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We investigate the superconducting properties of inversion-symmetric twisted trilayer graphene by considering
different parent states, including spin-singlet, triplet, and SO(4) degenerate states, with or without nodal points.
By placing transition metal dichalcogenide layers above and below twisted trilayer graphene, spin-orbit coupling
is induced in TTLG and, due to inversion symmetry, the spin-orbit coupling does not spin split the bands. The
application of a displacement field (D0) breaks the inversion symmetry and creates spin splitting. We analyze
the evolution of the superconducting order parameters in response to the combined spin-orbit coupling and
D0-induced spin splitting. Utilizing symmetry analysis combined with both a direct numerical evaluation and a
complementary analytical study of the gap equation, we provide a comprehensive understanding of the influence
of spin-orbit coupling and D0 on superconductivity. These results contribute to a better understanding of the
superconducting order in twisted trilayer graphene.
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I. INTRODUCTION

In recent years, graphene moiré superlattices with small
twist angles (around 1◦−2◦) [1,2] have been studied for
their potential to host various quantum many-body phases
[3–30]. However, graphene’s weak intrinsic spin-orbit cou-
pling (SOC) [31,32] limits the phenomenology and, thus,
the potential applications of moiré superlattices built exclu-
sively from graphene layers. Enhancing SOC can unlock
many additional opportunities such as stabilizing topological
phases [33,34], affecting the competition between instabili-
ties [35–42], and enabling spintronics applications [43–45].
Transition metal dichalcogenide (TMD) layers, e.g., WSe2 or
MoSe2, can be used to induce SOC in graphene [46–48]; the
form of the proximitized SOC terms is well established for
both single-layer [49–54] and nontwisted multilayer [55–58]
graphene. Notably, the resulting SOC terms induced by the
TMD layer can be tuned based on the choice of TMD and
the twist angle relative to graphene [50–54,57,58]. While
some experiments, e.g., Refs. [18,25], have demonstrated the
impact of TMD layers on the correlated physics of graphene
moiré systems, the role of the proximitized TMD layer in the
observed phases is not always clear; the effect of SOC on the
correlated physics of graphene moiré systems thereby remains
an open question.

Arguably, the role of SOC has not been elucidated due to
the absence of a systematic approach to switch on/off or tune
the strength of spin-orbit coupling. In a recent work [59], we
proposed a method to achieve this. Meanwhile, in the present
work, we provide a detailed analysis of the consequences
for superconductivity. In particular, this work provides a de-
tailed classification and understanding of the superconducting
states of twisted trilayer graphene (TTLG) and their evolution
under inversion-symmetric-proximitized SOC combined with
an applied displacement field (D0). The inversion-symmetry-
preserving proximitization of SOC allows for spin splitting

of the electronic bands, including those comprising the su-
perconducting states, to be directly switched on/off and tuned
with applied displacement field [59]. In this way, the displace-
ment field has a direct influence on the superconducting states,
allowing to control the mixture of different pairing channels
and drive superconducting phase transitions. To comprehen-
sively identify the key features of the superconducting states,
we employ three complementary approaches—(i) an unbiased
symmetry analysis, (ii) numerically solving the mean-field
gap equations, allowing for arbitrary admixtures and momen-
tum dependencies, and (iii) a perturbative analytical study
of the gap equations; all three perspectives yield consistent
results and allow us to draw a detailed picture of the evolution
of superconductivity in spin-orbit-coupled TTLG. Moreover,
it was established in Ref. [59] that the Fermi surfaces of
TTLG can exhibit a Möbius-like spin texture; in this work we
show, analytically, why this Möbius-texture is inherited by the
superconducting order.

The rest of this paper is organized as follows. Section II A
establishes the continuum models and subsequent band struc-
ture for the van der Waals heterostructure system both
with/without inversion-symmetry. Thereafter we focus on
the inversion symmetric case. Section II B details the mean-
field/gap equation for the various possible superconducting
order parameters. Section III performs a symmetry analy-
sis of the evolution of the mean-field superconducting order
parameter under combined SOC— including Rashba and
Ising— as well as D0. Section IV A performs direct numer-
ical computations of the evolution of the eigenvalues/vectors;
Sec. IV B examines the nature of the superconducting-to-
superconducting phase transition observed in the numerics,
while Sec. IV C provides analytic arguments to further elu-
cidate key findings of our numerics. The results of the
proceeding sections related to nodeless superconducting
order. Section IV D provides an analysis of nodal pairing,
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which is motivated by recent experiment [60,61]. Finally, a
discussion and outlook can be found in Sec. V.

II. MODEL AND SYMMETRIES

A. Continuum model

We utilize a three-layer expansion of the continuum model
for twisted-bilayer graphene [62–67] to capture the band
structure of the system. In order to formulate the Hamiltonian,
we define ak;ρ,l,η,s,G as the annihilation operator for an elec-
tron in graphene layer l = 1, 2, 3, with momentum k in the
moiré Brillouin zone (MBZ), and in sublattice ρ = A, B, val-
ley η = ±, spin s =↑,↓, and reciprocal moiré lattice (RML)
vector G = ∑

j n jG j , where n j ∈ Z. Throughout our work,
we use the same notation for Pauli matrices and the corre-
sponding quantum numbers, so that ρ j , s j , and η j are the Pauli
matrices for sublattice, spin, and valley space, respectively,
with j = 0, 1, 2, 3. To reveal the mirror symmetry σh of the
system, we switch to its eigenbasis [65] by introducing the
field operators bk;ρ,�,η,s,G,

ak;ρ,l,η,s,G = Vl,�bk;ρ,�,η,s,G, V = 1√
2

⎛⎝1 0 −1
0

√
2 0

1 0 1

⎞⎠,

(1)

with � = 1, 2 (� = 3) corresponding to the mirror-even
(mirror-odd) subspaces.

The continuum Hamiltonian is divided into four distinct
parts, denoted as hk,η = h(g)

k,η
+ h(t )

k,η
+ h(D)

k + h(SOC)
k,η

. These
correspond to the contribution of each individual graphene
layer, the tunneling between the layers, the coupling to the
electric displacement field, and the SOC terms induced by
proximity. The TTLG contribution h(g)

k,η
+ h(t )

k,η
separates into

an effective TBG, mirror-even � = 1, 2 subspace (denoted
h(TBG)

k,η
) and graphene, mirror-odd � = 3 subspace (denoted

h(G)
k,η

), such that(
h(g)

k,η
+ h(t )

k,η

)
ρ,�,s,G;ρ ′,�′,s′,G′

=
⎛⎝(

h(TBG)
k,η

)
ρ,s,G;ρ ′,s′,G′

0
0

0 0
(
h(G)

k,η

)
ρ,s,G;ρ ′,s′,G′

⎞⎠
�,�′

. (2)

The explicit forms of h(g)
k,η

and h(t )
k,η

(or equivalently h(TBG)
k,η

and

h(G)
k,η

) are presented in Appendix A. The displacement field
mixes the mirror-even and odd subspaces,

(
h(D)

k

)
ρ,�,s,G;ρ ′,�′,s′,G′ = −D0δρ,ρ ′δs,s′δG,G′

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠
�,�′

,

(3)

as do the antisymmetric terms of SOC,(
h(SOC)

k,η

)
ρ,�,s,G;ρ ′,�′,s′,G′

= δG,G′

⎛⎜⎜⎝
(
hs

η

)
ρ,s;ρ ′,s′ 0

(
ha

η

)
ρ,s;ρ ′,s′

0 0 0(
ha

η

)
ρ,s;ρ ′,s′ 0

(
hs

η

)
ρ,s;ρ ′,s′

⎞⎟⎟⎠
�,�′

, (4)

FIG. 1. Two distinct classes of configurations for the
TMD/TTLG/TMD heterostructure and their representative
band structures. (a) Inversion symmetric heterostructure (at D0 = 0),
whereby the upper TMD layer is antiparallel to the lower layer, and
(b) mirror symmetric heterostructure (at D0 = 0) with the TMD
layers parallel. (Middle) Band structure for both configurations for
{λR, λI} = {10, 0} meV and D0 = 0 (D0 = 30) meV in black (dashed
red); band structure is identical for both configurations as long as
λI = 0. (Bottom left and right) Band structure for, respectively, the
(a) and (b) configurations with {λR, λI} = {0, 10} meV and D0 = 0
(D0 = 30) meV in black (dashed red).

i.e., the terms (ha
η )ρ,s;ρ ′,s′ . The explicit form of h(SOC) depends

on the configuration of the TMD layers; we consider the two
distinct configurations shown in Fig. 1, which correspond to
(i) inversion symmetric and (ii) mirror symmetric. Explicitly,
the setup (ii) is obtained from (i) by rotating the upper TMD
layer by C2z. We consider only “Rashba”- and “Ising”-type
SOC, with couplings λR and λI, since these are known to be
more dominant than any other type [50–54]. It is noteworthy
that the relative strength of λR and λI can be tuned with the
twist angle θTMD between the graphene and the TMD layers
[50–54,57,58]. Upon transforming to the mirror eigenbasis,
the hs

η and ha
η contributions for the setups (i) and (ii) are found

to be

(i) : hs
η = 0, ha

η = −λIszη − λR(ηρxsy − ρysx ),

(ii) : h̃s
η = −λIszη, h̃a

η = −λR(ηρxsy − ρysx ). (5)

Both the Rashba and Ising terms are odd under C2z and,
since inversion I = σhC2z, the ha

η (hs
η) are even (odd) under

inversion, cf. Table I. Spin-splitting occurs when inversion
symmetry is broken; for setup (i) having that h̃s

η = 0 means
that inversion symmetry is intact and there is no spin splitting
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TABLE I. Action of the point symmetries of the continuum theory on the microscopic operators ψk in the continuum model, see Sec. II A,
and the low-energy fermions ck used, e.g., in Eqs. (7) and (12). For convenience of the reader, we also list redundant symmetries. In the last two
columns, we state the constraints on D0, λR, and λI for the respective symmetry to be present for (i) the inversion and (ii) the mirror symmetric
geometry, see Eq. (5) and Fig. 1.

