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Electronic Raman scattering couples to the charge excitations in the system, including the plasmons. However,
the plasmon response has a spectral weight of ∼q2, where q, the momentum transferred by light, is small. In this
paper, we show that in inversion-symmetry broken systems where Rashba type spin-orbit coupling affects the
states at the Fermi energy (which is a known low-energy effect) as well as the transition elements to other states (a
high-energy effect), there is an additional coupling of the plasmons to the Raman vertex, even at zero momentum
transfer, that results in a spectral weight that is proportional to the spin-orbit coupling. The high-energy effect
is due to the breaking of SU(2) spin invariance in the spin-flip transitions to the intermediate state. We present
a theory for this coupling near the resonant regime of Raman scattering and show that in giant Rashba systems
it can dominate over the conventional q2 weighted coupling. We also provide experimental support along with
a symmetry based justification for this spin-mediated coupling by identifying a prominent c-axis plasmon peak
in the fully symmetric A1 channel of the resonant Raman spectrum of the giant Rashba material BiTeI. This
new coupling could lead to ways of manipulating coherent charge excitations in inversion-broken systems. This
process is also relevant for spectroscopic studies in ultrafast spectroscopies, certain driven Floquet systems and
topologically nontrivial phases of matter where strong inversion-breaking spin-orbit coupling plays a role.
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I. INTRODUCTION

Raman scattering has long been used to study charge fluc-
tuations in crystalline systems [1–5]. The most commonly
probed Raman excitations are optical phonon modes in solids
and other vibrational modes of molecules. Electronic Raman
spectroscopy (eRS) that studies the charge dynamics of purely
electronic degrees of freedom is relatively more challenging.
In single band systems, the response is weighted by q2, where
q is the momentum transferred by light scattering and usually
corresponds to the long wavelength (q → 0) regime in solids.
In multiband systems where the response could be viewed
as a sum of independent contributions from each band, the
same problem persists. In the literature this q2 suppression
has been attributed to charge conservation and/or to Coulomb
screening. To overcome the smallness of the response due to
q2, one might turn towards resonant eRS where the incoming
laser light is made to resonate between states at the Fermi level
and those at a higher or lower energy band (see Fig. 1). While
this resonance boosts the overall signal for the electronic exci-
tations near the Fermi surface [4], the strength is still difficult
to detect.

Updating the above description is one of the focuses of
this paper. What is known is that the eRS response from a
spin-degenerate single-band system consists of the incoherent
excitations from the two-particle continuum of particle-hole
(ph) excitations and coherent excitations from a collective
mode, the plasmon, at energies above the ph continuum. Both
these excitations couple to eRS in the fully symmetric chan-
nel (which is captured by the parallel-polarization set-up of

an eRS experiment) and are weighted by q2. This channel
couples to excitations that preserve all the crystal symmetries.
Resonant eRS can amplify signals from both these contribu-
tions [6–8]. In the presence of spin splitting of the bands,
which can be brought about due to the Zeeman effect in an
external field or via the Rashba effect in inversion broken sys-
tems, the interband excitations also couple to eRS, but without
the q2 factor. However, these excitations involve spin flips and
are only accessible in the antisymmetric channel (which is
odd under swapping the incident and scattered polarizations
and can be captured in the cross-polarization set-up of the
experiment) [9]. The response in the fully symmetric channel,
however, is still weighted by q2 even in the presence of spin
splitting.

In this paper we provide evidence for a novel coupling
channel to plasmonic excitations in systems with broken
inversion symmetry. Such systems have large spin-orbit cou-
pling (SOC) of orbital origin, which break the SU(2) spin
invariance. In the presence of such a SOC, there are two
effects that arise: (i) the usual spin splitting in the conduction
band where the Fermi level lies; and (ii) the SOC induced
spin-dependent modification of the interband transitions to
and from the Fermi level to the intermediate states. Earlier
studies on the effects of SOC on collective modes and their
eRS signatures mostly focused on (i) which led to novel
responses in the spin sector in the form of new chiral-spin
waves [9–14], but (ii) was not explored to our knowledge,
which is what we do here. We substantiate our theory with
support from the experimental observation of a prominent
collective mode peak in the polar semiconductor, BiTeI, in
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FIG. 1. (a) The direct and indirect Raman processes. (b) The
response consists of contributions from the direct (Rd ), mixed (Rm),
and indirect (Rid ) bubbles. The blue line indicates propagation in the
intermediate state whereas the black lines are the particle and hole
propagation near the Fermi level.

the fully symmetric channel of the resonant eRS spectrum.
The collective mode frequency and its carrier concentration
dependence ascertain that this mode is the c-axis plasmon of
the system. BiTeI is a giant Rashba material with the SOC
parameter ∼4 eV Å and is about two orders of magnitude
larger [15–17] than those in 2D electron gases in heterostruc-
tures where it is usually induced by gating and/or structural
asymmetry of the interfaces.

In particular, we show that in resonant eRS, the orbital
Rashba SOC between the conduction band states and the inter-
mediate states (a high-energy effect) generates an additional
coupling to the plasmons, or any charge excitations in general,
via a spin-charge susceptibility of the system, which is also
known to be induced (a low-energy effect) due to Rashba SOC
[18]. The spectral weight in this additional channel does not
require q to be finite but is controlled by a factor E2

SOC/E2
F ,

where ESOC is the SOC energy, which is ∼λSOCkF (where
λSOC is the spin-orbit coupling constant with units of veloc-
ity and kF is the Fermi momentum), and EF is the Fermi
energy. In usual semiconductors, this ratio is small (∼10−2)
(see e.g., Table I of Ref. [19]) and hence the effect was likely
never observed. However, in giant Rashba systems including
BiTeI, E2

SOC/E2
F ∼ 1 and thus would have a visible effect. This

high-energy effect is attributed to the breaking of SU(2) spin
invariance in the spin-flip transitions between the Fermi level
and intermediate bands. In fact, with regards to BiTeI, we
argue that the direct observation of a c-axis plasmon in eRS
is made possible due to a momentum-spin locking along the c
axis, which would result in an out-of-plane canting of the spin
states and a c-axis Drude-weight renormalization.

The discussion around coupling of charge fluctuations to
eRS needs some consideration. For this reason, we organize
the text as follows: In Sec. II we summarize the current
understanding of the eRS spectrum involving the charge and
spin degrees of freedom, the q2 suppression, and discuss the
various effects of SOC that have been investigated using eRS.
In Sec. III, for completeness, we review the formulation of
the resonant Raman vertex and arrive at some known results.

In Sec. IV we formulate, on general grounds, the origin of the
non-q2 coupling to the plasmon in SOC systems. In Sec. V
we provide an explicit example (SOC in a Dirac system)
for the high-energy effect demonstrating the presence of the
matrix elements that are responsible for the enhancement of
the plasmon pole due to the spin-charge coupling. In Sec. VI
we discuss the theoretical and experimental results for BiTeI,
present some symmetry considerations, followed by some
other predictions in regards to BiTeI. Finally, we conclude in
Sec. VII where we contemplate the implications of this result
to other systems. In the Appendices we present details of the
derivation of the resonant vertex, computation of the eRS for
various polarizations, and the details of the toy models used
in this paper.

II. ERS FROM CHARGE AND SPIN EXCITATIONS

The electronic response to light can be modeled as a cor-
relation between Raman vertices computed at the momentum
q and frequency � transferred to the system [20]. The Raman
vertices are density-like vertices dressed with factors arising
from the direct (popularly called nonresonant) and indirect
(which can be preresonant or resonant) Raman processes (see
Fig. 1).

(a) The q2 factor. In the nonresonant case, the entire
Raman vertex (with both direct and indirect processes) is ap-
proximated by an effective-mass vertex, which can be reduced
to the usual density vertex but modulated with form factors
consistent with the irreducible representations of the lattice. In
this approximation, if there are poles in the associated corre-
lation function, they manifest themselves as W 2

q /(�2 − �2
q),

where �2
q = v2q2 for acoustic modes and �2

q = �2
0 + O(q2)

for optical modes, with v being the mode velocity, �0 be-
ing the mode mass, and Wq representing the spectral weight.
In the noninteracting case, Wq ∝ �q and thus, the acoustic
modes have a spectral weight ∝ q2. This is why in optical
experiments, where aq � 1 (a being the lattice constant of
the material), acoustic modes do not have noticeable spectral
weights.

In the presence of interactions, the pole at �q is renor-
malized to �∗

q, while Wq could be renormalized differently.
For acoustic modes in charge neutral systems, short range
interactions renormalize v (which is usually related to the
Fermi velocity), thereby changing the correlation function
to q2/(�2 − v∗2q2). This is ultimately what is responsible
for zero sound in liquid He-3 [21,22]. In charged systems,
however, long range interactions in the form of the unscreened
part of the Coulomb interaction are also present, and are typ-
ically accounted for within the random-phase approximation
(RPA) [23]. The Coulomb renormalization due to RPA has
two important consequences for eRS: it affects the Raman
response only in the fully symmetric channel; and it shifts
the acoustic poles to either optical bulk plasmons in 3D or
to “super-acoustic” (�q ∼ q1/2) ones in 2D, without affecting
W 2

q factor, which remains ∝ q2. Thus, the bulk plasmon in 3D
systems, although technically an optical mode, still couples to
the Raman process in the acoustic sense. In some sense, the
plasmon is an acoustic mode that is singularly renormalized
due to the Coulomb interaction. This renormalization is sim-
ilar to the Anderson’s mechanism in superconductors where
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the Goldstone mode expected from the spontaneously broken
symmetry gets lifted to the bulk plasmon [24].

It is sometimes presented that the q2 factor arises from
charge conservation. This association is derived from the fact
that for the fully symmetric channel in the nonresonant limit
the Raman vertex reduces to the density vertex. In this case,
the Raman correlation functions capture the density fluctua-
tions. In the limit of q → 0 and finite � one is then probing
the changes in total density, which is conserved. Hence, the
correlation function and the corresponding response is zero.
This argument also holds in the presence of interactions as
charge conservation is still preserved. However, this argument
cannot be directly extended to the resonant eRS as the Raman
vertex does not reduce to the density vertex. Nevertheless, the
response can still be proportional to q2 as will be shown below.

(b) Finite charge response in eRS. In single band, spin-
degenerate systems, only acoustic modes (which includes
plasmons) are possible and hence {�q,Wq} ∝ q2. However,
if there could be two bands or if the spin degeneracy could
be lifted, the interband transitions would allow for modes
of the form �2

q = �2
0 + O(q2) (along with the two-particle

continuum of incoherent excitations). The eRS spectrum in
such cases would not suffer from the q2 suppression discussed
above. Historically, the eRS observable interband effects
could only be observed in either semiconductors in magnetic
field (transition between Landau levels due to the orbital effect
of the field [25] and between the spin-split bands due to
the Zeeman effect [10]), or in superconductors [26,27] (ex-
citations in the particle-hole symmetric Bogoliubov bands).
Interband excitations in most other materials are usually of
the order of eV, which is beyond the typical energy scales
for the Raman shifts, and hence not observed. Note that the
total charge is still conserved in multiband systems, but we
get a response that is not suppressed by q2 and electronic cor-
relations often play an important role in causing the spectral
weight to be observable. This is already known and under-
stood in multiband superconductors as the Leggett response
[27–30]. Thus, the association of charge conservation and q2-
suppressed eRS is only of significance in single-band systems
(or systems modelled as copies of single band systems) for the
fully symmetric Raman channel.

