnetic properties of
drumhead surface states of nodal loop semimetals. We identify the magnetic characteristics of the surface states
and compute the system’s magnon spectrum by treating electron-electron interactions on a mean-field level. We
draw attention to a subtle connection between a Lifshitz-like transition of the surface states driven by mechanical
distortions and the magnetic characteristics of the system. Our findings may be experimentally verified, e.g., by
spin-polarized electron energy loss spectroscopy of nodal semimetal surfaces.

DOI: 10.1103/PhysRevB.109.035161

I. INTRODUCTION

Due to their unique electronic properties and potential
applications in numerous fields, topological materials have
attracted significant attention [1–6]. These materials possess
nontrivial topological properties that in some cases need be
protected by symmetries, resulting in the existence of robust
surface or edge states. Topological semimetals are a class of
topological materials that have been extensively studied in
recent years [7,8]. Weyl and nodal line semimetals are two
types of topological semimetals that possess distinct surface
states. Weyl semimetals are distinguished by the presence of
Weyl nodes in the bulk band structure, resulting in Fermi
arcs on the surface [7,9]. These Fermi arcs connect the Weyl
node projections and exhibit a variety of fascinating transport
properties. Compared to Weyl semimetals, the stability of a
nodal line generally requires a discrete symmetry [10]. Nodal
line semimetals have been predicted to be present in realistic
materials through the help of ab initio calculations [11]. In
these calculations, however, it was highlighted that in materi-
als where spin-orbit coupling is considerable, nodal lines, in
general, are transformed into Dirac points. Recently a host of
other materials have been proposed to host nodal loops [6]. In
particular, Ca3P2 [12], a material where spin-orbit coupling is
negligible, hosts a remarkably large nodal loop. The general-
ization of nodal semimetals to two-dimensional systems [13]
and to knotted nodal topologies have also been studied [14].
The interest in nodal line semimetals continues to fuel the-
oretical and experimental results. The effect of disorder on
the bulk [15] and on the surface state [16] was recently
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elucidated. Studies of magnetotransport properties of nodal
line semimetals highlighted the connection between the
Lorentz force and the planar magneto Hall effect [17], and
stressed the importance of magnetic field-induced flat bands
on nonlinear transport properties [18]. The observation of
spin-polarized surface states in SnTaS2 samples was reported
recently [19]. Boosting of the thermoelectric effect in thin
films of nodal line semimetals was proposed [20]. Theoretical
aspects of the tunability of the topology of the nodal line itself
were also investigated [21].

Engineering surface and interface magnetism has already
had a tremendous impact on consumer electronics. The gi-
ant magnetoresistance effect underpins a host of data storage
solutions to this day [22]. Exploiting spintronics architectures
incorporating magnetic boundaries promises the realization of
smaller, faster, and more energy efficient classical and quan-
tum devices [23]. Surface magnetism in topological materials
is an intriguing research direction offering opportunities to
realize exotic quantum states of matter. For instance, gap-
ping topological surface states by magnetism is a necessary
ingredient in proposals for realizing Majorana modes [24].
Nodal loop semimetals, just as other topological insulators
and semimetals, have characteristic surface states.

The drumhead states on the surfaces of nodal semimet-
als are dispersionless states associated with the surface
projection of the nodal line structure. Due to their small
kinetic energy, these drumhead states are susceptible to
interactions and thus they can be an ideal platform for super-
conductivity [25,26] or emergent surface magnetism [8,27].
Rhombohedral graphite is a prime example of such a ma-
terial whose interaction-induced magnetic properties have
already been studied theoretically [28,29] and observed ex-
perimentally [30,31]. Exploring the impact of interactions on
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drumhead states further may unlock similar exciting appli-
cations as it has for their counterparts in other topological
materials.

In this paper, we investigate a yet unexplored aspect of
nodal loop semimetals, namely, the surface magnon spec-
trum. In systems where interactions induce magnetism on the
surface, the magnon spectrum yields crucial experimentally
accessible information regarding the surface states and indi-
rectly about the bulk topological properties of the system as
well. We shall focus on a generic description of observable
phenomena associated with the magnon spectrum in our pa-
per. Therefore, we will not use a material-specific model but
rather a simple generic minimal model able to capture the
most important aspects of the considered effects. Our findings
should be relevant for experimental characterization of topo-
logical flat bands arising in nodal semimetals, especially when
the flat bands extend over a considerable portion of the pro-
jected Brillouin zone, for example, as those in Ca3P2 [12,32].

In the next section, we introduce our model and describe
the connection between the bulk nodal loop and drumhead
surface states. Treating electron-electron interaction on a
mean-field level, we obtain the magnetic properties of the sur-
face states. Mapping to an isotropic Heisenberg spin model,
we calculate the magnon spectrum of the system. We high-
light a nuanced connection between the connectivity of the
topological flat band and the magnon energies.

