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Excitations in the higher-lattice gauge theory model for topological phases.
III. The (3+1)-dimensional case

Joe Huxford 1,2 and Steven H. Simon 1

1Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
2Department of Physics, University of Toronto, Ontario, Canada M5S 1A7

(Received 6 August 2022; revised 12 December 2023; accepted 15 December 2023; published 23 January 2024)

In this, the third paper in our series describing the excitations of the higher-lattice gauge theory model for
topological phases, we will examine the (3+1)-dimensional case in detail. We will explicitly construct the
ribbon and membrane operators which create the topological excitations, and use these creation operators to
find the pattern of condensation and confinement. We also use these operators to find the braiding relations of
the excitations, and to construct charge measurement operators which project to states of definite topological
charge.
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I. INTRODUCTION

Over the past decade, there has been significant con-
sideration given to topological phases in 3+1 dimensions,
in addition to the (1+1)-dimensional [(1+1)D] and (2+1)-
dimensional [(2+1)D] cases that have been more heavily
studied in the past. So far, results for (3+1)-dimensional
[(3+1)D] topological phases range from the construction of
classes of commuting projector models [1–4] to a potential
classification of the bosonic phases in the absence of symme-
try [5,6]. (3+1)D phases are intriguing for several reasons.
First, we live in a (3+1)D world, and so there is a natu-
ral interest in studying such phases. Second, the properties
of (3+1)D topological phases are quite different from their
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(2+1)D cousins. Unlike their (2+1)D counterparts, point-
like particles in (3+1)D are not expected to have nontrivial
braiding with each other (outside of the usual bosonic and
fermionic cases) [7,8]. However, in these higher-dimensional
phases there exist looplike excitations with nontrivial loop-
braiding properties, so that exchange processes involving the
looplike excitations can result in a nontrivial transformation
for the state of the system. Unfortunately, at present there are
few examples of toy models where these looplike excitations
are constructed explicitly and the properties of the excitations
(both pointlike and looplike) are studied in more depth. In
this series of papers, we study one such toy model [4], based
on higher-lattice gauge theory [4,9–13], and aim to provide
a detailed description of the excitations, and the conserved
topological charge which they carry.

As we have already seen in Refs. [14,15], the Hamiltonian
model for topological phases based on higher-lattice gauge
theory [4] hosts rich physics, including nontrivial loop braid-
ing [in the (3+1)D case], condensation, and confinement. In
Ref. [14], we gave a brief qualitative description of these
features, while in Ref. [15] we examined the (2+1)D model.
Now we will give a more explicit and mathematically detailed
treatment of the (3+1)D model, with full proofs presented in
the Supplemental Material. Our approach focuses heavily on
the so-called ribbon and membrane operators, which produce
(as well as move and annihilate) the pointlike and looplike
excitations of the model, respectively. Because loops are ex-
tended objects, they sweep through a surface as they move,
rather than just a line as point particles would. Therefore, to
produce and move loop excitations we need an operator that
is defined across a general membrane rather than a line or
ribbon. The ribbon and membrane operators can be used to
find the braiding statistics [16,17] of the excitations, while
closed ribbon and membrane operators can be used to measure
topological charge [18]. In addition, certain properties of the
excitations, such as whether they are confined or not, can
be obtained directly from these operators. In this paper, we
therefore aim to provide and justify the mathematical forms
of the ribbon and membrane operators, and demonstrate how
we can extract all of the previously mentioned information
about the excitations from them.

A. Structure of this paper

In this paper, we will consider the (3+1)D model in various
cases (a summary of these cases is presented in Sec. II, along
with a brief reminder of the Hamiltonian model). For each
case we define the membrane operators and find the effects
of braiding in turn, before moving on to the next case. In
Secs. III and IV we consider the case where one of the maps
describing the model, �, is trivial (case 1 from Table I).
In Sec. III we construct the ribbon and membrane operators
for the theory and discuss the pattern of condensation and
confinement exhibited by the excitations that they produce.
In Sec. IV we use these operators to work out the braiding
properties of these excitations, which involves passing loop or
point particles through loops. In Secs. V and VI we repeat the
construction of ribbon operators and the braiding for another
special case, called the fake-flat case (case 3 from Table I),
while in Secs. VII and VIII we repeat it for another special

case (case 2 from Table I), which generalizes the � trivial
case.

Having found the membrane operators and effects of braid-
ing, in Sec. IX we move on to consider the topological charges
of the model. These topological charges are conserved quan-
tities carried by the excitations of the model. In (2+1)D, to
measure the topological charge in a spatial region, we simply
put an operator on the boundary of that region. This bound-
ary will be topologically equivalent to a circle (or multiple
circles). However, in (3+1)D there are more topologically
distinct surfaces which can enclose our regions of interest.
We can use these different surfaces to measure the loop-
like and pointlike charge carried by the excitations. Using a
sphere as our surface of measurement, we can determine the
pointlike charge contained within the sphere. We present the
corresponding charge measurement operators in Sec. IX A,
and also find the charge carried by some simple excitations.
However, to measure looplike charge we need some surface
with noncontractible loops. An important example is the torus,
which we look at in some detail in Sec. IX B. We compare
the number of topological charges that we can measure with
the torus to the ground-state degeneracy of the 3-torus and
find that they are equivalent, in the broad cases that we look
at, as previously reported in Ref. [19]. Finally, in Sec. X, we
summarize our results and propose further avenues of research
based on this work.

In the Supplemental Material [20], we present the proofs
of our results that were too lengthy to include in the main text.
We demonstrate the commutation relation between the energy
terms and the ribbon and membrane operators in Sec. S-I [us-
ing some results from the (2+1)D case discussed in Ref. [15]].
Then in Sec. S-II we demonstrate that the nonconfined ribbon
and membrane operators are topological, meaning that we
can deform them through unexcited regions of space without
affecting their action, provided that we keep the locations of
any excitations they produce fixed. In Sec. S-III, we show
that some of the magnetic loop excitations are condensed,
and can be produced by operators only acting near the ex-
citations (meaning that they cannot carry looplike topological
charge). Next, in Sec. S-IV we find the braiding relations of
the various excitations by explicitly calculating the appropri-
ate commutation relations between the membrane and ribbon
operators. Finally, in Sec. S-V we construct the measurement
operators for topological charge and demonstrate that they are
projectors.

II. SUMMARY OF THE MODEL

In this section we will remind the reader of the Hamilto-
nian model we are studying, the higher-lattice gauge theory
model introduced in Ref. [4]. We hope that this will provide a
convenient place for the reader to refer back to for definitions
of the various terms in the Hamiltonian, along with several
useful identities.

We are considering the model defined on a 3D lattice, rep-
resenting the spatial degrees of freedom, with a Hamiltonian
controlling the time evolution. The edges of the lattice are
directed, while the plaquettes have a circulation and a base
point (a privileged vertex which we can think of as the start of
the circulation). The edges are labeled by elements of a group
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G, and the plaquettes are labeled by elements of a second
group E . These groups are part of a crossed module, which
consists of the two groups and two maps, ∂ and �. Here ∂

is a group homomorphism from E to G, while � is a group
homomorphism from G to the automorphisms on E . That is,
for each element g ∈ G, g� is a group isomorphism from E
to itself (so for e ∈ E , g� e is an element of E ). These maps
satisfy two additional constraints, called the Peiffer conditions
[4,9,21]:

∂ (g� e) = g∂ (e)g−1 ∀ g ∈ G, e ∈ E , (1)

∂ (e) � f = e f e−1 ∀ e, f ∈ E . (2)

The Hamiltonian is given by a sum of projectors, with
terms for the vertices, edges, plaquettes, and blobs (3-cells)
of the lattice [4]:

H = −
∑

vertices, v

Av −
∑

edges, i

Ai −
∑

plaquettes, p

Bp −
∑

blobs, b

Bb. (3)

The vertex terms are a sum of vertex transforms, and can be
thought of as projecting to states that are 1-gauge invariant.
That is

Av = 1

|G|
∑
g∈G

Ag
v,

where the vertex transforms have the algebra Ag
vAh

v = Agh
v ,

which implies that Ag
vAv = Av . This ensures that the ground

states (which are eigenstates of Av with eigenvalue one) are
invariant under the vertex transforms:

Ag
v|GS〉 = Ag

vAv|GS〉 = Av|GS〉 = |GS〉.
As for the specific action of the vertex transforms, they act

on the edges adjacent to the vertex, as well as any plaquette
whose base point is that vertex. For an edge i (initially labeled
by gi) or plaquette p (initially labeled by ep), we have

Ag
v : gi →

⎧⎨
⎩

ggi if v is the start of i,
gig−1 if v is the end of i,
gi otherwise,

Ag
v : ep →

{
g� ep if v is the base point of p,
ep otherwise. (4)

Similarly, the edge term is a sum of edge transforms (2-
gauge transforms)

Ai = 1

|E |
∑
e∈E

Ae
i ,

which satisfy a similar algebra to the vertex transforms:
Ae

iA
f
i = Ae f

i . This ensures that individual edge transforms
can be absorbed into the corresponding edge term, and into
the ground state: Ae

iAi = Ai and Ae
i |GS〉 = |GS〉. An edge

transform Ae
i applied on an edge i acts on the label of edge i

itself, as well as the labels of the adjacent plaquettes:

Ae
i : g j →

{
∂ (e)g j if i = j,
g j otherwise,

Ae
i : ep →

⎧⎪⎨
⎪⎩

ep{g(v0(p) − s(i)) � e−1} if i is on p and aligned with p,

{g(v0(p) − s(i)) � e}ep if i is on p and aligned against p,

ep otherwise.

(5)

Here s(i) is the source of edge i, which is the vertex attached
to i that i points away from (with the vertex on the other end
of i being called the target). g[v0(p) − s(i)] is the path element
for the path from the base point of plaquette p to this source,
running around the plaquette and aligned with the plaquette.
On the other hand, g(v0(p) − s(i)) is the path element for the
path around the plaquette from v0(p) to s(i), but this time
antialigned with the plaquette.