Symmetry S unitary? Sψk;�,GS† SckS† condition for (i) condition for (ii)

SO(3)s
√

eiϕ·s/2ψk;�,G eiϕ·s/2ck λR = λI = 0 λR = λI = 0

SO(2)s
√

eiϕsz/2ψk;�,G eiϕsz/2ck λR = 0 λR = 0

C3z
√

ei 2π
3 ρzηz ψC3zk;�,C3zG cC3zk λR = 0 λR = 0

Cs
3z

√
ei 2π

3 (ρzηz+sz )ψC3zk;�,C3zG ei 2π
3 sz cC3zk – –

C2z
√

ηxρxψ−k;�,−G ηxc−k λR = λI = 0 λR = λI = 0

Cs
2z

√
szηxρxψ−k;�,−G szηxc−k λI = 0 λI = 0

Cs′
2z = Cs

2zisy,x
√

sx,yηxρxψ−k;�,−G sx,yηxc−k λR = 0 λR = 0

σh
√

(1, 1, −1)�ψk;�,G ±ck D0 = λR = λI = 0 D0 = λR = 0

σ s
h

√
sz(1, 1, −1)�ψk;�,G ±szck D0 = λI = 0 D0 = 0

σ s′
h = σ s

h isy,x
√

sx,y(1, 1, −1)�ψk;�,G ±sx,yck D0 = λR = 0 D0 = λR = λI = 0

I = C2zσh = Cs
2zσ

s
h

√
ηxρx (1, 1, −1)�ψ−k;�,G ±ηxc−k D0 = 0 D0 = λI = 0

� ✗ ηxψ−k;�,−G ηxc−k λR = λI = 0 λR = λI = 0

�s ✗ isyηxψ−k;�,−G isyηxc−k – –

unless D0 �= 0. On the other hand, for setup (ii) having h̃s
η �= 0

explicitly breaks inversion-symmetry and thereby allows for
spin splitting of the bands even at D0 = 0. Figure 1 provides a
comparison of the band structures for the two configurations.
In line with Eq. (5), we see that the two setups have identical
spectrum as long as λI = 0.

The spin splitting of the bands under SOC and D0 is cap-
tured via gk �= 0 in the effective Hamiltonian,

heff
k,η = s0ξη·k + η gη·k · s, (6)

for the bands of tTLG near the Fermi level, where ξk is the
spin-independent part of the band structure. To be concrete,
Fig. 2 presents the band structure, Fermi surfaces and spin
texture for the case λR, D0 �= 0. As discussed in detail in
Ref. [59], gηk exhibits vortices at three generic momenta in-
side the Brillouin zone which lead to three (almost) crossing
points of the Fermi surface for a (close to a) specific value
of the chemical potential. In Fig. 2(b), we tuned the system
close to this point, which leads to the Möbius-like nature of
the Bloch spin textures. In Sec. IV C we will use the notion of

FIG. 2. (a) Band structure and (b) Fermi surfaces and their spin
texture (arrows). Here twist angle θ = 1.75◦, εF = 16 meV, λR =
20 meV, λI = 0, D0 = 10 meV, and valley η = +.

the gηk vector to make analytic statements about the properties
of the superconducting states.

B. Superconductivity

We present a minimal interacting model used to capture
the various possibilities of superconductivity in TTLG, which
we refer to as the parent superconducting state. For the
parent superconducting state, we exclusively consider inter-
valley pairing, not intravalley pairing, which is expected to
be dominant; this is due to the guarantee of a nesting log-
arithm through time-reversal symmetry. On top of this, we
account for the possibilities [68–71] of spin-singlet dominant,
spin-triplet dominant, and high-symmetry spin-SO(4) pairing,
as well as both nodal and nodeless superconductivity—
corresponding to the 1D and 2D IRs of Cs

3z, respectively. We
assume that the Cooper pairs of the parent state are formed
from the partially filled, spin-degenerate band, consistent with
experimental observations [19,20,25,26].

Let ε0
η,s,k and ψ0

η,s,k denote the spin-degenerate bands and
corresponding eigenfunctions at the Fermi level of the un-
perturbed system (h(g)

η + h(t )
η ) with quantum numbers: spin

s; graphene valley η; and quasimomenta k restricted to
the MBZ. We denote the corresponding creation operator
c†

k,η,s. The combined perturbations of SOC and D0 are cap-
tured in the perturbed eigenvectors of the noninteracting
Hamiltonian, hk,ηψη,n,k = εη,n,kψη,n,k, with hη = h(g)

η + h(t )
η +

h(SOC)
η + h(D)

η . The band index n replaces spin s which is no
longer a good quantum number. The electron creation oper-
ators for the Bloch states of the perturbed system, c̃†

k,η,n, are
related to the unperturbed creation operators via

c†
k,η,s =

∑
n

C∗
η,n,s,kc̃†

k,η,n, C∗
η,n,s,k ≡ 〈

ψη,n,k

∣∣ψ0
η,s,k

〉
. (7)

The mean-field Hamiltonian, decoupled into the Cooper chan-
nel for intervalley pairing, is valley-diagonal H = ∑

η=± Hη

035159-3



SCAMMELL AND SCHEURER PHYSICAL REVIEW B 109, 035159 (2024)

FIG. 3. The discrete grid realization of the �k;εF -functions of
Eq. (9); black curve is the Fermi surface of the unperturbed system
at εF = 9.5 meV and θ = 1.50◦, orange points indicate �k;εF = 1,
gray points indicate �k;εF = 0.

with

Hη =
∑
k,n

εη,n,kc̃†
k,η,nc̃k,η,n

+
∑

k1,k2;μ,ν

(−�−1)k1,k2;μ,ν

(
d∗

k1,η

)
μ

(
dk2,η

)
ν

+
∑

k

∑
n,n′

∑
s1,s2

∑
μ

{
c̃†

k,η,nc̃†
−k,η,n′

× [
(dk,η )μ(sμisy)s1,s2C

∗
η,n,s1,kCη,n′,s2,k

] + H.c.
}
. (8)

Here the intervalley superconducting order parameter dμ,k,η

encodes the spin, quasimomentum and valley structure, where
μ = 0 refers to spin singlet and μ = 1, 2, 3 refer to the com-
ponents of the spin triplet. We point out that the mean-field
description of the parent superconducting state corresponds to
the limit Cη,n,s,k = 1; for the perturbed superconducting state,
the overlap factors Cη,n,s,k encode the SOC-induced mixing
of the μ components of dμ,k,η as a function of k. Here we
allow the vertex �k1,k2;μ,ν to be either even or odd under:
k1 → −k1 or k2 → −k2. The even (odd) vertex is introduced
to accommodate nodeless (nodal) superconductivity. Explic-
itly, �k1,k2;μ,ν = �even

k1,k2;μ,ν or �odd
k1,k2;μ,ν , with

�even
k1,k2;μ,ν = (γ0δμ,ν + δγ δμ,0δν,0)Fk1,k2�k1;εF �k2;εF ,

�odd
k1,k2;μ,ν = �even

k1,k2;μ,ν × (
Xk1Xk2 + Yk1Yk2

)
. (9)