In this context, it is relevant to discuss the result of
Ref. [31], where there was no consideration of SOC and it
showed that accounting for the resonant processes boosted the
signal from the ph continuum of excitations in addition to the
plasmon. This is relevant as it seemed to explain the results
of experiments (in 1D systems) with two comparable peaks,
where one corresponded to the plasmon and the other was
attributed to the ph excitation [8]. The conventional theory
involving RPA failed to explain the comparable weights of the
ph excitations and the plasmon. While Ref. [31] provided an
explanation for the comparable weights of those excitations,
it is important to note that one needed finite q to get the
response itself as the overall result still has to be proportional
to q2. As we will demonstrate, our results for the eRS in an
inversion-symmetry broken system remains finite even in the
q → 0 limit, and hence it really provides a coupling channel
to the plasmon. It is also relevant to reiterate here that we are
only interested in purely electronic mechanisms to couple to
plasmons. See Ref. [32] that describes other “direct” means

of plasmon observation, which still require aide of phonons or
some incoherent superposition of many q excitations.

(c) Finite spin response in eRS. When one accounts for
the indirect terms in the Raman vertex, one is able to also
couple to the spin-flip excitations in the cross-polarization
set-up of the eRS, creating an effective spin vertex (e.g., in
III-V semiconductors [1,4,5] and perovskite semiconductors
[33]). This effective spin vertex was later reformulated for
a square-lattice Hubbard model wherein it was pointed out
that the indirect Raman processes could be used to extract the
excitations in the antisymmetric channel [34,35] (which only
contained information about the spin-flip excitations in the
system). This property is what allowed the study of spin col-
lective modes in strongly correlated systems (magnons) [20],
in semiconductors (silin mode, at the Larmour frequency, and
other spin-flip excitations) [10–13], in topological insulators
(chiral-spin modes) [14], and in the heavy fermion supercon-
ductor URu2Si2 (chiral density wave) [36–38].

(d) Previous works on the effect of SOC on resonant eRS.
Of the two effects of SOC on eRS discussed in the introduc-
tion, the theory for effect (i) which leads to new collective
mode behavior is well understood [14,18,39–42]. The effect
on resonant eRS has also been investigated theoretically but
only in the context of the usual spin coupling of the Raman
vertex. That is, the models were such that the coupling of light
to the spin vertex was not modified but the spin fluctuations
in the system were [43,44]. In such treatments, the resonant
processes only trivially enhanced the spin susceptibility via
the factor ∼ 1

(�−�I )2+�2 , which was derived for a Kane model
[5,45] for III-V semiconductors in cubic systems. Other stud-
ies that accounted for indirect processes in the eRS were
formulated for graphene (without SOC) theoretically [46,47]
and experimentally [48]. But none of the studies explored the
effect (ii) mentioned in the Introduction.

III. THE RESONANT RAMAN SCATTERING
CROSS SECTION

We shall model the eRS response in equilibrium where the
cross-section per unit solid angle dO per unit scattered energy
d�S is given by [20,34,35,49]

d2σ

dOd�S
= r2

0
�S

�I
[1 + nB(�)]R(�, q), (1)

where r0 is the classical radius of the electron, �I,S are the
frequencies of incident and scattered light with the Raman
shift � = �I − �S , nB(�) is the Bose-Einstein distribution
function, and R(�, q), which has dimensions of density of
states, is computed from the branch cuts of the analytic con-
tinuation of [50]

χ (Q) =
∫ β

0
dτei�mτ 〈Tτ γ̂q(τ )γ̂−q(0)〉, (2)

where Q ≡ (i�m, q) with �m being the bosonic Matsubara
frequency, β = 1/kBT , and γ̂q(τ ) is the Heisenberg evolution
of γ̂q in imaginary time. Specifically, R(�, q) = Imχ (� +
iη, q). Further, γ̂q = ∑

k γ nn′
k ĉ†

n,k+q/2ĉn′,k−q/2, where
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(repeated indices are summed)

γ nn′
k = εI

αγ nn′
αβ (k)εS

β,

γ nn′
αβ (k) = δαβδnn′︸ ︷︷ ︸

direct(d)

+ me

∑
m

( [
jS
β

]
nm

[
jI
α

]
mn′

εn − εm + �I − i�
+

[
jI
α

]
nm

[
jS
β

]
mn′

εn − εm − �S − i�

)
︸ ︷︷ ︸

indirect(id)

. (3)

The ĉ†
n,k, ĉn,k correspond to the creation and annihilation op-

erators for states in band n with momentum k. The direct
and indirect labels refer to the processes shown in Fig. 1,
α, β ∈ {x, y, z} (the spatial components of the polarization
vectors εI and εS). εn are the eigenstates of the system, and the
labels n, n′, m ∈ Hilbert space of the system in the eigenbasis.
� encapsulates the lifetime effects of the intermediate states.
The operator ĵα ≡ 1

e
∂Ĥ
∂Aα

|A=0, where A is the vector potential,1

and me is the effective electron mass for Hamiltonians with
parabolic dispersion and the bare electron mass for those with
linear dispersion (in which case there would also be no direct
term). The two terms in Eq. (3) lead to three types of terms in
R(�, q) [50],

R(�, q) = Rd (�, q) + Rm(�, q) + Rid (�, q), (4)

where Rd (�, q) is the contribution from the correlations be-
tween the direct processes (∼〈γdγd〉), Rm(�, q) is the mixed
contribution ∼〈γdγid〉, and Rid (�, q) is from 〈γidγid〉.

Note. The nonresonant contribution arises from both direct
and indirect processes while the resonant contribution arises
only from indirect processes. In a field theory sense, the
contributions from indirect processes can be further classified
into on-shell and off-shell contributions. The former refers to
transitions between the real energy states of the system, while
the latter are virtual processes. These virtual processes could
be interband or intraband in nature. In the absence of any
on-shell contributions, the effects of off-shell contributions
become relevant (see e.g., [46,47,50] where such terms were
considered in nonsemiconducting systems). In resonant eRS
one usually focuses on the on-shell contributions. We refer
the reader to Appendix A for a more thorough discussion.

In this paper, we focus on the on-shell contribution from
the Rid term. This is formally achieved by approximat-

ing γ nn′
αβ ≈ me

∑
m

[ jS
β ]nm[ jI

α ]mn′
εn−εm+�I −i� + [ jI

α ]nm[ jS
β ]mn′

εn−εm−�S−i� . The electronic
structure is usually such that resonance is only possible in
either the term containing �I (resonance with bands above
Fermi level) or the one containing �S (resonance with bands
below). Without loss of generality, we retain the former (with
�I ). Further, if the gap Eg between the Fermi surface states
and those in the intermediate band is large, the dispersion of
the intermediate states around the kF wavevectors could be

1Note that this derivative is carried out not in the eigenbasis, but
in the basis where the A is covariantly introduced to the system.
At the level of the tight-binding model, this is usually done via
Peierl’s substitution. It can also be done by k → k + eA in effective
Hamiltonians. It is not guaranteed that the different prescriptions
would agree.

ignored. We can then write γ nn′
αβ ≈ me

∑
m

[ jS
β ]nm[ jI

α ]mn′
�I −Eg−i� . In this

approximation,

χ (Q) ≈ −�αβ;γ δ (Q)εI
αεS∗

β εI∗
γ εS

δ ,

�αβ;γ δ (Q) ≡
∫

K
Tr[γ̂αβ (k)ĜK γ̂γ δ (k)ĜK+Q], (5)

where K ≡ (iωn, k) with ωn being the fermionic Matsubara
frequency, and

∫
K ≡ T

∑
n

∫
k. The hat represents a matrix

structure in the subspace containing only the Fermi surface
states, and ĜK represents the Green’s function in the same
subspace. Note that the transition operators ĵα are defined in
the Hilbert space made of both the Fermi surface states and the
intermediate states. However, the resonance condition allows
us to pick the dominant contributions, which effectively fac-
tor out the Hilbert subspace associated with the intermediate
states from those at the Fermi level. The steps demonstrating
this are detailed in Appendix B.

a. Interaction renormalization. In general, interactions
renormalize the three terms Rd,m,id differently, and the renor-
malization also varies with the choice of polarizations of
the incoming and scattered light. Furthermore, the short-
range part of the interaction predominantly leads to vertex
corrections (which are captured in the ladder approxima-
tion in a diagrammatic approach), while the long-range
part due to the unscreened part of Coulomb interaction
leads to additional contributions, which are captured via
the random-phase-approximation (RPA) (see Fig. 2). This

=

=

+

+

+

K K

K K

K K K

KKK

K+Q K+Q

K+Q

K+Q K+Q K+Q

K+Q K+Q K+Q

-Vq

K+Q

FIG. 2. Renormalization from the unscreened Coulomb interac-
tion Vq in the RPA scheme. The shaded yellow bubbles indicate
vertex corrections, which are ignored in this work. The doubled line
is the RPA-renormalized Coulomb interaction.
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leads to

�αβ;γ δ (Q) = �V
αβ;γ δ (Q) + �V

αβ;0(Q)Vq�
V
0;γ δ (Q)

1 − Vq�
V
00(Q)

, (6)

where �V denotes the vertex corrected form of the bare �

(which are described below), and Vq = e2/ε0q2 (the Fourier
transform of the Coulomb interaction in 3D). �V leads to
either spin collective modes [18] or other acoustic modes. If
we wish to focus on the plasmons, we can drop the vertex
corrections in all the terms in Eq. (6), and can identify the
various �′s as

�αβ;0(Q) =
∫

K
Tr[γ̂αβĜ(K )σ̂0Ĝ(K + Q)],

�0,αβ (Q) =
∫

K
Tr[σ̂0Ĝ(K )γ̂αβĜ(K + Q)],

�i j (Q) =
∫

K
Tr[σ̂iĜ(K )σ̂ j Ĝ(K + Q)], (7)

where σ̂1,2,3 are the spin vertices and σ̂0 is the Coulomb vertex
in the reduced Hilbert space of states at the Fermi surface.
�i j (Q) is usually referred to as the generalized susceptibility
of a system. The denominator in Eq. (6) is the same one that
appears in the renormalization of the charge susceptibility and
contains the plasmon pole of the system. Note that the plas-
mon pole couples to the Raman response via �V

αβ;0 and �V
0;γ δ ,

which are sensitive to the choice of polarization vectors of
the eRS experiment. Since we wish to work with frequencies
close to the plasmon pole, we could further write

�αβ;γ δ (Q) ≈ �αβ;0(Q)Vq�0;γ δ (Q)

1 − Vq�00(Q)
,

= e2

ε0q2

�αβ;0(Q)�0;γ δ (Q)

1 + �2
pl

�2
m

, (8)

where the plasma frequency is given by �2
pl = e2νF v2

F /3ε0.
In semiconductors the ε0 should be replaced by ε∞ to account
for the background charges. Here we have used the fact that
�00(Q) = −νF v2

F q2/3�2
m, where νF is the density of states at

the Fermi level and vF is the Fermi velocity (which are to be
seen as Fermi surface averages in anisotropic systems).

b. Known results. For the plasmon pole to show up in the
response, one needs �αβ;0 and �0;γ δ to be nonzero. Diagram-
matically, this object is a bubble with the αβ vertex on one
side and the charged vertex on the other. We may call this
the polarization-charge bubble. This is a central object in our
calculations and is composed of (see Fig. 3) three propagators:
the first one reflects propagation in the intermediate state after
the photon excitation, while the other two reflect the propaga-
tion of the created particle-hole pair at the Fermi level after
photon emission. This bubble is unique to the contribution in
the symmetric channel of eRS. We summarize the computa-
tion of this bubble in Appendix C but the end result is that

�αβ;0(Q) ≈ meFβα
i �i0(Q)

�I − Eg − i�
, (9)

where i ∈ {0, 1, 2, 3}, and Fβα
i is a polarization factor

that couples the charge-charge (i = 0) and spin-charge
(i = 1, 2, 3) susceptibilities to the Raman vertex and has units

X

X

Without SOC

X

X

With only atomic SOC

X

X

With Rashba SOC

FIG. 3. Schematic view of the polarization-charge bubble, which
represents the final state renormalizations by particle-hole propaga-
tion near the Fermi level in the fully symmetric channel of eRS. In
the cases without SOC and with atomic SOC the final state is dressed
by the usual charge-like bubble (black propagators) with a weight
of q2. Broken inversion contributes additional spin-flip processes (as
yellow vertices and propagators) that provide a stronger coupling to
the plasmons in the fully symmetric channel.

of v2
F . It is easy to show that �0;γ δ (Q), within the same

approximations, has i� → −i�. The computation of the po-
larization factor is sensitive to the choice of polarizations of
light and is central to our problem. In the parallel polarization
set-up, αβ = XX (or YY ), and FXX

0 �= 0, while FXX
i = 0 for

i ∈ {1, 2, 3}. Thus, the charge-charge susceptibility [�00(Q)],
which is renormalized by the unscreened Coulomb interac-
tion, is picked up in the parallel polarization set-up. On the
other hand, for a cross-polarization set-up where αβ = XY ,
we have FXY

0 = 0, while some of FXY
i �= 0 for i ∈ {1, 2, 3}.

