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Insulator-metal transition in Ru(Br1−xIx)3 with honeycomb structure
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We investigate electronic properties of solid solution Ru(Br1−xIx )3 with honeycomb structure which bridges
the spin-orbit-entangled Mott insulator RuBr3 and strongly electron-correlated semimetal RuI3. We find a first-
order insulator-metal transition at x ∼ 0.85 triggered by increased d-p hybridization and formation of interlayer
I–I bonds. We also observe switching of the magnetic structure at x = 0.30. In the metallic phase, we find critical
mass enhancement leading to the carrier localization. This study furthers understanding of the Mott transition in
a strongly spin-orbit-entangled system.
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Exotic quantum phenomena such as high-temperature
superconductivity and giant magnetoresistance appear near
the Mott transition in 3d transition-metal compounds [1].
Recently, research has been extended to 4d and 5d transition-
metal compounds, where strong spin-orbit coupling is ex-
pected to trigger the emergence of new electronic properties
[2]. For example, compounds of the form Ca1−xNaxIrO3

with postperovskite structure exhibit a strange metallic phase
related to antiferromagnetic fluctuations near the Mott tran-
sition [3]. Another example is the family R2Ir2O7 (R =
rare − earth element), which has pyrochlore structure show-
ing Weyl-semimetal behavior [4].

We here focus on the 4d transition-metal compound
α-RuCl3, which has been attracting considerable attention
as a Kitaev spin-liquid candidate material [5,6]. The ma-
terial has a honeycomb network of Ru3+ ions formed by
edge-shared RuCl6 octahedra in the ab plane [7]. The strong
spin-orbit coupling and on-site Coulomb repulsion lead the
system into a spin-orbit-coupled Mott-insulator phase with
half-filled jeff = 1/2 bands [8]. In contrast to expectations of a
Kitaev spin liquid, the non-Kitaev interactions lead to a zigzag
antiferromagnetic order below TN = 7 K [9]. This zigzag an-
tiferromagnetic order is suppressed under a magnetic field
parallel to the ab plane, where possible realization of a chiral
spin liquid is under intense debate [10–12].

Very recently, the isostructural materials RuBr3 and RuI3

(the R3 space group) were successfully synthesized under
high pressure [13–15]. Like α-RuCl3, RuBr3 is a spin-orbit-
coupled Mott insulator with half-filled jeff = 1/2 bands and
exhibits a zigzag magnetic order below TN = 34 K [13,16].
The higher TN value in comparison with α-RuCl3 is inter-
preted as being due to the stronger d-p hybridization resulting
in a larger long-range exchange interaction, which causes
the stabilized antiferromagnetic order [13]. In contrast to
RuBr3, RuI3 shows semimetallic electrical conduction and
Pauli paramagnetism. Ab initio calculations reveal that the
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on-site Coulomb repulsion is reduced in RuI3 by the strong
d-p hybridization, which is a key to the metallic behavior
[14,17]. Hence one can expect solid solution Ru(Br1−xIx )3 to
be a good platform for investigating a bandwidth-controlled
Mott transition in a 4d electron system.

In this paper, we investigate the insulator-metal transition
in Ru(Br1−xIx )3 via electrical resistivity, magnetic susceptibil-
ity, and specific heat. The results are summarized in Fig. 1. A
first-order insulator-metal transition occurs at x ∼ 0.85, where
formation of an interlayer I–I bond plays an important role. In
the insulating phase, TN nonmonotonically changes with the
halogen composition x, which indicates a magnetic structure
switch at x = 0.30. In the metallic phase, the Sommerfeld
coefficient γ is modestly enhanced near the Mott transition,
which means that the carrier localization is due to the mass
enhancement.

Polycrystalline samples of Ru(Br1−xIx )3 were synthesized
using a wedge-type cubic-anvil high-pressure apparatus. The
starting materials were a stoichiometric mixture of RuBr3

with a chain structure (2N; Mitsuwa Chemicals) and RuI3

with a chain structure (∼95%; Mitsuwa Chemicals). The mix-
ture was placed in a boron nitride (BN) capsule and loaded
into a pyrophyllite cube. The pyrophyllite cube was pres-
surized at 2.2 GPa and then heated at 700 ◦C for 30 min.
The samples were characterized via powder x-ray diffrac-
tion (PXRD) using Cu Kα radiation at room temperature.
The electrical resistivity ρ was measured using a four-
terminal method using a physical property measurement
system (PPMS; Quantum Design) at 2–300 K under a mag-
netic field of 0–9 T. The magnetic susceptibility χ was
measured using a superconducting quantum interference de-
vice magnetometer. The specific heat C was measured with a
thermal relaxation method using the PPMS.