The next energy term is the plaquette term Bp, which en-
forces so-called fake flatness. This is similar to the plaquette
term from Kitaev’s quantum double model, in that it restricts
which labels the boundary of a plaquette can have. Unlike the
term from the quantum double model, however, the plaquette
term in higher-lattice gauge theory relates the label of the
boundary to the surface label of the plaquette itself, rather than
requiring the boundary label to be trivial as for the quantum
double model. For a plaquette whose boundary (starting at the
base point and aligned with the circulation of the plaquette)
has path label ĝp, and whose surface label is êp, the plaquette
term Bp acts as

Bp = δ(∂ (êp)ĝp, 1G). (6)

A plaquette which satisfies this Kronecker delta is called
fake flat, and a surface made from fake-flat plaquettes is also
called fake flat. Such a fake-flat surface will satisfy a similar
condition on its surface and boundary labels. As we showed in
Ref. [15], for a surface m whose constituent plaquettes satisfy
fake flatness, the overall surface element will satisfy

∂ (ê(m))ĝdm = 1G,

where ĝdm is the group element associated to the boundary of
m and the total surface element is constructed by combining
individual surface elements, as explained in Ref. [4] and as we
will summarize shortly. Note that this fake-flatness condition
enables the presence of closed paths with nontrivial label in
the ground state (indeed such closed paths are created by
the edge transforms), indicating that some magnetic fluxes
proliferate in the ground state and so are condensed.

The final energy term is the blob term Bb, which en-
forces that the surface element of the boundary of the blob
(calculated from the plaquettes on that blob using the rules
for combining surfaces explained in Ref. [4], which we will
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FIG. 1. (Copy of Fig. 37 from Ref. [14]) An electric ribbon
operator measures the value of a path and assigns a weight to each
possibility, creating excitations at the two ends of the path. In order
to find the group element associated to the path, we must first find
the contribution of each edge to the path. In this example, the edges
along the path are shown in black. Some of the edges are antialigned
with the path and so we must invert the elements associated to these
edges to find their contribution to the path. This is represented by the
gray dashed lines, which are labeled with the contribution of each
edge to the path.

describe shortly) is equal to the identity element 1E . That is,

Bb = δ(ê(b), 1E ) (7)

for blob b with surface element ê(b).
A key idea in the higher-lattice gauge theory model is that

we can compose edges into paths and plaquettes into surfaces,
with composite objects appearing throughout the description
of the model as well as in the ribbon and membrane operators.
We will therefore briefly review the rules for this kind of
combination. First, consider composing edges into paths. If
two edges (or more general paths) lie end to end, then we
can combine them into one path, with a group label given
by the product of the elements for the two edges. Then to
combine multiple edges into a path, we take a product of all
of the constituent edge labels, with the first edge on the path
appearing on the left of the product. If one or more of the
edges points against the path (for example, the edges labeled
by g2 and g3 in Fig. 1), then we include the edge label in the
path element with an inverse.

Next consider composition of plaquettes or more generally
surfaces. Surfaces have both an orientation and a privileged
vertex, called the base point, which we can view as the start
of the circulation. We represent this by drawing a circulating
arrow in the plaquette which connects to the boundary at the
base point, as illustrated in Fig. 2. When we combine two
adjacent plaquettes, we must ensure that the base points and
orientations of the plaquettes both agree. If they do, as in the
example shown in Fig. 2, we can combine the plaquettes into
a single surface whose label is a product of the two plaquettes.
Contrary to the case of paths, the plaquette appearing first in
the circulation is represented in the rightmost position of the
product.

While this simple procedure works if the base points and
orientations of the two plaquettes agree, we will often want
to combine adjacent plaquettes for which this is not the case
(similar to how we want to combine edges into paths even if
their orientations are not all aligned). In this case, we need a
procedure for changing the base point and orientation of a pla-
quette, and describing the label the plaquette would have with
this new decoration. As described in Ref. [14], we can reverse
the orientation of a plaquette (while keeping its base point

FIG. 2. Two adjacent surfaces can be combined into one if their
base point (represented by the yellow dot) and circulation (repre-
sented by the blue arrow in the middle of each plaquette) match.
The label of the combined surface is given by the product of the two
individual elements in reverse order. That is, if the surfaces A and
B have labels eA and eB, respectively, then the combined surface has
label eAB = eBeA. If two adjacent surfaces do not have the same base
point and orientation, then we can still combine them by using a set
of rules that describe what happens when we change the orientation
or move the base point of a surface.

fixed) by inverting its group label, as shown in Fig. 3. If we
want to move the base point along a path t , as shown in Fig. 4,
then we must act on that plaquette element with g(t )−1�, so
that the plaquette label goes from ep to g(t )−1 � ep. When
moving the base point in this way, we can either move it along
the boundary of the plaquette, as shown in the bottom left of
Fig. 4, or we can move it away from the boundary, as shown
in the top right of Fig. 4. Combining these two procedures,
we see that the general formula for the label of a composite
surface m is

ê(m) =
∏
p∈m

g(v0(m) − v0(p)) � e
σp
p , (8)

where the p ∈ m are the constituent plaquettes; v0(p) is the
original base point of plaquette p; v0(m) is the base point
of the combined surface; and σp is 1 if the circulation of
plaquette p matches the surface and −1 otherwise. Note that
this formula hides certain complexities, such as the order of
the product and the precise definition of the paths [v0(m) −
v0(p))], but often we care about situations where these details
do not matter (for example, if E is Abelian the order does not
matter, and if the surface is also fake flat then the paths only
need to be defined up to deformation).

One useful way of checking whether we have correctly
composed two surfaces it to examine the boundary of the
combined surface. The boundary of a surface made by com-
posing two other surfaces is the product of the two individual
boundaries, once we have ensured that the orientations and
base points of the two surfaces agree. This product of the

FIG. 3. Given a plaquette with label ep, the label of the corre-
sponding plaquette with the opposite orientation is e−1

p . Note that
when we reverse the orientation of a plaquette, we leave its base
point, here v0(p), in the same position.
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FIG. 4. We can move the base point of a surface, either along the
boundary of the surface (resulting in the case shown in the bottom
left) or away from the surface (in which case we say that we whisker
the surface, and obtain the situation shown in the top right). When
we move the base point of plaquette p along a path t in this way, the
surface label goes from ep to g(t )−1 � ep.

boundaries follows from the rules for composing paths given
previously. As an example, consider Fig. 5. The boundary of
the left surface (m1) in the top image is i1i2i3i−1

4 (note that the
boundary starts at the base point and follows the orientation
of the plaquette), while the boundary of the right surface
(m2) is i4i5i6i−1

7 . Here ix represents an edge, rather than an
edge label. The boundary of the combined surface is therefore
i1i2i3i−1

4 i4i5i6i−1
7 . This is the path shown in red in the upper

image of Fig. 5. We can simplify this path by removing the
section i−1

4 i4, to give the boundary i1i2i3i−1
4 i4i5i6i−1

7 shown
in the lower image. This rule for combining boundaries en-
sures that the total surface satisfies fake flatness, if the two
constituent surfaces do. If the surface label of surface mx (for
x = 1 or 2) is ex, and the boundary bd[m(x)] has label tx, then
the surface m1 satisfies fake flatness when

∂ (e1)t1 = 1G,

and the surface m2 satisfies fake flatness when

∂ (e2)t2 = 1G.

The combined surface has label e2e1 and boundary label
t1t2 (note the opposite order of composition for the paths and
surfaces). If the two constituent surfaces satisfy fake flatness,
then the combined surface label satisfies

∂ (e2e1)t1t2 = ∂ (e2)(∂ (e1)t1)t2
= ∂ (e2)1Gt2
= 1G,

so the total surface satisfies a fake-flatness condition, as we
claimed earlier.

FIG. 5. When we combine two surfaces (top image) into one
(bottom image), the boundary of the combined surface is the product
of the two individual boundaries (here the boundary path is repre-
sented as the dashed red line). This boundary can be simplified by
removing edges that appear twice consecutively in the boundary with
opposite orientation. In this case the combined boundary includes
i−1
4 i4 in the top image (this is the section that dips down in the image),

which can be removed to give the boundary shown in the bottom
image.

Next, we want to remind the reader of the various special
cases in which we consider the model. In the most gen-
eral case of the model, the projectors in the Hamiltonian
(specifically the edge and blob terms) no longer commute
[4]. Furthermore, there are inconsistencies with regards to
changing the branching structure of the lattice (reversing the
orientation of edges or plaquettes, or moving the base points
of plaquettes around), as we showed in the Appendix of
Ref. [14]. This only occurs when � is nontrivial and there
are fake-flatness violations (i.e., plaquette excitations), so the
ground-state space is always well defined. This may be similar
to how the plaquette terms in the string-net model become
poorly defined when neighboring vertex terms are not satisfied
and are usually set to zero in such cases [17]. Regardless,
these inconsistencies make it difficult to define the plaquette
excitations, which form flux tubes. We therefore consider the
higher-lattice gauge theory model in various special cases that
remove these inconsistencies, or at least make them more
manageable. In the first such special case (case 1 in Table I),
we take the map � to be trivial, so that each map g� is the
identity map (g� e = e for all g ∈ G and e ∈ E ). This leads
to a model very similar in character to a (3+1)D version of
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TABLE I. A reminder of the special cases of the model.

Full Hilbert
Case E � ∂ (E ) space

1 Abelian Trivial ⊂ center(G) Yes
2 Abelian General ⊂ center(G) Yes
3 General General General No

Kitaev’s quantum double model, but with some additional
excitations (and with condensation and confinement). Because
of the Peiffer conditions, taking this form for � enforces that
E be an Abelian group and ∂ maps onto the center of G. In the
second special case (case 2 in Table I), we instead take these
properties as our starting point, allowing � to be general, sub-
ject to the constraint that E is Abelian and ∂ maps to the center
of G. In the final case (case 3 in Table I), we do not place
any conditions on our crossed module, but instead restrict the
Hilbert space to only include fake-flat states (states where all
of the plaquette terms are satisfied). This prevents any incon-
sistencies, but means that some of the excitations are missing.

