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Phosphorus donor nuclear spins in silicon couple weakly to the environment, making them promising
candidates for high-fidelity qubits. The state of a donor nuclear spin qubit can be manipulated and read out using
its hyperfine interaction with the electron confined by the donor potential. Here we use a master-equation-based
approach to investigate how the backaction from this electron-mediated measurement affects the lifetimes of
single and multidonor qubits. We analyze this process as a function of electric and magnetic fields and hyperfine
interaction strength. Apart from single nuclear spin flips, we identify an additional measurement-related mecha-
nism, the nuclear spin flip-flop, which is specific to multidonor qubits. Although this flip-flop mechanism reduces
qubit lifetimes, we show that it can be effectively suppressed by the hyperfine Stark shift. We show that using
atomic precision donor placement and engineered Stark shift, we can minimize the measurement backaction in
multidonor qubits, achieving larger nuclear spin lifetimes than single donor qubits.
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I. INTRODUCTION

Phosphorus (P) nuclear spins in silicon (Si) are a promising
candidate for a fault-tolerant quantum computing architecture
due to their weak coupling to the environment [1–4]. Such
a system has demonstrated seconds-long coherence times in
isotopically purified 28Si [5]. The spin- 1

2 nucleus of the P
donor atom couples to its bound electronic spin through the
hyperfine interaction which can be tuned by an applied electric
field. By combining electron spin resonance with single-shot
electron spin readout, we can measure the state of the nuclear
spin qubit through the hyperfine interaction [6,7]. During such
a readout process, the electron, under appropriate applied
voltages, tunnels between the qubit and a nearby reservoir
such as a single electron transistor (SET) island, used as a
charge sensor [8–10]. From the perspective of the nuclear
spin, the hyperfine interaction appears as being switched on
(when the electron is on the qubit) and off (when the electron
is on the SET). The mixing of the nuclear spin states due to
these instantaneous, nonadiabatic changes in the hyperfine in-
teraction during electron tunneling events affects the stability
of the nuclear spin. In previous works [6], this measurement
backaction has been observed to reduce the lifetimes of single
nuclear spin states of P donors prepared in the |⇑〉 spin state.

There has been much recent progress in implementing few
qubit quantum processors with multidonor systems, where
electrons shared between the P atoms can couple to multiple
nuclear spins [7,11,12]. Such multidonor quantum dot qubits
also offer advantages in terms of longer spin relaxation
times [13], highly tunable inter-qubit exchange coupling
[14], and improved addressibility with high operation speeds
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due to larger ranges of hyperfine values [15,16]. How the
measurement backaction impacts such multinuclear systems
and how they can be controlled by external means have
remained open questions.

In this paper, we study the effect of the tunneling elec-
tron on the lifetimes of nuclear spin states in single and
multidonor qubits. Using a master-equation-based approach,
we investigate the influence of hyperfine interaction strength,
magnetic fields, and electric fields on nuclear spin transition
probabilities for both single and multidonor qubits. We iden-
tify an additional flip-flop mechanism between the nuclear
spins resulting from measurement backaction in multidonor
systems. This effect, along with the typically larger values of
the hyperfine coupling, can reduce the nuclear spin lifetimes
in multidonor quantum dots. However, as we show, these
flip-flop transitions can be suppressed when the differences
between the hyperfine couplings to various nuclear spins are
large. Also, the total hyperfine coupling of multidonor qubits
is strongly dependent on donor positions, thus it can be con-
trolled with donor placement. In this paper, we provide exact
instructions on how to design multidonor qubits to minimize
the effect of measurement backaction even below that of
single-donor qubits.

II. METHOD

The system we investigate in this paper is shown schemat-
ically in Fig. 1(a). It consists of a single- or multidonor qubit
with an electron confined by the donor potential and the
surrounding gates and SET used for qubit manipulation and
measurement. The measurement process involves an electron
tunneling between the dot and the SET—see Fig. 1(b). As
a result of this nonadiabatic tunneling process, the overall
qubit system can be brought to a state that is not one of its
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FIG. 1. Schematic of the multidonor qubit and spin readout sen-
sor. (a) P donors can be precision placed with ±0.385 nm accuracy
in Si crystal and surrounded by in-plane P-doped gate electrodes
(GL, GM, and GR), source (S), drain (D), and SET charge sensor by
STM lithography [17]. The donor potential traps electrons which can
tunnel to and from the SET under appropriate in-plane gate biases.
(b) Effect of measurement by an SET sensor on the donor nuclear
spin states. The electron nonadiabatically tunneling from the donor
to the SET leaves the nuclear spins no longer in their eigenstate,
resulting in a finite probability of a nuclear spin flip.

eigenstates. The spins evolve over time with a mixture of
different eigenfrequencies, introducing a finite probability of
nuclear spin flips.

