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Quantum entanglement, lacking any classical counterpart, provides a fundamental new route to characterize
the quantum nature of many-body states. In this work, we discuss an implementation of a new path integral
method [Phys. Rev. Res. 2, 033505 (2020)] for fermions to compute entanglement for extended subsystems in the
Hubbard model within dynamical mean-field theory (DMFT) in one and two dimensions. The new path integral
formulation measures entanglement by applying a “kick” to the underlying interacting fermions. We show
that the Rényi entanglement entropy can be extracted efficiently within the DMFT framework by integrating
over the strength of the kick term. Using this method, we compute the second Rényi entropy as a function of
subsystem size for metallic and Mott insulating phases of the Hubbard model. We explore the thermal entropy
to entanglement crossover in the subsystem Rényi entropy in the correlated metallic phase. We show that the
subsystem-size scaling of the second Rényi entropy is well described by the crossover formula which interpolates
between the volume-law thermal Rényi entropy and the universal boundary-law Rényi entanglement entropy with
logarithmic violation, as predicted by conformal field theory. We also study the mutual information across the
Mott metal-insulator transition.
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I. INTRODUCTION

Entanglement, arguably the strangest aspect of quantum
mechanics, signifies the existence of true nonlocal quantum
correlations. As a result, it has found enormous applications
for characterizing quantum many-body states in condensed
matter and high-energy physics, and as a resource for quantum
computation [1]. In condensed matter systems, entanglement
can be used to distinguish various kinds of symmetry-broken
and topological states, gapped or gapless phases [2], etc.
For instance, entanglement provides an unambiguous indi-
cator of topological order [3,4] in quantum ground states.
Entanglement has also emerged as an important measure for
distinguishing high-energy states as well as nonequilibrium
dynamics. For example, entanglement can be used to classify
dynamical phases of isolated quantum systems as ergodic or
many-body localized [5–7].

Entanglement of a quantum system is quantified in terms of
various measures, e.g., von Neumann and Rényi entanglement
entropies, mutual information and entanglement negativity
[2,8,9]. These measures can be calculated by partitioning
the overall system into two subsystems and computing the
reduced density matrix of one of the subsystems by tracing
over the other. To this end, the dependence of entanglement
entropy on the size and geometry of the subsystem under
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various partitioning of the system are used to classify quantum
many-body states and their nonlocal entanglement properties.
For example, ground-states of gapped bosonic and fermionic
systems in d dimensions follow the so-called “area law” or
“boundary law” for entanglement entropy (∼Ld−1) of a sub-
system with length L [2,8,10,11]. In contrast, critical states
in one dimension (1d) and fermionic systems with Fermi
surface, i.e., standard metals, in any dimension exhibit a
logarithmic violation [2,12–18] of the area law, namely, the
subsystem entanglement entropy scales as Ld−1 ln L. These
characterizations of the many-body ground states are mainly
obtained through powerful analytical results based on confor-
mal field theory (CFT) methods [8,19] and related arguments
[15–18], as well as numerical results for noninteracting sys-
tems [11,14]. For the latter, entanglement measures can
be computed efficiently using the correlation matrix of the
subsystem [11]. However, numerical computations of entan-
glement entropy is much more challenging for interacting
systems, typically limited to small systems accessible via
exact diagonalization (ED) or 1d systems through density
matrix renormalization group (DMRG) or heavily numerical
and sophisticated quantum Monte Carlo (QMC) techniques
[20–27].

The above numerical methods have provided many useful
insights into entanglement characteristics of interacting sys-
tems. However, there is a lack of complementary quantum
many-body methods, e.g., mean-field theories, perturbation
expansions, and other approximations, for computing en-
tanglement entropy of interacting systems, unlike those for
usual thermodynamic, spectroscopic and transport properties.
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The CFT techniques employ a replica path integral approach
[8,19] where bosonic and fermionic fields are defined on a
nontrivial space-time manifold with complicated boundary
conditions. The latter are often hard to implement within the
standard quantum many-body methodology, though impor-
tant progress has been made for large-N models [28–32]. To
circumvent this difficulty, a new path integral approach was
first developed in Ref. [33] for bosons. It was subsequently
extended to fermionic systems [34,35] as well as interacting
bosons [36]. In particular, Ref. [34] employed this method
to compute Rényi entanglement entropy of Fermi and non-
Fermi liquid states of strongly interacting fermions described
by Sachdev-Ye-Kitaev (SYK) and related models. The new
method [34] replaces the complicated boundary conditions in
the replica field theory for entanglement [8] by a fermionic
self-energy that acts as a nonequilibrium kick. Using this new
path integral formalism, here we develop a dynamical mean-
field theory (DMFT) for Rènyi entanglement entropy in the
paradigmatic Hubbard model [37–39] of strongly correlated
electrons.

In the last three decades, single-site DMFT approximation
and its cluster extensions [40,41], have gained popularity as
a very successful approach to describe Mott metal-insulator
transition and other associated electronic strong correlation
phenomena, both in and out of equilibrium [42]. Integrating
DMFT with first-principle electronic structure methods, like
density functional theory (DFT), has provided a viable route
to compute and predict properties of strongly correlated ma-
terials [41]. In the DMFT formulation, the strongly correlated
lattice problem is reduced to a problem of a single impurity
or cluster of sites coupled to a self-consistent bath [40]. The
original single-site implementation of DMFT neglects spatial
correlations but captures nontrivial local dynamical quantum
correlations and becomes exact in infinite dimension d → ∞
[40]. The later cluster extensions of DMFT [41,43–45],
along with state-of-the-art impurity solver like continuous-
time quantum Monte Carlo (CTQMC), incorporates back
some of the spatial correlations, and can even provide a
good description of the properties of one-dimensional systems
[41,46,47].

In this work, we compute entanglement properties of the
correlated metallic and insulating phases across the Mott
metal-insulator transition in the Hubbard model. We use
the cavity method [40] for the entanglement path integral
of Ref. [34] to derive single-site DMFT self-consistency
equations for obtaining the second Rényi entropy S(2)

A of a
contiguous subsystem A. We show that the Rényi entropy can
be extracted by integrating over the strength of a nonequi-
librium “kick” perturbation acting on the imaginary-time
evolution. Remarkably, this only requires the knowledge of
onsite single-particle Green’s function for the subsystem, even
in the interacting system, albeit in the presence of the kick.
Due to the entanglement cut(s) and the nonequilibrium kick,
both the lattice and time translation symmetry are broken in
the entanglement path integral. Thus the single-site DMFT
is implemented as an inhomogeneous nonequilibrium DMFT.
To this end, we develop an efficient recursive Green’s func-
tion method to solve the DMFT self-consistency equations.
Given the computational complexity of the problem, we only
consider the Hubbard model at half filling and employ a

simple DMFT impurity solver, namely the iterative pertur-
bation theory (IPT). The latter is known to work very well
when compared to more accurate exact diagonalization and
QMC impurity solvers for the half-filled Hubbard model in
equilibrium [40]. Our DMFT formulation is general and can
be extended in future to incorporate cluster generalizations of
DMFT [41,43–45] and more accurate impurity solvers, e.g.,
CTQMC [48].

Using the inhomogeneous nonequilibrium single-site
DMFT for subsystem Rényi entropy, we compute S(2)

A in the
Hubbard model as a function of temperature T , interaction
U , and linear size of the subsystem NA in 1d, and for 2d
cylindrical subsystem geometry. In particular, we ask how
the entanglement properties of correlated metal described by
completely local self-energy approximation within single-site
DMFT compare with those expected from CFT [8,12,19] and
related arguments [15–18]. At high temperature, subsystem
Rényi entropy S(2)

A is dominated by thermal entropy and, at
low temperature, by entanglement [8,12,18,19,49]. We indeed
find a crossover from thermal to entanglement behavior in
S(2)

A . Specifically, we find that this crossover in DMFT metallic
state in 1d is well described by the known CFT crossover
formula [8,12,49]. Moreover, one of our main results is to
show that the ground-state entanglement entropy of metallic
state in 2d Hubbard model within DMFT is consistent with a
∼L ln L subsystem-size scaling, i.e., logarithmic violation of
the area law. The latter has been conjectured based on general
arguments [15–18], results for noninteracting fermions [14],
and other approximation [50]. We also compare our results
for S(2)

A (NA, T ) with that available from QMC [24].
As a measure of entanglement at finite temperature [51],

we extract Rényi mutual information between the subsystem
A and the rest of the system from S(2)

A (NA). We find that the
mutual information has a hysteresis across the first-order Mott
metal-insulator transition [40] in the U -T plane, culminating
at the critical point where the transition becomes second order.
There have been previous studies [52–55] of von Neumann
entropy, mutual information as well as entanglement spectrum
of a single site, or a few sites within a cluster, via cellular
DMFT (CDMFT). Such local entanglement measures can be
computed within the usual equilibrium DMFT formulation.
However, the full subsystem size dependence of the entan-
glement entropy and mutual information cannot be obtained
through such equilibrium DMFT. On the contrary, the general
method we develop here can be applied for extended sub-
systems of arbitrary size and shape and requires an entirely
different implementation through the new path integral tech-
nique [34] and nonequilibrium kick term.

Overall, the main goal of our work is to develop a practi-
cal method to compute entanglement properties of strongly
correlated system, especially in two and higher dimension,
analogous to usual equilibrium and nonequilibrium DMFT
[40–42] for calculating thermodynamic, transport, spec-
tral and out-of-equilibrium properties of strongly correlated
materials. As a proof of principle and easier numerical demon-
stration, we first implement the method for 1d Hubbard model.
However, we do not expect a mean-field approximation like
single-site DMFT, which is based on infinite-dimensional
local self-energy approximation [40], to be even qualita-
tively correct in 1d. Using the new method we obtain some
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important results on entanglement properties of strongly cor-
related metal in 2d Hubbard model, e.g, the entanglement
to thermal crossover in the correlated metallic state and
mutual information of extended subsystem across Mott metal-
insulator transition. DMFT is typically known to provide a
good description of properties of strongly correlated 3d sys-
tems. The approximation is less accurate in 2d. Nevertheless,
DMFT has been applied to describe many correlated phenom-
ena in 2d, e.g., see Refs. [56–59].

The rest of the paper is organized as follows. We discuss
the mathematical foundations of the path integral formulation
in Sec. II. In Sec. III, we briefly revise the general path
integral formalism of Ref. [34] for the second Rényi entropy
and discuss how the Rényi entropy can be extracted by inte-
grating over the strength of a nonequilibrium kick term. The
DMFT approximation for the entanglement path integral is
discussed in Sec. IV in the context of half-filled Hubbard
model. The numerical solution of the DMFT self-consistency
equations and benchmarks performed using the noninteracting
limit and previous QMC simulations are discussed in Sec. V.
We then discuss our main results for the subsystem size de-
pendence of Rényi entropy in 1d and 2d Hubbard model and
the thermal entropy to entanglement crossover in Secs. VI and
VII. In Sec. VIII, we discuss the mutual information across the
Mott metal-insulator transition. We summarize our results and
discuss the scope of our work and possible future extensions
in Sec. IX. The details of the numerical implementations
of the DMFT equations, benchmarks, analysis of the results
and an extension to incorporate magnetic order are given in
Appendixes A–I.

II. THE PATH INTEGRAL FOR SUBSYSTEM
RÉNYI ENTROPY

The coherent state path integral approach to subsystem
Rényi entropy is comprehensively discussed in Ref. [34]. In
this section, we provide a concise overview of the funda-
mental steps for setting up the path integral formalism for
completeness. To compute the subsystem Rényi entropy of a
given quantum state represented by the density matrix ρ, the
system is divided into two parts, A and B. Then the reduced
density matrix for A is obtained by tracing out the degrees of
freedom in B, as ρA = TrB(ρ). Subsequently, the nth Rényi
entropy for the subsystem A is calculated from

S(n)
A = 1

1 − n
ln TrA

[
ρn

A

]
. (1)

The primary challenge in evaluating the above
arises from the representation of TrA[ρn

A] =
TrA[(TrBρ)(TrBρ) . . . (TrBρ)] within a coherent-state path
integral framework [8]. Each instances of TrBρ above
generates distinct replicas that must be linked with suitable
boundary conditions when expressed in the coherent-state
basis, leading to a path integral on a complicated path-integral
manifold, namely an n-sheeted Riemann surface [8].