We mentioned that when � is trivial, the higher-lattice
gauge theory model becomes similar to a (3+1)D version of
Kitaev’s quantum double model, i.e., to regular lattice gauge
theory. Indeed, there are two subcases where the model is
equivalent to lattice gauge theory. The first of these is when
the group E is the trivial group { 1E } and so ∂ maps to the
identity of G. In this case, the blob and edge energy terms be-
come trivial, while the vertex and plaquette terms become the
corresponding lattice gauge theory terms. This directly gives
the lattice gauge theory Hilbert space and Hamiltonian. The
other limit is where the group G is trivial (which also implies
that ∂ maps to the identity element because G only has one
element). In this case, the vertex and plaquette terms become
trivial. Under a change of basis from group elements of E to
irreps of E , the remaining energy terms become the lattice
gauge theory terms on the dual lattice, where the group is
the group of irreps of E . Specifically, the blob energy term of
higher-lattice gauge theory becomes the vertex term of lattice
gauge theory, while the edge term becomes the plaquette term.
More generally, if both groups G and E are nontrivial, but
� is trivial and ∂ maps to the identity of G, we can see that
each of the energy terms given in Eqs. (4)–(7) only affects the
variables corresponding to one group. This means that these
variables decouple and we can think of higher-lattice gauge
theory as two decoupled lattice gauge theory models in this
case. This also helps us to interpret more general cases of the
model. If we change ∂ to map to a larger subgroup, the two
lattice gauge theories interact and produce condensation and
confinement, as we will discuss later.

III. RIBBON AND MEMBRANE OPERATORS
IN THE � TRIVIAL CASE

First, we consider case 1 from Table I, the case where � is
trivial (g� e = e ∀ e ∈ E , g ∈ G), which enforces that E is
Abelian.

A. Electric excitations

The first type of excitation to consider is the electric
excitations. The ribbon operators that produce the electric
excitations in (3+1)D have the same form as the ones for the
(2+1)D case that we considered in Ref. [15]. That is, an elec-
tric ribbon operator measures the group element of a path and
assigns a weight depending on the measured group element.
As we claimed in Ref. [14], an electric ribbon operator applied
on a path t has the form

Ŝ �α (t ) =
∑
g∈G

αgδ(ĝ(t ), g), (9)

where α is an arbitrary set of coefficients for each group
element g ∈ G and different choices for these coefficients
describe different operators in a space of ribbon operators. A
useful basis for this space has basis operators that are labeled
by irreps of the group G and the matrix indices for that irrep.
These basis electric ribbon operators have the form

ŜR,a,b(t ) =
∑
g∈G

[DR(g)]abδ(ĝ(t ), g), (10)

where R is an irrep of G, DR(g) is the associated matrix
representation of element g, and a and b are the matrix indices.
As we proved in Ref. [15] [in the (2+1)D case, although
the proof also holds for (3+1)D], the operators labeled by
nontrivial irreps excite the vertices at the ends of the path,
whereas the operator labeled by the trivial irrep is the identity
operator (which of course does not create any excitations). In
addition, just as in the (2+1)D case discussed in Ref. [15], the
irreps that have nontrivial restriction to the image of ∂ label
confined excitations. The electric ribbon operators labeled by
such irreps cause the edges along the path to be excited, so the
excitations produced at the ends of the ribbon are confined.

B. Magnetic excitations

Unlike the electric excitations, the magnetic excitations
in (3+1)D are significantly different from their counterparts
in (2+1)D. Whereas in (2+1)D the magnetic excitations are
point particles that are produced in pairs by a ribbon operator
(as we described in Ref. [15]), in (3+1)D the elementary
magnetic excitation is a “flux tube” at the boundary of a mem-
brane. That is, the magnetic excitations are looplike. We can
see that the magnetic excitations must be looplike by trying
to excite a single plaquette. We try changing the value of a
single edge belonging to that plaquette. However, as shown
in Fig. 6, in (3+1)D each edge belongs to multiple plaquettes
(as opposed to two plaquettes when there are only two spatial
dimensions). Therefore, changing the label of an edge excites
all of the plaquettes around that edge. We can then put one of
these plaquettes back into a lower-energy state by changing
the label of another edge on that plaquette, but this in turn
excites all of the other plaquettes attached to that edge (see the
second image in Fig. 6). We see that these excited plaquettes
lie on a closed loop that pierces their centers, as shown by the
blue loops in Fig. 6. This is made more clear by considering
changing more edges. Instead of changing edges along a line,
we consider changing edges across some surface (such as the
four edges shown in the third image of Fig. 6, which lie on a
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FIG. 6. (Copy of Fig. 40 from Ref. [14]) In order to excite one
of the plaquettes in the lattice and produce a magnetic excitation,
we change the label of one of the edges (black cylinders) on the
boundary of the plaquette. However, this excites all of the plaquettes
(the excited plaquettes are the squares, shown in red) adjacent to that
edge, as shown in the first image. Note that these plaquettes lie on
a closed loop through their centers. If we change another edge label
to try to prevent some of the plaquette excitations, we will excite the
other plaquettes adjacent to that edge, as shown in the second image.
Repeating the process, by changing the edges shown in black excites
plaquettes along a closed loop (blue). Changing more edges simply
changes the shape of this loop (unless we change the edge labels
back and shrink the loop to nothing). This tells us that the magnetic
excitations are looplike.

square). Changing these edges excites the plaquettes on the
boundary of that surface, much as the ribbon operators in
(2+1)D excite particles at the ends of some path.

The fact that we produce a loop excitation by changing
edges across a surface rather than just along a path indicates
that our creation operator is a membrane operator. While
we have given a rough idea of the action of the membrane
operator in the above discussion, we will now be more spe-
cific. In order to define the operator that produces a magnetic
excitation, we must specify the region (the “membrane”) that
this operator acts on. First we specify a membrane that passes
through the centers of plaquettes and cuts through edges. The
edges cut by the membrane (“cut edges”) are acted on by the
operator, as shown in Fig. 7. This membrane is called the dual
membrane, and is analogous to the dual path for the magnetic
ribbon operator in (2+1)D. In addition to the dual membrane,
we must specify a “direct membrane.” The cut edges terminate
on this membrane. That is, the direct membrane contains one
vertex at the end of each of the cut edges, as shown in Fig. 7
(in special cases, with tightly folded membranes, both ends
may be on the direct membrane and an edge may be cut twice
by the dual membrane). We must also specify a set of paths
to the vertices on the direct membrane. These paths go from a
common start point to the base of each cut edge (that is, to the
vertex that lies on the direct membrane). We call this common
start point of the paths the start point of the membrane or of the
membrane operator. These features of the membrane operator
are illustrated in Fig. 7.

The fact that we specify two membranes as part of the
magnetic membrane operator indicates that our “membrane

FIG. 7. (Copy of Fig. 41 from Ref. [14]) Here we give an ex-
ample of the membranes for the flux creation operator (magnetic
membrane operator). The dual membrane (green) cuts through the
edges changed by the operator. The direct membrane (blue) contains
a vertex at the end of each of these cut edges (such as the orange
sphere). A path from a privileged start point to the end of the edge
(such as the example path, ti) determines the action on the edge. This
action leads to the plaquettes around the boundary of the membrane
being excited.

operator” really acts on a “thickened” membrane, much as
the ribbon operators in (2+1)D can be considered as acting
on thickened strings, that is on ribbons (i.e., their support has
some finite thickness). Regardless, we will continue to refer
to these operators as membrane operators. This unfortunately
means that our use of the term membrane is somewhat am-
biguous. Sometimes we mean a “thickened membrane” and
sometimes just an unthickened membrane. Generally we try
to use membrane to refer to the region on which our mem-
brane operators act, whether those regions are thickened or
otherwise. If we want to refer to a surface that may not be part
of a membrane operator, we will call this a surface. If we want
to refer to part of a thickened membrane, we will use the terms
direct and dual membranes.

Having specified these features of the membrane, we can
now describe the action of the magnetic membrane operator.
The membrane operator acts on the edges cut by the dual
membrane, in a way that depends on the direct membrane and
the paths we defined. This is analogous to how the action of
the magnetic ribbon operator in the (2+1)D case depends on
a direct path and a dual path (see Ref. [15]). The membrane
operator is labeled by a group element h ∈ G, but the label of
each cut edge i is left multiplied by g(s.p. − vi )−1hg(s.p. − vi )
or right multiplied by the inverse, where g(s.p. − vi ) is the
group element associated to the path specified from the start-
point s.p. to the vertex vi on the direct membrane that is
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attached to the cut edge i. Whether left multiplication or
right multiplication by the inverse is used depends on the
orientation of the edge. The edge label is left multiplied if
the edge points away from the direct membrane (as with the

example edge in Fig. 7) and is right multiplied by the inverse
element if it points towards the membrane. That is, the action
of the membrane operator on an edge i with initial label gi is
given by

Ch(m) : gi =
{

g(s.p. − vi )−1hg(s.p. − vi )gi if i points away from the direct membrane,
gig(s.p. − vi )−1h−1g(s.p. − vi ) if i points towards the direct membrane.

(11)

The only difference compared to the action of the mag-
netic ribbon operator in (2+1)D is that the operator acts on
a general membrane, rather than just a ribbon. In particular,
this means that instead of having a direct path along a ribbon,
we have multiple paths across a membrane. For a given edge
i, there are many potential choices for the path from the start
point to the edge. However, the action of the membrane opera-
tor is unaffected by deforming any of these paths over a region
satisfying fake flatness. This is because deforming the path in
this way only changes the path element g(s.p. − vi ) by an ele-
ment ∂ (e) in ∂ (E ). This factor of ∂ (e) is in the center of G and
so it does not affect the expression g(s.p. − vi )−1hg(s.p. − vi ),
which just gains a factor of ∂ (e) and a factor of ∂ (e)−1 which
can be moved together and canceled.

Now that we have described the action of the membrane
operator, we can discuss which of the energy terms are excited
by the membrane operator. First, note that if the membrane
operator is labeled by 1G, then the membrane operator is just
the identity operator and so will not excite any of the energy
terms. From now on we will assume that we are talking about
a membrane operator labeled by some nontrivial element of
G. In this case the membrane operator excites the “boundary
plaquettes,” which are plaquettes where only one edge on the
plaquette is changed by the membrane operator (rather than
two for the “bulk” plaquettes). These boundary plaquettes
lie around the perimeter of the membrane (they are the red
plaquettes in Fig. 7) and we can construct a closed path around
the boundary of the dual membrane which passes through
these plaquettes.