Here Fk1,k2 is a momentum dependent function (detailed in
the Appendix B) while �k;εF is a step-function such that:
�k;εF = 1 for k within a radius � of any Fermi momen-
tum kF , and �k;εF = 0 elsewhere. A representative plot of
�k;εF is shown in Fig. 3. An attractive interaction requires
γ0 > 0. Meanwhile, the singlet-triplet asymmetry parameter
|δγ |/γ0 < 1 distinguishes three cases of the parent supercon-
ducting state: (i) δγ > 0 favors spin-singlet, (ii) δγ < 0 favors
spin triplet, and (iii) for δγ = 0, spin singlet and triplet are
degenerate [spin SO(4)]. Finally, in Eq. (9), we have included
the basis functions Xk,Yk, which are MBZ-periodic functions
transforming as kx, ky under C3z, and are specifically taken

to be

Xk = 2√
3

sin

(√
3

2
aθkx

)
cos

(
1

2
aθky

)
,

Yk = 2

3

(
cos

(√
3

2
aθ kx

)
sin

(
1

2
aθ ky

)
+ sin

(
aθky

))
, (10)

with aθ the magnitude of the moiré lattice vector. The chosen
combination of Xk,Yk in �odd

k1,k2;μ,ν [Eq. (9)] preserves C3z.
Following (8), we arrive at the linearized gap equation,(
dk1,η

)
μ

=
∑
ν,k2

�μ,μ′,k1,k2Wμ′ν,k2,η

(
dk2,η

)
ν
,

Wμν,k,η =
∑
n1,n2

∑
s1,s2,s3,s4

tanh
( εη,n1k

2T

) + tanh
( εη,n2k

2T

)
2(εη,n1k + εη,n2k)

(σμ)s2,s3

× Cη,n1,s1,kC∗
η,n1s2,kCη,n2,s3,kC∗

η,n2,s4,k(σν )s4,s1 . (11)

We note that the gap equation is diagonal in η, and hence for
the numerical analysis presented in Sec. IV we specialize to
η = +1. In fact, this uniquely determines the superconducting
order parameter since its form in the other valley just follows
from the Fermi Dirac constraint [see Eq. (13) below]. Further
details about solving the gap equation are presented in Ap-
pendix B.

III. SYMMETRY ANALYSIS

Before solving numerically for superconductivity in the
next section, we here use symmetry arguments to derive the
evolution of the structure of the superconducting instabilities
when λR, λI, and D0 are turned on. As follows from Ta-
ble I and as summarized in Fig. 4(a), depending on which
combination of these three parameters is nonzero, the system
exhibits a variety of point groups. This is important for pairing
since certain order parameter configurations, corresponding to
distinct IRs of the point group C6h × SO(3)s of the system
at λR = λI = D0 = 0, can mix when the symmetry group is
reduced.

To define the superconducting order parameter, we use the
electronic operators c†

k,η,s introduced in Sec. II B, which create
an electron with momentum k ∈ MBZ in the band in valley η

and of spin s that is closest to the Fermi level in the limit
λR = λI = D0 = 0. The representations of the symmetries in
this basis are listed in Table I (which fixes their phase ambi-
guity). Focusing as before on the energetically most favorable
intervalley pairing, the order parameter reads as

HSC =
∑

k,s,s′,η

3∑
μ=0

c†
k,η,s[(dk,η )μsμisy]s,s′c†

−k,−η,s′ + H.c., (12)

where

(dk,η )0 = (d−k,−η )0 and (dk,η ) j = −(d−k,−η ) j, (13)

j = x, y, z, are the singlet and triplet components of the or-
der parameter, respectively. Let us start in the limit λR =
λI = D0 = 0. As the point group C6h × SO(3)s contains spin
rotation symmetry, spin singlet and spin triplet cannot mix.
Furthermore, we expect the dominant pairing to involve
Cooper pairs of electrons of the same mirror-symmetry (σh)
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FIG. 4. (a) Summary of point groups when D0, λR, and λI are turned on, focusing for concreteness on geometry (i) in Eq. (5); the
modifications for geometry (ii) follow from Table I. We also list a (in many cases redundant) set of generators, see Table I for the definitions
and representations of the symmetry operations. We use D∞ to refer to the group generated by {SO(2)s,Cs′

2z}. Choosing one specific path
[indicted in light red in (a)] as an example, we show in (b) the evolution of the IRs of the pairing states. For the superconducting states
emerging out of A1

g and B3
u, we summarize their order parameters in (c). To keep the notation compact we use the four-component basis vectors

(eμ)μ′ = δμ,μ′ .

sector and not between different sectors, leading to pairing
being even under σh. In fact our low-energy description of
pairing in Eq. (12) automatically implies that: in the presence
of σh, every band has a distinct eigenvalue under σh and the
band in a given valley η closest to the Fermi level at momen-
tum k, where an electron is created by application of c†

k,η,s, has
the same σh eigenvalue as the band closest to the Fermi level
at −k and −η. Since the Fermi-Dirac constraint (13) further
implies [70] that singlet (triplet) is even (odd) under C2z and
I , we are left with the IRs Ag or E2g of C6h for singlet and Bu

or E1u for triplet pairing.

A. Pairing in one-dimensional IRs of C6h

Let us first focus on the one-dimensional IRs, Ag and Bu,
i.e., pairing transforming trivially under C3z; to indicate their
respective spin-structure, these states are represented by A1

g

and B3
u in Fig. 4(b). They have the following order parameters:

A1
g : dk,η = (λη·k; 0, 0, 0), (14)

B3
u : dk,η = (0; ηλη·kn̂), (15)

where λk = λC3zk ∈ R and n̂ is a real unit vector (here and in
the following, we employ the slight abuse of notation where

the symbol C3z refers both to the transformation as a group
element and to its vector representation).

There are several orders of turning on the perturbations
λR, λI, D0, corresponding to the different paths (arrows) in
Fig. 4(a). As it is most important for our discussion here, we
will focus on geometry (i) in Eq. (5) and λR being turned
on first and then D0 as an example [path in light red in
Fig. 4(a)]; the generalization to other paths is straightfor-
ward. First, setting λR �= 0 will reduce the point group to
Cs

6h, where all symmetry operations in C6h are replaced by
appropriate combinations of spatial and spin transformations,
i.e., the (redundant) generators C3z, C2z, and σh of C6h are
replaced by their spinful counterparts Cs

3z, Cs
2z, and σ s

h , see
Table I. Importantly, Cs

6h still contains I = Cs
2zσ

s
h such that

singlet and triplet continue to transform under different IRs
and, hence, cannot mix. While the singlet is unaffected, the
B3

u triplet splits into a state with triplet vector pinned along
the sz direction (as a consequence of Cs

2z) transforming under
the one-dimensional IR Bu of Cs

6h and a doublet transforming
under the two-dimensional IR E2u; their order parameters
read as

Bu : dk,η = (0; 0, 0, ηλη·k ), (16)
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FIG. 5. Eigenvalues [normalized to unity at D0 = 0] as a function of D0, (left column) λR = 30 meV; (middle column) λI = 30 meV;
and (right column) λI = λR = 30 meV. The distinct IRs are indicated, see Fig. 4(b) for left and right column. When λR = 0, λI �= 0 (middle
column), the point group is C3 × D∞, see Fig. 4(a); we denote the two-dimensional (one-dimensional) IR which is trivial in C3 and transforms
as x, y (also trivial) under D∞ by �A (�A

+). (Top) SO(4) symmetric parent state, i.e., δγ = 0 in Eq. (9). (Middle) Spin-triplet favored parent
state, with interaction δγ = −0.25. (Bottom) Spin-singlet favored parent state, with interaction δγ = 0.25. Everywhere the Fermi energy is
εF = 9.6 meV.

E2u :

(
d1

k,η

d2
k,η

)
=

(
(0; ηMη·kêx, 0)

(0; ηMη·kêy, 0)

)
, (17)

where Mk is a real, 2 × 2 matrix, obeying C−1
3z MC3zkC3z = Mk.

Naturally, for the E2u state emerging out of and being close to
the B3

u (and its descendent below), we expect Mk  σ0λk; this
is indeed what we see in the numerics (cf. first two rows in
Fig. 6).