All the peaks of the PXRD patterns are indexed as a
honeycomb structure with the space group R3 reported in
Refs. [13–15], indicating successful synthesis of solid solu-
tion Ru(Br1−xIx )3. The lattice parameters are estimated from
the PXRD patterns, and we plot the intralayer Ru–Ru dis-
tance dRu and interlayer Ru–Ru distance dLayer against the
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FIG. 1. Electronic phase diagram of Ru(Br1−xIx )3. The black
dashed line in this figure shows the composition x = 0.85, where
the insulator-metal transition occurs. (a) Intralayer Ru distance dRu

and interlayer Ru distance dLayer. The insets are diagrams of the
formation of an interlayer I–I bond [18]. (b) Antiferromagnetic tran-
sition temperature TN and characteristic temperature T ∗ below which
antiferromagnetic correlation develops. PM and AFM, paramagnetic
and antiferromagnetic phases, respectively. The star at x ∼ 0.85
represents the end point of the first-order insulator-metal transition.
(c) Weiss temperature θW and effective magnetic moment peff esti-
mated by fitting the magnetic susceptibility at 150–300 K. (d) Debye
temperature θD and Sommerfeld coefficient γ estimated by fitting the
specific heat at 2–5 K. The black solid curve indicates the results of
applying the Neumann-Kopp law.

composition x in Fig. 1(a). One can see that the lattice expands
with increasing x at 0 � x � 0.85, whereas the interlayer
distance shows saturation at 0.85 � x � 1. This suggests a
structural instability at x ∼ 0.85; for example, an interlayer
I–I bond forms at 0.85 � x � 1. We were not able to observe
new peaks associated with a structural transition in our PXRD

patterns. However, such low-intensity superlattice peaks are
possibly detected by single-crystal structure analysis.

Figure 2(a) shows the temperature T dependence of the
electrical resistivity ρ for Ru(Br1−xIx )3. As x increases, ρ

gradually decreases, and the insulator-metal transition occurs
at x ∼ 0.85. Figure 2(b) shows the composition dependence
of ρ at selected temperatures. At 2–100 K, there is a ρ jump
of two orders of magnitude across the insulator-metal tran-
sition, indicating the first-order nature of the insulator-metal
transition. However, at T > 100 K, ρ changes continuously.
These behaviors indicate that the end point of the first-order
transition is at T = 100–150 K. This end point is shown as a
green star in Fig. 1(b).

We discuss the detailed T dependence of ρ. The ρ data at
x = 0 follow simple thermal-activation behavior of the form
ρ = ρ0exp(Eg/kBT ) with Eg ∼ 0.21 eV [13]. However, insu-
lating samples with x �= 0 show a complicated T dependence.
One can see that the diverging tendency of ρ at x = 0.50, 0.70,
and 0.85 is weakened below T = 250, 160, and 40 K, respec-
tively [each is marked as a solid triangle in Fig. 2(a)]. This
behavior is well understood if one supposes that thermally
activated carriers are accommodated into multiple bands with
different electrical conductivities, in other words, with dif-
ferent effective masses or scattering times. This hypothesis
is supported by first-principles calculations, which indicate
that the entanglement of jeff = 1/2 and 3/2 bands with dis-
tinct band characteristics is enhanced going from RuBr3 to
RuI3 [19].

This multicarrier feature of electrical conduction is also
discernible in the metallic phase. As seen from Fig. 2(c), ρ

at x = 1 has two bending points at T ∼ 100 and 250 K. This
indicates that ρ does not follow a simple Bloch-Grüneisen
formula. Instead, this behavior can be well understood as
multiple bands with different electrical conductivities partic-
ipating in electrical conduction [20]. At x = 0.875−0.975,
there is an upturn at T < 40 K. This upturn can be well fitted
with a function proportional to 1/

√
T [inset of Fig. 2(c)],

indicating three-dimensional weak localization due to a
halogen-site randomness.