II. THE MODEL

In this section, we introduce the investigated model and
describe the real-space structure and momentum space spec-
trum. The presence of a nodal loop, which is a closed curve
in momentum space, is the key feature of our model. As we
show, the shape of the nodal loop and the flat surface states
stabilized by its presence can be controlled by a parameter
that corresponds to mechanical distortion in an experimental
setting.

A. Real-space structure

We consider a three-dimensional cubic system, spanned by
the mutually perpendicular lattice vectors ai of length a, with
two sublattices (A and B). The real-space structure is depicted
in Fig. 1(a). We take a single spinful orbital degree of freedom
on each site into account. Electrons are allowed to hop from
one site to the other without breaking the sublattice symmetry
characterized by the real-space Hamiltonian:

Ĥ0 =
∑
r,s

δξ t â†
r,sb̂r,s − 2ξ t â†

r,sb̂r+a3,s

− t â†
r,sb̂r+a1,s − t â†

r+a1,sb̂r,s

− t â†
r,sb̂r+a2,s − t â†

r+a2,sb̂r,s + H.c., (1)

where r represents a unit cell of the system, while s is the
spin degree of freedom. The annihilation operator âr,s acts
on sublattice A and spin projection s, b̂r,s acts on sublattice
B. The hopping amplitude t controls the strength of electron
movement between neighboring lattice sites and serves as the
unit of energy for our model. The sublattice symmetry is the
fundamental symmetry of the system which allows for the

FIG. 1. Real-space structure (a) of the considered model. The
two atoms in the unit cell, A and B, are coupled through three types
of hopping procedures. In the lateral direction, spanned by a1 and a2,
a sublattice altering hopping with strength t (denoted by green lines)
is taken into account. In the perpendicular direction, defined by a3,
there is a sublattice altering intra unit cell hopping with magnitude
δξ t (denoted by purple line) and a sublattice altering inter unit cell
hopping with magnitude 2ξ t (denoted by a thick red line) assumed.
Momentum space and high symmetry points in the full and projected
Brillouin zone (b) of the considered model.

emergence of the nodal loop. The first term describes intra unit
cell hopping between the two sublattices, the second term is a
hopping in the perpendicular a3 direction. These two intra and
inter unit cell hopping terms exhibit the same structure as the
one-dimensional Su–Schrieffer–Heeger (SSH) model [33].
The remaining terms correspond to lateral hoppings between
unit cells along the a1 and a2 directions. There are two im-
portant dimensionless parameters in the considered system δ

and ξ . These parameters, as we will illustrate in the follow-
ing subsection, control the shape and size of the nodal loop
and the drumhead surface states. The parameter δ, governing
the relative strength of intra- and intercell hopping along the
a3 direction serves as an internal parameter that mimics a
material-specific property of the system such as particular
matrix elements of the Hamiltonian related to hopping from
one orbital to the other. ξ , multiplies all hopping amplitudes
in the a3 direction, and thus captures the effects of applying
a uniaxial mechanical pressure on the system. The parame-
ter ξ thus represents an experimentally tunable property. We
note that in real materials, uniaxial strain connects distortions
parallel and perpendicular to the strain axis. Thus, a more
realistic description would include additional dimensionless
parameters in the lateral directions as well. Considering these
distortions, however, would unduly proliferate the parameters
of the model without qualitatively impacting the presented
conclusions. As we shall see below, both parameters δ and
ξ have a significant impact on the electronic structure and
magnetic properties of the system.

B. Momentum space structure

As the investigated system is cubic, the corresponding Bril-
louin zone spanned by reciprocal lattice vectors bi will also be
cubic, as depicted in Fig. 1(b). As we will connect the topolog-
ical properties of the bulk to the surface magnetic properties
of a slab with finite thickness, it is instructive to introduce the
projected Brillouin zone with its appropriate high-symmetry
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FIG. 2. The geometry of the nodal loop in the three-dimensional Brillouin zone and the winding number map in the projected Brillouin
zone for various values of δ [(a)–(e)]. Purple shades in the lower plane correspond to winding number ν = 0 while red signals ν = 1. The band
structure of a finite slab with a thickness of 20 unit cells was evaluated on a high symmetry path in the projected Brillouin zone for the same
values of δ as above [(f)-(j)]. In all cases ξ = 1.0.

points, as shown in the figure too. To elucidate the momentum
space structure defined by the kinetic Hamiltonian Eq. (1),
we employ Fourier-transformed operators defined in the usual
manner as

âk,s =
∑

r

eikrâr,s, b̂k,s =
∑

r

eikrb̂r,s, (2)

where k = kxb1 + kyb2 + kzb3 is a wave vector indexing
states in the three-dimensional Brillouin zone. With these, we
can recast Eq. (1) in a form that is diagonal in k as

Ĥ0 =
∑
k,s

(â†
k,s b̂†

k,s)H(k)