We simulate the dynamics of the spin system under qubit
control pulses using the master equation in Lindblad form.
The combined donor-electron system comprises the donor
nuclear spin levels (|⇑〉 and |⇓〉) and electronic levels {|↑〉,
|↓〉, and off the dot (on the SET)}. Because of the continuum
of electronic levels in the SET, we do not distinguish between
|↑〉 and |↓〉 spin states when the electron is located in the SET.
The density operator ρ of this open quantum system evolves
according to the master equation in Lindblad form (h̄ = 1):

∂tρ = −i[H, ρ]− +
∑

μ

(
LμρL†

μ − 1

2
[L†

μLμ, ρ]+

)
. (1)

In this equation, H is the Hamiltonian of the system op-
erating on a Hilbert space H that can be decomposed as

H(1)
n ⊗ · · ·H( j)

n ⊗ · · · ⊗ H(m)
n ⊗ He, where H( j)

n (He) is the
subspace of the jth donor nuclear spin (electron). The L′

μs are
Lindblad operators corresponding to electron tunnelings and
relaxation pathways.

We consider two cases depending on the location of the
electron. (1) When the electron is on the donor dot, the Hamil-
tonian is written as

Hdonor =
m∑

j=1

γnI j · B + γeS · B +
m∑

j=1

I j · A j · S, (2)

where γn(γe) is the nuclear (electron) gyromagnetic ratio
and I(S) is the nuclear (electron) spin operator. We take the
electron gyromagnetic ratio of electron γe = 27.958 GHz/T
and the P donor nuclear spin gyromagnetic ratio γn =
−17.217 MHz/T. The first two terms in the equation are the
nuclear and electron Zeeman interactions in an external mag-
netic field B, respectively, and the last term is the hyperfine
interaction term where A j is the hyperfine tensor between
the jth nucleus and the electron. For our simulations, we use
only the scalar contact hyperfine term Aj since it is the only
dominating term for the measurement backaction mechanism
(see Supplemental Material II [18]). (2) When the electron is
on the SET, we only consider the nuclear Zeeman interaction:

Hzn =
m∑

j=1

γnI j · B. (3)

The operator Hdonor acts on a 2D electronic subspace (spanned
by electron |↑〉 and |↓〉 states) and Hzn acts on a 1D electronic
subspace (spanned by |SET〉, i.e., when the electron is on the
SET). Let us define two projection operators:

Pdonor = I2m×2m ⊗
⎛
⎝1 0

0 1
0 0

⎞
⎠, (4)

PSET = I2m×2m ⊗
⎛
⎝0

0
1

⎞
⎠. (5)

Here, I2m×2m is an identity operator acting on the subspace
of m nuclear spins. The operator Pdonor (PSET) projects any
state in the 2D (1D) electronic subspace to the space where the
electron is a three-level system spanned by {|↑〉 , |↓〉 , |SET〉}.
The Hamiltonian H , therefore, can be written as

H = PdonorHdonorP
†
donor + PSETHznP

†
SET. (6)

For the simulations of time evolution, we switch to the
eigenbasis and construct the Lindblad operators (Lμ) in that
basis. The Hamiltonian and Lindblad operators construction
for a single donor has been described in Supplemental Ma-
terial I [18]. For simplicity, here we consider the system in
a noiseless environment. Hence, the nonunitary time evolu-
tion is caused only by the tunneling electron. The number of
L′