To overcome the above challenge, we derive an operator
expansion [34] (see Appendix A of Ref. [34])

F =
∫

d2ξ f (ξ1, ξ2)TrA[FD(ξ2)]D(ξ1), (2)

where F = F ({c†
i∈A, ci∈A}) is an arbitrary operator with sup-

port only in the A subsystem, such that F can be represented
in terms of only local fermionic operators {c†

i , ci} in A; i =
1, . . . , NA can denote site and/or spin index in A and the
trace TrA only acts on A. In Eq. (2), instead of expansion in
the coherent state basis, F has been expanded in the basis of
normal-ordered fermionic displacement operators [60]

D(ξα ) = e
∑

i∈A c†
i ξiα e− ∑

i∈A ξ̄iαci , α = 1, 2, (3)

where ξ̄iα, ξiα are static auxiliary Grassmann fields with
d2ξ = ∏

i∈A,α d ξ̄iαdξiα , and

f (ξ1, ξ2) = 2NA e− 1
2

∑
i∈A(ξ̄i1ξi1+ξ̄i2ξi2−ξ̄i1ξi2+ξ̄i2ξi1 ) (4)

is a Gaussian factor connecting two replicas α = 1, 2. Using
Eq. (2), we can write down the trace of product of two opera-
tors F and G in A as

TrA[FG] =
∫

d2ξ f (ξ2, ξ1)TrA[FD(ξ2)]TrA[GD(ξ1)], (5)

where we have used the idenitiy TrA[D(ξ1)G] =
TrA[GD(−ξ1)] and f (−ξ1, ξ2) = f (ξ2, ξ1) (see Appendix A
of Ref. [34]). Through the above trace formula, we can express
the second Rényi entropy for subsystem A, SA = − ln TrAρ2

A
as

e−S(2)
A =

∫
d2ξ f (ξ1, ξ2)TrA[ρAD(ξ1)]TrA[ρAD(ξ2)]. (6)

Since, the displacement operator D(ξα ) solely acts on subsys-
tem A, we can write

TrA[ρAD(ξα )] = Tr[ρD(ξα )], (7)

where Tr denotes the trace over the entire system. Thus, to
calculate subsystem Rényi entropy using Eq. (7), we do not
need to explicitly deal with path integral representation of the
reduced density matrix ρA. We only need to write down the
path integral for Tr[ρD(ξα )], which only involves the trace
of the total density matrix, albeit with the static auxiliary
Grassmann source fields {ξ̄i∈A,α, ξi∈A,α} inserted through the
displacement operator D(ξα ) in the path integral. These source
fields only acts on the A subsystem. For example, if ρ is a
thermal density matrix, ρ ∝ e−H/T , for a system described
by Hamiltonian H at temperature T (kB = 1), then dynamical
fermionic fields in the path integral follow the antiperiodic
boundary condition, ci(τ + β ) = −ci(τ ) in imaginary time τ ,
as in the usual thermal field theory [61]. Thus the path integral
representation of subsystem Rényi entropy in Eq. (6) bypasses
the use of more complicated boundary conditions in the stan-
dard path integral for entanglement [8]. We can also use the
trace identity Eq. (5) recursively to express higher order Rényi
entropy conveniently, as discussed in Refs. [34,35].

Notably, as n approaches 1, the Rényi entropy S(n→1)
A

becomes the von Neumann entropy SA = −TrA(ρA ln ρA).
However, as SA involves the logarithm (ln ρA) of the reduced
density matrix, direct computation of von Neumann entropy is
not possible within our path integral formalism or in the usual
replica field theory method [8], or even in the determinantal
QMC [20–27], which also uses the path integral representa-
tion. Hence, in the DMFT approximation for entanglement
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developed here, we can only compute Rényi entropies. More-
over, we only focus on the second Rényi entropy which
is easier to compute numerically compared to higher order
Rényi entropies S(n>2)

A .

III. THE PATH INTEGRAL FOR SUBSYSTEM
RENYI ENTROPY FOR THERMAL STATE

In this section, we briefly discuss the path integral formal-
ism [34] for subsystem Rényi entropy of fermions in a thermal
state. For concreteness, we consider a system of spin-1/2
(σ =↑,↓) fermions on a lattice with N sites in thermal state
at a temperature T described by a density matrix ρ = e−βH/Z
with Hamiltonian H. Here β = 1/T (kB = 1) and Z is the
partition function. In this work, we only consider the second
Rényi entropy S(2)

A for simplicity. As discussed in the previous
section, the path integral is constructed using Eqs. (6) and (7),
and is given by

e−S(2)
A =

∫
d2ξ f (ξ1, ξ2)Tr[ρD(ξ1 ∈ A)]Tr[ρD(ξ2 ∈ A)],

(8)

where “Tr” denotes trace over the entire system. The term
Tr[ρAD(ξ )], called the characteristic function, can be written
in terms of a coherent-state path integral [34],

e−S(2)
A = 1

Z2

∫
d2ξ f (ξ1, ξ2)D(c̄, c)e−(S+Sξ ), (9)

where S = ∫ β

0 [
∑

iσα c̄iσα (τ )(∂τ−μ)ciσα (τ ) + H(c̄, c)] is the
usual imaginary time action for a Hamiltonian but with two
replicas α = 1, 2. The term Sξ = ∫ β

0

∑
i∈A,σ [c̄iσα (τ )δ(τ −

τ+
0 )ξiσα − ξ̄iσαδ(τ − τ0)ciσα (τ )] acts like a source term which

is nonzero on the A subsystem inserted at imaginary time
τ0 breaking both the periodicity of the imaginary time (τ ∈
[0, β )) and space translational symmetry. We emphasize that
the nontrivial part of the action Sξ acting as a source term
is not an ad hoc term added in the action but it originates
naturally from the coherent state path integral representation
of the displacement operator in Eq. (8) within the formal-
ism of Rényi entropy, as discussed in Sec. II, and in our
previous work [34]. The imaginary time τ0 is arbitrary and
can be placed anywhere on the thermal cycle 0 � τ < β.
The fermionic fields have the usual antiperiodic boundary
condition c(τ + β ) = −c(τ ). For noninteracting systems, it
is straightforward to integrate out [33–35] the fermionic fields
c̄, c and the auxiliary fields ξ̄ , ξ to obtain the Rényi entropy.
As discussed in Ref. [34], for interacting systems treated
within some nonperturbative approximations, like in large-N
models, it is advantageous to first integrate out the Gaussian
auxiliary fields in Eq. (8) and obtain

e−S(2)
A ≡ Z (2)

A

Z2
= 1

Z2

∫
D(c̄, c)e−(S+Skick ), (10)

where

Skick =
∑

i∈A,αβσ

c̄iσα (τ )Mαβδ(τ − τ+
0 )δ(τ ′ − τ0)ciσβ (τ ′),

(11)

henceforth referred as the kick term which arises naturally
within the formalism, corresponds to an effective time-
dependent self-energy for the fermions at τ0. The matrix

M =
[

1 1
−1 1

]
(12)

couples the two replicas α = 1, 2. In Ref. [34], we have used
the path integral representation of Eq. (10) to evaluate S(2)

A
of the SYK model and its several extensions. Below we show
that the same representation can be utilized to formulate a
DMFT for Rényi entanglement entropy in the Hubbard model.

A. Subsystem Rényi entropy via integration of the kick term

Using Eq. (10), the second Rényi entropy S(2)
A can be for-

mally written as

S(2)
A = β

(



(2)
A − 2


)
, (13)

where we define 

(2)
A ≡ −T ln Z (2)

A and 
 = −T ln Z is the
thermodynamic grand potential. However, direct computation
of both 


(2)
A and 
 for interacting systems is difficult in

general and typically requires thermodynamic or coupling
constant integration [34,62]. Here we find a new way to ex-
tract S(2)

A by using the kick term in Eq. (10). We consider the
following quantity:

e−S(2)
A (λ) = Z (2)

A (λ)

Z2
= 1

Z2

∫
D(c̄, c)e−(S+λSkick ), (14)

which reduces to S(2)
A (λ = 1) = S(2)

A , the second Rényi en-
tropy, for λ = 1, and S(2)

A (λ = 0) = 0. In the above, by taking
the derivative with respect to λ, we get

∂λS(2)
A (λ) =

∫
D(c̄, c)e−(S+λSkick )Skick∫
D(c̄, c)e−(S+λSkick )

= 〈Skick〉Z (2)
A (λ), (15)

i.e., the expectation value of the kick term with respect to
the effective partition function Z (2)

A (λ). Integrating the above
equation over λ from 0 to 1, we obtain an expression for the
second Rényi entropy

S(2)
A =

∫ 1

0
dλ〈Skick〉Z (2)

A (λ). (16)

The great advantage of the above expression is that the kick
term is quadratic in Grassmann variables c̄, c. In the above,
we have assumed that no phase transition occurs as we vary
λ. Such transition as a function of λ in the entanglement
action might be present and will be interesting to study in
the future. Assuming that there are no transitions with λ, the
Rényi entropy can be obtained from Eq. (16) using

〈Skick〉Z (2)
A (λ) =

∑
i∈A,αβσ

MαβGiσβ,iσα (τ0, τ
+
0 ), (17)

where the imaginary-time local single-particle Green’s func-
tion

Giσα,iσβ (τ, τ ′) = −〈Tτ ciσα (τ )c̄iσβ (τ ′)〉Z (2)
A (λ). (18)

The Green’s function, however, needs to be evaluated in the
presence of the kick term with variable λ. In the next section,
we show how the Green’s function can be obtained through
the DMFT approximation.
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IV. DYNAMICAL MEAN-FIELD THEORY FOR THE
SECOND RÉNYI ENTROPY IN THE HUBBARD MODEL

We consider the nearest-neighbor Hubbard model

H =
∑
〈i j〉,σ

ti jc
†
iσ c jσ − μ

∑
i

ni + U
∑

i

ni↑ni↓, (19)

where ti j = t is the nearest-neighbor hopping amplitude be-
tween lattice sites (i = 1, . . . , N) on 1d and 2d square lattices,
μ is the chemical potential, and U is the onsite repulsive
interaction strength between fermions with opposite spins
σ =↑,↓. Here, niσ = c†

iσ ciσ and ni = ∑
σ niσ are the elec-

tronic number operators. From here on, we set the hopping
t = 1 as the unit of energy and temperature (kB = 1). We write
down the entanglement action Sλ = S + λSkick of Eq. (14) for
the Hubbard model as

Sλ = −
∫ β

0
dτdτ ′ ∑

i j,σ

c̄iσα (τ )G−1
0,iα, jβ (τ, τ ′)c jσβ (τ ′)

+
∫ β

0
dτU

∑
iα

ni↑α (τ )ni↓α (τ ), (20)

where G−1
0,iα, jβ (τ, τ ′) is inverse noninteracting lattice Green’s

function in the presence of entanglement cut(s) between A and
the rest of the systems, i.e.,

G−1
0,iα, jβ (τ, τ ′) = −[(∂τ − μ)δi j + ti j]δ(τ − τ ′)δα,β

− λδi∈Aδi jMα,βδ(τ − τ+
0 )δ(τ ′ − τ0). (21)

As mentioned earlier in Sec. I, the self-energy kick, which
only acts on A (δi∈A = 1 for i ∈ A and zero otherwise), breaks
both lattice and time-translation symmetry in this formula-
tion. As a result, we construct a single-site inhomogeneous
nonequilibrium DMFT. We use the cavity method [40] to
reduce the lattice problem into effective single-site problems
for each of the sites i = 1, . . . , N , described by the generating
functions

Z (2)
λ,i =

∫
D(c̄, c)e−Sλ,i , (22)

where the effective action Sλ,i is given by

Sλ,i = −
∫ β

0
dτdτ ′ ∑

σαβ

c̄σα (τ )G−1
i,αβ (τ, τ ′)cσβ (τ ′)

+
∫ β

0
dτU

∑
α

n↑α (τ )n↓α (τ ). (23)

Here Gi,αβ (τ, τ ′) is the dynamical Weiss field, such that

G−1
i (τ, τ ′) = −(∂τ − μ)δ(τ − τ ′)I − �i(τ, τ

′)

− λδi∈AMδ(τ − τ+
0 )δ(τ ′ − τ0), (24)

is a 2 × 2 matrix in the entanglement replica space, and I
is the identity matrix in the same space. In the above, we
have also assumed a paramagnetic state. Of course, like in
equilibrium DMFT [40], the formulation can be easily ex-
tended, to describe entanglement in ordered states, such as the
antiferromagnetic Néel state in the Hubbard model. The ma-
trix �i(τ, τ ′) in Eq. (24) is the hybridization function which
can be expressed in terms of the lattice Green’s function as

discussed below. The impurity Green’s function is related to
the Wiess field via the Dyson equation,

G−1
i (τ, τ ′) = G−1

i (τ, τ ′) − i(τ, τ
′), (25)

where i(τ, τ ′) is the impurity self-energy. The Green’s func-
tion can be obtained by solving the impurity problem using
some approximate or exact impurity solvers [40,42], e.g.,
CTQMC [48]. In this work, for simplicity and as a first attempt
to compute entanglement via DMFT within the new formal-
ism [34], we use iterative perturbation theory (IPT) [40] to
obtain the self-energy in Eq. (25).