Thus, the cross-polarization set-up couples to the spin-charge
susceptibility of the system. The XY set-up can also couple to
the spin-spin susceptibility in the non-RPA channel via vertex
corrections, but those diagrams are presently not in consid-
eration and have been a subject of previous studies [43,44].
Further, the spin-charge susceptibility itself is zero when there
is spin-charge separation. This is why we can usually only
couple to the charge-charge susceptibility [�00(Q)] in the XX
set-up leading to the conventional result,

�αα;αα (Q) = v2
F q2

�2
m + �2

pl

νF
(
meFαα

0

)2

(�I − Eg)2 + �2
, (10)

where α could be X or Y. The circular polarizations of eRS can
be constructed out of polarization vectors εX ± iεY . Despite
the enhancement from the interband resonance, the plasmon
pole in parallel polarization setup is still weighted by q2.

If we were to account for spin-splitting of the Fermi surface
states either due to the Zeeman effect or due to the Rashba ef-
fect, the charge susceptibility would still be ∼q2 [18] and thus
would not really affect the result in Eq. (10). The presence of
Rashba SOC, however, modifies the spin-charge susceptibility
and F in a characteristic manner. Formulating this is the sub-
ject of the next section. This modification will not be present
when the spin splitting is induced by the Zeeman effect.
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IV. NOVEL EFFECT DUE TO SOC

It is clear from Eq. (8) that the plasmon coupling to the
Raman vertex is controlled by the polarization-charge bub-
ble �αβ;0(Q), which near resonance can be approximated by
Eq. (9). Thus, the computation of the polarization factors and
the generalized susceptibilities is crucial. From Appendix C
we learn that the term jβ jα in the Raman vertex [Eq. (3)] is
only evaluated between states where the Fermi level lies (say
the v states) and intermediate states (say the c states), and can
be expressed, on general grounds, as

[ jβ,vc jα,cv] = Fβα
i (k)σ̂i. (11)

This is where the polarization factors are introduced. It will be
more instructive to actually arrive at this form by modeling the
matrix elements of the transition elements jα,cv themselves.
Without loss of generality, we can say

ĵα,cv = pα
0 σ̂0 + pα

1 σ̂1 + pα
2 σ̂2 + pα

3 σ̂3, (12)

where pα
0 corresponds to the average of the two spin nonflip

transitions, pα
3 corresponds to the differences in the two spin

nonflip transitions, pα
1 and pα

2 correspond to the average and
difference of the spin-flip transitions. This leads to

ĵβ,vc ĵα,cv

= (
pβ

0 pα
0 + �pβ · �pα︸ ︷︷ ︸

F0

)
σ̂0 + ( [

pβ

0 �pα + pα
0 �pβ

] + i �pβ × �pα︸ ︷︷ ︸
�F

) · �̂σ

= Fβα

0 σ̂0 + Fβα

1 σ̂1 + Fβα

2 σ̂2 + Fβα

3 σ̂3

≡ Fβα
i σ̂i. (13)

In systems with inversion and time-reversal symmetry,
parity is conserved and the SU(2) invariance of the spins is
maintained, which leads to the transition elements being such
that either only pα

0 is present (when there is no atomic SOC
splitting), or only pα

1,2,3 are present and equal (in the presence

of atomic SOC splitting). This means that Fβα

0 = pβ

0 pα
0 or

�pβ · �pα , and Fβα
i = i �pβ × �pα . Observe that if α = β only F0

component contributes and couples the Raman vertex to the
charge-charge susceptibility of the system near resonance.
Whereas if α �= β, then Fi components are nonzero and cou-
ples the Raman vertex to the spin-charge susceptibilities of
the system. However, in systems with inversion, these sus-
ceptibilities are zero and the plasmon pole can only couple
to the Raman vertex through the F0 factor and hence the
charge-charge susceptibility, leading to Eq. (10).

In inversion-broken systems, parity is broken, which re-
sults in the following changes: (a) SU(2) invariance is broken,
which no longer constraints pα

0 and pα
i as it did in the conven-

tional case; (b) it allows for the coupling of spin and charge
degrees of freedom, which makes the spin-charge susceptibil-
ities nonzero. The effect (a) leads to the important result that
Fβα

i now is no longer just the cross product of the �p factors
but also contains the p0 �p terms as in Eq. (13). This means
that if α = β and the cross product vanishes, there is still a
contribution from the mixing of the p0 and pi terms, which
was prevented when SU(2) invariance was preserved. This is
an effect that happens at large energy scales. The effect (b) is a
low-energy effect that was explicitly shown in a 2D metal with

Rashba type SOC [18] and is expected to hold in general. In
fact, for a system with a spin-orbit velocity of λSOC, the form
is expected to be �i0(Q) ≈ νF λSOCq/�m for i ∈ {1, 2, 3} (the
form for �00 is still q2/�2

m). These two effects lead to the fact
that an effective spin vertex is created in the parallel polariza-
tion geometry, which couples to the spin-charge susceptibility
of the system, which is also rendered nonzero due to SOC.

Plugging the form for �i0 we just discussed into Eq. (8) we
get

�αβ;γ δ (Q) ≈ e2

ε0q2

m2
e

1 + �2
pl

�2
m

Fβα
i �i0(Q)F δγ

j � j0(Q)

(�I − Eg)2 + �2

XX−→ λ2
SOC

v2
F︸ ︷︷ ︸

SOC effect

�2
pl

�2
m + �2

pl︸ ︷︷ ︸
plasmon pole

νF
(
meFXX

0

)2

(Eg − �I )2 + �2︸ ︷︷ ︸
Res. enhancement

+ O
(

v2
F q2

�2
m + �2

pl

)
. (14)

The regular q2 weighted plasmon pole that arises from �00 ∼
q2 contribution is still present, but appears as a correction to
the SOC induced term. Comparing Eqs. (10) and (14) we
see that the ratio of the SOC induced term to the regular
q2-weighted term is ∼[λSOC�pl/v

2
F q]2 ≡ r2. This is the main

result of this article. Thus, if we want the SOC induced re-
sponse to dominate we would need to increase r. In usual
semiconductors (used in heterostructure quantum wells) we
have vF ∼ 104 − 105 m/s, λSOC ∼ 103 m/s for the Rashba
parameters of about 10 meV Å and �pl ∼ 100 meV [51].
These numbers lead to λSOC/vF ∼ 10−2, and vF q ∼ 0.1 −
1 meV (where q is the wavenumber of light). This leads to
r ∼ 1–10. However, for giant Rashba systems λSOC/vF ∼ 1
leading to r ∼ 100. Since the response is ∝ r2 one can have
up to four orders of magnitude increase in the effect. It should
be asserted that the coupling to the spin-charge susceptibility
is a general result that is a consequence of inversion breaking
SOC, but the particular form of the eRS response in the above
form is valid only near the plasmon pole.

Note that to get this effect, it is important to have a
spin-dependent correction to the transition elements jcv . It is
not sufficient to have spin-splitting in the intermediate states
and the Fermi surface states. The SOC-based modification of
jcv is expected in the presence of inversion breaking SOC
of the Rashba type that couples spin and momentum. This
spin-momentum coupling is essential because the transition
element is proportional to the interband component of the
current operator. A spin structure to the current operator can
only be introduced in the presence of Rashba type SOC.
Zeeman-like spin splitting will not achieve this. In fact, in
the next section, we demonstrate this precisely for a simple
toy model. Finally, we note that a Rashba coupling can also
be externally introduced by gating 2D systems. But this ef-
fect usually manifests itself in the Rashba coupling of the
quasiparticles at the Fermi surface. The intermediate states are
unlikely to get coupled to the Fermi surface states. However,
in the orbital Rashba systems, the Rashba coupling emerges
from the inversion breaking in the unit cell and thus couples
multiple bands.
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V. TOY MODEL DEMONSTRATING THE HIGH-ENERGY
EFFECT: SPIN SENSITIVITY OF THE

TRANSITION ELEMENT

We now demonstrate a case where the proposed structure
of Fαβ

i is induced due to Rashba type SOC. Consider the
Dirac system: a hypothetical model of doped graphene on a
transition metal dichalcogenide such that the chemical poten-
tial is in one of the valence bands. The Hamiltonian is given
by

Ĥ = vF (τzŝ0σ̂xkx + ŝ0σ̂yky) + �ŝ0σ̂z

+ �R

2
(τzŝyσ̂x − ŝxσ̂y) + �Z

2
τzŝzσ̂0, (15)

where � is the charge gap, �R is the Rashba SOC energy
and �Z is the valley Zeeman SOC energy [52–54], ŝ, σ̂ are
the spin and sublattice matrices, and τz = ±1 marks the val-
ley index. This Hamiltonian is written in the sublattice basis
{a↑, a↓, b↑, b↓}, where a, b represent the two atoms of the
unit cell. We refer to this as hypothetical because �, in real
graphene, is too small to resonate with visible light. However,
we can artificially let � ∼ frequency of visible light. We
choose this model for it’s analytical tractability and the fact
that it allows for dipole-active transitions between the two
bands with intraband and interband spin splitting. Finally,
since we will be interested in the resonant terms, the analysis
will not be affected by the lack of the direct process in Dirac
systems.

Let us first ignore the valley Zeeman coupling (�Z = 0).
In the resulting Hamiltonian we can perform k → k + eA,
which leads to the definition of current to be ĵ = vF τzŝ0σ̂ in
the a-b basis. To proceed with our calculations, we need to
move into the eigenbasis denoted by {c↑, c↓, v↑, v↓}. How-
ever, instead of solving the problem exactly, it is sufficient to
tackle the problem perturbatively in �R. Upon transforming
j to the eigenbasis, we show in Appendix D that ĵ acquires a
spin dependence in the interband sector.

To get an intuitive understanding of how this dependence
arises, consider an intermediate basis where there is no SOC.
This basis was used in Ref. [55]. In this basis the Hamiltonian
(with SOC) takes the form

H =
(

Hcc Hcv

Hvc Hvv

)
, (16)

where

Hcc = ŝ0ξk + �RvF

2ξk
(k × ŝ) · ẑ,

Hvv = −ŝ0ξk − �RvF

2ξk
(k × ŝ) · ẑ,

Hcv = �R

2

(
iξkkx − �ky

kξk
ŝx + iξkky + �kx

kξk
ŝy

)
,

Hvc = −�R

2

(
iξkkx + �ky

kξk
ŝx + iξkky − �kx

kξk
ŝy

)
. (17)

Here ξk =
√

v2
F k2 + �2. In the absence of �R, H is block

diagonal. �R induces a correction to the diagonal terms,
which results in the usual intraband Rashba SOC (which
leads to the modification of the low-energy behavior) and also

induces block-off-diagonal terms (Hcv, Hvc), which leads to
an interband Rashba SOC (this is what we call the high-
energy effect). In this model, both interband and intraband
Rashba couplings are the same �R. However, when we allow
for renormalizations from interactions and other higher order
interband processes, the interband �R will be renormalized
differently from the intraband �R. To reflect this, we shall use
�R to denote the intraband Rashba coupling and δR to denote
the interband coupling. This changes the prefactors of Hcv and
Hvc to δR. Because of Hcv,vc, which is k and spin dependent,
the resulting dipole transition element (the interband current
operator) also acquires spin dependence. This coupling does
not arise for a Zeeman effect and hence Rashba type SOC is
essential to get this effect.