When also D0 is nonzero, σ s
h is broken and the point group

is reduced to Cs
6. As it does not contain inversion symmetry

I (nor C2z) anymore, spin-singlet and triplet can now mix.
More precisely, the presence of Cs

2z guarantees that the triplet
component admixed to the singlet only contains in-plane spin
components; the Ag singlet now becomes the A state of Cs

6 with
order parameter

A : dA
k,η = (λη·k; 0, 0, 0) + α1η(0; Xη·k,Yη·k, 0), (18)

where Xk, Yk are real-valued, MBZ-periodic functions trans-
forming as kx, ky under C3z [such as the two components of the
spin-orbit vector gk in Eq. (31)]; we distinguish Xk, Yk, which
are generic functions, from the specific choice Xk,Yk of (10).
Here α1 ∈ R describes the strength of the triplet admixture
(coming from Au of Cs

6h).
By the same token, Cs

2z prevents the Bu triplet in Eq. (16)
to exhibit singlet or in-plane triplet components and, thus,
remains of the same form; it will be relabeled as the B state

of Cs
6. Being even under Cs

2z, the E2u doublet in Eq. (17),
however, can mix with a singlet component (coming from E2g

of Cs
6h) and becomes the E2 state of Cs

6 with order parameter

E2 :

(
d1

k,η

d2
k,η

)
=

(
(0; ηMηkêx, 0)

(0; ηMηkêy, 0)

)
+ α2

(
(Xηk; 0)

(Yηk; 0)

)
. (19)

Finally, let us also take λI to be finite, which breaks Cs
2z

leaving us with the point group Cs
3, just consisting of spinfull

threefold rotations along the z axis. Since the subduced repre-
sentations of A and B of Cs

6 onto Cs
3 are both A of Cs

3, the singlet
A in Eq. (18) and the out-of-plane triplet in Eq. (16) hybridize
and become a single phase with order parameter (β ∈ R)

A : dk,η = (ληk; 0) + α1η(0; Xηk,Yηk, 0) + β(0; ηληkêz ).
(20)

The broken Cs
2z also allows for more terms in the previous

E2 state in Eq. (19) which now also exhibits a spin component
along the out-of-plane direction (coming from E1 of Cs

6),

E :

(
d1

k,η

d2
k,η

)
=

(
(0; ηMηkêx, 0)

(0; ηMηkêy, 0)

)
+ α2

(
(Xηk; 0)

(Yηk; 0)

)

+ α3η

(
(0; X̃ηkêz )

(0; Ỹηkêz )

)
, (21)

035159-6



DISPLACEMENT FIELD TUNABLE SUPERCONDUCTIVITY … PHYSICAL REVIEW B 109, 035159 (2024)

FIG. 6. Spin-triplet favored parent state, i.e., δγ /γ0 = −0.25,
with fixed D0 = 6 meV, λR = 30 meV, λI = 0 and εF = 9.6 meV.
(Top-to-bottom) Corresponds to leading eigenvalue down to fourth
eigenvalue; the corresponding IRs are labeled.

where the tilde of X̃ and Ỹ in the last term just indicates that
these functions need not be identical to X and Y but exhibit
the same transformation behavior. The admixture of the dif-
ferent IRs of the respective point groups and the form of the
pairing states discussed here are summarized schematically in
Figs. 4(b) and 4(c), respectively.

B. Two-dimensional IRs of C6h

While all of the states above can and are generically ex-
pected to be fully gapped, recent experiments [60,61] indicate
that also nodal pairing can be realized in graphene moiré
systems. For this reason, we next discuss pairing emerging out
of the remaining, two-dimensional IRs—E2g and E1u of C6h.
As discussed above already, they are pure singlet and triplet
states, respectively, in the presence of inversion symmetry. We
begin with the singlet, E1

2g, with order parameter

E1
2g :

(
d1

k,η

d2
k,η

)
=

(
(Xηk; 0, 0, 0)

(Yηk; 0, 0, 0)

)
. (22)

The associated nematic superconducting state, (dk,η )μ =
δμ,0Xηk, can have stable nodal points (depending on the Fermi
surface), while the chiral state, (dk,η )μ = δμ,0(Xηk + iYηk),
will generically be fully gapped. Finite λR does not change
the form of the order parameter since I (of Cs

6h) prohibits any
triplet admixture. However, when also D0 is finite, the E2g and
E2u states of Cs

6h can hybridize into the E2 state of Cs
6,(

d1
k,η

d2
k,η

)
=

(
(Xηk; 0, 0, 0)

(Yηk; 0, 0, 0)

)
+ α1

(
(0; ηMηkêx, 0)

(0; ηMηkêy, 0)

)
. (23)

By design, the form of this state is equivalent to that in
Eq. (19) discussed above. However, there are a few important
differences in the precise nature of it: if the E1

2g state dom-
inates at λR = λI = D0 = 0, then turning on λR, D0 weakly
will lead to a small admixture of the second term in Eq. (23)
to the first. Furthermore, as opposed to Eq. (19), there is no
reason anymore that Mηk in Eq. (23) is close to σ0λk with
λk that is approximately constant on the Fermi surface. And,
indeed, we find a nontrivial Mk in our numerics below.

Finally, the triplet E3
1u has a matrix-valued order parameter,

di, j
k,η

= η

(
Xηk

Yηk

)
j

êi, i = x, y, z, j = 1, 2, (24)

which leads to a multitude of possible phases in the absence
of SOC [70]. When λR is turned on, it splits into

Au : dk,η = η(0; Xηk,Yηk, 0), (25)

E1u :

(
d1

k,η

d2
k,η

)
= η

(
(0; Xηkêz )

(0;Yηkêz ),

)
(26)

and another E2u component that mixes with the B3
u state [ab-

sorbed in Mk in Eq. (17)]. If also D0 is finite, the Au state will
mix with the Ag state leading to the A superconducting order
parameter of Cs

6 in Eq. (18). Interestingly, the E1u state of Cs
6h

simply becomes the E1 state of Cs
6 without any changes to its

form. Finally, for finite λI, the E1 and E2 phases of Cs
6 mix and

become the E state of Cs
3 with order parameter of the form of

Eq. (21).

IV. SUPERCONDUCTING ENERGETICS

Our next objective is to explicitly compute the influence
of D0 and SOC on the various possible parent states. The
numerical results will be directly related back to the symmetry
classification of the previous section, and we will further ap-
peal to analytic arguments, Sec IV C, to explain key features
of our numerical findings.

A. Numerics for fully gapped states

Using the linearized gap equation (11) with vertex �even

given by the first line of Eq. (9), we compute the evolution
of the superconducting order parameters, dμ,k = (dk,η=+)μ,
under applied SOC and displacement field, as well as for the
different spin-symmetries of the parent superconducting state.
The leading eigenvalues are presented in Fig. 5 and selected
eigenvectors can be found in Figs. 6 and 7. In these plots,
we have set θ = 1.50◦, w0/w1 = 0.875 (which are tunneling
parameters defined in Appendix A), and taken the Fermi level
at εF = 9.5 meV which corresponds to filling ν  3.25 of the
moiré bands. We note that in the closely related system— i.e.,
the single sided TMD/TTLG heterostructure of Ref. [26]—
superconductivity is observed to be strongest in the range 2 <

|ν| < 4 and trends towards |ν| ∼ 4 with increasing D0 [see
e.g., Fig. 1(c) of that work]. Finally, for the gap equation (11)
we keep eight bands n (of a given valley) in the summation in
Wμν,p. We now comment on the key features of these results.

(1) Left column Fig. 5. At λR �= 0 increasing D0 generates
a splitting of the states into the distinct IRs A, B, E2 of Cs

6 [cf.
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FIG. 7. Spin-triplet favored interaction δγ /γ0 = −0.25, with
fixed D0 = 6 meV, λR = λI = 30 meV, and εF = 9.6 meV. (Top-
to-bottom) Corresponds to leading eigenvalue down to fourth
eigenvalue; the corresponding IRs are labeled.

Fig. 4(b)]. We see from Fig. 6 that the singlet A has admixed
in-plane triplet character, while the in-plane triplet E2 has ad-
mixed singlet character; the admixture increases with D0. The
admixed components exhibit sign changes around the Fermi
surface. The triplet B (nondegenerate eigenvector), however,
remains a pure triplet with triplet vector pinned to the out-
of-plane direction. These features are in perfect agreement
with the symmetry analysis, see Eqs. (16), (18), and (19),
and are further elucidated in Sec. IV C using a complementary
description of the gap equation. That analysis will also explain
why the admixed singlet (triplet) component(s) of the E2 (A)
state change sign between the two Fermi surfaces.

(2) Middle row, left column Fig. 5. For the case of the
triplet preferred parent state δγ < 0, and with λR �= 0, we
see that the leading eigenvalue exhibits a change from E2

to A at D0  9 meV for λR = 30 meV. Since all three states
transform according to different IRs, their eigenvalues cross
each other (rather than exhibit avoided crossings), which cor-
responds to a phase transition. However, the precise form of
the phase diagram—with or without phase coexistence—goes
beyond the linearized gap equation and will be discussed in
Sec. IV B below.

(3) Middle Column Fig. 5. At λI �= 0 increasing D0 gen-
erates a splitting of the states into the distinct IRs �A

+, �A

of C3 × D∞, with two nondegenerate states belonging to �A
+,

which correspond to the symmetric and antisymmetric com-
binations, i.e., d0,k ± d3,k.