We consider the particle-hole symmetric half-filling case
with the chemical potential μ = U/2. At half-filling, IPT,
which retains the self-energy up to second order in U for
the impurity problem, is known to work very well [40] in
equilibrium, especially in the metallic phase. As well known,
in this case, IPT coincides with the exact result for both
U → 0 and U → ∞, i.e., the atomic limit, and thus it in-
terpolates well between the two limits even at intermediate
U . Here, it is also important to note that though IPT is a
second-order skeleton approximation for the self-energy at
the level of a single impurity, the self-consistent computation
of the bath Green’s function in DMFT through the lattice
self-consistency, discussed below, adds an infinite number
diagrammatic contributions to the self-energy with similar
topology.

For the effective nonequilibrium problem [Eq. (22)], we
also use the IPT as an approximate impurity solver. The IPT
self-energy in our case is given by

i,αβ (τ, τ ′) = UGii,αβ (τ, τ+)δ(τ ′ − τ+)δαβ

− U 2G̃2
i,βα (τ, τ ′)G̃i,αβ (τ ′, τ ). (26)

Here the first term is Hartree self-energy, and the second one is
the second-order self-energy obtained using Hartree corrected
Green’s function

G̃−1
i,αβ (τ, τ ′) = G−1

i,αβ (τ, τ ′) − UGii,αβ (τ, τ+)δ(τ ′ − τ+)δαβ.

(27)

Within the single-site DMFT approximation, we assume the
self-energy in the lattice problem to be local and the same
as the impurity self-energy. Thus the lattice Green’s function
Giα, jβ (τ, τ ′) is obtained from the lattice Dyson equation

∫ β

0
dτ ′′ ∑

kγ

[
G−1

0,iα,kγ (τ, τ ′′) − δiki,αγ (τ, τ ′′)
]
Gkγ , jβ (τ ′′, τ ′)

= δi jδαβδ(τ − τ ′). (28)

The DMFT loop is closed by relating the lattice Green’s
function with the hybridization function �i(τ, τ ′). The latter
can be obtained via the cavity method (see Appendix A 1 a) in
terms of the cavity Green’s function as

�i,αβ (τ, τ ′) =
∑

jl

ti jtil G
(i)
jα,lβ (τ, τ ′), (29)

where the cavity Green’s function, obtained with the ith site
removed from the original lattice, is related to full lattice
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Green’s function via

G(i)
jα,lβ (τ, τ ′) = Gjα,lβ (τ, τ ′) −

∫
dτ1dτ2

∑
γ δ

Gjα,iγ (τ, τ1)

× [Giγ ,iδ (τ1, τ2)]−1Giδ,lβ (τ2, τ
′). (30)

The above closes the DMFT self-consistency loop. For our nu-
merical computations, we further make the large-connectivity
Bethe lattice approximation [40] for the cavity Green’s
function. As a result, for the model [Eq. (19)] with only
nearest-neighbor hopping, Eq. (29) becomes

�i,αβ (τ, τ ′) = t2
′∑
j

G jα, jβ (τ, τ ′), (31)

where
∑′

j indicates that the summation is over only the near-
est neighbors of i. This approximation makes the computation
easier, keeping the essential features of the finite dimension-
ality through the lattice Green’s function.

Computationally, the most expensive part of the DMFT
loop here is the inversion of Eq. (28) to obtain the lattice
Green’s function G, a matrix in indices (iατ, jβτ ′). As dis-
cussed in the next section and in Appendix A, we discretize
the imaginary time and use a recursive Green’s function
method for large systems to obtain G. We also benchmark our
results by doing direct inverse in Eq. (28) for small systems.

V. NUMERICAL SOLUTION OF DMFT
EQUATIONS TO OBTAIN S(2)

A

We solve the DMFT self-consistency Eqs. (24)–(29) and
(31) by discretizing them in imaginary time τ with discretiza-
tion step δτ as detailed in Appendix A. To evaluate S(2)

A from
Eq. (16), we perform the DMFT calculation for λ ranging
from 0 to 1 in steps of size δλ as discussed in Appendix B.
After obtaining the single-site self-consistent Green’s func-
tion [Eq. (18)] for different λ, we use Eqs. (17) and (16) to
compute S(2)

A (δτ ) for a given discretization δτ . By repeating
the calculation of S(2)

A (δτ ) for different δτ values and extrapo-
lating to δτ → 0 limit, we finally obtain S(2)

A . The details of
the extrapolation process are discussed in Appendix D. As
mentioned in the preceding section, we employ a recursive
Green’s function method to obtain the lattice Green’s function
from Eq. (28) (see Appendix A 1). By using the recursive
Green’s function method, we can compute S(2)

A for reasonably
large systems, N � 100 in 1d, and N � 20 × 20 in 2d up
to low temperatures (T � 0.05, in units of nearest-neighbor
hopping amplitude t). The results reported in the main text are
for periodic boundary condition (PBC). We also discuss some
results for open boundary condition (OBC) in Appendix F.

A. Comparison with the noninteracting limit and QMC

To benchmark the kick integration method of Eq. (16)
and the extrapolation S(2)

A (δτ → 0), we first compare the
results for S(2)

A for the noninteracting case (U = 0) with
those calculated directly using the correlation matrix Ci j =
Tr[ρc†

i c j] for i, j ∈ A. The latter calculation using Ci j can
only be performed for noninteracting problems. The correla-
tion matrix can be easily evaluated using the single-particle

FIG. 1. The extrapolated S(2)
A (δτ → 0) (open circles) for U = 0

is compared with the S(2)
A from correlation matrix calculation (closed

circle+line, “corr”) for N = 10 and three different temperatures T =
0.2, 0.5, and 1.0.

eigenenergies and eigenfunctions of the tight-binding model
of Eq. (19) for U = 0. The second Rényi entropy is ob-
tained from S(2)

A = −Tr ln[(1 − C)2 + C2] [11,34]. As shown
in Fig. 1, S(2)

A (δτ → 0) for different temperatures matches
very well with the corresponding S(2)

A from correlation matrix
calculation for a noninteracting system of size N = 10.

We next focus on the interacting problem and compare our
DMFT results for S(2)

A with QMC data taken from Ref. [24]
for N = 32 and U = 2.0. In Fig. 2, the S(2)

A as a function
of subsystem size NA for this two method is shown for high
(T = 1.0) to intermediate temperatures (T = 0.5, 0.2). For
high T , the results from our DMFT approach coincide with
the QMC results. Even at intermediate temperatures, the com-
parison is reasonable given the fact that 1d is the worst-case
scenario for a mean-field approach like single-site DMFT, and
that too, employing an approximate impurity solver like IPT.

FIG. 2. DMFT results for S(2)
A as a function of subsystem size NA

in 1d Hubard model are compared with QMC data from Ref. [24]
at three temperatures T = 1.0, 0.5, and 0.2 for system size N = 32
and U = 2.
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Nevertheless, it has been shown [46,47,63] that cluster exten-
sion of DMFT can capture some of the subtle Luttinger-liquid
physics in 1d arising from long-distance correlations. Hence,
cluster extensions of our DMFT approach will be able to
provide in the future a good description of entanglement prop-
erties even in 1d.

Given the above benchmarks, in the next sections, we study
the subsystem-size dependence and the entropy to entangle-
ment crossover of S(2)

A , first in 1d, and then for the 2d Hubbard
model.

VI. S(2)
A IN 1D HUBBARD MODEL

In 1d, single-site DMFT gives rise to a metal-insulator
transition at finite U [46,63] at half filling, unlike the exact
Bethe ansatz solution [64]. The latter leads to a metallic state
only at U = 0 and gapped states for any U > 0. The metallic
state in DMFT is a relic of the infinite dimension inherent in
the local self-energy approximation in single-site DMFT, even
though some effects of finite dimension are fed back through
the lattice self-consistency. We first look into S(2)

A (NA, T ) of
this mean-field metallic state in 1d.

We note that, DMFT being an approximate theory, es-
pecially in its single-site implementation which is based on
infinite dimensional approximation of local self-energy, is not
expected to give accurate description of entanglement or any
other properties of short-range 1d systems. However, since
the entanglement DMFT formulated in Sec. IV is numerically
much easier to implement in 1d than in higher dimensions, as
a proof of principle and simpler demonstration of the imple-
mentation of our method we discuss here the DMFT results
for entanglement in 1d half-filled Hubbard model. This also
helps us to verify U → 0 noninteracting result which can be
obtained directly from correlation matrix approach. Despite
the expected shortcomings of DMT in 1d, we find a very good
agreement with QMC results in relatively higher temperature
as discussed in the previous section.

In our DMFT formalism, the subsystem Rényi entropy
is obtained from an imaginary-time path integral. Thus we
perform the calculations at finite temperature with a finite
discretization δτ . To obtain the ground-state entanglement, we
need to take the T → 0 or β → ∞ and δτ → 0 limit. This is
not straightforward since at finite temperature S(2)

A contains
both thermal and entanglement entropy contributions, and we
need to disentangle these two contributions as the T → 0
limit is taken. As discussed below, we find that the thermal
to entanglement crossover in S(2)

A for the DMFT metallic state
can be described by the crossover function known from CFT
[8,12,19,49].

We show S(2)
A in Fig. 3 as a function of subsystem size NA

for 1d Hubbard model with periodic boundary condition. In
Fig. 3(a), the result for S(2)

A vs. NA is shown at low temperature
T = 0.05 for the total system size N = 50 and interaction
strengths U = 0, 0.5, and 2. Figures 3(b) and 3(c) show
S(2)

A (NA) at relatively higher temperatures, T = 0.1 and 0.2,
for N = 100 and U = 0, 2, 3. The U = 0 results are com-
puted using the correlation matrix approach discussed in the
preceding section, and S(2)

A for nonzero U is obtained through
DMFT. At higher temperatures, S(2)

A for NA  1 is seen to
vary linearly with NA, i.e., a volume law scaling. This indicates

FIG. 3. Result for the second Rényi entropy S(2)
A in 1d Hubbard

model with periodic boundary condition. (a) S(2)
A as a function of

subsystem size NA is shown for U = 0, 0.5, 2 and total system size
N = 50 at temperature T = 0.05. S(2)

A (NA) for U = 0, 2, 3 and N =
100 at (b) T = 0.1 and (c) 0.2. The S(2)

A for U = 0.0 are calculated
using the correlation matrix and that for U �= 0 using DMFT.

the dominance of thermal entropy at higher temperatures. An
arclike feature emerges at lower temperatures. This is the
hallmark of entanglement contribution to subsystem Rényi en-
tropy. Thus the change of linear to arc-like behavior originates
from entropy to entanglement crossover, as we discuss below.