Returning back to the eigenbasis, the current operator can
be computed to leading order in SOC (both �R and δR) as

ĵ =
(

Ĵcc Ĵcv

Ĵvc Ĵvv

)
.

The explicit forms of the J ′s are listed in Appendix D. We
can then use Eq. (13) to infer that (to linear order in {�R, δR})

FXX
0

v2
F

= FYY
0

v2
F

= v2
F k2 + 2�2

2ξ 2
k

,
FXY

0

v2
F

= iτz�

ξk
;

FXX
3

v2
F

= FYY
3

v2
F

= −vF k�2δR

2ξ 4
k

,
FXY

3

v2
F

= −iτzvF k�δR

2ξ 3
k

,

(18)

and k will ultimately be restricted to the Fermi surface. Notice
that if δR → 0, then only F0 survives, which couples the
Raman vertex to the charge-charge susceptibility leading to
the conventional result. However, in the presence of δR, only
the contribution (upon summing over valleys) from FXX

3 and
FYY

3 survive but not from FXY
3 , indicating that this SOC in-

duced contribution is only present in the XX/YY set up, but
not in the XY set-up. To estimate the size of this high-energy
effect, note that k → kF and that the SOC induced F ′

i s are
∼EF �δR/[max(EF ,�)]3. In semiconductors, EF < �, and
hence Fi ∼ EF δR/�2.

Next, if we now only consider the valley Zeeman term
(�R = 0, �Z �= 0), we note that Hcv,vc = 0 (Appendix D).
This leads to Jcv,vc = 0. Since there is no spin-dependent
modification of the j operators in the interband sector, we triv-
ially get that Fβα

0 are unchanged (as expected), and Fβα
i = 0

for i ∈ {1, 2, 3}, indicating that the plasmon pole would not
couple to the Raman vertex. These explicit calculations of
the spectrum in the two scenarios with �R = 0 and �Z = 0
validate the assertions made in Sec. IV. While we have explic-
itly demonstrated that Rashba SOC leads to a spin-flip vertex
in parallel polarization (and hence in the fully symmetric
channel of the eRS), in this specific example of the 2D Dirac
system, Fβα

3 was found to be nonzero. This means that the
appropriate susceptibility that couples to the resonant Raman
vertex is �30. In a strict 2D Dirac system, this component of
the spin-charge susceptibility is zero unless a second layer (or
multiple layers) is included. The physics of inducing a spin-
flip vertex does not change, but the spin-charge susceptibility
along the c-axis can now be probed. This motivates the study
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of a 3D system with large Rashba SOC. This is precisely what
we do next.

VI. RESONANT ERS IN BiTeI

We begin with a theoretical analysis for BiTeI, which has
one of the largest known bulk Rashba coupling factors of any
metallic system with the Rashba parameter αR estimated to be
in the range ≈3.7eV Å to 4.0eV Å [15,18,56–58], satisfying
the requirements of the first factor in Eq. (14). To investigate
the plasmon coupling, we need to evaluate �αβ;γ δ (Q). As
noted in the previous section, the form of Jcv is essential
for the effect of interest. To compute the transition elements
in BiTeI, one needs knowledge of the wavefunctions of the
intermediate states. Although there is no model that provides
information about the higher energy states, there exists an
effective low-energy model for the conduction band electrons.
We can proceed to model the intermediate states phenomeno-
logically.

Consider the following low-energy continuum model for
BiTeI:

Ĥ =
(

k2
1 + k2

2

2m1
+ k2

3

2m3

)
σ̂0 + αR(�σ × �k)3 + λσ̂3k3, (19)

where m1 and m3 are the in-plane and out-of-plane masses,
αR is the in-plane Rashba SOC in BiTeI, and λ is a SOC for
the out-of-plane direction. Here 1,2 refer to the x, y axes, and
3 refers to the z axis. This model, without the λ term, was
previously used to study possible spin-collective modes [18];
however, this resulted in the expectation value of the spin for
its eigenstates being strictly in-plane. The λ term is added2

to account for the canting of the spins in the z direction as
computed in Ref. [59]. The Matsubara Green’s function for
the noninteracting system is then given by

ĜK (iωm) =
∑
s=±

1

iωm − εs
k + μ

�̂s
k,

�̂s
k ≡ 1

2

[
σ̂0 + s

(
σ̂1

αRk2

Dk
− σ̂2

αRk1

Dk
+ σ̂3

λk3

Dk

)]
(20)

where Dk =
√

α2
Rk2

|| + λ2k2
3 , k2

|| = k2
1 + k2

2 , and ε±
k = k2

||
2m1

+
k2

3
2m3

± Dk .

Using ĜK (iωm), we can compute �i0(Q) using Eq. (7) as
(we have carried out the Matsubara sums)

�i0(Q) =
∑

s,s′=±

∫
k
N i

s,s′

[
nF

(
εs

k

) − nF
(
εs′

k+q

)
i�m + εs

k − εs′
k+q

]
,

N i
s,s′ ≡ Tr

[
σi �̂

s
kσ0�̂

s′
k+q

]
, (21)

2The correct form of this term is of the type λ̄k3 f (k2
1 , k2

2 ) such that
along the �-A line of the Brillouin zone there is no SOC splitting.
However, due to the chemical potential lying below the Dirac point,
the Fermi surface has a donut topology, so that we will always be
dealing with states away from the �-A line. We absorb all such
dependency into a constant λ. What is essential is that it needs to
be odd in k3 and even in other momenta.

where nF (ε) is the Fermi distribution function. For BiTeI,
we cannot compute Fβα

i as we do not have the information
about ĵ. However, from Secs. IV and V we know that in the
presence of orbital Rashba SOC, a spin dependence arises
in the interband transition elements such that FXX

i �= 0. This
leads to the coupling to the susceptibilities �i0. In line with
known experiments in BiTeI [32], we restrict the chemical
potential (μ) to lie in the lower band ε−

k and the momentum
transfer from the light to the z direction. Next, we need �′

i0s to
leading order in q3. Evaluating this we get (see Appendix E)

�10(Q) = �20(Q) = 0

�30(Q) = −λq3

∫
k

[−∂εnF (ε−)]

Dk

k3∂k3ε
−

i�m

+ α2λq3

∫
k

[nF (ε+) − nF (ε−)]

D3
k

i�mk2
‖

�2
m + 4D2

k

.

(22)

As ascertained in Sec. IV, the spin-charge susceptibility
�30 ∝ λq3. These can now be plugged into Eq. (9) to get

�αβ;0(Q) ≈
√

mαmβFβα
i �i0(Q)

�I − Eg − i�

=
√

mαmβFβα

3 �30(Q)

�I − Eg − i�
. (23)

Here mα refers to the mass in the α direction. Since our
polarizations will be in plane, mα = mβ = m1. This leads to

�αβ;βα (Q) ≈ e2

ε∞q2

�2
30(Q)

(�I − Eg)2 + �2

(
m1Fβα

3

)2

1 − Vq�00(Q)
,

q=q3 ẑ−−−→ e2

ε∞q2
3

�2
30(Q)

(�I − Eg)2 + �2

(
m1Fβα

3

)2

1 − Vq�00(Q)
,

(24)

where �00(Q) is calculated as (see Appendix E)

�00(Q) = q2
3

∫
k
[−∂εnF (ε−)]

(∂k3ε
−)2

−�2
m

+ λ2q2
3

∫
k

[nF (ε+) − nF (ε−)]

D3
k

α2k2
‖

�2
m + 4D2

k

. (25)

As expected, it is ∝ q2
3, which counters the q2

3 from Vq. Fur-
ther, the q2

3 in the denominator of Eq. (24) is also countered
by the q2

3 in �2
30, leading to a finite response even if q3 → 0.

Observe that, and this is expected from the results discussed
in Sec. V, the result is proportional to the SOC component
λ, which accounts for canting of the spins out-of-plane. This
is necessary to couple the spin degree of freedom to the q3

dispersion. Had we chosen to work with an in-plane momen-
tum (q1 or q2) then we would not need this canting effect
(see Appendix E). However, we will be interested in the q3

component as this is the scenario that will correspond to the
eRS setup we will use to study BiTeI where the momentum
transferred by light will be along the c axis.

To calculate the location of the plasmon pole itself we
would need the solution to the equation Vq�00(Q) = 1, which
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is the condition for zero of the denominator of Eq. (8). This is
computed in Appendix F and the result in real frequencies is

�2
pl = �2

0
m∗

1√
m∗

3

fpl(α̃, λ̃), (26)

where �2
0 ≡ n0e2/m0ε∞ with n0 ≡ (2m0|μ|)3/2

6π2 being the num-
ber density of single spin parabolic electrons with a chemical
potential |μ|; m∗

1 ≡ m1/m0, m∗
3 ≡ m3/m0 (with m0 being

the bare electron mass); and fpl is a dimensionless func-
tion of dimensionless variables α̃ ≡ αR

√
2m1/|μ| and λ̃ ≡

λ
√

2m3/|μ|, such that in the limit α̃ → 0, λ̃ → 0, we get
fpl → 1.

The function fpl only weakly depends on � and hence
can be treated as � independent for the estimation of the
plasma frequency. The full numerical calculation that we use
shortly will find the true pole in the eRS response function.
However, as is clear from Eq. (25), the function fpl consists of
interband spin-flip transitions between the Rashba subbands
with weight ∝ λ2q2

3. Consequently, this leads to a continuum
of spin-flip excitations with the same weight. This means
that the plasmon that would result in the q3 direction would
likely be damped by this continuum of spin-flip excitations.
This is certainly not new. Even in 2DEG, the 2D plasmon
is damped by the spin-flip continuum [60]. But this was the
plasmon that dispersed in the plane. The same remained true
in the 3D-in-plane plasmon that was considered in Ref. [18]
(also a model for BiTeI). In that paper, however, the canting
effect was not modelled and this led to the fact that the c-axis
plasmon was neither renormalized by SOC, nor affected by
the spin-flip continuum. What is new here is that in general
for a system belonging to a polar group, the 3-component of
spin can couple to the 3-component of momentum leading to
the c-axis plasmon being renormalized by SOC and also be
damped by the continuum. This is what is accounted for by
the λ term in the model considered above.

A. Resonant eRS experiment

To test our theoretical analysis of BiTeI we took Raman
measurements of an electronic collective mode in the fully
symmetric channel under the following conditions. The inci-
dent light enters the samples parallel to the z axis of the crystal
with light polarized along the optically equivalent x and y
axes. The single crystals of BiTeI that were grown using the
vertical Bridgman technique had concentrations of elemental
I sufficient to ensure the chemical potential lay below the
Dirac point (for characterization details, see [32]). The Raman
spectra were taken in multiple polarization geometries to per-
form algebraic decomposition of the spectra into the different
symmetry channels. Calculations of the Raman spectra used a
model band structure of BiTeI shown in Fig. 4.