μs can vary depending on the number of possible ways for
the electron to tunnel during a particular spin-control pulse.
The method can be generalized for an arbitrary number of
donors and expanded to include the effects of other relaxation
mechanisms, such as hyperfine mediated relaxation [19–21]
and magnetic noise.
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FIG. 2. Nuclear spin flip probability in P donor qubits due to the readout pulse. (a) Electron tunneling in a 1P1e qubit during the readout
pulse. Labels |e1〉 − |e4〉 represent eigenstates of the 1P1e system. Arrows show the nuclear-electron states forming the eigenstates, with the
smaller arrows (i.e .,⇓↑ in |e1〉 and ⇑↓ in |e3〉) representing typically very small admixtures of nuclear-electron spin configurations introduced
by the hyperfine interaction. (b) Dependence of the nuclear spin flip probability on the total hyperfine interaction A of 1P1e (left panel),
2P1e (middle), and 3P1e (right) qubits at a magnetic field of 1.4 T. For each of these three cases, only the hyperfine constant of one donor
(A1) is varied. The other hyperfines are fixed at A2 = 50 MHz and A3 = 20 MHz. (c) Dependence of the nuclear spin flip probability on the
magnetic field B for 1P1e (left panel), 2P1e (middle), and 3P1e (right) qubits. The hyperfines are fixed at A1 = 100 MHz, A2 = 50 MHz, and
A3 = 50 MHz. For (b)–(g), the dotted lines represent the analytical form of Eq. (8).

III. RESULTS

A. Single nuclear spin flip

We have verified the method presented in this paper by ana-
lyzing the single-donor experimental data from Ref. [22]—we
describe those simulations in detail in Supplemental Material
I and II [18]. We also show in Supplemental Material II
[18] that the readout causes predominantly one-directional
nuclear spin flips, i.e., ⇑→⇓, thus we focus on this transition
further in the main text. Additionally, the ⇓→⇑ transition is
dominated by the hyperfine mediated relaxation which is a
few orders of magnitude stronger than the backaction effects
from readout [22]. For a single donor qubit, we derive the
expression for the ⇑→⇓ transition probability due to readout
analytically. We start in the |e4〉 = |⇑↑〉 state—see Fig. 2(a)
for the scheme of the readout process and the definition of
the |e1〉 − |e4〉 eigenstates. After the first tunneling event—
electron tunneling from the donor to the SET—the system is
still in its eigenstate, specifically in |⇑ SET〉, an eigenstate
of Hzn. However, after the second tunneling event—another
electron |↓〉 tunneling instantaneously from the SET to the
donor—the system is now in the |⇑↓〉 state, which evolves as
a mixture of the eigenstates of Hdonor as

|�(t )〉 = cos
θ

2
|e1〉 e−iω1t − sin

θ

2
|e3〉 e−iω3t

= cos
θ

2

(
cos

θ

2
|⇑↓〉 + sin

θ

2
|⇓↑〉

)
e−iω1t

− sin
θ

2

(
− sin

θ

2
|⇑↓〉 + cos

θ

2
|⇓↑〉

)
e−iω3t , (7)

where ω1 = −A
4 + 1

2

√
(ωn − ωe)2 + A2, ω3 = −A

4 − 1
2√

(ωn − ωe)2 + A2, and θ = tan−1 A
ωn−ωe

. This mixing of

pure states by the hyperfine interaction introduces a finite
probability for the state of the system to transition from |⇑↓〉
to |⇓↑〉. The probability of the ⇑→⇓ transition is obtained
by time-averaging as follows:

P⇑→⇓ =
〈∣∣∣∣ sin

θ

2
cos

θ

2
(e−iω1t − e−iω3t )

∣∣∣∣
2〉

= 1

2

A2

A2 + (ωn − ωe)2

≈ 1

2

A2

((γnB) − (γeB))2
∝ A2

B2
. (8)

Here we assume that the hyperfine interaction is much
smaller than the electron spin Zeeman energy splitting, A 
ωe, true for the most recent experiments [6,15,16,23]. Fig-
ures 2(b) and 2(c), leftmost panels, show the comparison
between the analytical formula from Eq. (8) and the P⇑→⇓
from master equation simulations for a single donor occupied
by a single electron, i.e. 1P1e qubit. The A2/B2 trend is ex-
pected due to the mixing of nuclear-electron spins through
the hyperfine interaction and has been discussed in optical
detection of 31P qubits [24] and quantum dot qubits in Si
[25]. Since we specifically consider the readout event for an
initial state |⇑↑〉, we obtain a factor of 1/2 in Eq. (8) as
opposed to 1/16 in previous works [24,25]. The transition
probabilities are of the order of 10−6 since the electron spin
Zeeman splitting is typically 2–3 orders of magnitude larger
than the hyperfine coupling in experiments.