Gapless 1d systems, such as critical bosonic or spin chains,
and gapless fermionic chains, exhibit the logarithmic violation
of the area-law scaling of entanglement. These systems are
usually described by 1 + 1 D CFT characterized by some
central charge c [8,65]. The Rényi entropy S(n)

A at T = 0 for a
thermodynamically large system (N → ∞) with one gapless
mode is given by the CFT formula for NA  1 [8,66,67]

S(n)
A = 1

2

(
1 + 1

n

)( c

6

)
ln(NA) + b′. (32)

The logarithmic term above is universal with the central
charge c, and b′ is a subleading nonuniversal constant orig-
inating from high-energy degrees of freedom. For finite N ,
and systems with periodic boundary condition [8], the above
formula is modified to

S(n)
A = 1

2

(
1 + 1

n

)( c

6

)
ln

[
N

π
sin

(
πNA

N

)]
+ b′. (33)

Similarly, one can obtain the Rényi entropy [8,12] at finite
temperature and N → ∞ as

S(n)
A = 1

2

(
1 + 1

n

)( c

6

)
ln

[
vβ

π
sinh

(
πNA

vβ

)]
+ b, (34)

where v is a velocity and b is some nonuniversal constant. For
noninteracting spinless fermions, v = vF is the Fermi velocity.
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In this case, S(n)
A is obtained by adding the contributions of

the two gapless chiral modes, i.e., the left (L) and right (R)
movers, at the two Fermi points, each with the central charge
cL = cR = c = 1. Eq. (34) reduces to Eq. (32) for β → ∞,
i.e., at zero temperature, to give us the ground-state Rényi
entanglement entropies. For β → 0, Eq. (34) reproduces ther-
mal Rényi entropy, S(n) � (1/2)(1 + 1/n)(πcT/6v)NA, e.g.,
the thermal entropy S(T ) = (πcT/6v)NA (n = 1), scaling lin-
early with subsystem size. Therefore the expression Eq. (34)
can be viewed as a crossover formula [18] from thermal to en-
tanglement entropy. The same low-energy degrees of freedom
give rise to the universal part of entanglement and thermal
entropy and thus lead to the smooth crossover. The CFT for-
mulas [Eqs. (32)–(34)] are also applicable for gapless states
of interacting fermions in 1d, i.e., for a Luttinger liquid. In
this case, the effect of interaction only enters in the crossover
formula [Eq. (34)] through the renormalized Fermi velocity v,
whereas the central charge remains unchanged.

As we discuss in the next section in more detail, for d > 1,
the Fermi liquid state of interacting fermions at T = 0 also
obeys the universal logarithmic scaling [15] of Eq. (32), which
is independent of any Fermi liquid corrections or Landau
parameters. The effect of interaction again only appears [15]
in the thermal to entanglement crossover [Eq. (34)] through
the renormalized v. The single-site DMFT [Sec. IV] with the
IPT approximation [41] is designed to give rise to a Fermi
liquid metallic state even in 1d. Thus we describe our DMFT
findings for S(2)

A (NA, T ) in the paramagnetic metallic state of
the 1d Hubbard model, using the CFT expression outlined in
Eq. (34), with the constant c replaced by 4c. This substitution
accounts for the two chiral modes from two Fermi points and
two spin channels for each mode. We note that in more accu-
rate treatment of 1d Hubbard model at half filling with finite
U > 0, the charge modes will be gapped [64]. Hence, one
expects logarithmic scaling of the entanglement only from the
gapless spin modes and the replacement of c in Eq. (34) by 2c
instead of 4c. However, as already mentioned, such 1d physics
of spin-carge separation and the gapping of the charge degrees
of freedom is not captured by the DMFT. We note that Eq. (34)
is valid for thermodynamically large systems (N → ∞). For
finite N and T , the analytical expression for S(n)

A (NA, T, N )
is not known [8,49,68] to the best of our knowledge. Nev-
ertheless, we use Eq. (34) to describe our DMFT data for
relatively large systems like N = 50 and 100, as shown in
Fig. 3, and assuming N to be large enough so that finite N cor-
rections may be neglected. Alternatively, we can consider the
crossover function [Eq. (34)] as a fitting function, using which
we can in principle fit S(2)

A as a function of NA for a fixed T
and the fitting parameters c, v and b (Appendix E). However,
to reduce the number of fitting parameters, we independently
extract the ratio (c/v) by fitting the low-temperature specific
heat (per site) cV from equilibrium DMFT calculations [see
Appendix E 1] with the CFT expression cV = (πT/3)(c/v).

With the (c/v) ratio determined, we fit Eq. (34) to our data
with two parameters c and b. As shown in Fig. 4(a), S(2)

A fol-
lows the crossover function quite well. The extracted central
charge c is shown as a function T for fixed U , and as a function
of U for a fixed T in Figs. 4(b) and 4(c), respectively. The
nonuniversal fitting parameter b and the extracted normalized
Fermi velocity v are shown in Appendix E 1. We find that

FIG. 4. (a) The second Rényi entropy S(2)
A (dashed line + marker)

as a function subsystem size NA for interaction strength U = 2.0 and
system size N = 50 at T = 0.05, 0.1, and 0.15 is shown with the
fitted CFT crossover function (line) of Eq. (34). (b) The extracted
central charge c as a function of T is shown for different interaction
strengths U = 0, 0.5, 2, and compared with the CFT value c = 1
(solid line). (c) The central charge c as a function of U is shown at
T = 0.1 for two system sizes.

the extracted central charge is close to the free-fermion value
c = 1. With decreasing temperature, the extracted central
charge approaches c = 1 for the noninteracting (U = 0) and
weakly interacting (U = 0.5) systems [Fig. 4(b)], and seems
to deviate slightly for relatively stronger interaction U = 2.
However, the deviation might be an artifact of employing the
N → ∞ formula [Eq. (34)] for finite N . In Fig. 4(c), we see
that N = 50 and N = 100 give very similar values of c � 1
at T = 0.1 as a function of U , thus assuring convergence
at least for the range of N accessed in our calculations. In
summary, we conclude that the entanglement properties of
the DMFT Fermi liquid, captured through S(2)

A (NA, T ), and
accessed within the local self-energy approximation match
quite well with that of CFT.

VII. S(2)
A IN 2D HUBBARD MODEL

In this section, we discuss the results for S(2)
A in 2d Hub-

bard model for metallic (Fermi liquid) and Mott phases. The
DMFT approximation typically provides a good description
for equilibrium and nonequilibrium properties of strongly cor-
related systems in three dimension, while it falls short as an
accurate description in two dimensional systems. However,
DMFT has been applied for 2d systems to capture corre-
lated phenomena in many previous works [56–59]. Moreover,
Walsh et al. [53] employed the equilibrium cluster DMFT
approximation to compute single-site Rényi entanglement
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FIG. 5. The cylindrical subsytem A, with NA sites in x direction
and Ny sites in the y direction, used for computing entanglement in
2d Hubbard model, is shown. The periodic boundary condition is
applied to the whole system in both x and y directions.

entropy in 2d Hubbard model. Therefore our DMFT based
entanglement computation serves as a first approximation to
compute entanglement in correlated systems in 2d. Our for-
malism of computing entanglement using the “kick” term,
naturally allows us to develop the DMFT framework, pre-
sented in this paper, for accessing multi-site entanglement
instead of being limited to a single site. Thus our endeav-
our could serve as a first step to explore more sophisticated
approximations, such as extending the approach to cluster
DMFT [56].

We consider the system with periodic boundary conditions
in both x and y directions, i.e., a torus geometry for the
system. We subdivide the system along the x axis, mean-
ing, the entanglement cut is parallel to the y axis like in
a cylindrical subsystem geometry as shown in Fig. 5. Due
to the entanglement cut, the translational symmetry in the
x-direction is broken while retaining the translation symmetry
in the y direction, along which periodic boundary condition is
applied. As discussed in Appendix G, the periodic boundary
condition along the y axis allows the wave vector ky to be a
good quantum number, and makes the inversion of the lattice
Green’s function of Eq. (28) easier. In this case, Eq. (28)
can be decoupled for each ky mode. We discuss below our
results for S(2)

A and its dependence on the subsystem size NA,
temperature, and interaction strength.

Most systems in higher dimension (d > 1) follow bound-
ary law scaling of entanglement. Even the higher dimensional
CFT gives strict boundary law scaling. However, there are
several important exceptions [15–18] with logarithmic viola-
tion of the boundary law, e.g., free fermions, Fermi liquids,
Weyl fermions in a magnetic field, non-Fermi liquids with
critical Fermi surface, and Bose metals. Here we focus on
Fermi liquid metallic state as captured within DMFT. The
underlying reason behind the violation of the area law is that
these systems with Fermi surface can be effectively described
as a collection of patches on the Fermi surface [15,50]. Each
of these Fermi surface patches acts as a one-dimensional gap-
less chiral mode described by 1 + 1 D CFT. These modes are
chiral as they can only propagate with Fermi velocity radially

outward to Fermi surface at very low temperatures. Then, the
scaling of entanglement entropy with NA is simply the one-
dimensional logarithmic scaling multiplied by the number of
gapless 1 + 1 D CFT modes [15]. The counting of the number
of these mode depends on both the geometry of the Fermi
surface and real space boundary [15].

As discussed in the preceding section, for one dimension,
we have both right and left movers mode with central charge
cL = cR = c = 1 and the scaling of Rényi entanglement en-
tropy is given by Eq. (32). For the chiral mode in d > 1, we
have either cL = 0, cR = c or cR = 0, cL = c, and hence the
contribution (per spin component) of each chiral mode to the
Rényi entropy at T = 0 is still given by Eq. (32). The counting
of the mode is obtained from the Widom formula [13,15–
17,69,70], originally developed in the context of signal pro-
cessing [71],

Nmodes = 1

(2π )d−1

1

2

∫
∂Ax

∫
∂Ak

dAxdAk|n̂x · n̂k|. (35)

The integrals are over the real-space boundary ∂Ax of the
subsystem and the Fermi surface ∂Ak . n̂x and n̂k are the unit
normals to the real-space boundary and the Fermi surface,
respectively. Here, the flux factor |n̂x · n̂k| counts the frac-
tion of modes perpendicular to real-space boundary coming
from a Fermi surface patch at k. The Widom formula has
been verified numerically [14] for free fermions in d > 1. For
Fermi liquids, where only forward scattering is relevant, the
Widom formula is expected to remain valid [15,50] with the
same c in Eq. (32) modulo possible modification of the Fermi
surface geometry due to interactions if any. Going beyond
Fermi liquids, the Widom formula may get violated [72,73]
or modified [18], e.g., as in the case of gapless states of
composite fermions in the fractional quantum Hall regime,
quantum spin liquids, and non-Fermi liquids.

For the square lattice Hubbard model [Eq. (19)] that
we consider here, the noninteracting dispersion is εk =
−2t (cos kx + cos ky). Thus we can compute the Nmodes for the
cylindrical subsystem (NA × Ny) as discussed in Appendix H.
In this case, Nmodes is given by 2Ny, where Ny is the number of
sites in the y direction along the entanglement cut. Therefore,
taking the spin degeneracy into account, we expect

S(2)
A /Ny = c

2
ln(NA) + b′ (36)

at T = 0. Moreover, like in the 1d case [Eq. (34)], we expect
entropy to entanglement crossover at finite temperature for a
thermodynamically large system to be given by

S(2)
A /Ny = c

2
ln

[
vβ

π
sinh

(
πNA

vβ

)]
+ b, (37)

where b is again another nonuniversal constant. Hence, the
Rényi entropy per unit length along y direction, i.e., S(2)

A /Ny in
this cylindrical subsystem geometry has a similar form as the
1d crossover formula in Eq. (34). Likewise, as in the 1d case,
we do not have any crossover formula that interpolates be-
tween entanglement and thermal entropy for finite N and finite
temperature. For the correlated metallic state obtained in our
DMFT calculations for the 2d Hubbard model, we verify the
crossover formula [Eq. (37)]. Again the effect of interactions
only enters in the crossover formula via the velocity v for a
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FIG. 6. (a) S(2)
A /Ny for the metallic state of 2d Hubbard model

is shown for a N = 20 × 20 lattice as a function of the subsystem
length along x-axis NA for temperatures T = 0.1, 0.15, and 0.2 at
fixed interaction strength U = 4. The results (dashed line+marker)
fit well with the crossover function (line) of Eq. (37). (b) S(2)

A /Ny

(filled circle, open circle, triangle) as a function of NA is shown for
different interaction strengths U = 0, 4, and 6 at fixed T = 0.1. The
corresponding fits (line) to the crossover function are also shown.

Fermi liquid. We note that a universal entropy-entanglement
crossover formula may be valid more generally, even beyond
Fermi liquids. Similar crossover formulas, constrained by the
temperature dependence of thermal entropy, have been pro-
posed [18] to hold even for gapless fermionic systems not
described by Fermi liquid theory or devoid of quasiparticles,
e.g., non-Fermi liquids with critical Fermi surfaces.