(
âk,s

b̂k,s

)
. (3)

Here the matrix elements of H(k) are obtained by collecting
terms after performing Fourier transformation, yielding

H(k) =
⎡
⎣δtz − 2

∑
i=(x,y,z)

ti cos ki

⎤
⎦σx − 2tz sin kzσy

= dδ,ξ (k) · σ, (4)

with tx,y = t , tz = ξ t , and σx,y are Pauli matrices acting on the
sublattice space. We give further detail regarding the deriva-
tion of H(k) in Appendix A. The absence of σz from the
above expression is the fingerprint of the sublattice symmetry
of the model. Three-dimensional Hamiltonians with sublattice
symmetry can be characterized by a winding number [34–36]
associated to the dδ,xi(k) vector for specific paths in momen-
tum space. The system for a given value of kx and ky mimics
the behavior of the SSH model [33]. We calculate this winding
number along kz as we cross the Brillouin zone. For a given

value of kx, ky, δ, and ξ , the winding number is evaluated as

ν(kx, ky, δ, ξ ) =
{

1
∣∣Cδ,ξ (kx, ky)/2ξ t

∣∣ < 1
0

∣∣Cδ,ξ (kx, ky)/2ξ t
∣∣ > 1,

(5)

where we introduce the shorthand Cδ,ξ (kx, ky) = δξ t −
2t cos kx − 2t cos ky. The winding number, which is a bulk
property, signals the presence or absence of topological drum-
head states for slabs. This is a manifestation of the bulk
boundary correspondence [37]. If the winding number is
nonzero for a given set of bulk parameters δ and ξ and wave
vector components kx and ky, then in a slab geometry there
will be a zero-energy surface state present at the correspond-
ing wave vector.

The geometry of the nodal loop, the map of winding num-
ber, and the spectrum of a slab of a finite thickness can be
observed for different values of δ but fixed values of ξ in
Fig. 2, while in Fig. 3 the same is depicted but for fixed values
of δ and changing ξ .

Let us discuss the evolution of the nodal loop and the drum-
head states associated with it as the function of the parameters
δ and ξ .

First, focusing on Fig. 2, that is, keeping ξ = 1.0, we can
observe that, as one decreases δ, a nodal loop first appears
at the � point of the bulk Brillouin zone, then grows in size.
At δ = 2.0, two drastic changes occur. First, the nodal loop
around the � point is enlarged to a point where it coalesces
with nodal loops from the neighboring Brillouin zone effec-
tively transforming itself from a loop around � to a loop
around M. Second, an additional nodal loop is germinated at
the Z point of the bulk Brillouin zone due to a band crossing.
The appearance and evolution of the nodal loops leave an
impression on the winding number maps as well. For larger
values of δ, where only a single loop is present, the region
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FIG. 3. The geometry of the nodal loop in the three-dimensional Brillouin zone, winding number map, and slab band structures as above
for a fixed value of δ = 3.0 and various values of ξ .

with ν = 1 is a simply connected region in the shadow of
the nodal loop. For δ < 2.0, however, the appearance of the
second loop and the coalescence of the original loop causes
a drastic change in the connectivity of the region with a
finite winding number, changing a simply connected region
into a multiply connected one. Let us denote this type of
transition as a connectivity shift. This transition is similar to a
Lifshitz transition, whereby the topology of the Fermi surface
changes. However, in contrast to the case of other systems
with a two-dimensional Brillouin zone, for instance, bilayer
graphene [38,39], in our special case, the Fermi-surface is
also a two-dimensional object. As δ is decreased even further
to δ = 0.0, the area �0 of the region with ν = 1 reaches a
maximum. Let us introduce the ratio r of this area to the total
area of the projected Brillouin zone �BZ as

r = �0

�BZ
. (6)

As expected, due to the bulk boundary correspondence of
topological systems, finite winding numbers herald nondis-
persing zero energy surface states. As one can observe in
Figs. 2(f)–2(j), where the spectrum of a slab with finite
thickness is depicted, the region corresponding to ν = 1 in-
deed harbors drumhead surface states. The spatial localization
of these states follows from their analogy with the SSH
model [33]. Now turning our attention to the parameter ξ

and to Fig. 3. we can see that for a fixed value of δ the
parameter ξ , which mimics mechanical distortions, can also
be used to change the connectivity of the flat portion of the
surface-localized zero energy states. As one decreases ξ , a
band crossing can be engineered at the Z point, introducing
again a second nodal loop, and thus transforming a simply
connected disklike region with ν = 1 into an annuluslike re-
gion. This thus again leads to a connectivity shift.