Figure 3 shows the T dependence of the magnetic sus-
ceptibility χ for Ru(Br1−xIx )3. At x = 0–0.85, χ shows
Curie-Weiss behavior. Meanwhile, at x = 0.875−1, χ shows
Pauli paramagnetic behavior. This observation is consistent
with the electrical resistivity data. As will be described below,
we observed an antiferromagnetic transition in the insulat-
ing phase. On the other hand, there is no signature of an
antiferromagnetic transition in the metallic phase [21], and
the insulator-metal transition accompanies the collapse of the
antiferromagnetic order. This is most likely related to the
semimetallic feature of this system; in other words, a very
small Fermi surface cannot form magnetic moments that are
long enough for long-range antiferromagnetic order.

We now discuss χ in the insulating phase. The data for
the high-T paramagnetic phase (T = 150–300 K) are well
fitted with the Curie-Weiss law χ = NAμ2

B p2
eff/3kB(T − θW),

where peff is the effective magnetic moment, θW is the
Weiss temperature, NA is the Avogadro constant, μB is the
Bohr magneton, and kB is the Boltzmann constant. The thus-
obtained parameters are plotted against x in Fig. 1(c). The
effective magnetic moment peff is almost x independent, and
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FIG. 2. (a) Temperature T dependence of electrical resistivity ρ for Ru(Br1−xIx )3. Each solid triangle shows the value of T where the
divergent tendency of ρ is suppressed. (b) Isothermal ρ data plotted against x for Ru(Br1−xIx )3. (c) T dependence of ρ in the metallic phase
for Ru(Br1−xIx )3. The inset shows results of fitting with the 1/

√
T law in the localization regime.

the observed peff value of ∼2.4 is slightly larger than the
theoretically expected value of 1.73 for a jeff = 1/2 electron.
This is likely related to the strong spin-orbit coupling [22],

FIG. 3. Temperature T dependence of the magnetic susceptibil-
ity χ measured at a magnetic field of μ0H = 1 T for Ru(Br1−xIx )3.
Each blue square indicates the temperature T ∗ where χ is maximum.
The inset shows the T dependence of dχ/dT for Ru(Br1−xIx )3. Each
red circle indicates the temperature TN where dχ/dT is maximum,
below which long-range antiferromagnetic order forms.

and the jeff = 1/2 picture is still valid in RuBr3 as evidenced
by the Raman spectroscopy [16]. The Weiss temperature θW

is negative for all compositions, and |θW| increases rapidly
with increasing x. This means that antiferromagnetic non-
Kitaev interactions become dominant compared with the
ferromagnetic Kitaev interaction in heavily I-substituted sam-
ples. Indeed, the ab initio calculations of RuX3 (X = Cl, Br, I)
suggest that stronger d-p hybridization strengthens hopping
between next- and third-nearest-neighbor Ru atoms, which
leads to stronger long-range exchange interaction with an-
tiferromagnetic character [23]. We note that unrealistically
large |θW| values in heavily I-substituted samples suggest a
breakdown of the localization picture near the insulator-metal
transition.

As insulating samples are cooled, two types of anomalies
appear in χ : One is a broad peak due to development of an
antiferromagnetic correlation at T ∗, and the other is a cusp
due to the long-range antiferromagnetic order at TN [13]. The
latter is clearly evident from dχ/dT as a sharp peak (inset of
Fig. 3) and can be detected via the specific heat at x = 0 [13]
and x = 0.85 (inset of Fig. 4). We plot these characteristic
temperatures T ∗ and TN against x in Fig. 1(b). One can see that
T ∗ and TN have a nonmonotonic x dependence: They decrease
at x = 0–0.30 but increase at x = 0.30–0.85 with increasing x.
This hints that the magnetic structure switches from the
zigzag order (AFM-I) to another phase (AFM-II) at x = 0.30.
Moreover, the difference between T ∗ and TN decreases with
increasing x. This indicates that quantum fluctuations related
to geometrical frustration are suppressed as the antiferromag-
netic non-Kitaev interaction becomes dominant. Particularly,
the difference between T ∗ and TN becomes negligible in
the AFM-II phase, indicating that the magnetic order at
x = 0.30–0.85 is classical. The possible magnetic structures
of the AFM-II phase are the stripe, 120◦, and checker-
board structures, all of which are discussed in the literature
[24].
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FIG. 4. Specific heat divided by temperature (C/T ) plotted
against T 2 for Ru(Br1−xIx )3. The solid lines show the results of fitting
with C/T = γ + βT 2. The inset shows the specific heat near the
antiferromagnetic transition temperature TN for x = 0.85.