We compute the second Rényi entropy S(2)
A as a function

of subsystem size NANy for a total system size NxNy. Here
NA is the number of lattice sites in the subsystem A in the
x direction, and Nx and Ny are the total number of sites in
the x and y directions, respectively. We vary the subsystem
size by varying NA while keeping Ny fixed. In Fig. 6(a),
S(2)

A /Ny, computed from DMFT, is shown as a function of NA

at low temperatures, T = 0.1, 0.15, and 0.2, for U = 4 and
system size N = 20 × 20. We find that the crossover formula
in Eq. (37) fits very well with our result as demonstrated in
Fig. 6(a). Similarly, in Fig. 6(b), the S(2)

A /Ny is shown for dif-
ferent interaction strengths U = 0, 4, and 6 at fixed T = 0.1
with the corresponding fits to the crossover formula [Eq. (37)]
for a 20 × 20 system.

The c extracted from the above fittings is shown in Fig. 7.
More details are given in Appendix H. Figure 7(a) shows
the extracted c as a function of T for U = 0, 2, 4, 6, and

FIG. 7. (a) The extracted central charge c as a function of T is
shown for different interactions U = 0, 2, 4, 6 and system size N =
20 × 20, and compared with the CFT value c = 1. (b) The variation
of the c as a function of U is shown at fixed T = 0.1 for different
system sizes N , as indicated in the legends.

compares with the expected CFT value c = 1. We see that the
calculated c � 0.9 < 1, and c does not vary much with T . We
find that c � 0.9 < 1 even for U = 0, i.e., c deviates from 1
by more or less the same amount even for the noninteracting
case for the system sizes studied. Thus, presumably, the de-
viation from the CFT value stems from the application of the
crossover formula [Eq. (37)] for the thermodynamic limit to
the finite systems. In Fig. 7(b), where we plot c as a function
of U for different N values and T = 0.1, we observe that
c decreases slightly for larger U and tends to increase very
slowly with increasing N for a given U , implying that c might
approach the expected value of 1 for larger systems. However,
in the absence of an analytical crossover function for finite N
and T , and for the accessible system sizes in our calculations,
it is hard to extrapolate c to the N → ∞. Nevertheless, we can
conclude that modulo finite-size effects, our DMFT results for
S(2)

A (NA, T, N ) for the metallic state of the 2d Hubbard model
at half filling are consistent with the Widom formula and the
expected logarithmic violation of area law for Fermi liquids
[15].

We also compute the Rényi entropy deep inside the insulat-
ing phase at low temperature, as shown in Fig. 8 for U = 14.
We find that S(2)

A /Ny is linear in NA with a slope � ln 2, with
a very weak dependence on T . This is expected due to the
spin degeneracy of the paramagnetic Mott insulating state
described by the DMFT for subsystem Rényi entropy imple-
mented in this work. For the thermal grand canonical density
matrix accessed in our DMFT, the thermal entropy (per site),
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FIG. 8. The S(2)
A /Ny as a function of NA is shown for several T ’s

at fixed U = 14. This is computed from system size 20 × 20.

and thus the subsystem Rényi entropy S(2)
A /NA, approaches

its maximal value, S/N = ln 4, at very high temperatures,
T  U, W , where W is noninteracting bandwidth. We note
that though the limit T  U, W is not feasible in any realistic
material, this limit serves as a valuable theoretical limit to ver-
ify the validity of our formalism for extracting entanglement
within the DMFT framework. Even at T → 0, the paramag-
netic Mott insulating state, unlike the Fermi liquid metallic
state, retains the spin degeneracy of 2N . This degeneracy leads
to a residual zero-temperature entropy S/N = ln 2, which is
captured by the paramagnetic Mott insulating solution in the
single-site DMFT as discussed in Ref. [40]. This residual
entropy also contributes to the subsystem Rényi entropy in
our path integral or DMFT formulation for the thermal mixed
state. As a result, the subsystem Rényi entropy computed in
this work does not approach true ground-state entanglement
for the paramagnetic Mott insulating phase. Our formulation
for entanglement path integral can be extended to describe
pure states where true entanglement can be extracted even
for the paramagnetic Mott insulator. This will be addressed
in future works [74].

However, the paramagnetic state is not expected to be a
true ground state in the Mott insulating phase, certainly not for
unfrustrated lattices like square lattice [40]. Any magnetic or-
der, like the antiferromagnetic Néel order expected in the Mott
insulating phase of half-filled Hubbard model will quench
the residual entropy to zero as T → 0. As in the equilibrium
single-site DMFT formulation [40], our entanglement DMFT
can be readily extended to incorporate antiferromagnetic order
at the mean-field level, as we discuss in Appendix I.

VIII. MUTUAL INFORMATION ACROSS MOTT
TRANSITION IN 2D HUBBARD MODEL

Here we discuss the second Rényi mutual information as
an entanglement and information-theoretic measure at finite
temperature in the temperature versus interaction (T -U ) phase
diagram of the Hubbard model. The second Rényi mutual

information [51,75]

I (A, B) = S(2)
A + S(2)

B − S(2)
A∪B

= −(
ln Z (2)

A + ln Z (2)
B − ln Z (2)

A∪B + 2 ln Z
)

(38)

is obtained from the combination of the Rényi entropies of a
subsystem A, its complement B, and the whole system A ∪ B.
While the entanglement entropy can characterize pure states,
e.g., ground state and quantum phase transitions between
ground states at T = 0, the mutual information is a better
information-theoretic measure for finite-temperature phases
and phase transitions [76–79]. The mutual information is
dominated by entanglement contribution when classical corre-
lations are short-ranged, e.g., at low temperatures away from a
finite-temperature critical point [51]. Moreover, different parts
of mutual information can exhibit critical properties [76–79]
at temperatures related to the finite-temperature critical point,
e.g., at critical temperature Tc, and at 2Tc due to critical be-
haviors of Z (2)

A , Z (2)
B in Eq. (38) from the edges and corners of

the subsystem A, B.
For a pure-state density matrix, I (A, B) = 2S(2)

A . The S(2)
A

for thermal density matrix at finite temperature contains both
entanglement and thermal entropy contributions. However the
(Rényi) mutual information, by construction, naturally ex-
cludes the volume-law thermal entropy of the subsystem and
its complement. Thus mutual information follows in general
an area-law scaling with subsystem size and captures both
quantum (entanglement) and classical correlations between
the subsystems. The study of Mott transition through the
lens of mutual information is less explored in literature. In
Refs. [53–55], the authors have studied the Mott transition in
the 2d Hubbard model using equilibrium CDMFT through the
mutual information of a single site and the rest of the system.
They detect first-order phase transitions and the supercritical
regime for T > Tc. The calculation of the single-site mutual
information only requires the knowledge of occupation and
double occupancy, which can be computed within equilibrium
DMFT. The subsystem size scaling of mutual information
cannot be captured within such equilibrium DMFT. Within
our new path integral approach, we can easily study the
subsystem size scaling of mutual information across Mott
transition, as we discuss below.

To characterize the metal, insulator, and the phase tran-
sition separating these states at finite temperature, we first
briefly discuss the T -U phase diagram of the half-filled 2d
Hubbard model within large connectivity Bethe lattice ap-
proximation in DMFT [40]. We draw the T -U phase diagram
by monitoring the equal time correlation function D = 〈n↑n↓〉
corresponding to the double occupancy of a site within equi-
librium DMFT (Appendix E 1) as a function of U for different
temperatures. A representative plot for double occupancy D
versus U at T = 0.14 is shown in Fig. 9(a). The hysteresis
behavior is due to the coexistence of both metal and insu-
lator solution across the first-order Mott metal-to-insulator
transition. The area of the hysteresis loop shrinks to zero
as the first order transition ends at finite temperature Mott
critical point (Uc, Tc). By monitoring D(U ), we obtain the
T -U phase diagram, as shown in Fig. 9(b). The critical point
is at (Uc, Tc) ≈ (9.9, 0.18).
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(a)

(b)

FIG. 9. (a) Double occupancy D, computed within single-site
DMFT, as a function of U is shown at T = 0.14 for 2d Hubbard
model. The legend “met. to ins.” implies increasing U from the metal
to insulator and “ins. to met.” decreasing U the other way round.
(b) The phase diagram for 2d half-filled Hubbard model constructed
based on the double occupancy D is shown. (Uc, Tc ) represents Mott
critical point where the first-order line, or the coexistence region,
ends. In the coexistence region, both metal and insulator solutions
exist.

The evolution of the one-particle spectral function, ρ(ω) =
−(1/π )GR(ω), where GR(ω) is the real-frequency retarded
equilibrium Green’s function, near coexistence region also
demonstrates the first-order metal-insulator transition, consis-
tent with double occupancy D(U ) from the imaginary-time
equilibrium DMFT calculation (Appendix E 1). The one-
particle spectral function changes its character from metallic
to insulating at different values of U for a fixed T or dif-
ferent T for fixed U , depending on the sweep either from
metal to insulator or insulator to metal. These are illustrated
in Fig. 10 for different values of U at T = 0.14, and for
various T values at a fixed U = 10.1 � Uc in Fig. 11, de-
picting the transition from metal to insulator or vice versa.
Therefore we demonstrate the first-order Mott metal-insulator
transition in equilibrium for the square-lattice Hubbard model
through both double occupancy D(U ) and one-particle spec-
tral function. It is worth emphasizing that the computation of
the subsystem Rényi entropy relies on completely indepen-
dent inhomogeneous DMFT calculations in the presence of a
“kick” term, causing the Green’s function G(τ, τ ′) to depend
on two time arguments (τ, τ ′). Therefore the results from the
equilibrium DMFT calculations, such as the spectral function
shown in Figs. 10 and 11, does not enter in any way in our
numerical computation of subsystem Rényi entropy through
the new entanglement DMFT method.

In Fig. 12, the mutual information per site I (A, B)/Ny along
the y direction for the equal bi-partition NA = NB is shown for
T = 0.16 < Tc and system size N = 16 × 16. As mentioned
earlier, for the first-order Mott transitions, two co-existing

(a)

(b)

FIG. 10. Equilibrium spectral function ρ(ω) =
−(1/π )ImGR(ω) vs frequency (energy) ω is shown here for
T = 0.14 for different U ’s: (a) ρ(ω) is calculated as a function of the
increasing value of U starting from metallic state, i.e., for metal to
insulator (met. to ins.) sweep. (b) ρ(ω) is calculated with decreasing
U starting from an insulator state, i.e., an insulator to metal sweep.
The ρ(ω → 0) �= 0 characterizes metallic state at finite T .

(a)

(b)

FIG. 11. Equilibrium spectral function ρ(ω) =
−(1/π )ImGR(ω) vs frequency (energy) ω is shown for U = 10.1 for
different T ’s: (a) ρ(ω) is calculated as a function of the increasing
value of T starting from the metallic state (T = 0.06) to insulator
state (T = 0.2 > Tc), i.e., for metal to insulator (met. to ins.)
sweep. (b) ρ(ω) is calculated with decreasing T starting from an
insulator state (T = 0.2) to reach metallic state at T = 0.06, i.e., an
insulator to metal sweep. Notice that insulator-to-metal transitions
happen at different values of T than metal-to-insulator in (a). The
ρ(ω → 0) �= 0 characterizes metallic state at finite T .
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FIG. 12. The bipartite mutual information for NA = NB per site
of the subsystem along y axis, i.e., I (A, B)/Ny as a function of
interaction U at T = 0.16 < Tc is shown for a N = 16 × 16 lattice.
“Met. to ins” refers to sweeping U from the metal to insulator phase
and “ins. to met” for the other way round.

solutions, metal, and insulator, appear in the phase diagram
as indicated in Fig. 9(b). In equilibrium DMFT, for T < Tc,
starting from the insulating solution at large U and on de-
creasing the interaction slowly, a sudden jump to the metallic
solution occurs at Uc1(T ), i.e., at the limit of metastability
of the insulating phase, which is consistent with a first-order
transition. Similarly, sweeping U from the metallic side leads
to a jump to the insulating solution at Uc2(T ). For T = 0.16,
Uc1 and Uc2 computed from double occupancy within the
equilibrium calculation are shown in Fig. 12 as dotted vertical
lines. The DMFT for Rényi entropy also leads to similar
hysteresis behavior in the mutual information, as shown in
Fig. 12, where the calculation of I (A, B) vs. U is done in
steps of δU = 0.2. Following the behavior of double occu-
pancy, the bipartite mutual information I (A, B)/Ny also jumps
across Uc1,Uc2. Thus the mutual information between two
extended subsystems can detect the first order nature of phase
transitions, like the single-site mutual information [53–55].
Finite but weak correlations, indicated by the nonzero mutual
information, persist even in the insulating phase for U � Uc2,
as can be seen in Fig. 12. We expect these correlations to
approach zero for large interaction strengths U  W , where
W is the noninteracting bandwidth.