In Fig. 5(a), we show the collected eRS spectrum in the
symmetric channel for temperatures ranging from 10 K to
300 K around Raman shifts near the collective mode energy
of ≈74 meV. In Fig. 5(b), we plot the calculated temperature
dependence of the eRS for the XX polarization for the follow-
ing choice of parameters that are within the ranges reported in
the literature: αR = 3.82 eV Å [15,18,56–58], λ = 0.35 eV Å,
m1 = 0.14 m0 [18,57], m3 = 0.91 m0 [61], ε∞ = 11.9 ε0 [62].

0.0 0.1
0.0

0.5

1.0

1.5

2.0

ε k
[e

V
]

k|| [Å-1]

~1.8eV

FIG. 4. (a) Low-energy (where the chemical potential [dashed
line] lies) and high-energy bands of BiTeI plotted against k‖ at
kz = π/c. The colors represent the spin-split bands and the black
band at ≈2 eV represents a spin-degenerate band. (b) A cartoon of
the band structure of BiTeI with the zero fixed at the Dirac point.
The chemical potential is varied between −90 meV to −42 meV in
the samples we investigated [32].

This leaves us with two additional parameters for the above
plot. One is the chemical potential μ, which has been cho-
sen to be ≈ − 42 meV [the minimum of band is at ε−

min. ≈
−130 meV, see Fig. 4(b)]. All energy measurements are rela-
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FIG. 5. (a) The temperature dependence of the resonant eRS
spectrum of the collective mode in the fully symmetric A1 channel of
BiTeI. The inset shows the corresponding half width at half maxima.
(b) The theoretical calculation of eRS for the parameters mentioned
in the text.
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FIG. 6. The response at 10 K over extended Raman shifts in
the A1 (fully symmetric) and A2 (chiral) irrep decompositions of
the collected eRS spectrum. The red line is the calculation from
Fig. 5(b). The A2 response shows a spin-flip continuum starting from
≈100 meV, while the A1 response shows a much weaker feature in
that frequency range.

tive to the Dirac point in the spin-split spectrum. This choice
of μ leads to an onset of spin flip transitions at �+ ≈ 90 meV
consistent with the result in Ref. [9]. The other parameter is
the damping rate, which includes contributions from iodine
vacancies, the nearby Rashba spin-flip continuum of exci-
tations, finite temperature, and electron-electron interactions
such as in Refs. [63–65]. To model these, we simply introduce
a scattering rate that reproduced the mode width of 7 meV at
10 K and the plots at other temperatures evolved accordingly.

We saw in Eq. (25) that due to the λ parameter, we expect
to also pick up contribution from the continuum of spin-flip
excitations, albeit weakly. In Fig. 6, we show the eRS in the
symmetric channel [which is the A1 irreducible representation
(irrep) of the point group C3v relevant for BiTeI] over extended
range of frequencies. The continuum is evident by a weak
feature in the black line in Fig. 6. For comparison, we also
show the continuum obtained in the A2 irrep of C3v, which
couples directly to spin-flip excitations and hence shows a
much stronger response. The onset of the spin-flip contin-
uum in the channels belonging to different irreps is at the
same value, but the spectral weight of the continuum in the
response in A2 is controlled predominantly by αR, whereas
that in A1 is controlled by λ and hence is smaller. From the A2

response we deduce that the onset of the spin-flip continuum is
≈100 meV. Having presented the theory we now understand
that this coupling of charge fluctuations to the spin ones is
due to Rashba SOC. However, since the plasmon is a fully
symmetric excitation of the system, it does not show up in the
A2 channel. We also present the calculated plasmon response
in the XX polarization in red [taken from Fig. 5(b)], where
we see that the spectral weight of the plasmon completely
overshadows the already weak continuum. We had explicitly
demonstrated in Sec. V that this coupling is not present in
the cross-polarization setup, i.e., FXY = 0, consistent with the
data in the A2 channel.

To verify that we are indeed observing the plasmon peak,
we tracked the collective mode frequency for different sam-
ples grown from the same batch with light variations in the
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FIG. 7. The collective mode peak position (�pl) vs carrier con-
centration deduced from Hall measurements for various samples [32]
(data points) and the theoretical plot of the same for the parameters
given in the text. The theoretical number density was estimated from
the Fermi surface volume. The linear scaling of �2

pl with the carrier
density suggests that it is a plasmon.

chemical potential induced by changes in iodine deficiencies.
In Fig. 7, we plot the square of the energy of the electronic
collective mode as a function of carrier concentration (as
determined from Hall measurements [32]) and compare it
against the calculation of the renormalized plasma frequency
obtained from Eq. (26) for number densities determined as
below (we restrict ourselves to the case where the chemical
potential only lies in the lower Rashba sub-band),

nBiTeI =
∫ μ

−∞
dE

∫
k
δ(E − ε−

k )

= n0m∗
1

√
m∗

3 fn(α̃, λ̃), (27)

with

fn(α̃, λ̃) ≡ 3

2

∫ μ̃

−∞
dẼ

∫ ∞

0
dk̃3

∫ ∞

0
dy δ

(
Ẽ − ε̃−√

y,k̃3

)
, (28)

where μ̃ ≡ μ/|μ|, Ẽ ≡ E/|μ|, k̃i ≡ h̄ki/
√

2mi|μ| and y en-
ters after setting k2

‖ = y. The function fn(α̃, λ̃) is such that
fn(0, 0) = 1. To remain below the Dirac point of BiTeI, we
need to set μ̃ = −1. From Eqs. (26) and (27) the slope of �2

pl
vs nBiTeI is

s ≡ e2

m3ε∞

fpl(α̃, λ̃)

fn(α̃, λ̃)
.

With the above choice of parameters, the theoretical estimate
aligns well with the experiment. It is interesting to note that
experimentally we deduce the number density from the Hall
measurements whereas theoretically, we calculate the number
density from the Fermi-surface volume. The observed agree-
ment suggests that the effective one-band Hall-effect theory
still seems to apply insofar as to determine the carrier concen-
tration. This justifies the Hall analysis done in Ref. [32].

To validate the requirement of resonance for the spin-
mediated coupling to plasmons, we changed the incident
photon energy from 1.55–2.60 eV to scan above and below the
resonance with the spin-split bands shown in Fig. 4. We plot
the resonant Raman excitation profile in Fig. 8 against the op-
tical absorption data. The latter captures all the dipole-allowed
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FIG. 8. Resonant Raman excitation profile of the collective mode
[I (�I )] as a function of the incident laser energy showing sharp
feature at 1.83 eV. The absorption spectrum σ1(�) is also plotted
to demonstrate that there are indeed dipole active transitions at that
excitation energy.

transitions indicating the presence of interband transitions. We
see that there is a broad absorption peak around 1.7–2.2 eV
and then another around 2.7–3 eV. The first one corresponds
to the gap shown in Fig. 4, which has spin-split bands at
≈1.8 eV and a spin-degenerate band ≈2.1 eV. Observe that
the excitation profile only resonates with the bands around
1.8 eV. Since the excitation profile is obtained by integrating
across the collective mode spectral weight, we can infer that
the collective mode is only excited while the resonance is
between the spin-split bands and not the spin-degenerate ones.
This is relevant because, as stated earlier, we need SOC in
the transition elements for our effect to materialize. And such
a coupling ensures SOC splitting in both bands. The lack of
such a splitting for the band at ≈2.1 eV [in Fig. 4(a)] suggests
a lack of such coupling and hence lack of weight in the
excitation profile. This in turn suggests that the polarization
factor FXX

0 for the band at �I = 1.83 eV is likely finite, while
that at �I = 2.1 eV is negligible.

B. Symmetry considerations of the observed
c-axis plasmon in BiTeI

Being a polar self-doped metal, the planar properties of
BiTeI are dictated by the C3v point group. A unique prop-
erty of Cnv groups is that the dipole field z belongs to the
A1 representation, along with the usual quadrupolar fields
x2 + y2, z2. The quadrupolar form is another way of seeing
why any collective excitation in the A1 channel only ends
up coupling quadratically in q. The presence of the z-dipole
term in A1 allows for the q3 to be present. Since plasmon is a
longitudinal mode, this would imply that the excitation would
correspond to the c-axis plasmon.3

3We inform the reader of our decision to simultaneously use 3-, z,
and c. The first one is useful for theoretical modeling, the second is
the convention reported in the character tables and the third is preva-

While the possibility of the c-axis plasmon showing up is
evident, it still remains to be explained why SOC is necessary.
The way this plays out is this: Without SOC, the only dipolar
field (z) in the system could arise from finite q3. For the A1

excitation, the plasmon mode appears as q2
3 as we need the

result to be comprised of a z2 contribution. Of course, this
physics was reflected in the calculations that took the form
of q2.q2/q2, where the numerators are from the polarization-
charge bubbles and the denominator is from the Coulomb
interaction renormalization. In the presence of SOC of the
type λ, the dipole field (z) is provided by λ itself resulting
in a λ2 contribution in the A1 response. In the calculations this
appeared as λq.λq/q2 leading to the λ2 coupling. Note that
in both cases, you need to break inversion for the plasmon to
couple to the Raman vertex. In the former case the inversion
breaking was due to finite q3, but in the presence of SOC, this
was intrinsically present due to λ.

C. SOC induced Drude weight renormalization along the c-axis

It is instructive to theoretically investigate the behavior of
the slope s introduced above. Observe that in the absence of
SOC, since fpl = 1 = fn, s measures 1/m3ε∞ irrespective of
the carrier concentration and the in-plane masses. Further, if
λ = 0, s remains unaffected even when we change αR. This
is demonstrated in Fig. 9(a). This does not mean that the
�pl and n are unaffected, it simply means that they change
in a proportional manner as shown by the constant slope.
However, in the presence of λ, the slope evolves and this is
plotted in Fig. 9(b).

The meaning behind the sensitivity of s to a SOC parameter
can be understood from the following. Consider a spinless free
electron gas (with possibly different masses along the ab axis
and c axis). Its conductivity in the αth direction is given by
σαα (�) = n0e2

mα

τ
1−i�τ

, where τ is the scattering lifetime and mα

is the mass in the αth direction. Let us now define two quanti-
ties: (i) D ≡ lim�τ→∞ �Im[σ (�)], which is n0e2/mα; and (ii)
W ≡ 2

π

∫ ∞
0 d�Re[σ (�)], which also evaluates to n0e2/mα .

The latter is nothing but the optical sum rule. The relation
between the integrated optical weight W and n0, mα remains
the same irrespective of the details of the system (even if
we include spin and even SOC) The quantity D, however,
represents the spectral weight carried by the free carriers in
the system and is referred to as the Drude weight. In systems
without SOC, D = W and is thus protected by the optical sum
rule value preventing any renormalization. This protection
remains valid even in the presence of spin splitting induced by
a Zeeman field. However, in the presence of spin splitting due
to SOC, while the relation involving W still holds (irrespective
of how n is renormalized), the relation involving D no longer
holds and in fact is renormalized downward, meaning that the
Drude weight decreases. The lost spectral weight is recovered
at higher energies pertaining to the interband spin-flip transi-
tions, thereby restoring the sum rule. This is reminiscent of the
spectral weight rearrangement in a BCS superconductor from
the δ peak in optical conductivity to the finite-energy bump

lent in crystallography. We choose them according to the relevant
context, as is standard practice.
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(a)

(b)

FIG. 9. (a) The square of the plasmon energy �2
pl is plotted

against nBiTeI for different values of αR and λ = 0. The fixed slope for
different αR demonstrates a lack of Drude-weight renormalization.
(b) Sensitivity of the slope s to λ (in units of eV Å). The reduction of
the slope indicates downward renormalization of the Drude weight.

at twice the gap energy, as we increase disorder [66] and has
been reported as the “color change” effect [67,68].