In addition to these plaquettes, the magnetic membrane
operator may also excite the privileged start-point vertex that
we defined previously, just as we saw in the (2+1)D case
for the magnetic ribbon operator in Ref. [15]. In order for
the magnetic membrane operator to produce an eigenstate
of this vertex energy term when acting on an initially unex-
cited region, we need to construct a linear combination of
the magnetic membrane operators labeled by elements of G.
If the coefficients for this linear combination are a function
of conjugacy class (that is, we have an equal sum over all
elements of the conjugacy class), the vertex is not excited.
On the other hand, if the coefficients within each conjugacy
class sum to zero, then the vertex is excited. In any other
case (such as when we do not take a superposition of our
operators), the start point is neither definitely excited nor
definitely unexcited because we do not produce an energy
eigenstate. While in Fig. 7 the start point is next to the looplike
excitation (at the edge of the membrane), the start point can
be displaced any distance from the excited loop (or even away
from the membrane). The position of the start point can be
interpreted in terms of the picture of the ribbon and membrane

operators creating and moving excitations. We can think of the
membrane as corresponding to the process where we nucleate
a loop at the start point and then grow and move the loop
along the membrane to its final position. The fact that the start
point may be excited far from the loop suggests that it can be
treated as an additional particle. Therefore, when we produce
a loop, we may also have to produce a point particle. This is
similar to how pointlike charges must be produced in pairs
in order to conserve topological charge. Indeed, we will see
in Sec. IX A that some looplike excitations carry a nontrivial
“pointlike” conserved charge, which must be balanced by the
charge carried by the additional excitation at the start point.

The magnetic membrane operator described above is a
creation operator for our flux tube, which runs around the
perimeter of the membrane. The membrane operator creates
a flux tube (and its associated vertex excitation) from the
vacuum. Another relevant operator is the one that moves an
existing flux tube to a new position. The movement operator
can be thought of as an ordinary membrane operator, but with
an additional hole whose boundary fits the loop that we wish
to move. To see that this is a movement operator, consider
splitting a creation operator into two parts, an inner part,
which is another creation operator, and an outer part applied
on a membrane equivalent to a tube or annulus, as shown in
Fig. 8. We know that the overall membrane operator produces
and moves an excitation to the boundary of the outer part,
while the inner part produces and moves an excitation to the
boundary of the inner part. Because the overall membrane
operator is a combination of the inner membrane operator and
outer membrane operator, this means that the outer membrane
operator must take the excitation from the boundary of the
inner part and move it to the boundary of the outer part, to
match the action of the total membrane operator.

For instance, consider the example shown in Fig. 8. In
this figure, the yellow membranes indicate the membrane on
which the operator is applied (so that if we zoomed in we
would see the structure from Fig. 7). The yellow spheres are
the start points for the membranes (note that they are all in the

FIG. 8. Given a flux creation operator (left), we can split it into
two parts. One of these parts (the rightmost picture, comprised of the
inner part of the original membrane) is another flux creation operator
that nucleates the loop and moves it part way along the membrane.
The second part (the outer part) takes that existing loop and moves it
to the final position.
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same position). The opaque tori indicate the excitations they
create. The two membranes on the right are displaced hori-
zontally to indicate an order in which operators are applied,
rather than spatial displacement. On the left-hand side of the
figure, we have an operator that simply creates and moves an
excitation to the final position (indicated by the red torus). We
can split this operator into the two operators shown on the
right-hand side. The rightmost operator on the right-hand side
is the inner part of the original membrane operator and so is
another flux creation operator. Therefore, this operator also
creates an excitation and moves it to its boundary, the lower
red torus. In order for this decomposition of operators to agree
with the total operator on the left-hand side, we see that the
middle operator, which represents the outer part of the original
membrane operator, must move an excitation from the lower
position (the yellow torus) to the final position (the red torus).
While in this context the outer membrane operator moves an
existing excitation, we can also apply it when there are no ex-
isting excitations. In this case, the operator instead creates two
opposite fluxes at the two ends of the operator. We therefore
do not need to distinguish between movement and creation
operators because the movement operators are also creation
operators, although they create multiple looplike excitations.

More generally, we can put many holes in the membrane
to produce many loop excitations. Indeed, we can think of
the membrane operator that we originally defined as a closed,
topologically spherical membrane with a single hole in it.
Then the excited loops (or single loop in the ordinary case)
are at the boundaries of these holes. A topologically spherical
membrane operator would produce no excitations. Indeed, as
we prove in Sec. S-II D in the Supplemental Material [20],
such a spherical membrane operator will act trivially if it is
contractible and encloses no other excitations.

When producing an excitation in a given location, there
are many choices for the position of the membrane. This is
because the excitation is produced at the boundary of the
membrane and many different membranes share the same
boundary. However, the membrane operator is topological
in the following sense. We can freely deform the membrane
on which the operator is applied through the lattice, while
keeping the positions of any excitations produced by the
operator fixed, as long as we do not deform the membrane
over any existing excitations. When we do this, the action of
the membrane operator is preserved. That is, given an initial
state |ψ〉 and a magnetic membrane operator Ch(m) applied
on a membrane m, if we can deform the membrane m into
a new membrane m′ without crossing any excitations in |ψ〉,
or moving the excitations produced by Ch(m), then we have
Ch(m)|ψ〉 = Ch(m′)|ψ〉. This means that, like the ribbons in
(2+1)D, the membrane is invisible when acting on the ground
state; it does not matter precisely where we put the membrane.
However, when we act on a state that already has excitations,
the position may matter. Indeed this fact is vital when con-
sidering braiding and leads to the nontrivial braiding relations
that we will see in Sec. IV.

It is not just the magnetic membrane operators that have
this property under deformation, but all of the nonconfined
membrane and ribbon operators, as we will prove in Sec. S-
II in the Supplemental Material [20]. We therefore call the
nonconfined ribbon and membrane operators topological.

FIG. 9. Two membranes that would move a loop excitation from
the same initial location to the same final location. The membrane
on the left flips the loop during its motion (intermediate positions of
the loop are shown along the membrane), whereas the right mem-
brane moves the loop without flipping it. For the same original loop,
measuring the flux along the blue path in the left figure gives us the
inverse of the flux along the blue path on the right.

However, in reality this topological nature is a combined
property of the ground state and the operators because we can
only freely deform the membranes over a space that does not
contain any excitations.

Having obtained the membrane operators, we can find their
algebra, which can give us the fusion rules for the excitations
(although to formally obtain the fusion rules we should or-
ganize our excitations according to their topological charge
first). Just as in (2+1)D, two magnetic operators applied on
the same space combine by multiplication of their flux la-
bels. The precise way in which this occurs depends on the
position of the start point of the common membrane m. We
may have Cg(m)Ch(m) = Cgh(m), but we could also have
Cg(m)Ch(m) = Chg(m) if the paths from the start point to the
membrane m themselves intersect with the dual membrane.
This is because in this case the action of the membrane
operator Ch(m) affects the path labels g(s.p.(m) − vi ) that
determine the action of Cg(m) [see Eq. (11)], leading to the
membrane operator Cg(m) instead acting like Chgh−1

(m). We
also note that, just as we described for the E -valued membrane
operators in (2+1)D in Ref. [15] (see Sec. III D), we can
have partial fusion of the excitations. In this case the two
magnetic membrane operators share part of their membrane
and boundary, but the membranes are not completely identical
[i.e., we have some Cg(m2) instead of Cg(m)], which can lead
to only sections of the excited strings merging.

As well as fusion, loop excitations have another important
relationship between the different excitations. We can flip the
orientation of a loop excitation and ask what the resulting
label should be in terms of an unflipped loop. By flip the loop,
we mean that we turn the loop over during its motion using
its membrane operator. Then we determine what membrane
operator would produce an equivalent flux tube by producing
a loop without flipping it over during its motion. An example
of the relevant membranes is shown in Fig. 9. In the case of
the magnetic excitations, flipping the loop over gives a loop
labeled by the inverse of the original label. This indicates that
to specify a flux, the orientation of the flux tube is important.
This is a feature not seen in point particles and highlights that
measuring the topological charge of a loop excitation is not as
simple as it is for point excitations.
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C. E-valued loop excitations

Magnetic excitations are not the only looplike excitations
that we find in this model. In Ref. [15], we showed that in
(2+1)D we could have looplike excitations that arise when
our group E is nontrivial, which we called E -valued loop ex-
citations. These excitations persist in the (3+1)D case, and the
membrane operators that produce these excitations in (3+1)D
are very similar to the operators in (2+1)D. Just as in (2+1)D,
the membrane operator measures the surface label ê(m) of
some membrane m and assigns a weight depending on the
value measured. It is convenient to consider a basis for this
space of membrane operators where the weights are given by
the irreducible representations of the group E . That is, we can
define basis operators

Lμ(m) =
∑
e∈E

μ(e)δ(ê(m), e), (12)

where μ is an irrep of E and μ(e) is the phase representing
the element e ∈ E . Note that the irreps of E are 1D because
E is Abelian when � is trivial. Then any of these operators
that are labeled by nontrivial representations produce a loop
of excited edges on the boundary of the membrane, whereas
the operator labeled by the trivial irrep is the identity operator.
We can fuse these excitations, with the resulting label being
given by the product of the irreps under the multiplication
(μν)(e) = μ(e)ν(e) for irreps μ and ν of E .

Unlike in (2+1)D, there are many different membranes
that have the same boundary and so produce a loop excita-
tion in the same location. However, much like the magnetic
membrane operators, the E -valued membrane operators are
topological, meaning that we can deform the membrane with-
out changing the action of the membrane operator. For the
E -valued membrane the topological nature is relatively in-
tuitive and derives from the fact that closed, contractible
surfaces are forced to have trivial label in the ground state
by the blob condition in the Hamiltonian. The E -valued mem-
brane measures the value of some surface. Given two such
surfaces with the same boundary, we can consider the differ-
ence between their labels by inverting the orientation of one
surface and combining it with the other surface by gluing the
surfaces along their common boundary. If the two surfaces can
be deformed into one another, this gluing procedure produces
a contractible closed surface that encloses no excitations.
However, in the ground state such a surface must have trivial
label, due to the blob energy terms. Therefore, the two original
surfaces must have the same label and so the two original
operators give the same result. This is shown in Fig. 10. In
the leftmost diagram we have one surface, the boundary of
which is our loop excitation. This surface is labeled by e1.
In the next diagram, we have another surface with the same
boundary, labeled by e2. We can invert this surface, reversing
its orientation and changing the label from e2 to e−1

2 as shown
in the third picture. Then we can glue these surfaces together
to obtain a sphere labeled by e1e−1

2 . However, this resulting
surface is contractible, so its label must be 1E if it encloses no
excitations. Therefore, e1e−1

2 = 1E . This indicates that the two
different surfaces have the same label. From this, we see that
deforming the surface, without crossing an excitation, does
not affect the action of the membrane operator.