The calculation of mutual information near the critical
point (Uc, Tc) through the extrapolation δτ → 0 becomes
challenging due to multiple solutions as well as very close
numerical values of S(2)(δτ ) for different δτ ’s. For this rea-
son, we present the data for a fixed δτ = 0.029, without any
extrapolation, in this section.

The subsystem size scaling of mutual information is ex-
pected to be of the form [76,77] I (A, B) = I (NA, Ny, β ) �
a(β, NA)Ny + d (β, NA) + O(N−1

y ), with coefficients a and b
weakly dependent on NA. In our subsystem geometry, the
dominant contribution to I (A, B) comes from the interface of
the two subsystems A and B, and leads to the leading area

FIG. 13. The mutual information I (A, B)/Ny for N = 16 × 16 as
a function of the length of subsystem NA along x direction is shown
here across the Mott metal-insulator transition for different interac-
tion strength U (U = 8.0, 9.0, 9.6, 10.0, 11.0) and temperatures. U
gradually increases from top to bottom, as indicated by the arrow, in
each plot for a fixed temperature.

law (∝ Ny) for the mutual information with the coefficient
a(NA, β ). The latter is expected to approach a constant value
with subsystem size NA for sufficiently large NA. The other
term d (NA, β ) can appear due to the corner contribution or,
for a finite system, from the degeneracy of thermodynamic
state, arising from symmetry breaking [76,77] or configura-
tional entropy. In our subsystem geometry (Fig. 5), the corner
contribution is absent. The finite-temperature Mott transition
is similar to a liquid-gas transition [80]. Thus, for the second
Rényi mutual information, constant term d (β, NA) can appear
between Tc < T < 2Tc and T < Tc from effective Ising-like
symmetry breaking in different parts of I (A, B) along the first-
order transition line in the T -U plane. We show I (A, B)/Ny for
N = 16 × 16 lattice as a function of NA in Fig. 13 for different
U s across Mott transition at several temperatures near Mott
critical point. The arrows in the plots indicate increasing val-
ues of interaction over the range U = 8 − 11. In Fig. 13, we
see that I (A, B)/Ny becomes more or less independent of NA

for NA ∼ N/2, except near the critical point (Uc, Tc), where
more complex dependence on NA is seen.

Finally, in the Fig. 14, we show the mutual informa-
tion I (A, B)/Ny for the bipartition NA = NB as a function of
temperature (in logarithmic scale) near U � Uc = 10.0. The
I (A, B) shows a nonmonotonic behavior with T . In particular,
the mutual information appears to dip between ∼Tc and ∼2Tc.
A substantial I (A, B), indicating correlations, persists even
far above Tc till T � W in the supercritical regime [53–55].
In the future, it will be interesting to study the system-size
scaling of I (A, B) with Ny or N to understand the nature of
correlations in the supercritical regime contributing to the
mutual information of an extended subsystem.
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FIG. 14. The nonmonotonic temperature dependence of
I (A, B)/Ny is shown for U = 10.0 ≈ Uc. This is computed from
system size 16 × 16. Here T is plotted in the logarithmic scale.

IX. CONCLUSIONS AND DISCUSSION

To summarize, we have developed a DMFT formalism and
its numerical implementation for computing Rényi entangle-
ment entropy and mutual information in strongly correlated
electronic systems described by the Hubbard model. We show
that the scaling of the Rényi entropy with subsystem size for
an extended subsystem can be used to characterize correlated
Fermi liquid metallic state in the half-filled Hubbard model. In
particular, we show that the subsystem-size scaling of Rényi
entropy follows the entropy to entanglement crossover for-
mula expected from CFT and related arguments even in the
presence of strong electronic correlations captured by local
self-energy approximation within the single-site DMFT. We
also show how the first-order Mott transition and Mott criti-
cal point are manifested in the temperature, interaction, and
subsystem-size dependence of Rényi mutual information.

Here, as a first attempt to implement the entanglement
path integral formalism of Ref. [34] within DMFT, we use an
approximate impurity solver, namely the IPT [40]. An imme-
diate extension of our work would be to employ the CTQMC
impurity solver [48] in the entanglement DMFT framework.
Our entanglement path integral formalism is naturally suited
for such a purpose and only requires the incorporation of the
local kick self-energy [Eqs. (23) and (24)] in the impurity
action for the CTQMC solver [48]. Another interesting, al-
beit more challenging, future direction would be to capture
short-range correlations via cluster extension [41,44] of the
DMFT formalism. On a different note, it will be interesting to
explore the connections between real-space and momentum-
space [81] entanglement in a Fermi liquid.

While in this work we have discussed the implemen-
tation of the entanglement path integral under equilibrium
conditions, the entanglement integral and the DMFT can
be extended to nonequilibrium situations, like in the usual
nonequilibrium DMFT [42], via the Schwinger-Keldysh
formalism as discussed in Refs. [34,35]. Moreover, the
nonequilibrium formulation can be further generalized to

incorporate nonunitary dynamics, e.g., the dynamics and the
steady states of the Hubbard model under repeated projective
or weak measurements, to study entanglement transitions sim-
ilar to that seen in random quantum circuits [82].

In recent years, DMFT, with its integration with other first-
principles electronic structure methods [41], has become one
of the most practical approaches to describe realistic strongly
correlated systems. Thus our DMFT formulations, along with
its possible extensions discussed above, might lead to a viable
route to computing entanglement properties of strongly corre-
lated materials in the future.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Vijay Shenoy
and Siddhartha Lal. S.B. acknowledges support from
SERB (CRG/2022/001062), DST, India and QuST,
DST, India. A.H. acknowledges the support from SERB
(SRG/2023/000118), DST, India.

APPENDIX A: NUMERICAL SOLUTION
OF THE DMFT EQUATIONS

The DMFT equations [Eqs. (24)–(26), (28), (29), and (31)]
for computing S(2)

A are numerically much more challenging to
solve compared to usual equilibrium DMFT equations [40]
since the Green’s function Giσα, jσβ (τ, τ ′) [Eq. (18)] is a ma-
trix in both space and time. The space translation symmetry
is broken by the entanglement cut, and the time translation
symmetry is broken by choice of time τ0 for inserting the
auxiliary fields in the path integral [Eq. (9)]. However, for the
cylindrical subsystem geometry in Fig. 5, considered for the
2d Hubbard model, the system retains the translation symme-
try parallel to the (y) direction of the entanglement cut. In this
case, one can use Fourier transform along the y direction, as
we discuss later.

To solve the DMFT equations in imaginary time τ without
time-translation invariance, we discretize the DMFT equa-
tions in imaginary time. We divide the time interval [0, β )
at inverse temperature β = 1/T into Nτ segments with the
discretization step δτ = β/Nτ . However, while discretizing
we have to ensure the appropriate antiperiodic boundary con-
ditions on the fermionic Green’s function, namely,

G(τ + β, τ ′) = −G(τ, τ ′), (A1a)

G(τ, τ ′ + β ) = −G(τ, τ ′), (A1b)

which is equivalent to the antiperiodic boundary conditions on
Grassmann variables, cNτ

= −c0 and c̄Nτ
= −c̄0, in the time-

discretized form. Here we have suppressed the space, spin and
replica indices for brevity. We use the indices (n, m) running
from n, m = 0 to Nτ for (τ, τ ′). We also write the following
useful discretization rules:

(∂τ c̄(τ ))c(τ ) = (c̄n+1 − c̄n)cn

δτ
, (A2a)

c̄(τ )c(τ ) = c̄n+1cn. (A2b)

The above rules arise since the creation operator c̄ always
appears slightly later in time than the annihilation operator
c in the path integral. Using the above rules, e.g., we can write
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Eq. (20) as

Sλ = δτ 2
Nτ∑

n,m=1

∑
i j,σ,αβ,nm

c̄iσαn
[ − G−1

0,iαn, jβm

]
c jσβm

+Uδτ

Nτ∑
n=1

∑
iα

c̄i↑α,n+1ci↑αnc̄i↓α,n+1ci↓αn. (A3)

The inverse of lattice Green’s function appearing above is
given by

−G−1
0,iαn, jβm = g−1

αm,βnδi j + 1

δτ
ti jζmnδαβ

+ λδi∈Aδi jMαβ

δm,p+1δnp

δτ 2
, (A4)

where the index p ∈ [0, Nτ ) is arbitrary depending on τ0. Here

g−1
αm,βn = 1

δτ 2
(ζmn − δmn)δαβ − μ

1

δτ
ζmnδαβ (A5a)

with

ζmn = δm,n+1 n < Nτ

= −1 m = 1, n = Nτ . (A5b)

Similarly, Eq. (24) becomes

G−1
iαm,βn = g−1

αm,βn − �iαm,βn − λδi∈AMαβ

δm,p+1δnp

δτ 2
. (A6)

The IPT self-energy [Eq. (26)] is obtained as

iαm,βn = UGiαm,βn
δm,n−1

δτ
− U 2G̃2

iαm,βnG̃iβm,αn, (A7a)

where

G̃iαm,βn = Giαm,βn − UGii,αm,βn
δm,n−1

δτ
. (A7b)

The lattice Green’s function is obtained as∑
n1

∑
kγ

G−1
iαm,kγ n1

Gkγ n1, jβn = δi jδαβ

δmn

δτ 2
, (A8a)

where within the local self-energy approximation, the Dyson
equation is

G−1
iαm, jβn = G−1

0,iαm, jβn − δi jiαm,βn. (A8b)

Now one can obtain the lattice Green’s function from the
above equation. The lattice Green’s function determines the
hybridization function through Eqs. (29) and (30).

1. Recursive Green’s function method

The most computationally expensive part of the DMFT
steps discussed above is the inversion of G−1, a matrix of
dimension ∼NxNτ × NxNτ , to obtain G via Eq. (A8a) for a
lattice with Nx sites along the (x) direction of partitioning. A
direct inverse with the DMFT self-consistency loop is only
feasible for relatively small systems of size Nx � 12 with
Nτ � 1000. For larger systems, we use a recursive Green’s
function method along the x direction. The recursive method
can be implemented for the open boundary condition (OBC)
as well as for the periodic boundary condition (PBC). In
dimension d > 1 with translation symmetry, we can make
simplifications by using Fourier transform in the transverse

momenta (see the discussion later). To demarcate between
directions with translation symmetry and the direction of re-
cursion x, we denote the lattice sites by i = (i, i⊥) below.