Since the slope s is derived from the plasma frequency,
which is a response from the free carriers, s actually tracks the
Drude weight D. Further, since s ∼ D/n and W ∼ n, s could
also be seen as a measure of D/W . This should be constant
without SOC and should dip downwards in the presence of
SOC. In 2D Rashba systems [18,69], this is exactly what
happens: SOC drains the spectral weight away from D to
higher energies, while still satisfying the sum rule. However,
observe from Fig. 9(a) that s is invariant under changes to the
Rashba parameter αR when λ = 0. This can be understood
from the result in Ref. [18], which demonstrated that the
c-axis plasmon is not renormalized by SOC in the absence of
λ. As soon as we introduce λ [see Fig. 9(b)], we observe that
s becomes sensitive to the SOC constant indicating that the
Drude weight is renormalized (downwards). The lost spectral
weight from the Drude weight is recovered in the continuum
introduced due to λ. This is consistent with the observation
that our observed c-axis plasmon is damped from the contin-
uum, the presence of which would necessarily imply a Drude

weight renormalization. While our modeling and interpreta-
tion imply renormalization along the c axis of BiTeI, verifying
this directly is beyond the scope of an eRS experiment.

VII. CONCLUSIONS

It has long been known from group theory considerations
that the eRS in the fully symmetric channel can couple to the
plasmon excitations. But even in resonant eRS, it does so only
at finite momentum transfer q and the spectral weight of the
plasmon scales as q2. In this paper we have demonstrated that
in resonant eRS of light in systems with broken inversion,
the presence of Rashba-type SOC induces an additional cou-
pling to plasmons at zero-momentum transfer. This happens
due to two effects: first, as a high-energy effect, the fully
symmetric channel develops an effective spin vertex, which
is characterized by a polarization factor Fβα

i that couples
to the spin-charge susceptibility of the system; second, as
a low-energy effect, the spin-charge susceptibility (�i0) in
the system itself becomes nonzero due to Rashba type SOC.
The development of the effective spin vertex happens under
resonant conditions and requires Rashba coupling of the spins
involved in the resonant interband transitions. This effect is
not present if the spins are merely split in the two bands.
The resulting coupling to plasmons (Fi�i0) is particularly
significant in giant Rashba systems such as BiTeI.

While the emergence of spin-charge susceptibilities was
known, showing the presence of the effective spin vertex in the
fully symmetric channel is the main contribution of this paper.
We developed the general theoretical formalism to capture
this effect and explicitly demonstrated the existence of this
vertex in a toy Dirac system with SOC where we had access to
the wavefunctions of all the relevant states in the system. For
BiTeI, although we did not have access to the wavefunction
of the intermediate states, we demonstrated all the necessary
ingredients to be present to observe this effect. We then veri-
fied these ideas by performing resonant eRS on various BiTeI
samples demonstrating a charge sector collective mode that
scales just like a plasmon with respect to the carrier density.
Assuming a simple toy model for BiTeI conduction band we
were also able to reproduce the temperature dependence and
the laser excitation profile dependence as seen in the exper-
iment. Within the context of BiTeI, we also argued for the
presence of an out-of-plane canting of spins that is ultimately
responsible for the observation of the plasmon mode in eRS
under normal incidence. We additionally predicted a Drude-
weight renormalization along the c axis of BiTeI.

This high-energy effect of SOC, which primarily arises due
to the breaking of SU(2) invariance in the spin-flip interband
transitions, not only allows plasmons to couple to optical
probes but also opens up a route to explore the interplay
of spin and charge degrees of freedom in semiconductors.
In fact, it is quite possible that the observation of many
charge collective modes, which are expected to be weighted
by q2 but still seen through Raman could be so due to the
enhancement from the SOC in such materials. Apart from
BiTeI, this can be relevant to other Cnv systems like transition-
metal dichalcogenides and multilayer graphene. This coupling
channel should be further investigated to study its effect on
nonequilibrium ultrafast spectroscopies, an emerging field, as
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it provides an additional mechanism for energy relaxation
for charge and spin excitations alike. This coupling channel
could also be exploited to use charge-driven collective modes
to manipulate spin. Finally, it is encouraging to note that
the spectroscopic landscape has expanded tremendously due
to considerations of effects of spin, which has been largely
underappreciated for a long time. We believe that the physics
we outline here will be relevant to studying the interplay of
spin-orbit coupled electrons either with chiral phonons, which
can also couple to eRS [70], with excitations in strongly SOC
Floquet driven systems [71], and to other metallic topologi-
cally nontrivial systems that often require strong SOC.
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APPENDIX A: DISCUSSION ON THE RAMAN PROCESSES
AND THEIR CONTRIBUTION TO THE eRS SPECTRUM

a. The eRS response from the direct term. In Eq. (3) if we
only keep the direct term, the final response Rd (�, q) can be
obtained from the analytic continuation of

χd (Q) = −
∫

K
Tr[γ̂d ĜK γ̂d ĜK+Q]. (A1)

At this stage, the hat represents matrices in the full Hilbert
space of states at the Fermi surface as well as those in the
intermediate states. The analytic continuation technique has
been detailed in Ref. [50] (although it was done for a one-band
system, the technique outlined there still applies to a multi-
band system, provided the prescription to couple the vector
potential is appropriately identified). The frequency sum in∫

K GG leads to the Lindhard form n(εk+q )−n(εk )
i�m+εk+q−εk

, which restricts

the
∫

k to states along the Fermi surface (at q → 0). Thus
χd (Q) only picks up the contributions from the states at the
Fermi surface.

b. The eRS response from the mixed terms. A mixed term
comprises one vertex depicting the direct process and the

other the indirect process. The term of the type
∑

m
[ jS

β ]nm[ jI
α ]mn′

�I −Eg−i�

in the vertex is not conducive to a field theory treatment.
However, this term can be seen as an on-shell contribution
of the propagator Ĝ of the system (defined in the full Hilbert
space). This allows the following generalization:∑

m

[
ĵS
β

]
nm

[
1

εn + �I − εm − i�

]
m

[
ĵI
α

]
mn′

=
∑
mm′

[
ĵS
β

]
nm

[
δmm′

εn + �I − εm − i�

][
ĵI
α

]
m′n′ (A2)

→ [
ĵS
βĜ(εn + �I ) ĵI

α

]
nn′ . (A3)

Here we have used that Ĝ(Q) = ∑
m

|m〉〈m|
iω−εm−i�m

such that on-
shell condition (which would lead to a pole) would be met
when ω (translated to real frequencies) is ∼εm. Thus, in the
presence of an external laser field from �I , the on-shell con-
tribution selectively comes from the intermediate states. Even
if the intermediate states are incoherent or absent, there still
remains the off-shell contribution that can produce a finite
response from the mixed terms. In common parlance, these
are referred to as “virtual” processes. The choice of �I is what
ultimately picks, which type (on- or off-shell) virtual process
would contribute the most. This promotion of the vertex to
the Green’s function is what ultimately allows one to draw the
diagrams as in Fig. 1. Thus, the response Rm(�, q) is obtained
from analytic continuation of terms such as

χ (1)
m (Q) =

∫
K

Tr[γ̂d ĜK+Q ĵI ĜK+Q+QI ĵSĜK ]. (A4)

Here QI ≡ (�I
m, qI ), where �I

m is a Matsubara frequency that
would be continued to the incoming laser frequency �I and
qI is the momentum of the incoming photon. The super-
script (1) denotes that this is just one of the terms. Other
terms arise from interchanging the vertices with direct and
indirect processes, and also interchanging the direct process
containing �I with that containing �S [where we would get
ĵI
αĜ(εn − �S ) ĵS

β]. We do not list all the terms here as we do
not need them in this paper. It is important to emphasize that
the above calculation can be carried out in any basis as it is
a trace, but then ĵ would have to be rotated to that basis from
the original basis where ĵ = ∂Ĥ

∂A .
c. The eRS response from indirect terms. Like in mixed

terms, the two vertices corresponding to the indirect processes
are again composed of the on-shell and off-shell contributions.
Near resonance, picking the on-shell contributions within the
same approximations as above, Rid (�, q) can be computed
from terms like

χ
(1)
id (Q) =

∫
K

Tr[ ĵSĜK+Q ĵI ĜK+Q+QI ĵSĜK ĵI ĜK−QI ]. (A5)

APPENDIX B: HILBERT SPACE FACTORING OF
THE RAMAN VERTEX DUE TO RESONANCE

Although we are only interested in the resonant terms, the
Coulomb renormalization happens through the term �αβ;0,
as mentioned in the main text, and this mimics the structure
of the mixed terms with γ̂d → 1. It will be instructive to
understand the evaluation of one of the mixed terms to see
how the condition of resonance allows us to factor the Hilbert
space into those involving the Fermi surface states and those
involving intermediate states. In particular, consider the eval-
uation of

L(Q) =
∫

K
Tr[ ĵI ĜK+Q+QI ĵSĜK ĜK+Q]. (B1)

Let us now specify the system in some orbital basis (with
components a, b where the vector potential would be coupled)
as

H =
(

Haa Hab

Hba Hbb

)
, (B2)
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where each of the component above has (2×2) internal spin
structure. We can now introduce an inversion-breaking SOC
(whose energy scale can be denoted by ESOC). For conve-
nience, let us switch to a basis (which we can call the c and v

basis) that would be diagonal in the absence of SOC and look
like

H =
(

Hcc 0

0 Hvv

)
. (B3)

Upon adding SOC, this matrix would acquire off-diagonal en-
tries Hcv,Hvc ∼ O(ESOC/Eg), where Eg is the gap between
the c states and the v states. We could then split Green’s
functions (in the cv basis) into

ĜK =
(

G cc 0

0 G vv

)
+ O

(
ESOC

Eg

)
. (B4)

The transition elements jS,I can also be written in the cv
basis as

ĵx =
(

J x
cc J x

cv

J x
vc J x

vv

)
, x ∈ {I, S}.

Plugging these forms into Eq. (B1) and evaluating the trace
we get

L(Q) =
∫

K

[
J I

cc G cc
K+Q+QI

J S
cc

]
G cc

K G cc
K+Q

+
∫

K

[
J I

cv G vv
K+Q+QI

J S
vc

]
G cc

K G cc
K+Q

+
∫

K

[
J I

vc G cc
K+Q+QI

J S
cv

]
G vv

K G vv
K+Q

+
∫

K

[
J I

vv G vv
K+Q+QI

J S
vv

]
G vv

K G vv
K+Q. (B5)

To proceed further, we can also assume a general structure for
the 2×2 components of (G)ii

K as

G ii
K =

∑
s=±

1

iωm − ε
is
�k

[
Mis

k

]
2×2, i ∈ {c, v}. (B6)

The s = ± denotes the two flavors resulting from the spin
degree of freedom. The exact form of Mis

k is explicitly depen-
dent on the system of interest and the type of the perturbation.
Performing the fermionic Matsubara sums we get