(4) Right Column Fig. 5. At λR, λI �= 0 increasing D0

generates a splitting of the states into the distinct IRs A, E of
Cs

3, again with two nondegenerate states belonging to A. These
two nondegenerate states can be thought of as the “bonding”

and “anti-bonding” configurations of the A and B states of Cs
6

in Fig. 4(b). This is confirmed by noting in the first (last)
row in Fig. 7 that the two singlet states A have symmetric
(antisymmetric) combinations of d0,k and d0,k, i.e., different
signs of β in Eq. (20). This hybridization is also visible in the
D0 dependence of the eigenvalues in the last column of Fig. 5,
which exhibits an avoided crossing between the associated
pair of eigenvalues. The A states also have admixed in-plane
triplet character, with sign changes around the Fermi surface.
On the other hand, the in-plane triplet E (the second and
third rows of Fig. 7) has admixed d0,k and d3,k, which exhibit
sign changes on the Fermi sheets. These features are well
explained by the symmetry arguments [cf. Eqs. (20) and (21)].

B. Phase transition

As already mentioned above, the crossing at a critical value
D0 = Dc

0 between the leading and subleading eigenvalues in
the middle row, left column panel in Fig. 5 implies that there
is a transition from the (E2 of Cs

6) in-plane triplet with admixed
singlet component in Eq. (19) to the singlet with admixed
in-plane triplet components of Eq. (18), transforming as A of
Cs

6. The linearized gap equation, however, does not yet fully
determine the phase diagram in the vicinity of Dc

0 and Tc.
To discuss this further, we expand the superconducting order
parameter in Eq. (12) as

dk,η = � dA
k,η +

∑
j=1,2

φ j d j
k,η

, �, φ j ∈ C, (27)

where dA
k,η and d j

k,η
are given by the four-component vectors

in Eqs. (18) and (19), respectively. Considering terms up to
quartic order in � and φ = (φ1, φ2) that are consistent with
the Cs

6 point group, time-reversal, and gauge invariance, the
free-energy must have the form

F ∼ 1
2 aA|�|2 + 1

2 aE2φ
†φ + 1

4 bA|�|4 + 1
4 bE2,1(φ†φ)2

+ 1
4 bE2,2|φT φ|2 + 1

2 c1 |�|2φ†φ + 1
2 c2 Re[�2φ†φ∗]

(28)

close to Tc. Before proceeding, we first obtain an estimate
for the real-valued coefficients of the quartic terms, bA, bE2,1,
bE2,2, c1, c2; we take the effective two-band normal-state
Hamiltonian in Eq. (6), neglect the spin splitting, gk = 0, and
integrate out the fermions coupled to the superconducting or-
der parameters �, φ via Eqs. (27) and (12). Further neglecting
the small admixture, α1,2 = 0, and taking λ, M = const. in
Eqs. (18) and (19), we find

bA = bE2,1/2 = −bE2,2 = c1/2 = c2 > 0, (29)

where bA = 64
∑

ωn

∫
d2k

(2π )2 (ω2
n + ξ 2

k )−2. Most importantly,
we see that bE2,2 < 0, favoring the unitary (nematic E2) state,
φ ∝ ê1, over the nonunitary (chiral E2) configuration, φ ∝
ê1 + iê2, where ê1,2 are two orthogonal two-component unit
vectors. Minimizing the free energy in Eq. (28) for bE2,2 < 0,
one finds that depending on

γ = c1 − |c2|√
bA

(
bE2,1 + bE2,2

) , (30)
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FIG. 8. For bE2,2 < 0, we either get (a) an intermediate region of
microscopic coexistence or (b) a first order transition between the
two superconductors, depending on the value of γ in Eq. (30).

one either obtains microscopic coexistence of � and ne-
matic φ (γ < 1) or a first-order transition between the two
(γ > 1), see Fig. 8. Interestingly, for the approximate esti-
mate in Eq. (29) we get γ = 1 and these two possibilities
are degenerate. As such, additional corrections coming from
nontrivial form factors (λ, M �= const.), SOC, and fluctuation-
[70,72,73] or disorder [74] corrections can determine which
of the two scenarios in Fig. 8 is realized. In the case of
microscopic coexistence, γ < 1, the relative phase of � and
φ j is determined by the sign of c2. For the positive sign of
c2 obtained from our estimate in Eq. (29), we find φ∗� to be
purely imaginary, such that the superconducting state in the
hatched region in Fig. 8(a) breaks time-reversal symmetry.

We note that significant corrections to Eq. (29), e.g., result-
ing from strong ferromagnetic fluctuations [70], can change
the sign of bE2,2. Positive bE2,2 will favor φ ∝ ê1 + iê2 for
sufficiently small D0. However, close to D0 = Dc

0, the com-
petition between the terms ∝ bE2,2 and ∝ c2 in Eq. (28) will
lead to more complex behavior than in Fig. 8: depending on
parameters, we find (not shown) either no coexistence, or co-
existence with a first order transition, or a coexistence region
with two different regimes (coexistence with only nematic or
nematic and chiral pairing).

Since the transition involves superconducting states with
different symmetries, there should be multiple ways of prob-
ing it experimentally. Given the current experimental status in
graphene moiré systems, we believe that the most straight-
forward way proceeds by measuring the variation of the
superconducting critical temperature Tc as a function of mag-
netic field B and displacement field D0: the order parameter
of the A state does not allow to construct a time-reversal-odd,
gauge-invariant composite order parameter and, hence, cannot
couple linearly to the magnetic field B (even in the presence
of strain). This is different for the E2 order parameter since
we can define i(φ∗

1φ2 − φ∗
2φ1 ), which transforms in the same

way as the magnetic field component along the out-of-plane z
direction; it can, hence, couple linearly to it. In the presence
of strain, it can also couple linearly to the in-plane magnetic
field components. Consequently, the behavior of Tc(B) is very
different in the two phases and we therefore expect a drastic
change of it when D0 changes across the transition, making it
directly observable.

C. Character of the admixed state

To further supplement the numerical studies of the gap
equation (11), here we provide a complementary analysis to

elucidate key features of the superconducting order parame-
ters (dk,η )μ. We specialize to λR, D0 �= 0 for this analysis.

We describe the behavior of the eigenvectors of the gap
equation (11) in terms of the effective gηk vector in Eq. (6),
which captures the impact of SOC (and D0) on the partially
filled moiré bands at the Fermi level. The gηk vector can be
explicitly computed from the full continuum model and its
form can be inferred from Fig. 2. Recasting the mean-field
Hamiltonian (8) in terms of gηk and separating Hη = H(0)

η +
H(1)

η ,

H(0)
η =

∑
k,s,s′

[ξηks0 + ηgηk · s]s,s′c†
k,s,ηck,s′,η (31)

H(1)
η =

∑
k1,k2;μ,ν

(−�−1)k1,k2;μ,ν

(
d∗

k1,η

)
μ

(
dk2,η

)
ν

+
∑

k;s1,s2;μ

{
c†
η,n,kc†

η,n′,−k

[
(dk,η )μ(sμisy)s1,s2

] + H.c.
}
.

(32)

The eigenvalues of H(0)
η are E±,ηk = ξηk ± |gηk| and the subse-

quent normal-state Greens function is conveniently expressed
as

Gη,η′
k,iωn

= [
G+

ηk,iωn
s0 + ηĝηk · s G−

ηk,iωn

]
δη,η′ , (33)

with ĝηk = gηk/|gηk| and

G±
ηk,iωn

=
[

1

iωn − E+,ηk
± 1

iωn − E−,ηk

]
. (34)

We consider an interaction vertex in the superconducting
channel, �k,k′;μν = �0

k,k′δμν , which strictly favors intervalley
pairing, and which is even in the quasimomentum indices,
i.e., �0

k,k′ = �0
−k,k′ = �0

k,−k′ = �0
−k,−k′ ; to be explicit we take

the interaction as given by the first line in Eq. (9) in the
limit δγ = 0. Utilizing that the Greens function is diagonal
in valley indices, as per Eq. (33), the linearized gap equation
reads (

�
η,−η

k

)
s,s′ = T

∑
n,k′;s1,s2;η

�0
k,k′

(
Gη,η

k′,iωn

)
s,s1

× (
�

η,−η

k′
)

s1,s2

(
G−η,−η

−k′,−iωn

)
s′,s2

. (35)

As before in Sec. IV A, we specialize to a given η = + and
denote dμ,k = (dk,+)μ such that the decomposition into the
spin-singlet and triplet components is,

�+−
k = d0,ks0 + dk · s. (36)

The gap equation (35) reduces to

d0,k =
∑

k′
�0

k,k′[V+
T,k′d0,k′ + V−

T,k′ ĝk′ · dk′],

dk =
∑

k′
�0

k,k′[V+
T,k′dk′ + V−

T,k′ ĝk′d0,k′

+ 2V 0
T,k′[ĝk′ (ĝk′ · dk′ ) − dk′]]. (37)

We have defined the sums and differences of thermal occupa-
tion factors,

V±
T,k = 1

2
T

∑
n

[
1

E2
+,k + ω2

n

± 1

E2
−,k + ω2

n

]
, (38)
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V 0
T,k = T

∑
n

(E+,k − E−,k)2(
E2

+,k + ω2
n

)(
E2

−,k + ω2
n

) . (39)

To understand the important characteristics of the super-
conducting order parameters dμ,k, which we observed in
Sec. IV A through a comprehensive numerical analysis of the
gap equation (11), we will now present our analytic findings
based on a perturbative expansion in V−

T,k. Specifically, we
will examine the properties of the A and E2 states and com-
pare our results with the findings presented in Fig. 6. The
explicit steps of the perturbative expansion are provided in
Appendix C.