For multidonor qubits, we can also show that the
⇑→⇓ transitions due to measurement backaction vary as
A2/B2. Moreover, the ⇑→⇓ transition probability of a
particular nuclear spin does not depend on the hyperfine
value or the state of the other nuclear spins in the dot
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(�⇑⇑→⇑⇓ = �⇓⇑→⇓⇓, �⇑⇑→⇓⇑ = �⇑⇓→⇓⇓). That is because
the mixing of |⇑〉 and |⇓〉 states of a particular nuclear spin
only depends on its own hyperfine interaction strength with
the electron. In Fig. 2(b), we consider 2P1e (middle panel)
and 3P1e (right panel) systems, i.e., qubits consisting of 2
and 3 P donors, respectively, and plot the nuclear spin flip
probabilities as a function of total hyperfine interaction, i.e.,
the sum of all donor A constants in a given dot. For each
of these systems only one hyperfine constant (A1) is varied.
The resultant nuclear spin flip probability of the nucleus with
modulated hyperfine shows a A2 dependence. We can see that
the flip probabilities of other nuclear spins remain constant,
even though the total hyperfine of the multidonor qubit is
changing. This highlights the independent behavior of each
nuclear spin with respect to its own hyperfine interaction with
the electron spin. In Fig. 2(c), the magnetic field is varied and
in both 2P1e and 3P1e cases, each nuclear spin flip probability
shows a 1/B2 dependence, similar to the 1P case. Although
not explicitly mentioned in the figures, all the dashed lines
plotted in Figs. 2(b) and 2(c) follow 1

2 A2
i /(ωn − ωe)2 relation

from Eq. (8), where Ai is the hyperfine constant of each
individual nuclear spin.

B. Nuclear-nuclear spin flip-flop

For a multidonor qubit, in addition to the |⇑↓〉 and |⇓↑〉
mixing of a single nuclear spin with the electron spin, there is
also coupling of the |⇑⇓〉 and |⇓⇑〉 states due to the hyperfine
interaction. This is an interaction between the nuclear spins
mediated by the electron spin and can result in nuclear spin
flip-flop transitions. Hyperfine-mediated nuclear-nuclear spin
interaction has previously been studied in quantum dots and
it plays a major role in dictating the nuclear spin dynamics
in the presence of electrons [26–29]. This is different from the
direct nuclear spin dipole-dipole interaction, which we discuss
separately in Supplemental Material III [18]. During electron
tunneling events, this effective interaction switches on and
off and results in an extra nuclear spin transition pathway in
multidonor qubits.

We can obtain an analytical formula for the measurement-
driven nuclear-nuclear spin flip-flop transition probability by
considering an effective low-energy spin Hamiltonian for the
system. The full spin Hamiltonian of a 2P1e system is written
as

H = ωn(I1z + I2z ) + ωeSz + A1I1 · S + A2I2 · S. (9)

At the typical experimental magnetic fields of qubit op-
eration (B � 1.4 T), the electron Zeeman is the dominant
interaction and we can consider H0 = ωn(I1z + I2z ) + ωeSz as
the unperturbed Hamiltonian and A1I1 · S + A2I2 · S as the
perturbation. The eigenspectra of H0 has two subspaces cor-
responding to the electron |↑〉 and |↓〉 states. Even after the
addition of the perturbation (hyperfine terms), the subspaces
of electron spin corresponding to majority |↑〉 and |↓〉 are
well separated in energy and, therefore, we can perform a
Schrieffer-Wolff transformation to obtain a 4 × 4 effective
Hamiltonian for the low-energy subspace (majority electron
|↓〉) [26,30]. We perform the perturbative expansion up to
second order, which gives less than a kHz deviation in eigen-
values with the solution of the full Hamiltonian. The effective

Hamiltonian is in a block-diagonal form and in the subspace
corresponding to {|⇑⇓〉 , |⇓⇑〉} it can be written as

Heff =
⎛
⎝− A2

1
4(ωe−ωn ) − A1

4 + A2
4 − A1A2

4(ωe−ωn )