FIG. 10. Given two different surfaces with the same boundary,
such as the first two surfaces in the figure, their labels must be
the same if we can deform one into another without crossing any
excitations. This is because the volume over which we deform them
must have trivial boundary surface label.

D. Blob excitations

In addition to the three types of excitation we have con-
sidered so far [and which we already saw in the (2+1)D case
discussed in Ref. [15]], we have a fourth simple excitation in
(3+1)D, called the blob excitation (or 2-flux excitation). The
blob excitations correspond to violations of the 2-flatness of
blobs, also called 3-cells (i.e., to violations of the blob energy
terms). As we described in Ref. [14] (in Sec. III B), we can
consider creating two blob excitations by changing a chain of
plaquettes along a dual path in the lattice. The blob energy
term forces the total surface label around the blob (which is
a certain product of surface elements around the blob) to be
1E when the blob is unexcited. Then to excite a blob the naive
thing to do is to multiply a single plaquette by some group
element, e−1 for example. However, each plaquette belongs to
two adjacent blobs, both of which will be excited by changing
the plaquette, as is shown in Fig. 11. We can correct the
2-holonomy of one of these blobs by changing the label of
another plaquette on that blob, but this excites yet another
blob, as shown in Fig. 11. We can repeat this process with
another plaquette, this only moves one of the blob excitations
around. That is, by changing the labels of a series of plaquettes
appropriately, we can produce a pair of blob excitations and
move one of these excitations along a path. This is exactly the
behavior we expect of a ribbon operator.

Having discussed the rough idea behind the blob ribbon
operator, we will now be somewhat more precise about the
action of the operator. Each blob ribbon operator is labeled by
an element of E , for example e. We must also specify a (dual)

FIG. 11. (Copy of Fig. 38 from Ref. [14]) We consider a series of
blobs in the ground state (leftmost image). In the ground state, all of
the blob terms are satisfied, which we represent here by coloring the
blobs blue (dark gray in grayscale). Changing the label of the plaque-
tte between blobs 1 and 2 excites both adjacent blobs, as can be seen
in the middle image (we represent excited blobs by coloring them
orange, or lighter gray in grayscale). Multiplying another plaquette
label on blob 2 to try to correct it just moves the right-hand excitation
from blob 2 to blob 3 (rightmost image). In each step, the plaquettes
whose labels we changed are indicated by the (red) squares and their
orientations are indicated by an arrow.
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FIG. 12. In the � trivial case, the blob ribbon operator multiplies
the labels of the plaquettes pierced by the ribbon by e or e−1, de-
pending on the orientation of the plaquette. Here the circulation of
a plaquette is shown by the curved (yellow) arrows, and this can be
converted into a direction using the right-hand rule. The plaquette
label is multiplied by e−1 if the orientation of the plaquette matches
that of the ribbon and by e if the orientation is antialigned with the
ribbon (note that the order of multiplication does not matter when �
is trivial, because E is Abelian, but the order is chosen in this figure to
match the more general case).

path for the blob ribbon operator to act on. We denote the
blob ribbon operator labeled by e and acting on the path t by
Be(t ). The path passes between the centers of blobs, much as a
path on the lattice passes from one vertex to the next. Because
the path travels between blobs, the path will pierce plaquettes
and it is these pierced plaquettes that the operator will act on.
The operator does so by multiplication of the plaquette label
by e−1 if the orientation of the plaquette is aligned with the
direction of the ribbon and e if it is aligned with the ribbon,
where we use the right-hand rule to convert the clockwise
or anticlockwise circulation of the plaquette into a direction
in order to compare it with the orientation of the ribbon. An
example of the action of the blob ribbon operator is illustrated
in Fig. 12. This action excites the blob in which the ribbon
originates and the blob in which it terminates. If the label of
the operator e is in ker(∂ ) then these two blob terms are the
only excited energy terms. However, if e is not in the kernel
the plaquettes pierced by the ribbon are also excited, so the
particles produced are confined (there is an energy cost that
increases with the length of the ribbon). The plaquettes are
excited because the plaquette operator checks that the image
under ∂ of the plaquette element matches the path around
the plaquette. Therefore, multiplying the plaquette label by
an element e with nontrivial ∂ (e) (i.e., an element outside the
kernel of ∂) will cause this plaquette condition to be violated.

Much like the other operators we have considered so far,
blob ribbon operators can be combined by applying one after
the other on the same path. This process leads to fusion of the
simple excitations produced by the operators. The excitations
fuse in a similar way to the magnetic ones: the ribbon algebra
is given by Be(t )B f (t ) = Be f (t ).

Before we move on to summarize the excitations, it is
worth mentioning that the blob excitations in (3+1)D replace
the single-plaquette excitations from (2+1)D. Recall from
Ref. [15] that we create the single-plaquette excitations by

multiplying a plaquette label by an element of E . Because
there are no blobs to excite in (2+1)D (where the lattice is
two dimensional) this creates no excitations other than the
plaquette. However, in (3+1)D such an action produces blob
excitations, as we saw from the action of the blob ribbon
operator.

E. Condensation and confinement

In Refs. [14,15], we described a type of transition be-
tween different higher-lattice gauge theory models called
condensation-confinement transitions. During this transition,
some particle types become confined, so that it costs energy
to separate a confined particle from its antiparticle, and others
become “condensed.” A condensed excitation can be pro-
duced locally and so carries trivial topological charge in the
condensed phase. We can consider a model with no confine-
ment where ∂ → 1G. Note that in this uncondensed model,
with both � and ∂ trivial, the two gauge groups (G and E )
decouple and the model can be treated as a tensor product
of two independent lattice gauge theories, as we discussed in
Sec. II. Then changing this ∂ so that it maps onto a nontrivial
subgroup of G, while keeping the groups G and E constant,
results in certain topological charges condensing. In partic-
ular, the magnetic excitations labeled by h ∈ ∂ (E ) and the
E -valued loop excitations that are labeled by trivial irreps of
the kernel become condensed. To see what we mean by this,
consider the E -valued membrane operators, which have the
form ∑

e∈E

αeδ(e, ê(m)).

If the membrane m satisfies fake flatness, the surface label
of the membrane is related to the label of its boundary bd(m)
through ∂ (ê(m))ĝ(bd(m)) = 1G. Then, if the coefficients αe

are only a function of ∂ (e), and so are not sensitive to the
kernel of ∂ , we can write the membrane operator (when acting
on a fake-flat state) as∑

e∈E

αeδ(e, ê(m)) =
∑

ek∈ker(∂ )

∑
q∈E/ ker(∂ )

αqδ(qek, ê(m)),

where the q are representative elements from the cosets of
ker(∂ ) in E and αqek = αq because the coefficient is not sensi-
tive to factors in the kernel. Then∑

e∈E

αeδ(e, ê(m)) =
∑

q∈E/ ker(∂ )

αq

∑
ek∈ker(∂ )

δ(qek, ê(m))

=
∑

q∈E/ ker(∂ )

αqδ(∂ (q), ∂ (ê(m)))

=
∑

q∈E/ ker(∂ )

αqδ(∂ (q), ĝ(bd(m))−1)

=
∑

g∈∂ (E )

βgδ(g, ĝ(bd(m))),

where β∂ (e)−1 = αe. This is just an electric ribbon operator
applied on the boundary of m and so is local to the excitation
produced by the membrane operator. Rather than local in the
usual sense of being restricted to a small spatial region, we
mean that the operator only acts near the excitation. We see
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that the excitation produced by the membrane operator can be
produced locally and so is condensed. That is, the E -valued
membrane operators which are not sensitive to the kernel
of ∂ produce condensed excitations. When we consider the
irrep basis for the membrane operators, the operators labeled
by irreps with trivial restriction to the kernel correspond to
condensed excitations. For the magnetic excitations, it is the
fluxes with label in ∂ (E ) that are condensed. It is slightly more
complicated to show directly that the membrane operators
associated to these condensed excitations are equivalent to
local operators, so we postpone this proof until Sec. S-III of
the Supplemental Material [20]. However, as we discussed in
Sec. II, the plaquette terms allow for closed paths with label
in ∂ (E ) in the ground state rather than just closed paths with
trivial label and these nontrivial paths are created by the edge
transforms. Therefore, it is no surprise that fluxes with label in
∂ (E ) should be condensed. We note that this condensation of
fluxes is similar to that for a related field-theory model used to
discuss condensation and confinement in regular gauge theory
[11], where fluxes in the subgroup π1(H ) [equivalent to ∂ (E )]
are condensed. This reinforces the connection between the
higher-lattice gauge theory model and (partially) condensed
lattice gauge theory

As these magnetic and E -valued loops condense, some
of the pointlike particles in the model become confined. As
we showed in Sec. S-I A of the Supplemental Material of
Ref. [15] [with the proof being the same for the (2+1)D
and (3+1)D cases], the confined electric ribbon operators∑

g αgδ(ĝ(t ), g) are those for which
∑

e∈E α∂ (e)g = 0 for all
g ∈ G. This means that a basis ribbon operator, given by

SR,a,b(t ) =
∑
g∈G

[DR(g)]abδ(ĝ(t ), g),

for irrep R of G and matrix indices a and b, is confined if R
has a nontrivial restriction to the subgroup ∂ (E ) of G. Similar
to the condensation of fluxes, this confinement is equivalent
to that in Ref. [11], where the electric operators are confined
if they are sensitive to factors in a subgroup π1(H ) [which is
equivalent to ∂ (E ) here]. So far, this pattern of condensation
and confinement is analogous to the (2+1)D case described
in Ref. [15], but in the (3+1)D case we have an extra type
of excitation, the blob excitation. As we discussed in the
previous subsection, the blob excitations with label outside
the kernel of ∂ are also confined because the corresponding
ribbon operators multiply the plaquette labels of the pla-
quettes pierced by the ribbon by a factor which breaks the
fake-flatness condition. These confined blob excitations are
important when discussing the condensation of the magnetic
excitations. The magnetic condensation is slightly different
when there are three spatial dimensions compared to the case
where there are only two because the magnetic excitations
in (3+1)D are loops. Rather than being equivalent to strictly
local (i.e., unextended) operators when acting on the ground
state, the magnetic membrane operator is instead equivalent
to a (confined) blob excitation operator acting on a path that
runs around the boundary of the magnetic membrane. This
blob ribbon operator is not local in the usual sense, given
that the operator is linearly extended, but it is instead local
to the excitation. This is analogous to how the condensed

FIG. 13. A summary of the excitations when � is trivial.