It is important, for what follows, to first establish the (ap-
proximate) equality

V±
T,k+

F
= ±V±

T,k−
F
, (40)

where we define k±
F as points on the Fermi surfaces for the

E±,k bands, i.e., E±,k±
F

= 0. To this end, we assume |gk| does
not change between Fermi surfaces, i.e., |gk+

F
| = |gk−

F
| ≡ |g|.

Next, employ a linear expansion of the dispersion in mo-
mentum normal to a point k0

F on the Fermi surface of ξk,
i.e., denoting the normal vector n̂FS

k0
F

, we expand in δk =
(k − k0

F )n̂FS
k0

F
such that ξδk  v(k − k0

F ). From E±,k±
F

= 0 we

see that k±
F = k0

F ± |g|/v and so E2
+,k−

F
= E2

−,k+
F

= 4|g|2; this

implies V±
T,k+

F
= ±V±

T,k−
F
.

A state. We start by considering the dominant singlet
state d0,k, with admixed in-plane triplet components d‖

k =
(d1,k, d3,k ) vector (and ignoring the d3,k component which
is decoupled). Reinstating the valley index η, we denote the
unperturbed (i.e., V−

T,k → 0) A state as

dA
η·k = (

d (0)
0,η·k; 0

)
, (41)

with d (0)
0,η·k approximately constant in k. The perturbation

V−
T,η·k generates admixed triplet components,

dA
η·k

′ = (
d (0)

0,η·k; βηV−
T,η·k ĝη·k

)
, (42)

with β a dimensionless factor (see Appendix C for details).
Since the two components of ĝη·k transform as kx and ky under
C3z, this is consistent with the form in Eq. (18) predicted by
symmetry. Moreover, this simple expression already captures
the key features clearly seen in the full numerical results in
the third line of Fig. 6; the admixed triplet vector changes
sign between the spin split Fermi surfaces due to the factor
V−

T,η·k and Eq. (40). We further see that it inherits the direc-
tional dependence of ĝη·k, including its Möbius texture [59]
for λI � λR, see Fig. 2(b).

E2 states. Similar to above, we denote the unperturbed (i.e.,
V−

T,η·k → 0) E2 state as

dE2
η,k = (

0; ηd (0)
η·k

)
, (43)

where, to a good approximation, d (0)
η·k  e‖, with e‖ a constant

in-plane vector, for all k such that �k;εF = 1, i.e., in the grid
of Fig. 3. The perturbation V−

T,η·k generates admixed singlet
components,

dE2
η,k

′ = (
βV−

T,η·kηĝη·k · e‖; ηd (0)
η·k

)
, (44)

This first-order perturbation expansion already captures the
key features observed in the E2 states presented in Fig. 6;
the admixed singlet component changes sign between the
spin split Fermi surfaces due to the factor V−

T,η·k obeying
Eq. (40) and further inherits the directional dependence of
ĝη·k · e‖.

D. Nodal pairing

In this final section, we start from a nodal parent state
and examine its characteristics under applied D0 and SOC.
To this end, Fig. 9 illustrates the evolution of the distinct
IRs as the singlet-triplet interaction-asymmetry parameter δγ

in Eq. (9) is varied. The numerical results of Fig. 9 are ob-
tained from the gap equation (11) by using the odd-vertex
�odd

k1,k2;μ,ν of Eq. (9), which enables nodal pairing. As can be
seen from the eigenvalues, the system is in an E2 state at
δγ /γ0 = 0, and subsequently undergoes a crossing with an A
state (signaling a phase transition, cf. Sec. IV B) as −δγ /γ0 is
increased. The dominant eigenvector(s) at each limit of δγ /γ0

are also shown—and demonstrate a switch in behavior from
a singlet-dominant E2 state to that of a triplet-dominant A
state. To complete our analysis of the nodal pairing, we detail
the structure of each of the distinct states {A, A, E2, E2, E1}
of Fig. 9, focusing on the region δγ /γ0  −0.025. We show
how the order parameter structures relate to the known vectors
of the system, i.e., the gηk coming from SOC; the (Xηk,Yηk)
coming from the interaction vertex Eq. (9); and the vector
triad {êx, êy, êz} for the spin-triplet components.

A states. Considering the first (highest eigenvalue) A state
of Fig. 9 at δγ /γ0  −0.025, the numerical solution reveals
the following structure:

dk,η = β (ληk; 0, 0, 0) + η(0;Xηk,Yηk, 0). (45)

Here ληk is not close to the identity, but is instead ap-
proximately of the form ληk  gηk · (Xηk,Yηk)V−

T,ηk, which
transforms like a scalar under three-fold rotations. As a re-
minder, the function V−

T,ηk changes sign between the two
Fermi surfaces, see Eq. (40), and β is a small dimensionless
parameter. Meanwhile, the second highest A state of Fig. 9
takes a rather different form

dk,η = β (λ̃ηk; 0, 0, 0) + η(0;Yηk,−Xηk, 0). (46)

Here λ̃ηk  gηk · (Yηk,−Xηk)V−
T,ηk is again a scalar under

three-fold rotations and the triplet components of (46) are
seen to be simply a π/2-rotation relative to those of (45).
These two A states can be understood as resulting from the
rotationally trivial combination of (Xηk,Yηk) with each of the
two components of the nodeless E2 state of Fig. 6. Within
our symmetry analysis in Sec. III B, they correspond to the
admixture of Ag to Au in Eq. (25), see Fig. 4(b). This is
consistent with triplet being dominant in both Eqs. (45) and
(46), while the singlet components are admixed. As per our
discussion in Sec. IV C the admixed components exhibit sign
changes between the Fermi surfaces.
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FIG. 9. Nodal pairing: states and their evolution with δγ . Dashed lines are the eigenvalues obtained by direct computation of the gap
equation (11). Eigenvectors for the leading E2 state at δγ /γ0 = 0 are shown on the left hand side, while those for the leading A state at
δγ /γ0 = −0.025 are on the right hand side. Parameters {λR, D0, εF } = {6, 6, 9.6} meV.

E2 states. The highest E2 states of Fig. 9 at δγ /γ0 
−0.025 exhibit the behavior(

d1
k,η

d2
k,η

)
= β1

(
(Xηk; 0, 0, 0)

(Yηk; 0, 0, 0)

)
+ β2 V

−
T,ηk

((
gx

ηk; 0, 0, 0
)(

gy
ηk; 0, 0, 0

))

+ η

(
(0;Xηk,−Yηk, 0)

(0; −Yηk,−Xηk, 0)

)
, (47)

with β1, β2 small dimensionless parameters; this expression
implies that the singlet components of these E2 states are a
linear combination of (Xηk,Yηk) and gηk; the explicit ratio
depends on the strength of SOC. The in-plane triplet compo-
nents of (47) are dominant, while the singlet components are
admixed. The next set of E2 states in Fig. 9 take the form, e.g.,(

d1
k,η

d2
k,η

)


(
(Xηk; 0, 0, 0)

(Yηk; 0, 0, 0)

)
+ β1 η

(
(0;Xηk,−Yηk, 0)

(0; −Yηk,−Xηk, 0)

)

+ β2 η V−
T,ηk

((
0; gx

ηkXηk, gy
ηkXηk, 0

)(
0; gx

ηkYηk, gy
ηkYηk, 0

)). (48)

In contrast to (47), the E2 state in Eq. (48) can be understood
as resulting from the rotationally nontrivial combination of
the (Xηk,Yηk) with the single component the nodeless A state
of Fig. 6. In this case, the singlet components are dominant
and the triplet components are admixed. With this insight, we
comment that the triplet components of (48) with coefficient
β2 are deduced as being the rotationally trivial combination
[(êx, êy, 0) · (gx

ηk, gy
ηk, 0)]—as seen in the triplet components

of the A state of Fig. 6—multiplied by the vector (Xηk,Yηk)T .
In terms of our symmetry analysis in Sec. III, the states in
Eqs. (47) and (48) should be thought of as two different
superpositions of E2g in Eq. (22) and E2u in Eq. (17), leading
to Eq. (23) with nontrivial Mk, see also Fig. 4(b).

E1 states. Finally, there exists E1 states, which are precisely
those presented in (26). These are purely out-of-plane triplets

and do not mix with singlets or in-plane triplets if only Rashba
SOC is present.