− A1A2
4(ωe−ωn ) − A2

2
4(ωe−ωn ) − A2

4 + A1
4

⎞
⎠

=
(−	

2
τ
2

τ
2

	
2

)
, (10)

where 	= A1−A2
2 (1 + A1+A2

4(ωe−ωn ) ) ≈ A1−A2
2 and τ = − A1A2

2(ωe−ωn ) ≈
−A1A2

2ωe
. We have chosen the electron |↓〉 spin Zeeman energy

as our energy origin. The off-diagonal elements in Heff are due
to the second-order processes such as ⇓⇑↓→⇓⇓↑→⇑⇓↓.
Each time the electron |↓〉 tunnels in to the qubit, the nuclear
spins flip-flop because of this second-order interaction. This
results in the following average flip-flop probability:

P⇑⇓→⇓⇑ =
〈

τ 2

τ 2 + 	2
sin2

(√
τ 2 + 	2

t

2

)〉

≈ 1

2

(A1A2
2ωe

)2

(A1A2
2ωe

)2 + (A1−A2
2

)2 . (11)

For the hyperfine values difference of the order of 10 MHz
range typically found in experiments, |A1 − A2| � A1A2

ωe
.

Therefore, the flip-flop probability depends on the hyperfine
values as

P⇑⇓→⇓⇑ ≈ 1

2

(A1A2
2ωe

)2

(A1−A2
2

)2 ∝
(

A1A2

A1 − A2

)2

. (12)

Here we can see that the flip-flop probability depends on the
difference of the two hyperfines values. If the difference in
the hyperfine values is small, the electron is almost equally
populated on the two donors and the configurations |⇑⇓〉
and |⇓⇑〉 are close in energy. In this situation, the mediated
interaction is strong, which in turn increases the flip-flop rate.
The |A1 − A2| term can, however, be intentionally enhanced in
real devices. In a 2P donor qubit, the difference in hyperfine
values can be engineered by applying an external electric field
(Stark shift) while for 3P and above, even without any electric
field applied, the hyperfine constants are naturally different
due to the asymmetric donor arrangement within the Si crystal
structure (except from some rare symmetric cases).

Figure 3(a) shows the dependence of the flip-flop proba-
bility on the Stark shift (A1 − A2) for a 2P1e system during
the readout pulse for total hyperfine values of 100, 200 and
300 MHz. Dots represent master equation calculations and
dashed lines represent the formula of Eq. (12). Here we can
see that the nuclear spin flip-flop probability indeed decreases
with the square of the Stark shift. We can also see that for
a given Stark shift the flip-flop rate is larger for a larger total
hyperfine, i.e., when the donors are closer together. Larger hy-
perfine values mean that the electron is coupled more strongly
to the nuclei and the mediated interaction is stronger.

In terms of the effects from measurement backaction, a
single donor might seem like an intuitively best choice to
achieve high-fidelity qubit due to the absence of the nuclear
spin flip-flop transitions. However, we will show that specially
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FIG. 3. Nuclear spin flip-flop probabilities in multidonor dots
due to the readout pulse. (a) Variation of nuclear spin flip-flop
probability with A1 − A2 in a 2P1e qubit for total hyperfine values
of 100, 200 and 300 MHz. The dotted lines represent the formula
in Eq. (8). (b) Comparison between nuclear spin flip (⇑⇓→⇓⇓)
and flip-flop (⇑⇓→⇓⇑) transition probabilities for a 2P1e qubit
with total hyperfine Atotal = 117 MHz as a function of A1 − A2. The
orange and cyan dotted lines represent formulas of Eqs. (8) and
(12), respectively. The shaded region represents the Stark shift values
for which the total transition probability of the first nuclear spin
(flip+flip-flop) is less than the transition probability of a 1P1e qubit.
The transition probability of second nuclear spin is even smaller in
this region since it has a smaller hyperfine constant than the first
nuclear spin. Therefore, in this region the 2P1e qubit can experience
less effects from measurement backaction than a 1P1e qubit.