To set up the recursive method, we rewrite Eq. (A8a) as a
matrix equation

G−1G = I, (A9a)

Iiαm, jβn = δi jδmnδαβ, (A9b)

where

(G)iαm, jβn = δτGiαm, jβn, (A9c)

and similarly for G−1. We separate the system (spatially) as a
system “S” and the rest “R” and write

[(
(GR)−1 −TRS

−TRS (GS )−1

)](
GR+S)

R G(R+S)
RS

G(R+S)
SR G(R+S)

S

)
= I. (A10)

Here GR and GS are Green’s functions of the system and the
rest in the absence of any coupling between them. T connects
the systems and the rest, and G(R+S) is the full Green’s func-
tion of the combined system. From the above, we get

G(R+S)
R = GR + GRTRSG(R+S)

SR , (A11a)

G(R+S)
RS = GRTRSG(R+S)

S , (A11b)

G(R+S)
SR = GST†

RSG(R+S)
R , (A11c)

G(R+S)
S = GS + GST†

RSG(R+S)
RS . (A11d)

a. Derivation of Eq. (30) for the cavity Green’s function

For this case, we take S as a single site i and R as rest of
the system. Using Eqs. (A11a) and (A11b), we obtain

GR = G(R+S)
R − G(R+S)

RS

(
G(R+S)

S

)−1
G(R+S)

SR . (A12)

The above leads to Eq. (30) when we identify G(i) = GR, i.e.,
the cavity Green’s function with ith site removed, and G =
G(R+S), the Green’s function of the whole lattice.

b. Recursive solution of Eq. (A9)

We imagine successively building the system along the x
direction from the left, starting from the first layer at i = l = 1
and then adding successive layers till l = Nx. Imagine that at
the l-th step of recursion, we have only left l + 1 layers, and
we separate the system into left l layers (“L”), i.e., R of the
preceding section, and add one layer (system “S”) more. We
denote the Green’s function of the left l layers as G(l ) and that
of l + 1 layers as G(l+1). From Eqs. (A9)

[(
(G(l )

L )−1 −TLS

−T†
LS (GS )−1

)](
G(l+1)

L G(l+1)
LS

G(l+1)
SL G(l+1)

S

)
= I, (A13)

where the coupling between L and S is given by

Ti, j = ζti, j i � l, j = l + 1

= 0 otherwise, (A14a)

with

ζαn,βm = ζnmδαβ. (A14b)
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The inverse Green’s functions of L and S in the absence of any
coupling between them are(

G(l )
L

)−1

iαm, jβn
= G−1

iαm, jβn i, j � l, (A14c)

(GS )−1
iαm, jβn = G−1

iαm, jβn i, j = l + 1. (A14d)

Here i � l indicates that the site i belongs to a layer from
1 to l . The full Green’s function that we eventually want to
calculate is G = G(Nx ). We can rewrite Eq. (A13) as

G(l+1)
L = G(l )

L + G(l )
L TLSG(l+1)

SL , (A15a)

G(l+1)
LS = G(l )

L TLSG(l+1)
S , (A15b)

Gl+1
SL = GsT

†
SLG(l+1)

L , (A15c)

G(l+1)
S = GS + GST†

LSG(l+1)
LS . (A15d)

We now rewrite Eq. (A15a) keeping only the index i for the
layers, where all other indices α, m and i⊥ are implicit in the
matrices and contracted for matrix multiplications.

G(l+1)
i, j = G(l )

i, j +
∑
i1�l

G(l )
i,i1

Ti1,l+1G(l+1)
l+1, j i, j � l. (A16)

From Eq. (A15b), we get

G(l+1)
i,l+1 =

∑
i1�l

G(l )
i,i1

Ti1,l+1G(l+1)
l+1,l+1 i � l. (A17)

Since G∗
iαm, jβn = Gjβn,iαm, we can obtain from the above

G(l+1)
l+1,i =

∑
i1�l

G(l+1)
l+1,l+1Tl+1,i1 G(l )

i1,i
i � l. (A18)

Using the above in Eq. (A16), we obtain for i, j � l

G(l+1)
i, j = G(l )

i, j +
∑

i1,i2�l

G(l )
i,i1

Ti1,l+1G(l+1)
l+1,l+1Tl+1,i2 G(l )

i2, j .

(A19)

In the above equation, the only unknown quantity is G(l+1)
l+1,l+1.

This can be obtained as follows. From Eqs. (A15b) and
(A15d), we get

G(l+1)
S = GS + GST†

LSG(l )
L TLSG(l+1)

S . (A20)

The above can be written in the form of a Dyson equation,(
Gl+1

S

)−1 = (G(l+1)
l+1,l+1

)−1 = G−1
S − �(l ) (A21)

with the self-energy

�(l ) =
∑

i1,i2�l

Tl+1,i1 G(l )
i1,i2

Ti2,l+1. (A22)

Hence G(l+1)
l+1,l+1 can be obtained using Eq. (A21). Thus from

Eqs. (A17)–(A19), (A21), and (A22), we can construct the
complete Green’s function matrix G(l+1)

iαm, jβn (i, j � l + 1) of
the system of l + 1 layers from that of l layers. The process
can be applied recursively, starting with l = 1 and continuing
till l = Nx − 1, which will yield us the Green’s function of
system size Nx, i.e., G(Nx ). However, for the DMFT self-
consistency Eqs. (24)–(26), (28), (29), and (31), one does
not need the full Green’s function at each DMFT iteration,
only certain elements. In particular, if we only consider the
nearest neighbor hopping, we will need to keep track of the

onsite, nearest, and next-nearest neighbor Green’s functions to
complete the DMFT loop using the cavity Eqs. (29) and (30).
For the Bethe lattice approximation, nearest-neighbor sites of
ith site are disconnected, and from Eq. (29), we get

�i,αβ (τ, τ ′) = t2
′∑
j

G(i)
jα, jβ (τ, τ ′). (A23)

Here
∑′

j indicates only summation over nearest neighbors of

i. Furthermore, in the limit of large connectivity [40], G(i) =
G. Thus, in the large-connectivity Bethe lattice approxima-
tion, we only need to compute onsite elements of the lattice
Green’s function during the DMFT self-consistency loop.

For periodic boundary condition (PBC), we need to incor-
porate the hopping matrix element between site 1 and site Nx.
We can implement this in the recursive procedure by changing
the hopping coupling matrix in the last iteration accordingly
when we add the l = Nx − 1 layer with a single layer system
S to form the required system size l + 1 = Nx. In particular,
we can explicitly write the hopping coupling matrix for the
nearest neighbor for PBC below

Ti, j = ζti, j i = l; j = l + 1 if l � Nx − 2

= ζti, j i = 1, l; j = l + 1 if l = Nx − 1

= 0 otherwise, (A24)

APPENDIX B: CALCULATION OF S(2)
A FROM “KICK

TERM” INTEGRATION METHOD

We numerically solve the self-consistent DMFT Eqs. (A6),
(A7a), (A8a), and (29) for discretized values of λ ∈ [0, 1]
with uniform step δλ to obtain Giσα, jσβ (τ0, τ

+
0 ) [Eq. (18)],

where we choose τ0 = 0. We then compute 〈Skick〉Z (2)
A (λ) using

Eq. (17). To obtain S(2)
A , we integrate 〈Skick〉Z (2)

A (λ) over λ from
0 to 1 using numerical interpolation over the range of λ.

We have used δλ = 0.1 for most of our calculations. We
have varied δλ to check the convergence of S(2)

A with δλ. We
benchmark the S(2)

A computed this way in the noninteracting
case by comparing with S(2)

A obtained directly from the corre-
lation matrix calculations, as discussed in Sec. V A. For the
interacting case, we have numerically checked the conver-
gence by taking different values of δλ, and various numerical
interpolation schemes. As an example, in Fig. 15, we show the
convergence of the S(2)

A with different δλ = 0.02, 0.04, 0.1,
for U = 2.0, T = 0.05, and N = 30 in 1d.

APPENDIX C: BENCHMARK OF THE RECURSIVE
GREEN’S FUNCTION METHOD

We can invert G−1 in Eq. (A8a) directly for small systems
(N � 12) to obtain the lattice Green’s function. We use the
recursive method for larger systems to invert G−1 and obtain
onsite lattice Green’s function within the DMFT loop. We
benchmark the recursive method by comparing computed S(2)

A
with that obtained from direct inversion for N = 10 in 1d, as
shown in Fig. 16 for the noninteracting case.
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FIG. 15. The convergence of S(2)
A with respect to discretization

δλ to evaluate the integral in Eq. (17) for U = 2.0, T = 0.05, and
system size N = 30 in 1d Hubbard model.

APPENDIX D: THE EXTRAPOLATION OF S(2)
A (δτ )

TO δτ → 0 LIMIT

As discussed in Appendix A, we solve the DMFT self-
consistency equations by discretizing them in imaginary time
with discretization step δτ = β/Nτ . To approach the contin-
uum limit δτ → 0, we compute S(2)

A (δτ ) for a few values
δτ and then linearly extrapolate it to δτ → 0. We take δτ

over the range 0.015 to 0.075. In most of our calculations,
we take four values of δτ in the above range, particularly
between 0.02 to 0.04, and then do the linear extrapolation to
δτ → 0. It becomes progressively more challenging to take
δτ in the above range for low temperatures T < 0.05 as the
size (2NNτ × 2NNτ ) of the Green’s function matrix becomes
very large. Hence we restrict our DMFT calculations up to
T = 0.05. We show S(2)

A (δτ ) as a function of δτ with the linear
extrapolation in Figs. 17(a) and 17(b) for a few subsystem

FIG. 16. The S(2)
A (δτ ) obtained using the direct and recursive

inversion in the noninteracting case is shown for T = 0.3, 0.5 and
system size N = 10.

FIG. 17. The linear extrapolations of S(2)
A (δτ ) are shown here

for few subsystem sizes. The S(2)
A (δτ ) as a function of δτ and

the corresponding linear extrapolation (shown as “extrap.” in leg-
end) are shown here in (a) for U = 0.5 and subsystem sizes NA =
2, 7, 10, and 15 from system size N = 30, and in (b) for U = 2
and subsystem sizes NA = 3, 8, 11, and 16 from system N = 50
for at T = 0.05.

sizes for interactions U = 0.5, 2 and system size N = 30 as
an illustration of the linear extrapolation.

APPENDIX E: ENTANGLEMENT TO ENTROPY
CROSSOVER IN 1D HUBBARD MODEL

Here we discuss the fitting of S(2)
A in 1d Hubbard model

with the crossover function of Eq. (34). We first fit S(2)
A (NA, T )

with Eq. (34) by varying all the parameters c, v, b, as shown
in Fig. 18. The variations of the extracted fitting parameters
c, v, b with temperature are shown in Fig. 19. As evident from
the figure, the expected CFT crossover formula [Eq. (34)] de-
scribes S(2)

A for the DMFT metallic state of 1d Hubbard model
quite well. The extracted central charge slowly approaches the
CFT value c = 1 with decreasing temperature [Fig. 19(a)] and
converges well with system size N [Fig. 19(d)]. Here we
have treated c, v, b in Eq. (34) as fitting parameters to describe
S(2)

A (NA, T ) in the 1d Hubbard model. In the next section,
we first fix the ratio (c/v) using the specific heat calculated
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FIG. 18. The S(2)
A vs NA in 1d Hubbard model for U = 2 and N =

50 is shown for different temperatures with the corresponding fit to
Eq. (34) with c, v, b as free parameters.

from equilibrium DMFT and then fit our results for S(2)
A with

Eq. (34) treating only c and b as fitting parameters.

1. Calculation of the ratio (c/v) from equilibrium DMFT

At low temperature (T → 0), the specific heat cV can be
obtained from CFT [8,12] as

cV = πT

3

( c

v

)
. (E1)

FIG. 19. The parameters c, v, b extracted from crossover func-
tion [Eq. (34)] fitting, e.g., in Fig. 18, are shown here for 1d Hubbard
model. (a) The central charge c as a function of T for a few U is
shown and compared with the CFT value c = 1. (b) The renormal-
ized Fermi velocity v as a function of T is shown for different U ,
and compared with the noninteracting value vF . (c) The nonuniversal
parameter b as a function of T . (d) System size dependence of
extracted c vs U at T = 0.1.

We compute the specific heat cV for the paramagnetic metallic
state in 1d Hubbard model from equilibrium DMFT calcula-
tion, as described below.

In equilibrium, due to time translation symmetry,
Gi j (τ, τ ′) = Gi j (τ − τ ′). Thus we can write the DMFT self-
consistency equations [40] as follows:

G−1
i (τ − τ ′) = −(∂τ − μ)δ(τ − τ ′) − �i(τ − τ ′) (E2)

G−1
i (τ ) = G−1

i (τ ) − i(τ ), (E3)

where Gi(τ ) and Gi(τ ) are the bare and full impurity Green’s
functions at site i. Furthermore, since the model [Eq. (19)] is
space translation invariant, all the sites are equivalent, unlike
for the DMFT in the presence of entanglement cut in Sec. IV.