V. CONCLUSION AND OUTLOOK

Summary. We presented the continuum model for a
TMD/TTLG/TMD heterostructure, subject to two distinct
arrangements—(i) inversion symmetric and (ii) mirror sym-
metric, see top two panels in Fig. 1. This difference has
significant implications for the form of the proximitised spin-
orbit coupling (SOC); with (i) the SOC does not itself generate
spin splitting, but instead splitting can be induced via, e.g., an
inversion-symmetry-breaking displacement field (D0). In con-
trast, in (ii) an Ising SOC generates spin splitting, already at
D0 = 0. These results are summarized in Fig. 1. The inversion
symmetric setup, which hosts a displacement-field-tunable
spin splitting was the focus of the rest of the analysis.

Our objective was to systematically understand how the
superconductivity of TTLG, referred to as the parent super-
conducting state, evolves under applied D0 and SOC, where
we considered both Rashba and Ising SOC. We accounted
for a range of possible candidate parent superconducting
states, including spin-singlet, -triplet, and -SO(4) ordering,
with either nodeless or nodal momentum dependence. We
exclusively focused on intervalley pairing, as it is expected to
be favored over intravalley pairing due to time-reversal sym-
metry and an additional protection against disorder [75]. To
achieve this goal, we pursued a three-fold analysis. First, we
applied a mean-field gap equation (detailed in Sec. II B) to nu-
merically compute the superconducting order parameters (see
Sec. IV A), allowing for arbitrary momentum dependence.
We supplemented this with analytic arguments to understand
salient features (Sec. IV C), and we also provided a detailed
symmetry analysis (Sec. III), which has the advantage of
being independent of the particular assumptions—most no-
tably the form of interactions—entering the gap equation and
the mean-field approximation itself. These three approaches
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complement each other well and yield a consistent picture for
the evolution of superconductivity in TTLG with D0-tunable
SOC.

For dominant Rashba SOC (expected for θTMD in Fig. 1
close to 30◦), the system is predicted to exhibit phase transi-
tions as a function of D0 between two different pairing states
if and only if triplet pairing is dominant in the parent TTLG
system; this could be used to probe the spin structure of the
superconducting state in TTLG in future experiments, e.g.,
by measuring the evolution of the critical temperature as a
function of D0 and magnetic field in our geometry (i). We
have studied the phase diagram in the vicinity of the transi-
tion point, which either exhibits a first order transition or an
intermediate regime of microscopic coexistence, see Fig. 8.

Experimental feasibility. First, given that TMD/TTLG has
already been fabricated, extending this to TMD/TTLG/TMD
appears to be within reach. Next, we note that the twist angle
between the TMD and graphene layers does not require as
much experimental control as one needs for the TTLG part.
The challenge with symmetrically twisted TTLG is achieving
the alignment of the outer two graphene layers; given that
one is interested in small twist angles θ ∼ 1◦–2◦—and the
subsequent formation of a moiré pattern—even small angular
variations can be dramatic as they lead to a superlattice mod-
ulation of the moiré pattern, see, e.g., Ref. [23]. On the other
hand, we assert that adding TMD outer layers is less sensitive
to angular variations; the outer TMD layers are placed at
large twist angles, around θTMD ∼ 30◦, and so are not forming
a relevant moiré pattern and small variations thereby have
negligible effect.

Outlook. Future theoretical studies may build upon the
results obtained here to consider further implications of the
pairing states. In particular, they may take the array of su-
perconducting order parameters from this work and construct
the gauge-invariant bilinears of the orders, known as vestigial
orders [76]. These orders break only a subset of the sym-
metries and often only discrete symmetries, allowing them
to persist at temperatures above the critical phase coherence
temperature of the underlying or constituent superconducting
order. This persistence can influence the electronic behavior
of the system outside of the superconducting phase. Given
the exotic structure of the superconducting order parameters
found here, one may hope to find exotic vestigial orders
with clear experimental signatures. Additionally, the topolog-
ical nature of the superconducting order parameters has not
been considered in this work and, therefore, remains an open
problem. Related systems have demonstrated the existence of
higher-order topological superconductivity [77–80], including
for intervalley paired states [79,80].

A direct extension of the present analysis would be to
employ the inversion symmetric TMD/TTLG/TMD het-
erostructure, combined with inversion breaking D0, to study
the evolution of candidate particle-hole phases in this system.
Also their interplay with superconductivity will likely give
rise to very interesting and rich physics [11,25,26,81–86].
Therefore, it would be instructive to analyze how they coexist
or compete with superconductivity.

The ultimate goal of this analysis is to provoke future
experimental studies of this highly tunable van der Waals
heterostructure, to systematically investigate the influence of

spin splitting of the electronic bands on correlated phases in
general, and, in particular, to use our systematic results as
a means of distinguishing between various candidate parent
superconducting states.
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APPENDIX A: BAND STRUCTURE: EXTRA DETAILS

TTLG band Hamiltonian. As presented in Sec. II A, the
continuum Hamiltonian is separated into four parts, hk,η =
h(g)

k,η
+ h(t )

k,η
+ h(D)

k + h(SOC)
k,η

; the terms h(D)
k and h(SOC)

k,η
, which

we think of as a perturbation in this work, were described in
the main text, and here we provide the explicit form of the
TTLG subsystem, i.e., the h(g)

k,η
+ h(t )

k,η
. First, the contribution

from the individual graphene layers is captured by,(
h(g)

k,+
)
ρ,�,s,G;ρ ′,�′,s′,G′

= δ�,�′δs,s′δG,G′vF
(
ρθ�

)
ρ,ρ ′ (k + G − (−1)�q1/2), (A1)(

h(g)
k,−

)
ρ,�,s,G;ρ ′,�′,s′,G′ = (

h(g)
−k,+

)∗
ρ,�,s,−G;ρ ′,�′,s′,−G′ , (A2)

where q1 connects the K and K ′ points of the MBZ and ρθ =
eiθρz/2ρe−iθρz/2. Second, the tunneling between the layers is
modeled as,(

h(t )
k,+

)
ρ,�,s,G;ρ ′,�′,s′,G′

=
√

2 δs,s′

⎛⎜⎜⎝
0 (TG−G′ )ρ,ρ ′ 0

(T ∗
G′−G)ρ ′,ρ 0 0

0 0 0

⎞⎟⎟⎠
�,�′

,

(
h(t )

k,−
)
ρ,�,s,G;ρ ′,�′,s′,G′ = (

h(t )
−k,+

)∗
ρ,�,s,−G;ρ ′,�′,s′,−G′ , (A3)

where

TδG =
∑

j=−1,0,1

δδG+A j ,0

[
w0ρ0 + w1

(
0 ω j

ω− j 0

)]
, (A4)

ω = ei 2π
3 , A0 = 0, A1 = G1, A2 = G1 + G2. (A5)

Here w0 and w1 parametrize the strength of, respectively,
the sublattice diagonal and off-diagonal interlayer hopping
strengths. All results presented here take w0 = 0.875w1 and
w1 = 110 meV.

Extra plots. To supplement the band structure plots pre-
sented in Fig. 1, which compared the band structures of the
two distinct configurations, here Figs. 10 and 11 provide a
more comprehensive comparison for a range of SOC and D0

strengths.

APPENDIX B: SYMMETRIZING THE GAP EQUATION

The gap equation (11) is a non-Hermitian eigenvalue prob-
lem; the order parameters dμ,k presented in the main text
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FIG. 10. Band structure at twist θ = 1.75◦, with η = 1. Top row: θTMD + π (inversion symmetric stack). Bottom row: θTMD. The following
combinations of SOC and D0: (i) λR, λI, D0 = {0, 0, 0} meV, (ii) λR, λI, D0 = {10, 0, 0} meV, (iii) λR, λI, D0 = {0, 10, 0} meV, (iv) and
λR, λI, D0 = {0, 0, 10} meV.

are found by solving for the right eigenvector of the non-
Hermitian matrix. However, since it is convenient to work
with Hermitian matrices— especially for application of per-
turbation theory detailed in Appendix C— we here show how
to symmetrize the gap equation (11). Assuming summation
over repeated indices, the gap equation is written as

(�−1)k1,k2;μνdμ,k2 = Wk1;μνdν,k1 . (B1)

In matrix notation, we perform the following steps to cast it
into Hermitian form

(�−1)d̄ = W d̄,

U�U †d̄ = W d̄,

� f̄ = U †WU f̄ ,

h̄ = �− 1
2 U †WU�− 1

2 h̄. (B2)

Since �k1,k2;μν is spin-diagonal in our modelling, then so
too are U and �− 1

2 . Moreover, � and �− 1
2 are completely

diagonal, while U = (U μμ

k,χi
) contains, as column vectors, the

orthonormal basis of spatial harmonics of �, which we index
by χi. Using indices,

hμ
χi

= (�− 1
2 )μμ

χi,χi

(
U †

χi,k1

)μμ
W μν

k1
U νν

k1,χ j
(�− 1

2 )νν
χ j ,χ j

hν
χ j

. (B3)

We solve for hμ
χi

as eigenvectors and subsequently obtain the
order parameter components dμ,k via the inverse transforma-
tion

dμ,k = U μν

k,χ j
(�− 1

2 )νν
χ j ,χ j

hν
χ j

. (B4)

It is these dμ,k that are presented in the main text.
Finally, we model the momentum-dependent factor Fk1,k2 ,

appearing in the potential (9), as Lorentzian-shaped about
the two partially filled bands ε+,n,k, with n = 1, 2, and with

an exponential factor favoring small angle scattering, i.e.,
k1  k2,

Fk1,k2 = (1 + a0e−a1|k1−k2|)Lk1,εF Lk2,εF , (B5)

Lk,εF = 1

1 + a2[(ε+,1,k − εF )(ε+,2,k − εF )]2/ε4
F

. (B6)

The parameters {a0, a1, a2} = {3, 30, 9000}103 are chosen to
demonstrate the momentum-dependent admixture of order
parameters. We work in units where the monolayer graphene
lattice constant a = 1.