designed multidonor qubits can, in fact, demonstrate superior
fidelity. The hyperfine constant of a single P donor in Si is
equal approximately to 117 MHz [31], which varies very little
with electric field since its electrical tunability is very low
[32]. Multidonor qubits, on the other hand, change their total
hyperfine significantly when the separations between donors
are varied. The total hyperfine value of a 2P dot typically
reaches a few hundreds of MHz for very close donors but
quickly falls below the 1P value beyond � 3 nm [33]. For a
qualitative comparison, we can take the example of 1P and 2P
of the same total hyperfine, i.e., A = (A1 + A2) = 117 MHz.
The 1P case will be characterized just by the nuclear ⇑→⇓

transition probability ∝ A2/B2. However, the measurement
backaction in a 2P dot is dependent on its initial state. For
the |⇑⇑〉 initial state, the effect includes the sum of the flip
rates of both donors ∝ (A2

1 + A2
2)/B2. However, regardless of

the exact A1 and A2 values, it is still smaller (by ∝ 2A1A2/B2)
than the 1P flip rate. For the |⇑⇓〉 initial state, we need to
account for both flip and flip-flop effects, which would add
up to approximately ∝ A2

1/B2 + (A1A2)2/(A1 − A2)2B2. We
show the two effects as a function of Stark shift (A1 − A2)
in Fig. 3(b)—numerical and analytical results with dots and
dashed lines, respectively. We can see that the nuclear spin
flip-flop transitions dominate for small Stark shift, but falls
below the single nuclear spin flip rate for A1 > 2A2. With the
shaded region, we show the region where the sum of both flip
and flip-flop rates is lower than 1P flip-rate. We can see that
this regime starts at A1 − A2 � 35 MHz, achievable in current
devices using electric potentials from the gates [7]. For 2P
molecules of smaller total hyperfine, even smaller Stark shifts
would be required. This example demonstrates that multi-
donor qubits can be more resistant than 1P to measurement
backaction effects, despite the presence of additional flip-flop
mechanism. As mentioned before, 3P configurations naturally
have asymmetry in the hyperfine values due to the donor
arrangement, so these systems can also be less sensitive to
measurement backaction.

IV. CONCLUSION

We have studied the effects of measurement backaction
in single and multidonor nuclear spin qubits in Si. We im-
plemented a master-equation-based approach that treats the
electron tunneling events during different qubit-control pulses
as appropriate Lindblad operators and simulate the time evo-
lution. We show that for both single and multidonor nuclear
spin qubits, measurement backaction causes nuclear spin flip
whose probability varies as A2/B2, where A is the hyperfine
constant of the corresponding donor and B is magnetic field.
For a particular nuclear spin, this transition probability is
independent of the hyperfine constants of other nuclear spins
present in the multidonor dot. For these multidonor qubits, the
measurement backaction can also cause flip-flop (⇑⇓→⇓⇑)
transitions between the nuclear spins. This is because the
electron also indirectly couples the two nuclear spins that are
individually hyperfine-coupled with the electron. This flip-
flop probability is a few orders of magnitude larger than the
⇑→⇓ transition probability for small Stark shifts in a 2P
donor qubit and becomes smaller for A1 > 2A2. We show
that by positioning donors a few nm apart and operating the
qubits at high Stark shift (few tens of MHz), we can minimize
the measurement backaction effect on the multidonor qubit
lifetime to below that of a single donor. These results highlight
the ability to engineer multidonor qubit systems.
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[7] M. T. Mądzik, S. Asaad, A. Youssry, B. Joecker, K. M.
Rudinger, E. Nielsen, K. C. Young, T. J. Proctor, A. D.
Baczewski, A. Laucht, V. Schmitt, F. E. Hudson, K. M. Itoh,
A. M. Jakob, B. C. Johnson, D. N. Jamieson, A. S. Dzurak,
C. Ferrie, R. Blume-Kohout, and A. Morello, Precision tomog-
raphy of a three-qubit electron-nuclear quantum processor in
silicon, Nature (London) 601, 348 (2022).

[8] J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp,
L. M. K. Vandersypen, and L. P. Kouwenhoven, Single-shot
read-out of an individual electron spin in a quantum dot, Nature
(London) 430, 431 (2004).

[9] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y.
Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A.
van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott,
L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, Single-shot
readout of an electron spin in silicon, Nature (London) 467, 687
(2010).