Figure 4 shows the specific heat divided by temperature
(C/T ) plotted against T 2. The data at T = 2–5 K are well
fitted with the relationship C/T = γ + βT 2 (fitting results
are shown as solid lines), where γ and β are electron and
phonon contributions, respectively. We note that magnon con-
tributions are small in this system because the NQR relaxation
rate 1/T1 for RuBr3 indicates the gapped feature of spin exci-
tations [13]. We calculate the Debye temperature θD using the
equation β = 12π4nNAkB/5θ3

D, where n = 4 is the number of
atoms in the molecular formula. The obtained θD and γ values
are plotted against x in Fig. 1(d).

We first discuss phonon contributions. One can see that θD

monotonically decreases with increasing x, which is a conse-
quence of the heavy mass of I atoms compared with that of
Br atoms. The Debye temperature follows distinct curves be-
tween 0 � x � 0.85 and 0.85 � x � 1. This is related to the
phonon frequency change due to the possible structural tran-
sition at x ∼ 0.85. The Debye temperature in solid solution
A1−xBx is known to obey the Neumann-Kopp rule 1/θ3

AB =
(1 − x)/θ3

A + x/θ3
B, where θA and θB are the Debye temper-

atures of A and B, respectively. In our system, we need to
apply this rule to the data at 0 � x � 0.85 and 0.85 � x � 1
separately, and the results are shown as a solid curve in
Fig. 1(d). The application works well for Ru(Br1−xIx )3.

We next discuss electron contributions. The Sommerfeld
coefficient γ is finite at x = 0.875–1. Most importantly, γ

is enhanced when one approaches the critical region of the
insulator-metal transition from x = 1 to x = 0.875. This be-
havior can be well understood in the Brinkman-Rice scenario,
which claims that the carrier localization is triggered by

mass enhancement [25]. Furthermore, the Wilson ratio RW =
π2k2

Bχ/3μ2
Bγ is an indicator of electron correlation strength

[26]. The calculated values are RW = 1.6 at x = 0.875 and
RW = 1.4 at x = 1 (χ is estimated by subtracting the Curie
tail from the data), which also indicate a moderately enhanced
quasiparticle mass near the critical region.

We now discuss the microscopic mechanism of the
insulator-metal transition in Ru(Br1−xIx )3. The theoretical
analysis based on the single-band Hubbard model with a
honeycomb structure predicts that the bandwidth-controlled
insulator-metal transition will occur continuously [27], which
does not agree with our observation in Ru(Br1−xIx )3. Here,
we discuss the reason why the insulator-metal transition is of
the first order in Ru(Br1−xIx )3. First, we need to explain the
multiband features of Ru(Br1−xIx )3, which are clearly seen
in the electrical resistivity data. The model Hamiltonian of
Ru(Br1−xIx )3 cannot be a single-band Hubbard model, which
is the reason for the discrepancy with the theoretical predic-
tion. The second possibility is that the structural instability
is also a key factor in the insulator-metal transition. The
structural change at x ∼ 0.85 is most likely the formation
of interlayer I–I bonds. Such bond formation frequently ac-
companies the charge transfer from anions to cations. This
self-doping effect drives the insulator-metal transition. This
type of insulator-metal transition is reported in the layered
material 1T -Cr(Se1−xSx )2, in which the formation of inter-
layer Se–Se bonds plays the key role [28]. To verify this, the
determination of Ru valence is important and left for a future
work.

Even though the insulator-metal transition in Ru(Br1−xIx )3

has a first-order nature, we could observe the quantum crit-
ical phenomenon that γ moderately diverges towards the
insulator-metal transition. This behavior is consistent with
the theoretical prediction for a single-band Hubbard model
with a honeycomb lattice, which predicts that the quasiparticle
weight decreases in the quantum critical region following the
Gross-Neveu universality class [27]. This possibility could be
further verified by observing a divergence in the self-energy
via angle-resolved photoemission spectroscopy and confirm-
ing the checkerboard magnetic structure in the AFM-II phase
via neutron diffraction measurements.

In summary, we successfully synthesized solid solution
Ru(Br1−xIx )3 with honeycomb structure (space group R3) and
investigated its electronic properties. We observed a first-
order insulator-metal transition at x ∼ 0.85, which is likely
affected by the formation of interlayer I–I bonds. We also
found switching of the magnetic structure from zigzag order at
x = 0–0.30 to another phase at x = 0.30–0.85. Furthermore,
the Sommerfeld coefficient γ is moderately enhanced from
x = 1 to x = 0.875, which indicates that the carrier is local-
ized owing to the effective mass enhancement.

Note added. Recently, we noticed a related work [29],
which discusses electronic properties from a slightly different
point of view.
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