C. Interactions

In the previous sections, we showed that the presented
model exhibits drumhead surface states. For these states,
which occupy a considerable portion of the projected Bril-
louin zone, the kinetic energy vanishes. Thus, interactions
between charge carriers undoubtedly will have a major role
in influencing their behavior. The simplest of consequences
of interactions might lead to the formation of an ordered
magnetic pattern on the surface of the system. This emergent
magnetism parallels that of the edge magnetization of zigzag
graphene nanoribbons already observed experimentally [40].

We take interactions into account through a Hubbard
term and employ a simple mean-field approach to determine
the ground state of the system. This simple but pragmatic
choice has been successfully employed to characterize two-
dimensional semimetals with a flat band. For instance, the
magnetic phase diagram of the Lieb lattice was explored by
Gouveia and Dias [41]. Temperature and doping-induced in-
stabilities were investigated by Kumar et al. [42]. Nematic
phases were studied on the dice lattice by Dóra et al. [43].
In a joint theoretical and experimental study, the present au-
thors collaborated in an effort to characterize surface states
of rhombohedral graphite employing mean-field approaches
and beyond mean-field tensor network techniques [31]. It was
found that the mean-field approximation yields an appropriate
description of the surface state if the system is magnetic.

The full Hamiltonian Ĥ , including the Hubbard term, for
the electronic degrees of freedom is cast in the form

Ĥ = Ĥ0 + U
∑

i

n̂i,↑n̂i,↓, (7)

where n̂i,s = ĉ†
i,sĉi,s with ĉi,s = âri,s, b̂ri,s. In the present pa-

per, we shall focus on the case of a half-filled system, thus,
in all calculations, the Fermi level EF is set to guarantee
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FIG. 4. Self-consistent band structure for both spin species (a) of
a slab of N = 20 layers after adding the Hubbard term with
U/t = 1.0 to all sites at δ = 3.0 for an antiferromagnetic alignment
of the top and bottom layers. Site magnetization mi (b) of the many-
body ground state obtained after the self-consistent procedure.

this condition. We have to stress here that for magnetism to
arise, the system needs to be in the vicinity of half filling,
otherwise the spin polarization of the surface states vanishes.
This behavior is expected for nodal line semimetals and was
already observed in rhombohedral graphene [31]. However,
we also note that all mechanisms that make the surface states
dispersive, by enhancing its kinetic energy, also will extend
the range of the chemical potential at which magnetism can
be stabilized.

To further proceed, we analyze the system defined by
Eq. (7) on a mean-field level [44]. That is, we obtain an
effective spin-dependent single-particle description of the sys-
tem after a self-consistent procedure. Thus, instead of the
interacting Hamiltonian Eq. (7), we work with the mean-field
Hamiltonian Ĥslab,MF({ni,↑, ni,↓}), which depends explicitly on
the self-consistently obtained occupation numbers ni,s at each
site. We give further details regarding the applied mean-field
method in Appendix B. The results of a mean-field calculation
can be observed in Fig. 4(a), where the spectrum of a slab with
finite thickness is presented. The impact of interactions is the
visible splitting of the zero-energy flat band. The splitting is
due to the local difference of the occupation of the two spin
species on the surfaces of the system. The magnetization mi

on site i is obtained as

mi = (ni,↑ − ni,↓)μB, (8)

where the occupation numbers ni,s are the expectation value
of n̂i,s in the ground state for site i and spin s, while μB is the
Bohr magneton. Figure 4(b) shows the magnetization for each
site in the cross section of a slab of finite thickness. One can
observe that the sites on the very top and bottom carry a con-
siderable portion of the overall magnetization. Magnetization
drops off exponentially towards the bulk of the system with
neighboring layers exhibiting opposite magnetization.

For moderate system thickness where there is still some
overlap between the states localized on the two opposing
surfaces of the system, an antiferromagnetic configuration is
energetically more favorable where the magnetization of the
top layer is reversed as compared to that of the bottom layer,
as can be observed in Fig. 4(b). In these situations, the ground

state of the system possesses an overall spectral gap as can
also be seen in Fig. 4(a). For wide enough slabs though, the
difference in ground-state energy of the parallel and antipar-
allel alignment of the magnetization of the opposing surfaces
vanishes as the two surfaces effectively decouple from each
other.

III. SURFACE MAGNONS

In this section, we are going to analyze the magnetic char-
acteristics of the topmost surface sites of our model. This layer
of sites is characterized at zero temperature by an ordered
ferromagnetic spin configuration. We start by mapping the
localized magnetic moments of the surface, with magnitude
m, to that of an isotropic Heisenberg model. The mapping
will allow us to find the surface magnon spectrum of the sys-
tem. From the magnon spectrum, we extract experimentally
accessible quantities such as the spin-wave stiffness D and the
effective exchange constant J (0). We finish this section by
discussing how these quantities depend on the parameters
of the model. We shall concentrate on possible observable
fingerprints of the connectivity shift discussed in the previous
sections.