[10] D. Keith, S. K. Gorman, L. Kranz, Y. He, J. G. Keizer, M. A.
Broome, and M. Y. Simmons, Benchmarking high fidelity
single-shot readout of semiconductor qubits, New J. Phys. 21,
063011 (2019).

[11] Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer,
and M. Y. Simmons, A two-qubit gate between phospho-
rus donor electrons in silicon, Nature (London) 571, 371
(2019).

[12] L. Kranz, S. K. Gorman, B. Thorgrimsson, S. Monir, Y.
He, D. Keith, K. Charde, J. G. Keizer, R. Rahman, and
M. Y. Simmons, The use of exchange coupled atom qubits as
atomic-scale magnetic field sensors, Adv. Mater. 35, 2201625
(2022).

[13] Y.-L. Hsueh, H. Büch, Y. Tan, Y. Wang, L. C. L. Hollenberg,
G. Klimeck, M. Y. Simmons, and R. Rahman, Spin-lattice

relaxation times of single donors and donor clusters in silicon,
Phys. Rev. Lett. 113, 246406 (2014).

[14] Y. Wang, A. Tankasala, L. C. L. Hollenberg, G. Klimeck,
M. Y. Simmons, and R. Rahman, Highly tunable exchange
in donor qubits in silicon, npj Quantum Inf. 2, 16008
(2016).

[15] H. Büch, S. Mahapatra, R. Rahman, A. Morello, and M. Y.
Simmons, Spin readout and addressability of phosphorus-donor
clusters in silicon, Nat. Commun. 4, 2017 (2013).

[16] S. J. Hile, L. Fricke, M. G. House, E. Peretz, C. Y. Chen, Y.
Wang, M. Broome, S. K. Gorman, J. G. Keizer, R. Rahman,
and M. Y. Simmons, Addressable electron spin resonance using
donors and donor molecules in silicon, Sci. Adv. 4, eaaq1459
(2018).

[17] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee,
O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y.
Simmons, A single-atom transistor, Nat. Nanotechnol. 7, 242
(2012).

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.035157 for the details of the single-
shot readout pulse simulation, benchmarking with experiments,
and discussions about the nuclear spin dipole-dipole interaction.
It also contains Refs. [35,36].

[19] Y.-L. Hsueh, L. Kranz, D. Keith, S. Monir, Y. Chung, S. K.
Gorman, R. Rahman, and M. Y. Simmons, Hyperfine-mediated
spin relaxation in donor-atom qubits in silicon, Phys. Rev. Res.
5, 023043 (2023).

[20] L. C. Camenzind, L. Yu, P. Stano, J. D. Zimmerman, A. C.
Gossard, D. Loss, and D. M. Zumbühl, Hyperfine-phonon
spin relaxation in a single-electron GaAs quantum dot, Nat.
Commun. 9, 3454 (2018).

[21] D. Pines, J. Bardeen, and C. P. Slichter, Nuclear polarization
and impurity-state spin relaxation processes in silicon, Phys.
Rev. 106, 489 (1957).

[22] J. J. Pla, Single atom spin qubits in silicon, Ph.D. thesis, UNSW
Sydney, 2013.

[23] M. A. Broome, S. K. Gorman, M. G. House, S. J. Hile, J. G.
Keizer, D. Keith, C. D. Hill, T. F. Watson, W. J. Baker, L. C. L.
Hollenberg, and M. Y. Simmons, Two-electron spin correlations
in precision placed donors in silicon, Nat. Commun. 9, 980
(2018).

[24] K.-M. C. Fu, T. D. Ladd, C. Santori, and Y. Yamamoto, Optical
detection of the spin state of a single nucleus in silicon, Phys.
Rev. B 69, 125306 (2004).

[25] R. Zhao, T. Tanttu, K. Y. Tan, B. Hensen, K. W. Chan,
J. C. C. Hwang, R. C. C. Leon, C. H. Yang, W. Gilbert, F. E.
Hudson, K. M. Itoh, A. A. Kiselev, T. D. Ladd, A. Morello,
A. Laucht, and A. S. Dzurak, Single-spin qubits in isotopically
enriched silicon at low magnetic field, Nat. Commun. 10, 5500
(2019).

[26] C. Latta, A. Srivastava, and A. Imamoğlu, Hyperfine
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