L(Q) =
∑

s,s′,s′′=±

∫
�k

[
J I

ccM
cs′′
�k′ J S

ccMcs

�k M
cs′
�k+�q

]
i�m + ε

cs

�k − ε
cs′
�k+�q

⎡
⎣ nF

(
ε

cs

�k
) − nF

(
ε

cs′′
�k+�qI +�q

)
i�m + i�I + ε

cs

�k − ε
cs′′
�k+�qI +�q

−
nF

(
ε

cs′
�k+�q

) − nF
(
ε

cs′′
�k+�qI +�q

)
i�I + ε

cs′
�k+�q − ε

cs′′
�k+�qI +�q

⎤
⎦

+
∫

�k

[
J I

cvM
vs′′
�k′ J S

vcMcs

�k M
cs′
�k+�q

]
i�m + ε

cs

�k − ε
cs′
�k+�q

⎡
⎣ nF

(
ε

cs

�k
) − nF

(
ε

vs′′
�k+�qI +�q

)
i�m + i�I + ε

cs

�k − ε
vs′′
�k+�qI +�q

−
nF

(
ε

cs′
�k+�q

) − nF
(
ε

vs′′
�k+�qI +�q

)
i�I + ε

cs′
�k+�q − ε

vs′′
�k+�qI +�q

⎤
⎦

+
∫

�k

[
J I

vcM
cs′′
�k′ J S

cvMvs

�k M
vs′
�k+�q

]
i�m + ε

vs

�k − ε
vs′
�k+�q

⎡
⎣ nF

(
ε

vs

�k
) − nF

(
ε

cs′′
�k+�qI +�q

)
i�m + i�I + ε

vs

�k − ε
cs′′
�k+�qI +�q

−
nF

(
ε

vs′
�k+�q

) − nF
(
ε

cs′′
�k+�qI +�q

)
i�I + ε

vs′
�k+�q − ε

cs′′
�k+�qI +�q

⎤
⎦

+
∫

�k

[
J I

vvM
vs′′
�k′ J S

vvMvs

�k M
vs′
�k+�q

]
i�m + ε

vs

�k − ε
vs′
�k+�q

⎡
⎣ nF

(
ε

vs

�k
) − nF

(
ε

vs′′
�k+�qI +�q

)
i�m + i�I + ε

vs

�k − ε
vs′′
�k+�qI +�q

−
nF

(
ε

vs′
�k+�q

) − nF
(
ε

vs′′
�k+�qI +�q

)
i�I + ε

vs′
�k+�q − ε

vs′′
�k+�qI +�q

⎤
⎦. (B7)

Here nF (ε) is the Fermi function. For definiteness, let us now choose the chemical potential (μ) to lie in the v band. We will
also assume εc

�k − εv
�k ∼ Eg > 0. Since SOC is a perturbation, we will have ε

cs

�k − ε
cs′
�k+�qI +�q ∼ ESOC, and ε

vs

�k − ε
vs′
�k+�qI +�q ∼ ESOC.

Resonance condition would imply that �I ∼ Eg, and we will be interested in Raman shifts � ∼ ESOC. With the various variables
tuned to this regime, the fourth term in Eq. (B7) gives

L(Q)
∣∣
4thterm =

∑
s,s′,s′′=±

∫
�k

[
J I

vvM
vs′′
�k′ J S

vvMvs

�k M
vs′
�k+�q

]
i�m + ε

vs

�k − ε
vs′
�k+�q

⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′′
�k+�qI +�q

)
i�I

−
nF

(
ε

vs′
�k+�q

) − nF
(
ε

vs′′
�k+�qI +�q

)
i�I

⎤
⎦ + O

(
ESOC

Eg

)

=
∑

s,s′,s′′=±

∫
�k

[
J I

vvM
vs′′
�k′ J S

vvMvs

�k M
vs′
�k+�q

]
i�I

⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′
�k+�q

)
i�m + ε

vs

�k − ε
vs′
�k+�q

⎤
⎦ + O

(
ESOC

Eg

)
. (B8)

Notice the Linhard term in the square braces in the last line of Eq. (B8). Because μ is assumed to lie in the v band, this term
would contribute to the final result due to finite weight from the ph excitations. The first term for L(Q) in Eq. (B7) would also
result in a similar expression but with v ↔ c. But the nF → 0 for the c bands as those are empty (since εc > εv). These terms of
Eq. (B8), as is evident, are not resonantly enhanced: they only have a factor of �I in the denominator. Following similar steps
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for the second and third terms of L(Q), we are led to

L(Q)|2+3 =
∑

s,s′,s′′=±

∫
�k

[
J I

cvM
vs′′
�k′ J S

vcMcs

�k M
cs′
�k+�q

]
i�m + ε

cs

�k − ε
cs′
�k+�q

⎡
⎣nF

(
ε

cs

�k
) − nF

(
ε

vs′′
�k+�qI +�q

)
i�I + Eg

−
nF

(
ε

cs′
�k+�q

) − nF
(
ε

vs′′
�k+�qI +�q

)
i�I + Eg

⎤
⎦

+
∫

�k

[
J I

vcM
cs′′
�k′ J S

cvMvs

�k M
vs′
�k+�q

]
i�m + ε

vs

�k − ε
vs′
�k+�q

⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

cs′′
�k+�qI +�q

)
i�m + i�I − Eg

−
nF

(
ε

vs′
�k+�q

) − nF
(
ε

cs′′
�k+�qI +�q

)
i�I − Eg

⎤
⎦ + O

(
ESOC

Eg

)
. (B9)

Close to the resonance condition, the dominant contribution to the Raman bubble arises from the second term in Eq. (B9). Thus,

L(Q) ≈
∑

s,s′,s′′=±

∫
�k

[
J I

vcM
cs′′
�k′ J S

cvMvs

�k M
vs′
�k+�q

]
i�m + ε

vs

�k − ε
vs′
�k+�q

⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

cs′′
�k+�qI +�q

)
i�m + i�I − Eg

−
nF

(
ε

vs′
�k+�q

) − nF
(
ε

cs′′
�k+�qI +�q

)
i�I − Eg

⎤
⎦. (B10)

We expect the intermediate states to be broad and thus have a lifetime ∼1/�. If we are in a regime such that ESOC � �, we can
further ignore the �m in the denominator above to get (after continuing �I to real frequencies)

L(Q) ≈
∑

s,s′,s′′=±

∫
�k

[
J I

vcM
cs′′
�k′ J S

cvMvs

�k M
vs′
�k+�q

]
�I − Eg + i�

⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′
�k+�q

)
i�m + ε

vs

�k − ε
vs′
�k+�q

⎤
⎦. (B11)

The above expression implies that under the resonant con-
dition, the bubble involving a direct and an indirect vertex
reduces to a form containing the Linhard factor created out of
states near the Fermi level, the resonance enhancement factor,
and the precise form associated with the transition from the
states near the Fermi level to the intermediate state and back
(Jvc and Jcv). The main thing to note is that the original
Hilbert space involving both the c and v states is factored
into a particle-hole contribution from the subspace of states
near the Fermi surface and a transition factor associated with
c-v transitions weighted by the resonance factor. This factor-
ization allows us to decouple the light-excitation processes
(of the order of the laser frequency) from the quasiparticle
excitations (of the order of the Raman shifts). There are other
terms of the order of O(ESOC/Eg) and O(ESOC/�), which are
ignored here, but they will only provide corrections to the
physical effects captured by the resonant enhancement term.
It should be stated that the form is well expected and has been
known since the study of resonant Raman in semiconductors.
However, the transition element was only discussed for III-V
semiconductors where it was modelled as a constant, which is
usually referred to as the Kane parameter [45]. In the above
derivation, we have access to the precise form of these transi-
tion elements.

Finally, we note that the above form was obtained for a
form of the Green’s function as in Eq. (B4). In general, we
would have the block-off-diagonal terms Gcv to be nonzero
(they are induced by SOC after all). An explicit evaluation
of L(Q) in such a case would involve 32 terms. Four of the
relevant ones are accounted for above, and the other terms
look like

T1 :
∫

K

[
J I

vv G vc
K+Q+QI

J S
cv

]
G vv

K G vv
K+Q,

T2 :
∫

K

[
J I

vv G vv
K+Q+QI

J S
vc

]
G cv

K G vv
K+Q. (B12)

In the T1 family of terms, the low-energy quasiparticle re-
sponse comes from well-defined poles G vv

K G vv
K+Q. But note

that there is no c → v transition due to the incoming light as
J I is associated with the vv index. It is the Green’s function
that propagates an electron from one band to the other. This
adversely affects the resonance enhancement that we were
able to get with the other four terms we considered above.
Further, a T1 type of term that is allowed in general due to the
existence of Gcv term, however, is also suppressed by the gap
Eg between the c and the v bands. In the T2 type of terms the
low-energy quasiparticle response is already incoherent due
to the G cv

K G vv
K+Q structure. Thus, near the resonance, only the

four terms that we considered are the relevant processes. Even
though not all the four terms contributed in the Eq. (B11), they
would do so if the resonance was considered with bands below
the Fermi level. But the T1 and T2 type of terms still would not
contribute.

APPENDIX C: COMPUTATION OF
POLARIZATION-CHARGE BUBBLE

As is evident from Eq. (8), to couple the plasmon pole to
the Raman response, we need, what we call the polarization-
charge bubble �αβ;0. This bubble is a trace over the structure
of L(Q) computed above with J acquiring the indices α, β.
Let us try to evaluate this expression. First, note that the s′′
dependence in the Fermi functions drops out under the ap-
proximations we made above. Then, by properties of Green’s
functions,

∑
s′′ Mc′′

s

�k = 1. This leads to the expression

L(Q) ≈ 1

�I − Eg + i�

∑
s,s′

∫
�k

[
J I

vcJ
S

cv

][
Mvs

�k M
vs′
�k+�q

]

×
⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′
�k+�q

)
i�m + ε

vs

�k − ε
vs′
�k+�q

⎤
⎦. (C1)
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It should be kept in mind that the matrix [J I
vcJ

S
cv] is

�k-dependent and hence cannot be factored out. However,
without the J J , the expression would simply be ex-
actly what arises in the computation of the charge bubble∫

K Tr[ĜK ĜK+Q] prior to the trace operation. In fact, since
J J is a 2×2 matrix, we can write[

J I
β,vcJ

S
α,cv

] = Fβα
i (�k)σ̂i. (C2)

This allows us to write

L(Q) ≈ 1

�I − Eg + i�

∑
s,s′

∫
�k
Fβα

i (�k)
[
σ̂iMvs

�k M
vs′
�k+�q

]

×
⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′
�k+�q

)
i�m + ε

vs

�k − ε
vs′
�k+�q

⎤
⎦. (C3)

If Fβα (�k) has an s-wave component denoted by Fβα , then we
arrive at

L(Q) ≈ Fβα
i

�I − Eg + i�

∑
s,s′

∫
�k

[
σ̂iMvs

�k M
vs′
�k+�q

]

×
⎡
⎣nF

(
ε

vs

�k
) − nF

(
ε

vs′
�k+�q

)
i�m + ε

vs

�k − ε
vs′
�k+�q

⎤
⎦ + h.h.

= Fβα
i

�I − Eg + i�

∫
K

[σ̂iĜK σ̂0ĜK+Q] + h.h. (C4)

The h.h. stands for higher harmonics, which usually integrate
to zero for most systems. Upon taking trace we get

�αβ;0(Q) ≈ meTr[L(Q)]

≈ Fβα
i �i0(Q)

�I − Eg + i�
. (C5)

This is the form used in the main text. In the case of III-V
semiconductors, �pαεα → P�ε. Thus, following the discussion
after Eq. (13) in the main text, we can write Fβα

i εα
I ε

β
S →

P (�εI × �εS )i, restoring the conventional result.