The classical Heisenberg model describes coupled classical
magnetic moments at site i with an orientation ei and coupling
constants Ji j through the classical Hamiltonian:

h = −1

2

∑
i, j

Ji jeie j . (9)

For tight-binding-like electronic systems, with a single spinful
orbital on each site, where interactions are taken into ac-
count through a Hubbard term with interaction strength U , on
the mean-field level, the coupling constants appearing in the
above expression can be cast into the rather simple form [45]

Ji j = 2

π

(
mU

μB

)2 ∑
i �= j

∫ EF

−∞
dE Im[G↑

i j (E )G↓
ji(E )]. (10)

In this expression, Gs
i j (ε) are the matrix elements of the

Green’s function Ĝs(ε) for spin channel s and between surface
sites i and j which, in turn, are obtained from the mean-field
Hamiltonian Ĥ s

MF as

Ĝs(E ) = lim
η→0

(
(E + iη)Î − Ĥ s

MF

)−1
. (11)

The Fourier transform of the coupling constants, J (q), can be
cast in terms of an integral over the projected Brillouin zone
for each wave vector q as

J (q) =
∑
j �=0

eiqR j J0 j = 2

π

(
mU

μB

)2

Im
∫ EF

−∞
dεIq(E ), (12)

with

Iq(E ) =
(∑

k

G↑
00(E , k)G↓

00(E , k + q)

)
− G↑

00(E )G↓
00(E ).

(13)
Here Gs

00(E , k) is the surface component of the momentum-
dependent Green’s function for an infinite slab geometry of
finite thickness at momentum k and spin component s.
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As the considered slab system has two-dimensional period-
icity, a natural question regarding the stability of long-range
magnetic order arises. According to the Mermin-Wagner the-
orem [46] there is no finite temperature phase transition for
systems with continuous symmetry in d � 2 dimensions in
the thermodynamic limit. This result has been extended for
layered systems as well [47]. However, recently it was pointed
out that despite the rigorous limitations regarding the sta-
bility of ordered phases in truly infinite systems, realistic
device-sized systems may exhibit magnetic ordering [48]. Ac-
cording to Jenkins et al., short-range isotropic interactions can
stabilize magnetic order at finite temperatures due to finite-
size effects and intrinsic properties of the isotropic exchange
coupling. The coupling constants can be used to define a
temperature scale, often denoted as the mean-field Curie tem-
perature, as TC = J (0)/3kB. This crude approximation for the
transition temperature can be further refined through Monte
Carlo simulations where constituent spins are coupled through
the pairwise exchange couplings Ji j . We shall use J (0), the
effective exchange parameter [49], as a key characteristic
property as well.

The dynamics of spin fluctuations are captured by the
dispersion relation of magnons, which, in turn, for a ferro-
magnetic reference state, is given by

ε(q) = 2μB

m
(J (0) − J (q)). (14)

This spectrum can be measured, for instance, by spin-
polarized electron energy loss spectroscopy [50,51]. For
ferromagnetic systems, the curvature D of the magnon spec-
trum at q = 0 is again an important attribute that is more
commonly referred to as spin-wave stiffness, that is,

ε(q)|q≈0 = Dq2. (15)

In the following, we present and discuss results for the
quantities mentioned above. We put an emphasis on how the
energetics of surface magnons are impacted by the two model
parameters δ and ξ , particularly around a connectivity shift
of the surface flat band. Finite-size scaling shows that as one
increases the number of layers N towards the macroscopic
limit, the identified signatures of the connectivity shift pre-
sented below will manifest precisely at the critical values of
parameters, even for weak interaction strengths. For stronger
interactions, the fingerprints of the transition will occur al-
ready for a moderate number of layers. In the calculations
shown, we considered a slab of thickness N = 20 layers and
an interaction strength of U/t = 1.0, which proved to be a
pragmatic choice to illustrate our main message. As we did
in previous sections, we start our analysis by focusing on the
parameter δ and keeping ξ = 1.0, that is, we consider a system
in the absence of mechanical distortions. The magnon spec-
trum around a high-symmetry path of the projected Brillouin
zone for various values of δ is depicted in Fig. 5. As one can
deduce from the graph, reducing the value of δ increases the
energy of magnons around the � point. A curious observation
can also be made regarding the spectrum for δ = 0.0, namely,
that it vanishes not just at � but also at M. This property,
which would point towards the instability of the ferromagnetic
phase, in general, can be explained in this particular case. In
this instance, the absence of the hopping terms proportional

FIG. 5. Surface magnon spectrum of a slab for different values
of δ with ξ = 1.0.