APPENDIX C: PERTURBATIVE TREATMENT
OF THE GAP EQUATION

Section IV C presented the key characteristics of the su-
perconducting order parameters dμ,k, based on a perturbative
treatment; in this Appendix we present the details of the per-
turbation expansion. For ease we reprint the gap equation (37)
of the complementary model of Sec. IV C,

d0,k =
∑

k

�0
k,k′[V+

T,k′d0,k′ + V−
T,k′ ĝk′ · dk′],

dk =
∑

k

�0
k,k

[
V+

T,k′dk′ + V−
T,k′ ĝk′d0,k′

+ 2V 0
T,k′[ĝk′ (ĝk′ · dk′ ) − dk′]

]
. (C1)

We will treat terms ∝ V−
T,k as perturbations and note that these

terms are responsible for mixing singlet and triplet compo-
nents. In more compact notation, this is rewritten as

d̄ = �W d̄ . (C2)

Our perturbation theory begins by splitting the matrix W =
W 0 + W 1, where W 0 ∝ δμν and the perturbation (W 1)μν

is off-diagonal in spin; it contains SOC, via the gk,μ-
vectors as well as factors of V−

k , which are the difference
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FIG. 11. Band structure at twist θ = 1.75◦, with η = 1. Top row: θTMD + π (inversion symmetric stack). Bottom row: θTMD. The following
combinations of SOC and D0: (i) λR, λI, D0 = {10, 10, 0} meV, (vi) λR, λI, D0 = {10, 0, 10} meV, (vii) λR, λI, D0 = {0, 10, 10} meV, and
(viii) λR, λI, D0 = {10, 10, 10} meV.

of thermal occupation factors of the spin split bands and
which changes sign in between the corresponding Fermi
surfaces.

A state with admixed triplet. Consider a zeroth-order, spin-
singlet (μ = 0) eigenstate, which necessarily belongs to the
trivial spatial irrep χi ∈ A. We denote this zeroth-order state
as

h̄A = (
hA

0,χi
, 0

)
, (C3)

which is written as a four-vector in spin, and with the singlet
component, hA

0,χi
, indexed by the harmonics χi. The corre-

sponding eigenvalue is denoted EA. Hence we use the label
A to denote the linear combination of all χi ∈ A, which would
be found via direct diagonalisation of (B3) with W → W 0.
Next, we denote a generic eigenstate h̄R in a spatial irrep
R and with corresponding eigenvalue ER. Note (i) there can
be multiple orthogonal eigenstates belonging to the same
irrep R and (ii) the combination of spin and space may
have a different combined spin-spatial irrep, but for the pre-
sentation here, it is convenient to talk about pure spatial
irreps.

Now we consider the perturbation W 1 and determine the
first-order correction to h̄A, i.e., find the h̄R which become ad-
mixed via the perturbation. This is done via standard quantum
mechanical perturbation theory,

˜̄hA = h̄A +
∑

R

1

EA − ER
[(h̄R)†�− 1

2 U †W 1U�− 1
2 h̄A] h̄R,

(C4)

whereby the perturbing potential is �− 1
2 U †W 1U�− 1

2 . Next,
we can greatly simplify the expression by returning to the
original d̄ variables; the transformation is d̄R = U�− 1

2 h̄R,
and here the d̄R are vectors in the spatial irrep R.
Applying this transformation to the perturbed-eigenvector

expression (C4),

U�− 1
2 ˜̄hμ

A = U�− 1
2 h̄0

A +
∑

R

1

EA − ER

× [h̄†
R�− 1

2 U †W 1U�− 1
2 h̄A] U�− 1

2 h̄R, (C5)

we obtain

˜̄dA = d̄A +
∑

R

1

EA − ER
[d̄†

RW 1d̄A] d̄R. (C6)

Reinstating indices and the explicit form of W 1, which follows
from the gap equation (C1), we arrive at

d̃A
μ,k = dA

0,kδμ,0 +
∑
R,k1

1

EA − ER

[(
dR

μ,k1

)†(
W 1

k1

)μ0
dA

0,k1

]
dR

μ,k

= dA
0,kδμ,0 +

∑
R,k1

1

EA − ER

[(
dR

μ,k1

)†
V−

k1
gμ

k1
dA

0,k1

]
dR

μ,k.

(C7)

The expression (C10) represents the explicit result of our
perturbation theory, without any approximations. Now, based
on (C10), we introduce an approximate expression. First,
examining the matrix element,

∑
k1

[(dR
μ,k1

)†V−
k1

gμ

k1
dA

0,k1
], we

see that it is nonzero only for those dR
μ,k1

that transform in
the same irrep as V−

k1
gμ

k1
d0

k1,A
. Since V−

k1
changes sign ra-

dially between the two spin split Fermi surfaces, while the
gμ

k1
change sign upon winding about the Fermi surfaces, then

only those dR
μ,k1

that exhibit both the radial and angular sign
changes will have an appreciable overlap. Therefore, maximal
overlap occurs for dR

μ,k;projected  V−
k gμ

k dA
0,k, and we arrive at
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the approximation

d̃μ

k,A  dA
0,kδμ,0 + β V−

k gμ

k1
d0

k,A, (C8)

with numerical factors absorbed into the constant β. Upon re-
instating the η index and employing compact vector notation,
the perturbed singlet A state becomes

d̃A
k,η = (

dA
0,η·k; β ηV−

T,η·k ĝη·kdA
0,η·k

)
, (C9)

Noting that V−
k changes sign between the fermi surfaces,

while the gμ

k1
winds about the fermi surface, together this gives

a Möbius-like spin-triplet texture to the admixed state, cf.
Ref. [59].

Comment. It appears that from (C6), the form of the
potential � does not show up and hence the admixture
is set purely by the perturbation W 1. First, we can only
arrive at (C6) if � is invertible and positive definite.
Second, it is the h̄ eigenvectors of (B3) that are nor-
malized, while the d̄-vectors are found via the nonunitary
transformation d̄ = �− 1

2 Uh̄. Due to this nonunitary transfor-
mation, the potential � then influences the magnitude of the
d̄-vectors.

E state with admixed singlet. Focusing now on the in-plane
triplet eigenstate, which at zeroth-order is denoted dE

j,k ∈ E
IR, where index j = 1 and 2 enumerates the in-plane triplet
components, and has corresponding eigenvalue EE . A first-
order perturbation in Ŵ 1 admixes a singlet component into

this triplet,

d̃E
μ,k = dE

μ,k(δμ,1 + δμ,2) + δμ,0

∑
R,k1, j′

1

EE − ER

× [(
dR

0,k1

)†(
W 1

k1

)0 j′
dE

j′,k1

]
dR

0,k (C10)

= dE
μ,k(δμ,1 + δμ,2) + δμ,0

∑
R,k1

1

EE − ER

× [(
dR

0,k1

)†
V−

k1
gk1

· dE
k1

]
dR

0,k. (C11)

Noting that each component of dE
j,k transforms trivially under

a pure spatial rotation, then the dR
0,k which posses a non-

negligible overlap with V−
k gk · dE

k must exhibit both the radial
and angular sign changes. Like our discussion above, this
leads to the approximate expression,

d̃E
μ,k  dE

μ,k(δμ,1 + δμ,2) + β V−
k gk · dE

k δμ,0. (C12)

Here β represents a numerical constant, different from (C8).
Reinstating the valley index η, and conforming to the more
compact notation of the main text, this becomes

d̃E
k = (

βV−
η·kgη·k · dE

η·k; ηdE
η·k

)
. (C13)

This perturbative expression shows that the admixed singlet
exhibits sign changes going around the Fermi surfaces, due
to ĝη·k · dE

η·k, and changes sign between the two spin split
Fermi surfaces, due to V−

T,η·k. Both such features are seen
in the admixed singlet component d0,k obtained from the full
numerical solution of the gap equation.
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