E -valued membrane operators act equivalently to (confined)
electric ribbon operators applied around the boundary of the
membrane.

F. Summary of excitations

Given the large number of excitations that we have seen so
far, it may be useful to briefly summarize them. The simple
excitations and their confinement and condensation properties
for the case described above are summarized in Fig. 13.

IV. BRAIDING IN THE � TRIVIAL CASE

Now that we have obtained the membrane and ribbon op-
erators that produce the various excitations of our theory, we
can use these operators to obtain the braiding relations of the
excitations. We find that the nontrivial braiding is between
the magnetic flux tubes and the electric charges; between the
flux tubes and other flux tubes (though this is only nontrivial
if G is non-Abelian); and between the blob excitations and
E -valued loops. We will describe all of these in more detail
in the following sections. First, we will look at the relations
involving the magnetic fluxes and electric charges. To describe
this braiding, it is convenient to separately consider the cases
where G is Abelian and non-Abelian, starting with the Abelian
case.
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FIG. 14. (Copy of Fig. 35 from Ref. [14]) Schematic view of
braiding a charge through a loop. The red line tracks the motion of
the charge.

A. Abelian case

1. Flux-charge braiding

The first nontrivial braiding that we consider is the braiding
involving our magnetic fluxes and electric charges. Recall
that the magnetic fluxes are looplike particles, whereas the
electric charges are pointlike. Because of this, the appropriate
braiding between these two types of particle is to pass the
electric charge through the loop and back around to its original
position, as shown in Fig. 14. It is also possible to pass the
electric charge around the loop (without passing through),
just as if the loop were a point particle, but this process is
found to be trivial in this model. Indeed, generally we find
that in the higher-lattice gauge theory model, any braiding
where one particle (looplike or otherwise) is moved around
another particle (but not through a loop particle) is trivial.
This is because such an operation can always be performed by
membrane (and ribbon) operators which never intersect and so
commute. This means that each excitation is oblivious to the
presence of the other and so the motion has the same result as
moving through the vacuum.

Now that we have discussed what the relevant braiding
move is, we need to find how the excitations transform under
such a move. The braiding relation is conveniently calculated
by considering a commutation of operators as follows. Con-
sider starting with a state that has no excitations and then
applying a magnetic membrane operator that produces a flux
tube. Then consider acting with an electric string operator to
produce a pair of electric charges and move one along the
path of the string, with this path passing through the loop
excitation. In this case the electric excitation has undergone
the braiding move we described earlier. We want to compare
this situation to a similar one in which the electric excitation
has not braided with the loop excitation. To do so, consider
reversing the order of operators that we apply. Instead of first
acting with the magnetic membrane and then with the electric
string operator, we first apply the electric operator. This pro-
duces a pair of electric excitations and moves one of them
along the ribbon. However, there is no magnetic excitation
present at this stage, so no braiding occurs. Then we act with
the magnetic membrane to produce our flux tube. In this situ-
ation, the excitations end up in the same location as when we
applied the operators in the original order, but no braiding has
occurred. Comparing these two situations therefore gives us

the braiding relation. This means that to describe the braiding,
we just need to find the relationship between the two possible
orderings of the operators. That is, we need to calculate the
commutation relations of the magnetic membrane operator
and the electric ribbon operator.

In the case where G is Abelian, it is simple to calculate
the commutation relation described above. Let the path of the
electric ribbon operator be t and consider a magnetic mem-
brane operator Ch(m) applied on a membrane which intersects
with the path t . The path t intersects with the membrane m at
some edge i in t . The label of the path up to edge i is not af-
fected by the magnetic membrane because it does not intersect
with it. We denote this part of the path by t1. The path after i,
which we call t2, is similarly unaffected. However, the label of
the edge i itself is multiplied by either h or h−1, depending on
the relative orientation of the edge and the membrane. Then
the total path t is the composition of t1, the edge i and t2,
which we write as t = t1it2 (if the edge i points along the path,
otherwise t = t1i−1t2). This means that the path label operator
satisfies the following commutation relation with the magnetic
membrane operator:

ĝ(t )Ch(m) = ĝ(t1)ĝiĝ(t2)Ch(m)

= Ch(m)ĝ(t1)h±1ĝiĝ(t2),

where the inverse depends on the orientation of the membrane.
Because we are looking at the case where G is Abelian, we
can extract the factor h±1 to the front of the path operator and
combine the sections of path to obtain

ĝ(t )Ch(m)|GS〉 = Ch(m)h±1ĝ(t )|GS〉.
Now consider an electric ribbon operator, which has the

form ∑
g∈G

αgδ(g, ĝ(t )),

where αg is an arbitrary set of coefficients. This ribbon opera-
tor then satisfies the commutation relation∑

g

αgδ(g, ĝ(t ))Ch(m)|GS〉

= Ch(m)
∑

g

αgδ(g, h±1ĝ(t ))|GS〉

= Ch(m)
∑

g′=h∓1g

αh±1g′δ(g′, ĝ(t ))|GS〉 (13)

with the magnetic membrane operator. This relation is sim-
plified when we consider an electric ribbon operator whose
coefficients are described by an irrep R of G. As discussed in
Sec. III A, the electric ribbon operators labeled by irreps of G
form a basis for the space of electric ribbon operators, and so
we can decompose any electric ribbon operator into a sum of
such irrep-labeled ribbon operators. When G is Abelian, all of
the irreps are 1D, and so the basis ribbon operator labeled by
irrep R is given by

SR(t ) =
∑
g∈G

R(g)δ(g, ĝ(t )),

where R(g) is the representation of element g in the irrep,
and is a phase because the irreps are 1D when G is Abelian.
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FIG. 15. Schematic of a braid move (left) and a permutation
move (right). The translucent membrane is the surface swept by
the red loop (the loop at the top of each image), which is also the
membrane on which we apply the corresponding membrane operator.

Substituting this into Eq. (13), we see that the electric ribbon
operator labeled by an irrep R and the magnetic membrane
operator satisfy the commutation relation

SR(t )Ch(m)|GS〉 =
∑

g

R(g)δ(g, ĝ(t ))Ch(m)|GS〉

= Ch(m)
∑

g′=h∓1g

R(h±1g′)δ(g′, ĝ(t ))|GS〉

= Ch(m)
∑

g′
R(h±1)R(g′)δ(g′, ĝ(t ))|GS〉

= R(h±1)Ch(m)
∑

g′
R(g′)δ(g′, ĝ(t ))|GS〉

= R(h±1)Ch(m)SR(t )|GS〉. (14)

This is the same as the unbraided version Ch(m)SR(t ), ex-
cept that we have gained a phase of R(h) or R(h−1). Therefore,
under braiding the state obtains a simple phase R(h) (or the
inverse) and so the braiding is Abelian. The phase is R(h) if
the electric ribbon’s path meets the direct membrane before
the dual membrane, and the inverse otherwise, as we show in
Sec. S-IV A 1 of the Supplemental Material [20]. Note that
this is the same result that we would expect for conventional
discrete gauge theory (see, e.g., Refs. [22,23] and our discus-
sion of how this relates to higher gauge theory in Sec. II of
Ref. [14]).

2. Flux-flux braiding

Just as a point particle can be braided with a looplike
excitation in two ways, so can two loops be braided in multiple
ways. The allowed patterns of motion can be built from two
types of movement. First, we can move the loops around each
other (in the same way as we can move two point particles
around each other), which we call permutation. Second, we
can pull a loop through another loop (or over it, which is
equivalent to pulling the second loop through the first), just
as we saw when braiding point particles with loops. These
two moves are shown in Fig. 15. In this figure, in each case
the red loop is moved, with the path of its motion being
represented by the yellow membrane. The arrows indicate the
direction of motion. In this model, the permutation move is
trivial in that it is the same regardless of whether the green
loop is present or not. This is because the motion can be
performed by membrane operators acting on membranes that
never intersect. Then because the membranes do not inter-
sect, the membrane operators commute. Even if we choose

FIG. 16. Exchange of two excitations is implemented by mem-
branes which can be freely deformed so that they do not intersect.
This means that the corresponding commutation relation of operators
is trivial.

to use membrane operators that do intersect, as in Fig. 16,
the membranes can be deformed so that they do not intersect,
by using the topological property of membrane operators.
In the example shown in Fig. 16, a loop (shown as a small
red torus in the figure) is moved along a surface (indicated
by the red surface attached to the loop) that intersects twice
with a green membrane. Although the red loop intersects the
green membrane, the red loop does not pass through the larger
green loop excitation created by this green membrane. This
motion is performed by an operator placed on the red surface.
The red and green membranes can be deformed so that one
goes around the other, using the topological property of the
membrane operators. Then because the membranes do not
intersect (and indeed can be deformed so that they never come
close), the corresponding membrane operators commute and
so permutation is trivial. This is also true for permutation
involving nonconfined point particles or the E -valued loops:
in (3+1)D the permutation can be performed by ribbon or
membrane operators which do not intersect.