to δ from the kinetic term Ĥ0 means that the system falls
apart into two interlocked but decoupled subsystems, which
can be oriented parallel or antiparallel with respect to each
other without any energy cost. To further elucidate important
characteristic features of the obtained magnon spectrum, we
plot key properties as a function of δ in Fig. 6. We comment
first on the evolution of r depicted in Fig. 6(a). As the nodal
loop enlarges with decreasing δ, the drum-head surface states
occupy more and more area from the projected Brillouin zone.
However, decreasing δ beyond the connectivity shift at δ =
2.0, the growth of the ratio r, depicted by an orange dashed
line in the figure, suffers a discontinuity. A qualitative obser-
vation regarding the connectivity shift can also be made based
on the evolution of the magnon energies at the high-symmetry
points shown in Fig. 6(b)—a maximum in the vicinity of the
connectivity shift at the M point while a local minimum at
the M point is present. Signatures of the connectivity shift are
also present in the magnetization m, the effective exchange
coupling J (0), and in the stiffness D visualized in Figs. 6(c)–
6(e), respectively. Although somewhat hard to discern these
directly, they are more readily visible through their derivatives
with respect to δ. The derivative of the magnetization ∂δm
jumps, the derivative of the effective coupling ∂δJ (0) shows
a local maximum, while the derivative of the stiffness ∂δD
has a local minimum in the vicinity of the connectivity shift
at δ = 2.0. In an experimental setting, the parameter δ is
typically hard to control, ξ on the other hand is directly linked
to a uniaxial distortion of the sample in the z direction. As we
discussed previously, a connectivity shift occurs for δ = 3.0
if we decrease ξ below the critical 0.8 value, thus examining
the behavior of the above detailed characteristic features for
this case as well might highlight experimentally observable
fingerprints of this transition. In Fig. 7, the magnon dispersion
relation is depicted for distinct values of ξ above, below, and
exactly at the connectivity shift. In the panels of Fig. 8, the
detailed ξ dependence of the characteristic magnon spectral
features is collected. The discontinuity of the evolution of
the ratio r at the connectivity shift is evident, as in this case
r peaks at the transition point. The magnon energies at the
high-symmetry M and X points as well as the magnetization
and the effective exchange coupling show a local maximum in
the vicinity of the connectivity shift, while in the evolution of
the stiffness a considerable decrease in the slope is observable
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FIG. 6. The ratio r and its derivative with respect to δ (a), the
surface magnon spectrum at high symmetry points (b), magnetization
m and its derivative (c), effective exchange parameter J (0) with its
derivative (d), and stiffness constant D with its derivative (e) for
different values of δ at ξ = 1.0. A dashed vertical line at δ = 2.0
signals the connectivity shift.

as ξ increases past the transition point. In this case, it will
also be insightful to evaluate the derivatives, now with respect
to ξ . In all the characteristic properties, there is a clear tran-
sition happening at the connectivity shift in the derivatives.
The derivatives of m and J (0) both drop sharply while the
∂ξ D jumps abruptly at the transition point. We note that the
oscillations present in this quantity at small ξ values are due to
numerical limitations, and as such they should be considered
a computational artifact.

FIG. 7. Surface magnon spectrum of a slab for different values
of ξ with δ = 3.0.

IV. ROLE OF SURFACE RECONSTRUCTION

The role of surface reconstruction in a real material can
significantly affect the surface-specific properties. Surface ter-
mination, especially in the context of thin film or layered
materials, can lead to a considerable change in the local
Hamiltonian compared to the bulk. In this section, we will
explore how surface reconstruction impacts the flatness of the
drumhead states and the resulting magnetism.

As a minimal model for surface reconstruction, we include
a surface-centered lateral hopping that breaks sublattice sym-
metry to our slab calculations. We add to the Hamiltonian of
the considered slab the following term:

Hsurf = t ′ ∑
r,s,i=(1,2)

â†
r,sâr+ai,s + b̂†

r,sb̂r+ai,s + H.c., (16)

where the summation for the unit cell indices r run only for
those unit cells closest to the surface.

This term has a negligible effect on the bulk states, how-
ever, it will have two important consequences regarding the
flat surface states. First, the drumhead states will develop
finite dispersion; second, the half-filling criterion we used so
far will not necessarily keep the Fermi level centered in the
flat band.

We illustrate the impact of a finite t ′ on the flat bands in
Fig. 9. In Fig. 9(a), where we compare the single-particle
spectrum at t ′/t = 0 and t ′/t = 0.05, it is evident that the
initially flat surface bands become rippled. Also, now the
charge neutrality point denoted by dashed lines is shifted from
zero to a finite value. Switching on interactions, as we can
observe in Fig. 9(b), can still gap the surface states leading to
a magnetized surface. However, as we will discuss below, the
half-filling criterion might not favor surface magnetism under
all circumstances.