APPENDIX D: CALCULATION DETAILS
FOR SOC DIRAC SYSTEM

Starting from Eq. (15), we note that ĵ = vF (τzσ̂xx̂ + σ̂yŷ.
We move to the eigenbasis using the transformation

ĵ(cv) = M† ĵ(ab)M, (D1)

where the matrix M is formed by column juxtaposition of
the eigenvectors of H . In the absence of �R and �Z , the
transformed current becomes

J 0
x,cc = vF

vF k

ξk
cos θ σ̂0,

J 0
x,cv = vF

(
iτz sin θ + �

ξk
cos θ

)
σ̂0,

J 0
x,vv = −J 0

x,cc,

J 0
x,vc = (

J 0
x,cv

)†
. (D2)

Similarly, the various components of jy current elements are

J 0
y,cc = vF

vF k

ξk
sin θ ŝ0,

J 0
y,cv = vF

(
−iτz cos θ + �

ξk
sin θ

)
ŝ0,

J 0
y,vv = −J 0

y,cc,

J 0
y,vc = (

J 0
y,cv

)†
. (D3)

Here θ is the azimuthal angle of �k. Note the presence of the
interband components, Jcv,vc, that is responsible for optical
interband transitions (as in graphene). However, there is no
spin splitting in these blocks. When we include �R in the
Hamiltonian, the M-transformed current now becomes

Jx,cc = J 0
x,cc + vF

�R

2ξk

(
�2

ξ 2
k

cos θ ŝz − sin θ ŝy

)
,

Jx,cv = J 0
x,cv − vF

�R

2ξk

×
(

vF k�

ξ 2
k

cos θ ŝz +
[

�

vF k
sin θ − i

τzξk

vF k
cos θ

]
ŝy

)
,

Jx,vv = −Jx,cc,

Jx,vc = (Jx,cv )†. (D4)

Similarly, the various components of jy current elements are

Jy,cc = J 0
y,cc + vF

�R

2ξk

(
�2

ξ 2
k

sin θ ŝz + cos θ ŝy

)
,

J 0
y,cv = J 0

y,cv − vF
�R

2ξk

×
(

vF k�

ξ 2
k

sin θ ŝz −
[

�

vF k
cos θ + i

τzξk

vF k
sin θ

]
ŝy

)
,

Jy,vv = −Jy,cc,

Jy,vc = (
Jy,cv

)†
. (D5)

Note that the Jcv = J †
vc blocks are now spin dependent.

Also, as discussed in the main text, in the prefactors of the
interband J ′

cvs, the �′
Rs get promoted to the interband δR.

Using this form for ĵ and Eq. (13), we arrive at the following
forms for Fαβ

i (�k),

FXX
0 = v2

F �2

2ξ 2
k

+ v4
F k2 sin2 θ

2ξ 2
k

,

FYY
0 = v2

F �2

2ξ 2
k

+ v4
F k2 cos2 θ

2ξ 2
k

,

FXY
0 = iτzv

2
F �

ξk
− v4

F k2 sin 2θ

2ξ 2
k

,

Fβα

1 = 0,

FXX
2 = δRv3

F k sin 2θ

2ξ 2
k

,

FYY
2 = −δRv3

F k sin 2θ

2ξ 2
k

,
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FXY
2 = −δRv3

F k cos 2θ

2ξ 2
k

,

FXX
3 = −δRv3

F k�2 cos2 θ

ξ 4
k

,

FYY
3 = −δRv3

F k�2 sin2 θ

ξ 4
k

,

FXY
3 = − iτzδRv3

F k�

2ξ 3
k

− δRv3
F k�2 sin 2θ

2ξ 4
k

. (D6)

In the main text, we only keep the s-wave component of
the above terms. The other angle-dependent terms evaluate to
zero in the bubble of interest and are expected to be small even
when nonresonant terms are accounted for.

When we consider only the valley Zeeman term, the blocks
of the Hamiltonian takes the form

Hcc = ŝ0ξk + �Z

2
ŝz, Hvv = −ŝ0ξk + �Z

2
ŝz,

Hcv = 0, Hvc = 0. (D7)

Since there is no �k-dependent correction, the expression
for the current remains the same as Eqs. (D2) and (D3)
where Jcv = 0 = Jvc. Likewise Fαβ

0 remains the same as
in Eq. (D6) and Fαβ

i = 0 for i = 1, 2, 3.

APPENDIX E: CALCULATION DETAILS FOR BiTeI

In this section we present calculation details of �i0(Q) for
i ∈ {0, 1, 2, 3}. First, we observe that all the integrals involved
in the computation of �i0 are convergent in k integration.
We shall perform a change of variable of �k → �k − �q/2. This
makes the calculation a lot simpler. For brevity, let us define

Ls,s′ (�k, �q) ≡
nF

(
εs

�k−�q/2

) − nF
(
εs′

�k+�q/2

)
i�m + εs

�k−�q/2
− εs′

�k+�q/2

. (E1)

Then we have

�i0(Q) =
∑
ss′

∫
�k
N i

s,s′ (�k, �q)Ls,s′ (�k, �q). (E2)

1. Out of plane �i0(Q)

Since we are interested in small q3, to leading orders in it
we have

Ls,s(�k, �q) = −∂εs
�k
nF

(
εs

�k
)⎡⎣∂k3ε

s
�k q3

i�m
−

(
∂k3ε

s
�k
)2

q2
3

�2
m

⎤
⎦ + O

(
q3

3

)
,

Ls,s′ (�k, �q) =
[

nF
(
εs

�k
) − nF

(
εs′

�k
)

i�m + (s − s′)Dk

]
+ O(q3). (E3)

We have retained different orders in different terms so as to
ensure that we get the appropriate leading order terms in the
full calculation of �i0. Next we calculate the various N i

ss′

factors to leading order in q3,

N 0
++ = 1 + O

(
q2

3

)
,

N 0
−− = N 0

++,

N 0
+− = α2k2

||λ
2q2

3

4D4
k

+ O
(
q3

3

)
,

N 0
−+ = N 0

+−,

N 1
++ = αk2

Dk
− i

αk1λq3

2(Dk )2
+ O

(
q2

3

)
,

N 1
−− = −(N 1

+,+)∗,

N 1
+− = iαk1(Dk ) + αλk2k3

2(Dk )3
λq3 + O

(
q3

3

)
,

N 1
−+ = −(N 1

+−)∗,

N 2
ss′ = N 1

ss′ (k1 ↔ k2),

N 3
++ = λk3

(Dk )
+ O

(
q2

3

)
,

N 3
−− = −N 3

++,

N 3
+− = − α2k2

||
2(Dk )3

λq3 + O
(
q3

3

)
,

N 3
−+ = −N 3

+−. (E4)

To calculate �00(Q), the leading order contribution is O(q2
3 )

and it is given by (below we have assumed that our chemical
potential is in the lower band ε−

�k )

�00(Q) = q2
3

∫
�k
[−∂ε−nF (ε−)]

(∂k3ε
−)2

−�2
m

+ λ2q2
3

∫
�k

[nF (ε+) − nF (ε−)]

D3
k

α2k2
‖

�2
m + 4D2

k

. (E5)

Notice that this is like the single-band contribution plus a
SOC-induced interband correction. Notice also that this cor-
rection would be absent if λ = 0. To calculate �10(Q) observe
that the inter- and intraband terms are odd functions of k1

and k2. The Lss function only has a term that is odd in k3.
Thus, �10(Q) vanishes for �q = (0, 0, q3). Since �20(Q) sim-
ply interchanges k1 ↔ k2, it also vanishes. Finally, to calculate
�30(Q) we only need contribution to O(q3). Using the Nss′

and the Lss′ functions above, we arrive at

�30(Q) = −λq3

∫
�k

[−∂ε−nF (ε−)]

Dk

k3∂k3ε
−

i�m

+ α2λq3

∫
�k

[nF (ε+) − nF (ε−)]

D3
k

i�mk2
‖

�2
m + 4D2

k

.

(E6)

035160-17



SARKAR, LEE, BLUMBERG, AND MAITI PHYSICAL REVIEW B 109, 035160 (2024)

2. In plane �i0(Q)

For completeness, we can also look at small in-plane mo-
mentum transfer q1. To leading orders in q1 we have

Ls,s(�k, �q) = −∂εs
�k
nF

(
εs

�k
)⎡⎣∂k1ε

s
�k q1

i�m
−

(
∂k1ε

s
�k
)2

q2
1

�2
m

⎤
⎦ + O

(
q3

1

)
,

Ls,s′ (�k, �q) =
[

nF
(
εs

�k
) − nF

(
εs′

�k
)

i�m + (s − s′)Dk

]
+ O(q1). (E7)

Next we calculate the various N i
ss′ factors to leading order

in q1,

N 0
++ = 1 + O

(
q2

1

)
,

N 0
−− = N 0

++,

N 0
+− = α2

(
α2k2

2 + λ2k2
3

)
q2

1

4D4
k

+ O
(
q3

1

)
,

N 0
−+ = N 0

+−,

N 1
++ = αk2

Dk
+ i

αk3λq1

2(Dk )2
+ O

(
q2

1

)
,

N 1
−− = −(N 1

+,+)∗,

N 1
+− = −iαλk3(Dk ) + α3k1k2

2(Dk )3
q1 + O

(
q3

1

)
,

N 1
−+ = −(N 1

+−)∗,

N 2
++ = −αk1

Dk
+ O

(
q2

1

)
,

N 2
−− = −N 1

+,+,

N 2
+− = α

(
α2k2

2 + λ2k2
3

)
q1

2D3
k

+ O
(
q3

1

)
,

N 2
−+ = −N 1

+−,

N 3
++ = λk3

(Dk )
− i

α2k2q1

2(Dk )2
+ O

(
q2

1

)
,

N 3
−− = −(N 3

++)∗,

N 3
+− = α2

2

(
λk1k3

2(Dk )3
+ ik2

2(Dk )2

)
q1 + O

(
q3

3

)
,

N 3
−+ = −(N 3

+−)∗. (E8)

These can be used to calculate �00(Q) to the leading order
contribution to O(q2

1 ) and it is given by

�00(Q) = q2
1

∫
�k
[−∂ε−nF (ε−)]

(∂k1ε
−)2

−�2
m

+ α2q2
1

∫
�k

[nF (ε+) − nF (ε−)]

D3
k

α2k2
2 + λ2k2

3

�2
m + 4D2

k

.

(E9)

For �10(Q) and �30(Q) observe that the inter- and intra-
band terms are odd functions of k2 and k3. The Lss function
only has a term that is odd in k1. Thus, they vanish for
�q = (q1, 0, 0). Finally, to calculate �20(Q) we only need con-
tribution to O(q1). Using the Nss′ and the Lss′ functions above,
we arrive at

�20(Q) = −αq1

∫
�k

[−∂ε−nF (ε−)]

Dk

k1∂k1ε
−

i�m

+ αq1

∫
�k

[nF (ε+) − nF (ε−)]

D3
k

i�m
(
α2k2

2 + λ2k2
3

)
�2

m + 4D2
k

.

(E10)

As expected, the charge-charge susceptibility has a correction
∝ α2 and the spin-charge susceptibility is ∝ α. In this case we
do not need any canting effect (from the λ term).

APPENDIX F: DERIVATION OF PLASMA FREQUENCY

We need to evaluate �00(q,� + i0+). It is instructive
to rescale the integration variables and integrands to
dimensionless variables as such, ε̃ ≡ ε/|μ|, k̃i ≡ ki/

√
2mi|μ|

(i ∈ {1, 2, 3}), T̃ = T/|μ|, α̃ ≡ αR
√

2m1/|μ|, and
λ̃ ≡ λ

√
2m3/|μ|, where μ is the chemical potential relative

to the Dirac point. This leads to

Vq�00(q,�) = e2

ε∞

√
(2m1|μ|)(2m1|μ|)(2m3|μ|)

(2mq|μ|)
1

μ

[
1

q̃2
�̃00

]
,

where mq is the effective mass along the direction of q, and
�̃00 is the same as �00 [Eq. (E5)], but expressed in terms
of dimensionless variable ε̃, T̃ , α̃, and λ̃. We can rewrite the
above expression as

Vq�00 = �2
0

�2

√
m∗

1m∗
1m∗

3

m∗
q

[
3π2 �̃2

q̃2
�̃00

]
︸ ︷︷ ︸

fpl (α̃,λ̃)

,

where m∗
i = mi/m0 is the effective mass. Since in our prob-

lem, q is along the 3-axis, we have m∗
q = m∗

3. Solving for
Vq�00 = 1 we arrive at the Eq. (26).
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