As we did with the flux-charge braiding, we can express the
braiding relation between two loops in terms of the commu-
tation relation between creation operators. The flux tubes are
created and moved by membrane operators, so the appropriate
commutation relation is between two membrane operators,
as indicated in Fig. 17. In the Abelian case, the two mag-
netic membrane operators commute, and so the loop braiding
between two magnetic fluxes is trivial. This is because in
this case, the magnetic membrane operator simply multiplies
each cut edge by the label of the magnetic operator. This is
in contrast to the non-Abelian case, where the action of the

FIG. 17. (Copy of Fig. 43 from Ref. [14]) The commutation of
operators used to calculate the braiding. The partially transparent
surfaces indicate the membranes for the operators, while the opaque
loops indicate the excited regions, which are the boundaries of the
membranes.
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membrane operator on each edge depends on the value of the
path from the start point to that edge. This means that, in the
Abelian case, the two membrane operators only share support
when their membranes cut some of the same edges, so that the
two membrane operators directly change the same edge label.
Even then, the action on a shared edge is the same regardless
of the order in which the operators act. Consider the action
of two membrane operators Ch1 (m1) and Ch2 (m2) on such a
shared edge i (i.e., one cut by the dual membranes of both
operators). If we first act with the membrane operator labeled
by h2 and then by the operator labeled by h1, the edge label
goes from gi to h1h2gi (possibly with inverses on h1 or h2,
depending on the relative orientation of the membranes and
the edge). On the other hand, when Ch1 (m1) acts first on the
edge, followed by Ch2 (m2), the total effect on the edge label is
given by gi → h2h1gi. This is the same as h1h2gi (because G
is Abelian), so the two membrane operators commute and the
braiding is trivial.

B. Non-Abelian case

1. Flux-charge braiding

In the case where G is non-Abelian, the braiding relations
between the magnetic fluxes and electric charges are a little
more complex, although they still match our expectations
from conventional gauge theory (see, e.g., Refs. [22,23] and
our discussion in Sec. II of Ref. [14]). Recall from the Abelian
case that the electric string operator fails to commute with
the magnetic membrane operator because the latter operator
changes the label of one (or possibly more) of the edges
along the path of the electric ribbon. In the Abelian case, the
action on the path element was simple. The affected edge was
multiplied by a fixed element h or the inverse, and this factor
could be brought to the front of the product of group elements
that make up the path element, so that the entire path element
was also multiplied by h or the inverse. In the non-Abelian
case, this is no longer true. First, any changes to the edge
cannot simply be extracted to the front of the path element
by commutation. Second, the action of the membrane on the
individual edge that is changed is more complex, depending
on the path from the start point of the magnetic membrane
to the affected edge. This means that, rather than multiply
the affected edge label by a fixed element h, we multiply the
label by an element within the conjugacy class of h, with this
element depending on the path element from the start point
of the membrane to the edge. However, this path element
depends on the state that we act on, and even in the ground
state the element is not generally fixed (the ground state is
made of a superposition of states with different values of this
path element) and so we must leave this path element as an
operator. Therefore, the braiding relation is not generally well
defined. To illustrate this idea, consider performing exactly
the same braiding as in the Abelian case, by passing an elec-
tric ribbon operator through a magnetic membrane operator.
Again we split the path t of the electric ribbon into the path t1
before the intersection; the edge i along which the ribbon and
membrane intersect; and the path t2 after the intersection. Of
these parts, only the group element ĝi assigned to the edge i
is affected. For now, assume that the edge i points along the
path t , so that t = t1it2. If this path passes through the direct

membrane of the magnetic membrane operator before the dual
membrane (i.e., for a particular choice of relative orientation
of ribbon and membrane), we have that

ĝiC
h(m) = Ch(m)ĝ(ts)−1hĝ(ts)ĝi,

where ts is the path from the start point of the membrane to the
crossing point and we have assumed that the ribbon is aligned
so that the path reaches the direct membrane of the magnetic
membrane operator before the dual membrane. Then for the
entire path element, we have that

ĝ(t )Ch(m) = ĝ(t1)ĝiĝ(t2)Ch(m)

= Ch(m)ĝ(t1)ĝ(ts)−1hĝ(ts)ĝiĝ(t2).

If we had taken edge i to point against the path, we would
have a similar result because the edge element ĝi would appear
with an inverse in the path element, but the edge element
would be right multiplied by the inverse factor ĝ(ts)−1h−1ĝ(ts)
by the membrane operator, so we would obtain

ĝ(t )Ch(m) = ĝ(t1)ĝ−1
i ĝ(t2)Ch(m)

= Ch(m)ĝ(t1)[ĝiĝ(ts)−1h−1ĝ(ts)]−1ĝ(t2)

= Ch(m)ĝ(t1)ĝ(ts)−1hĝ(ts)ĝ−1
i ĝ(t2).

We can combine these cases by introducing ĝσi
i , where σi is 1

if the edge and path align and −1 otherwise. Then we have

ĝ(t )Ch(m) = ĝ(t1)ĝiĝ(t2)Ch(m)

= Ch(m)ĝ(t1)ĝ(ts)−1hĝ(ts)ĝσi
i ĝ(t2).

By inserting the identity in the form ĝ(t1)−1ĝ(t1), we can write
the commutation relation as

ĝ(t )Ch(m) = Ch(m)ĝ(t1)ĝ(ts)−1hĝ(ts)ĝ(t1)−1ĝ(t1)ĝσi
i ĝ(t2)

= Ch(m)[ĝ(ts)ĝ(t1)−1]−1h[ĝ(ts)ĝ(t1)−1]ĝ(t ). (15)

This is similar to the commutation relation from the
Abelian case, except that the path element gains a factor of

[ĝ(ts)ĝ(t1)−1]−1h[ĝ(ts)ĝ(t1)−1],

instead of simply h. This factor is an operator and has no
definite value in general, so the effect on the electric excitation
depends on which configuration within the ground state we
consider and we cannot extract a definite braiding relation.
However, there is one special case where we can obtain a
definite braiding relation. When the electric string starts at the
start point of the magnetic membrane, then the path sections ts
and t1 start and end at the same points as each other. Provided
that these path sections can be deformed into one another
without crossing over any excitations, the fake-flatness con-
dition imposed by the plaquette energy terms ensures that
ĝ(ts) = ĝ(t1) up to a potential factor of ∂ (e) for some e ∈ E .
Such factors of ∂ (e) do not affect

[ĝ(ts)ĝ(t1)−1]−1h[ĝ(ts)ĝ(t1)−1]

because ∂ (e) is in the center of G, so the factor of ∂ (e) and
∂ (e)−1 from ĝ(ts) and ĝ(ts)−1 cancels. Therefore,

[ĝ(ts)ĝ(t1)−1]−1h[ĝ(ts)ĝ(t1)−1]ĝ(t ) = ∂ (e)−1h∂ (e)ĝ(t )

= hĝ(t ). (16)
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This relation then gives us a simple braiding relation in
the “same-site” (or same start-point) case. Note that we gave
this braiding relation for a particular choice of relative ori-
entation for the ribbon and membrane operator, and if we
reversed this relative orientation then the element g(t ) would
instead be multiplied by h−1 (as we show in Sec. S-IV A 1
in the Supplemental Material [20]). This braiding relation is
a simple extension of the Abelian case. Having said that, the
non-Abelian nature of the group does still have some rele-
vance when we use our irrep basis for the electric operators.
Recall that the electric excitations are labeled by irreps of the
group G, combined with matrix indices for the irrep. When
G is Abelian, these representations are 1D and we need not
worry about matrix indices. However, when G is non-Abelian
some of these irreps are not 1D. We can look at the effect of
braiding on an electric ribbon labeled by a representation R
and its indices, for which we find that∑

g∈G

[DR(g)]abδ(g, ĝ(t ))Ch(m)|GS〉

=
∑
g∈G

Ch(m)[DR(g)]abδ(g, hĝ(t ))|GS〉

=
∑
g∈G

Ch(m)[DR(g)]abδ(h−1g, ĝ(t ))|GS〉

=
∑

g′=h−1g

Ch(m)[DR(hg′)]abδ(g′, ĝ(t ))|GS〉

= Ch(m)
|R|∑

c=1

[DR(h)]ac

∑
g′∈G

[DR(g′)]cbδ(g′, ĝ(t ))|GS〉. (17)

We see from Eq. (17) that the braiding mixes electric ribbon
operators labeled by different matrix indices but the same
representation. The fact that the representation is left invari-
ant suggests that the representations label the purely electric
topological sectors, given that braiding cannot mix different
sectors.

The importance of the start points of the membrane and
ribbon operators when it comes to braiding can be interpreted
in terms of gauge theory. Just as we discussed for the (2+1)D
case in Ref. [15], the start point of the magnetic membrane
can be seen as a unique point in that the flux tube produced by
the magnetic membrane operator has a definite flux label with
respect to this point even within the conjugacy class. When
we give a flux tube a flux label, we must specify the path
with respect to which we measure this flux. The path must link
with the flux tube, but smoothly deforming the path should not
change the flux label measured (where by smoothly deform,
we mean pulling through the space represented by the lattice
to another position on the lattice). An exception to this is the
start point of the path. Moving this start point can change the
flux label that we would assign to the flux tube (see, e.g.,
Ref. [24]). Suppose that the flux label measured with respect
to a particular start point is h. Then if we measure the flux
label of the flux tube starting from a different point, the result
is related to h by conjugation by a path element for a path
between the two start points. In our model this path element
is not usually well defined because the energy eigenstates
are usually linear combinations of states with different group

elements assigned to the path. We say that the path element
is generally operator valued. Therefore, the flux tube does not
generally have definite flux with respect to points other than
the start point (with an exception if the flux label is in the
center of G). This nondefinite flux is reflected in the flux-flux
braiding. This idea is explained more clearly in the context of
field theory in Ref. [24].

A second interpretation of the start-point dependent fusion
comes from anyon theory. We only have definite fusion in
the case where the membrane operators share a start point.
Then, as in the (2+1)D case, we may expect that we only have
definite braiding when the fusion channel is definite: that is,
when the operators involved have a common start point.

2. Flux-flux braiding

As with the flux-charge braiding, the general result of
braiding two magnetic fluxes is more complicated when G
is non-Abelian. However, as with the flux-charge braiding,
there is a special case with simple braiding relations, when the
two magnetic membrane operators have the same start point.
This makes sense if we think of the base point as the point of
definite flux because we only expect a definite braiding result
if the two flux tubes have definite flux when measured with
respect to the same point.