The hybridization function is given by

�i(τ ) =
∑

jl

ti jtil G
(i)
jl (τ ). (E4)

We use the large-connectivity Bethe lattice approximation
for the cavity Green’s function, i.e., G(i)

jl = Gjl , and G(i)
jl �

δ jlG j j . Therefore the hybridization function for nearest-
neighbor hopping becomes

�i(τ ) = zt2G(τ ), (E5)

where G(τ ) is the onsite lattice Green’s function and z = 2d
is the coordination number for D-dimensional hypercubic lat-
tice. The lattice Green’s function is obtained using the local
self-energy approximation, i.e., the lattice self-energy i j is
replaced by the impurity self-energy, i j = δi j , so that

G(iωm) =
∫

dε
g(ε)

ıωm + μ − ε − (ıωm)
, (E6)

where ωm = (2m + 1)π/β, with m an integer, is the fermionic
Matsubara frequency, and g(ε) is the noninteracting density of
states per site. The self-energy within IPT approximation [40]
is given by

(τ ) = Un − U 2G̃2(τ )G̃(−τ ), (E7)

G̃−1(τ ) = G−1(τ ) − Un, (E8)

where n is the occupation number of a site; n = 1/2 at
half filling. For calculating thermodynamic properties such
as specific heat, we solve the above equilibrium DMFT self-
consistency equation following standard procedure [40] to
obtain G(ıωm) and (ıωm).

Using these, we compute the internal energy E [40] from

E

N
= 2T

∑
m

∫ ∞

−∞
dε

εD(ε)

iωm + μ − (iωm) − ε

+ T
∑

m

(iωm)G(iωm). (E9)

The specific heat per site is obtained by taking the numerical
derivative of internal energy, i.e., cV = (1/N )(∂E/∂T ).

We calculate the specific heat as a function of temperature
for 1d and 2d Hubbard models. We show cV versus T in 1d
Hubbard model in Fig. 20. We extract (c/v) from the slope
of the linear fit to cV (T ) at low temperature using Eq. (E1),
as shown in the figure. For the half-filled 2d square-lattice
Hubbard model with nearest-neighbor hopping, due to the
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FIG. 20. The specific heat (cV ) as a function of temperature
T for 1d Hubbard model is shown for different interaction U =
0.5, 2, and 3. The low-temperature linear fit to cV (T ) ∝ T is shown
and the extracted slopes are indicated in the legends.

van Hove singularity of the noninteracting band at the Fermi
energy cV has ln T correction to Eq. (E1), and the (c/v) ratio
cannot be estimated reliably. Thus we only use the (c/v) ratio
in 1d to fit S(2)

A (NA, T ) with the crossover formula [Eq. (34)],
as discussed in Sec. VI. The central charge c extracted this
way is shown in Fig. 4. We show the nonuniversal constant
b and the velocity v, obtained using the (c/v) ratio and c, in
Figs. 21(a) and 21(b). As evident, v extracted this way for
weak interaction matches quite well at low temperatures with
noninteracting vF, unlike the v extracted by fitting the CFT
formula with three parameters c, v, b in Fig. 19(b). For the 2d

FIG. 21. Temperature dependence of (a) b and (b) v extracted
by fixing (c/v) ratio from specific heat and fitting CFT crossover
formula [Eq. (34)] to the DMFT results for S(2)

A (NA, T ) in the 1d
Hubbard model for U = 0.0, 0.5, 2 and system size N = 50. The
noninteracting Fermi velocity vF is shown in plot (b) for comparison
with renormalized velocity v.

FIG. 22. The S(2)
A as a function of NA is shown here for different

T for open boundary condition (OBC) for U = 2.0. The system size
is N = 30 here.

Hubbard model, we extract c by fitting the crossover formula
[Eq. (34)] to the computed S(2)

A (NA, T ) using c, v, b as free
parameters, as discussed in Sec. VII.

APPENDIX F: S(2)
A (NA, T ) FOR OPEN BOUNDARY

CONDITION (OBC) IN 1D HUBBARD MODEL

We show the second Rényi entropy S(2)
A computed via

DMFT for open boundary condition (OBC) in the 1d Hubbard
model for system size N = 30 in Fig. 22. We see quite large
oscillations in S(2)

A between the odd and even subsystem sizes
at low temperatures for OBC. Such oscillations are present for
periodic boundary condition also, e.g., in Fig. 3, but are much
weaker. These oscillations, with frequency 2kF determined by
the Fermi wave vector kF, are expected [83,84] due to the
subleading corrections to the CFT result [Eq. (37)], and appear
to be enhanced in OBC compared to that in PBC.

APPENDIX G: DMFT EQUATIONS FOR COMPUTING
SECOND RÉNYI ENTROPY IN 2d

In two dimensions (2d), we take a cylindrical geometry
for the subsystem A to compute the second Rényi entropy,
as shown in Fig. 5. We take the entanglement cut parallel
to the y axis, i.e., partition the system along the x direction.
The most difficult part in solving the nonequilibrium DMFT
Eqs. (24)–(26), (28), (29), and (31) is the inversion of the
inverse lattice Green’s function. We rewrite Eq. (28) below
as

∫ β

0
dτ ′′ ∑

r′′γ

[
G−1

0,rα,r′′γ (τ, τ ′′)−δr,r′′r,αγ (τ, τ ′′)]Gr′′γ ,r′β (τ ′′, τ ′)

= δr,r′δαβδ(τ − τ ′), (G1)

where r = (x, y) represents two dimensional co-ordinates.
Due to translation symmetry in the y direction,
Grα,r′β (τ, τ ′) = Gxα,x′β,y−y′ (τ, τ ′). As a result, Green’s
function can be represented using Fourier transform along the
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y direction with momentum ky,

Gxα,x′β,y−y′ (τ, τ ′) = 1

Ny

∑
ky

e−iky (y−y′ )Gxα,x′β,ky (τ, τ ′). (G2)

Thus, from Eq. (G1), we can write∫ β

0
dτ ′′ ∑

x′′γ

[
G−1

0,xα,x′′γ ,ky
(τ, τ ′′) − δxx′′x,αγ (τ, τ ′′)

]

× Gx′′γ ,x′β,ky (τ ′′, τ ′)

= δxx′δαβδ(τ − τ ′) (G3)

for each ky mode, where

G−1
0,xα,x′γ ,ky

(τ, τ ′)

= [(−∂τ + μ − 2t cos ky)δxx′ − txx′]δαβδ(τ − τ ′), (G4)

where txx′ is hopping amplitude along x direction. For nearest-
neighbor hopping, we have tx,x±1 = t , and txx′ = 0 otherwise.
The hybridization function with large-connectivity Bethe lat-
tice approximation is given by

�x,αβ = t2[Gx−1,α,x−1,β,y−y′=0 + Gx+1,α,x+1,β,y−y′=0

+ 2Gxα,xβ,y−y′=0]. (G5)

In the above equation, we have omitted the time arguments
(τ, τ ′) for notational convenience. The Green’s function
Gxα,xβ,y−y′=0(τ, τ ′) is obtained from Eq. (G2) as

Gxα,xβ,y−y′=0(τ, τ ′) = 1

Ny

∑
ky

Gxα,xβ,ky (τ, τ ′). (G6)

We use the recursive Green’s function method in the x direc-
tion for Gxα,xβ,ky (τ, τ ′), as described in Appendix A, to obtain
the lattice Green’s function for each ky mode.

APPENDIX H: WIDOM FORMULA FOR S(2)
A (NA, T ) IN 2d

As we discussed in the main text, in the Widom formula,
the effective number of modes from Fermi surface assuming
made of independent patches is given by Eq. (35) and we
rewrite it here

Nmodes = 1

(2π )d−1

1

2

∫
∂Ax

∫
∂Ak

dAxdAk|n̂x · n̂k|. (H1)

We use the 2d noninteracting dispersion εk = −2t cos kx −
2t cos ky for nearest neighbor hopping. The Fermi surface at
half filling is shown in Fig. 23. The unit normal to Fermi-
surface n̂k = 1√

2
(±x̂ ± ŷ). For cylindrical geometry, we have

two interfaces parallel to y axis and hence the unit normal to
real space n̂x = ±x̂. Hence, we get |n̂k · n̂x| = 1√

2
. Therefore

Nmodes = 1

4π
× 2Ny × (4

√
2π ) × 1√

2
= 2Ny, (H2)

where the contribution 2Ny comes from integration over real
space boundary and 4

√
2π comes from integration over the

Fermi-surface.
We fit the numerically computed S(2)/Ny data within

DMFT to the Widom crossover formula Eq. (37) and the
extracted central charge c as a function of T , U and system
size are shown in the main text. In Fig. 24, the temperature

FIG. 23. A schematic of the Fermi sea at half-filling (in gray
color) for noninteracting 2d tight-binding model. The real-space
subsystem of cylindrical geometry is shown in the top left corner. n̂k

is a unit vector perpendicular to Fermi surface and n̂x is perpendicular
to real-space boundaries of the subsystem.

dependence of renormalized velocity v and nonuniversal con-
stant b extracted by fitting to Eq. (37) are shown for different
interaction U . These parameters (v, b) are shown for system
20 × 20.

FIG. 24. The temperature dependence of (a) v and (b) b extracted
by fitting Widom crossover formula of Eq. (37) to S(2)/Ny for differ-
ent U computed from system size 20 × 20.
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APPENDIX I: RÉNYI ENTROPY IN
ANTIFERROMAGNETIC PHASE

In this work, we have only considered paramagnetic Mott
insulating state to make the numerical computation of subsys-
tem Rényi entropy simpler. However, the paramagnetic state
is not expected to be a true ground state in the Mott insu-
lating phase, at least not for unfrustrated lattices like square
lattice [40]. The ground-state of the Mott insulating phase
is expected to Néel-type antiferromagnetic order with two-
sublattice ordering for the bipartite square lattice considered
here.

We can readily extend our DMFT formalism for entan-
glement to study the antiferromagnetic long-range order in
the Hubbard model. The Néel antiferromagnetic state at half
filling has a wave vector Q = (π, π ) for 2d square lattice.
As a result, we have two inequivalent sublattices A (namely,
site i) and B (nearest-neighbor site j to site i) whose spins
like to antialign with each other. As a result, each sublattice
prefers one of the spin components over the other. Hence, the
local Green’s functions for the spin up (Gi↑) and down (Gi↓)
are not equivalent. Instead, we have the following relation in
equilibrium:

GA;i,σ (iωn) = GB; j,−σ (iωn), (I1)

where σ =↑,↓ and i and j are nearest neighbors. The Weiss
function for sublattice A reads as

G−1
0,i,σ (iωn) = iωn + μ − �i,σ (iωn), (I2)

where the hybridization function within large connectivity
Bethe-lattice approximation is given by

�i,σ (iωn) = t2
′∑
j

G j,σ (iωn) = zt2Gi,−σ (iωn). (I3)

Now, we can generalize the above relation for our nonequilib-
rium inhomogeneous DMFT for the entanglement action. The
Weiss field for spin σ is given by

G−1
i,σ (τ, τ ′) = −(∂τ − μ)δ(τ − τ ′)I − �i,σ (τ, τ ′)

− δi∈AMδ(τ − τ+
0 )δ(τ ′ − τ0), (I4)

where G−1
iσ (τ, τ ′) is a 2 × 2 matrix in the entanglement replica

space, and I is the identity matrix in the same space. The hy-
bridization function within the large connectivity Bethe-lattice
approximation is given by

�iσ,αβ (τ, τ ′) = t2
′∑
j

G jσα, jσβ (τ, τ ′)

= zt2Gi,−σ,α;i,−σ,β (τ, τ ′), (I5)

where
∑′

j indicates that the summation is over only the near-
est neighbors of i. As before, the impurity Green’s function is
related to the Wiess field via the Dyson equation,

G−1
iσ (τ, τ ′) = G−1

iσ (τ, τ ′) − iσ (τ, τ ′). (I6)

The IPT self-energy is given by

iσ,αβ (τ, τ ′) = UGiσ,iσ ,αβ (τ, τ+)δ(τ ′ − τ+)δαβ

− U 2G̃iσ ;βα (τ, τ ′)G̃i,−σ ;βα (τ, τ ′)G̃i,−σ ;αβ (τ ′, τ ).
(I7)

Here the first term is Hartree self-energy, and the second one is
the second-order self-energy obtained using Hartree corrected
Green’s function

G̃−1
iσ,αβ (τ, τ ′) = G−1

iσ,αβ (τ, τ ′)

− UGiσ,iσ ,αβ (τ, τ+)δ(τ ′ − τ+)δαβ. (I8)
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