To further clarify the impact of the surface reconstruction
parameter t ′ on the magnetic properties of the surface, we
calculated the surface magnetization m, effective exchange
parameter J (0), and stiffness constant D as a function of the
parameter δ for finite t ′ values. These characteristic quantities
are depicted in Fig. 10. In Fig. 10(a), we show how the
surface magnetization evolves for finite surface reconstruc-
tion compared to no reconstruction at all. One can observe
that for small values of δ, the surface magnetization at half
filling closely follows the ideal case of a flat band. However,
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FIG. 8. The ratio r (a), surface magnon spectrum at high sym-
metry points (b), magnetization m (c), effective exchange parameter
J (0), (d) and stiffness constant D (e) for different values of ξ with
δ = 3.0. Where appropriate, the right axis shows the scale of the
derivative with respect to ξ . The vertical dashed line at ξ = 0.8 marks
the connectivity shift.

as δ increases, the half-filling criterion sets the Fermi level
further from the flat band. As a result, magnetism begins
to break down, leading to a nonmagnetic ground state. For
t ′/t = 0.05, the breakdown occurs for δ = 3.0; thus, in this
case, the previously detailed effects of the connectivity shift
can still be observed. As is evident from the evolution of the
effective exchange parameter and the stiffness constant, the
distinct signatures of the connectivity shift, especially in the
derivative quantities, closely follow the ideal case. We can

FIG. 9. Single particle spectrum (a) of a slab for δ = 2.5, with
and without surface reconstruction t ′. Dashed lines denote the energy
of half filling. Self-consistent band structure (b) with interaction
strength U/t = 1.0.

observe a clear peak in ∂δJ (0) and a dip in ∂δD at δ = 2.0
for t ′/t = 0.05.

For larger values of t ′, the breakdown occurs for smaller
values of δ, for instance, in the case of t ′/t = 0.1 the break-
down already happens before the connectivity shift. However,
if we relax the strict half-filling condition and adjust the
Fermi level to the center of the flat band, magnetism of the
surface can be restored. Experimentally, this can be achieved
by applying a back gate voltage to sufficiently thin samples,
effectively tuning the electronic filling to a value where mag-
netism is revived [52].

As we show in this section, surface reconstruction effects
indeed play a major role in influencing the magnetic properties
of drumhead states in nodal loop semimetals. Based on our
results, however, we can state that as long as the chemical
potential is appropriately tuned, the effects associated with the
connectivity shift remain observable.

V. SUMMARY

In conclusion, we investigated the magnons associated
with the drumhead surface states in a simple model of a
nodal loop semimetal. The model without interactions ex-
hibits topological flat bands whose shape, and crucially
their connectivity, can be controlled by mechanical distor-
tions. Including interactions on a mean-field level, we show
that magnetization on the surface is stabilized. Employing
a standard Green’s function-based technique we obtained
the dispersion relation of surface magnons. Determining
key, experimentally accessible characteristics of the magnon
spectrum, such as the magnetization, the effective exchange
coupling, and the spin-wave stiffness, we show that the
Lifshitz-like transition of the electronic states can, in prin-
ciple, be observed through the magnetic properties of the
surface.

On the one hand, we emphasize that our presented phe-
nomenological observations would greatly benefit from future
analytic calculations which may shed light on the intricate
interplay of topology, interactions, and magnetism in this
system. On the other hand, our calculations hopefully will
encourage experimental exploration of magnetism on the sur-
face of nodal loop semimetals. For instance, Ca3P2 [12] with
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FIG. 10. Characteristic quantities related to magnetism at the surface: (a) magnetization m, (c) effective exchange parameter J (0), and (e)
stiffness constant D with the derivatives (b), (d), (f) as a function of the parameter δ calculated with ξ = 1.0 for different values of the surface
reconstruction parameter t ′. The effective exchange parameter and the stiffness constant for the case t ′ = 0.05 is only shown till δ = 3.0, since
for larger δ the numerical results become noisy due to the breakdown of surface magnetization.

a relatively large r ratio might be an excellent candidate for
future investigations.
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APPENDIX A: APPLICATION OF FOURIER
TRANSFORMATION

Below we sketch the steps needed to arrive from Eq. (1) to
Eq. (4). Using the inverse relations of the Fourier transform,

âr,s =
∑

k

e−ikrâk,s, b̂r,s =
∑

k

e−ikrb̂k,s, (A1)

and the orthogonality criterion of plane waves,∑
r

ei(k−k′ )r = δk,k′ , (A2)

the intra unit cell hopping terms are rewritten as∑
r,s

â†
r,sb̂r,s + H.c. =

∑
r,s,kk′

â†
k,sb̂k′,se

i(k−k′ )r + H.c.

=
∑
k,s

â†
k,sb̂k,s + H.c.

=
∑
k,s

(â†
k,s b̂†

k,s)

(
0 1
1 0

)(
âk,s

b̂k,s

)

=
∑
k,s

(â†
k,s b̂†

k,s)σx

(
âk,s

b̂k,s

)
. (A3)

The inter unit cell hopping terms can be obtained similarly.
Along the perpendicular directions, we have∑

r,s

â†
r,sb̂r+a3,s + H.c.

=
∑
k,s

(â†
k,s b̂†

k,s)

(
0 e−ikz

eikz 0

)(
âk,s

b̂k,s

)

=
∑
k,s

(â†
k,s b̂†

k,s)[cos(kx )σx + sin(kz)σy]

(
âk,s

b̂k,s

)
, (A4)

while for the lateral a1 direction we arrive at∑
r,s

â†
r,sb̂r+a1,s + â†

r+a1,sb̂r,s + H.c.

=
∑
k,s

(â†
k,s b̂†

k,s)

(
0 eikx + e−ikx

eikx + e−ikx 0

)(
âk,s

b̂k,s

)

=
∑
k,s

(â†
k,s b̂†

k,s)2 cos(kx )σx

(
âk,s

b̂k,s

)
. (A5)

Combining all terms given by Eq. (1) yields Eq. (4).

APPENDIX B: MEAN-FIELD APPROXIMATION

In this Appendix, we briefly summarize the applied self-
consistent procedure used to obtain the mean-field solution.
We closely follow the algorithm outlined in Ref. [44]. To
obtain the surface magnetization, a slab geometry was consid-
ered. To distinguish the planar and perpendicular components
of the real-space coordinates r indexing the electronic degrees
of freedom, we introduce in this Appendix the notation r
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for the planar and the label z = 1 . . . N for the perpendicular
component, where N is the number of layers considered. The
kinetic term of the slab, based on the bulk expression Eq. (1),
can be cast as

Ĥslab,0 =
∑
r,s

⎛
⎝ N∑

z=1

δξ t â†
r,z,sb̂r,z,s −

N−1∑
z=1

2ξ t â†
r,z,sb̂r,z+1,s

− t
N∑

z=1

[â†
r+a1,z,s

b̂r,z,s + â†
r,z,sb̂r+a1,z,s]

− t
N∑

z=1

[â†
r+a2,z,s

b̂r,z,s + â†
r,z,sb̂r+a2,z,s]

⎞
⎠ + H.c.,

(B1)

where âr,z,s (b̂r,z,s) is the annihilation operator of elections on
sublattice A (B), at the lateral position r, layer z and spin
s. We also introduce two-dimensional lateral lattice vectors
a1,2 having the same lateral components as a1,2. Exploiting
the two-dimensional periodicity of the slab geometry, we can
recast the above expression in terms of the two-dimensional
wave number k as

Ĥslab,0 =
∑
k,s

ĉ†
k,sHslab,0(k)ĉk,s, (B2)

with the Fourier-transformed operators

âk,z,s =
∑

r

eikr âr,z,s, b̂k,z,s =
∑

r

eikr b̂r,z,s (B3)

and compound operator ĉr,z,s defined as

ĉ†
k,s = (â†

k,1,s b̂†
k,1,s . . . â†

k,N,s b̂†
k,N,s). (B4)

Introducing the abbreviations

� = δξ t − 2t cos(kx ) − 2t cos(ky),  = −2ξ t, (B5)

the 2N × 2N coefficient matrix Hslab,0(k) is cast in the simple
form

Hslab,0(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 � 0 0
� 0  0
0  0 �

0 0 � 0 . . . 0 0
. . .

. . .  0
0  0 �

0 0 � 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

which highlights, for a given k, the similarity of the considered
model to the SSH chain.

We take interactions into account through a Hubbard term
by considering the Hamiltonian

Ĥslab = Ĥslab,0 + U
∑
r,z

n̂r,z,↑n̂r,z,↓, (B7)

with occupation number operators n̂r,z,s acting on the appro-
priate degrees of freedom. Applying a mean-field approxima-
tion gives us a self-consistent equation for the expectation
values nz,s of the occupations for the degrees of freedom in
the unit cell of the slab. In this paper, we always consider half
filling. Each unit cell of the slab contains N layers with two
sublattices and two spin components, that is, a total of 4N
degrees of freedom. Thus, the occupations are restricted to
obey the relation

∑
z,s nz,s = 2N . The mean-field Hamiltonian

is an effective noninteracting operator

Ĥslab,MF =
∑
k,s

ĉ†
k,sHslab,s(k)ĉk,s, (B8)

where we introduce the spin-dependent Hslab,s matrices as

Hslab,↑(k) = Hslab,0(k) + UD↓,

Hslab,↓(k) = Hslab,0(k) + UD↑, (B9)

where Ds is a diagonal matrix containing the occupations
nz,s of spin projection s. Obtaining the eigenvalues El (k, s)
and eigenvectors φl (k, z, s) of the coupled equations above
allows us to close the self-consistency loop by expressing the
occupation numbers nz,s as

nz,s =
∑

l,k
El (k,s)<EF

|φl (k, z, s)|2, (B10)

where the Fermi energy EF is determined to enforce the half-
filling condition.
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