We consider the case where one flux tube (which we will
call the inner loop) is passed through another loop (which we
call the outer loop). The inner loop takes the role of the red
loop in the left diagram of Fig. 15. Then in the same start-point
case the label of the inner loop is conjugated by the label of
the outer loop, while the label of the outer loop is unchanged.
That is, if the label of the inner membrane operator is k and
the outer membrane operator is labeled by h, under braiding
the label of the excitation from the inner membrane becomes
h−1kh and the label of the outer membrane is unchanged.
The simplest way to obtain this braiding relation is to use the
topological nature of the operators. We can freely deform the
membranes, as long as they do not cross an excitation and no
excitations are moved in doing so. We can therefore pull the
membrane that produces the inner loop fully through the other
membrane (as there are no excitations within the membrane
itself). However, when we do this we must keep the start
point fixed (because it may be excited), so the start point is
not moved through the outer membrane. However, recall that
the action of the magnetic membrane operator depends on a
set of paths from the start point to the edges being changed
by the membrane operator. As we deform the membrane, the
start of these paths (the start point) is fixed, while the ends
are pulled through the outer membrane (if these ends were not
already on the other side of the membrane). Therefore, all of
these paths intersect the outer membrane. This means that the
group elements of these paths will be changed by the action
of the outer membrane operator, which will in turn affect the
action of the inner membrane operator. To see how the inner
membrane operator changes under the commutation relation
we need to know how the labels of these paths are affected.

As an example, consider Fig. 18. In the left side of the
figure we have the membranes in their original position, with
the red membrane nucleating a loop at the common start point
and moving the red loop through the green one. To calculate
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FIG. 18. To calculate the braiding of two loops, we consider
the situation shown on the left where we first apply a magnetic
membrane operator Ch(m2), then apply a membrane operator Ck (m1)
which intersects with the first membrane and pushes a loop excitation
through that first membrane. We choose the start points of these two
membranes to be the same. Example paths from the common start
point to the two membranes are shown as (yellow) cylinders. We can
use the topological property of the membrane operators to deform the
inner (red) membrane m1, and pull it through the green membrane m2

to obtain the image on the right-hand side. However, when we do so
we must leave the start point fixed. Therefore, the paths from the start
point to each point on the membrane m1, such as the example path
shown here, must pass through m2. This leads to a nontrivial braiding
relation in general.

the commutation relation, we deform the red membrane so
that it is entirely pulled through the green membrane, as
in the right side of Fig. 18. However, when we deform a
membrane we must keep any excitations fixed, including the
potentially excited start point. Therefore, the start point is
fixed. This means that the paths from the start point to the
red membrane, like the example path to the red membrane
in the right-hand side of the figure, pass through the green
membrane and so can be affected by the green membrane
operator. This is significant because these paths determine the
action of the membrane operator, as explained in Sec. III B.
An edge i cut by the dual membrane of the magnetic mem-
brane operator Ck (m1) has its edge label gi multiplied by
a factor g(s.p.(m1) − vi )−1kg(s.p.(m1) − vi ) (or the inverse),
where vi is the vertex on the direct membrane that is attached
to i. These factors have the form g(t )−1hg(t ), where each path
t now intersects with the green membrane operator Ch(m2).
We must therefore find the commutation relation of such a
path label operator g(t ) with the membrane operator.

We already saw how a magnetic membrane operator affects
the label of paths that pierce the membrane when we looked at
the charge flux braiding. From the charge braiding calculation
we know that the label of a path t that starts at the common
start point and intersects the outer membrane changes from
g(t ) to hg(t ), where h is the label of the outer membrane
operator being intersected [see Eq. (16)]. As discussed previ-
ously, this path element g(t ) appears in the action of the other
(inner) membrane operator. If the inner membrane has label k,
the membrane operator acts on an edge cut by the membrane
by multiplying the edge label by g(t )−1kg(t ), where t is the
path from the start point to that edge. Under commutation
with the outer membrane, when g(t ) changes to hg(t ), this
action becomes multiplication by g(t )−1h−1khg(t ), which is

equivalent to the action of an unbraided membrane of label
h−1kh. Therefore, we see that the label of one of the flux tubes
is conjugated by braiding. As we expect, the conjugacy class
of the flux is invariant under braiding, but the flux element
within the conjugacy class can be changed.

It is worth noting that if we had not deformed one mem-
brane to pull it entirely through the other, some of the paths
from the start point would not pierce the other membrane and
so would be unaffected by the commutation relation. This
means that the action of the membrane in the region from the
start point to the intersection of the membrane is unaltered.
This reflects the fact that a membrane operator moves the
loop excitation associated to it. Before the intersection, the
membrane operator is moving the excitation before it has
braided, so its label is the original label of the loop. After
the intersection, braiding has occurred and so the label of the
membrane (and the excitation) has changed. The precise point
at which braiding has occurred is somewhat arbitrary in an
anyon theory (although we can guarantee whether braiding
has occurred if the excitations start and end in the same po-
sition). Similarly, the choice of location for the membranes
is somewhat arbitrary when the membrane operators act on
the ground state because we can deform the membranes
without affecting their action, and so we can change the lo-
cation where the membrane operators intersect by deforming
the membranes. This reflects the freedom in considering at
which point during the motion the braiding transformation
is applied (although if the excitations start and end in the
same position, then the membrane operators will definitely
intersect if braiding occurs, regardless of how we deform the
membranes).

Having obtained the braiding relation, it is useful to con-
sider how braiding affects a linear combination of magnetic
membrane operators with label within a certain conjugacy
class, such as

∑
h αhCh(m). If the magnetic membrane oper-

ator is an equal superposition of operators labeled by each
element of a conjugacy class, then the conjugation of the
labels by the braiding only permutes the labels within the
conjugacy class, which has no effect when the coefficient for
each element is the same. Therefore, the overall membrane
operator transforms trivially under braiding. For a general
superposition, the conjugation (and so permutation of the la-
bels) does affect the operator and so the braiding is nontrivial.
These conditions match the conditions for the start point of the
membrane operator to be unexcited or excited. A magnetic
operator with an unexcited start point is an equal superpo-
sition of magnetic operators with labels within a conjugacy
class, and so is unaffected by braiding through other magnetic
excitations. On the other hand, a magnetic operator with an
excited start point will transform nontrivially when it braids
through some other magnetic excitations. This is because, if
the start point is excited, the magnetic excitation carries a
pointlike charge, which enables it to braid nontrivially with
other magnetic excitations when passed through them. Note
that the same condition does not hold for the outer membrane
operator, which can affect the inner membrane operator even
if it does not have an excited start point. This is because we
can shrink the inner loop to a point before braiding it without
affecting the braiding relation, whereas the looplike character
of the outer loop is essential for the braiding.
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FIG. 19. Two linked loops may have an energetically costly link-
ing string between them, here indicated by the short (yellow) string.

It is important to note that the precise form of the braiding
relation depends on the orientation of the loops involved. Flip-
ping a magnetic excitation is equivalent to changing its label
from h to h−1. Therefore, if we were to flip the orientation
of the outer membrane from our earlier calculation, then the
label of the inner membrane would change from k to hkh−1

under braiding rather than changing to h−1kh. Flipping the
orientation of the inner one does not change the expression
because the transformation is the same when we invert both
sides: k−1 → h−1k−1h ⇒ k → h−1kh. Therefore, if the orien-
tation of both loops is flipped, the braiding transformation is

k → hkh−1. (18)

3. Linking

In addition to the nontrivial loop-loop braiding, there is
another feature of loop excitations not present for point ex-
citations. Two loop excitations may be linked. In this case,
depending on the labels of the two excitations, there may be an
energetically costly “linking string” that joins the two loops.
This situation is indicated in Fig. 19. As we show in Sec. S-IV
A 4 in the Supplemental Material [20], this linking string is
present between two linked magnetic excitations when their
labels do not commute. If the two loops are labeled by g and
h and their membranes have the same start point, then the two
loops are linked by a string with a label similar to ghg−1h−1.
The exact label depends on the relative orientations of the two
loops and which path we choose to use to define the flux of
the linking string (so g or h could appear with an inverse in
the label of the linking string, or the label could be conjugated
by g or h).

This linking string indicates that there is an obstruction to
pushing the two loops through one another and so pushing
them through results in an energetically costly linking string.
One way of viewing this is that the two strings are unable to
pass through each other. Therefore, instead of the loops being
pushed through each other, one is deformed to accommodate
the other, as shown in Fig. 20. In Fig. 20, part of one of the
loops envelops the other one and folds back on itself, as seen
in the bottom right of the figure (this becomes the pink string
in the lower left of the figure). We can consider this part of
the two loops as the linking string. It is possible to work out
the flux label of the linking string from this picture by writing
a path that links with the thin section as a combination of the
paths defining our two original fluxes (recall from Sec. IV B 1
that a flux tube is defined along with a path linking with that
flux tube, which measures the flux value). A more complete

FIG. 20. Given two loops (blue and red here) that cannot pass
through each other, we can push them together. To do this we must
deform the boundary of one of the loops (second figure). The defor-
mation then encloses the other loop (third figure). We can consider
this deformed section of the loop as a new object, which is the
linking string (colored pink in the fourth figure), whose flux label
will depend on the labels of the two linked loops.

argument for this (in terms of generic fluxes, rather than in
terms of this specific model) is given in Ref. [24].

The presence of the linking string indicates that further
relative motion of the two loops is nontrivial because such
motion will move the string (the position of which can be
detected through the energy terms). For example, we can
consider rotating one of the loops by a full rotation. This
would be a trivial motion if the loops were unlinked. However,
when the loops are linked, the linking string will follow this
rotation, as shown in Fig. 21, indicating that the motion is
nontrivial. In order to implement this rotation, we make the
direct membrane paths (the paths that we defined when con-
structing the membrane operator) spiral outwards, wrapping
around the linking (blue) loop. If we wanted to write the label
of these paths in terms of the label of an unwrapped path,
we would gain a factor that accounts for the flux of the blue
loop. This in turn affects the action of the membrane operator,
changing the effective label of parts of the membrane operator
by conjugation by the flux of the blue loop.

4. Three-loop braiding

It has become clear [25,26] that when considering loops,
the simple case where two loops pass through each other (two-
loop braiding, shown in the left side of Fig. 15) that we have
described so far does not fully describe the general topological
properties of loops. A more general example of braiding is
where two loops pass through each other while both loops are

FIG. 21. Rotating a linked loop drags the linking string and con-
jugates the label of part of the membrane of the rotating loop.
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FIG. 22. An example of three-loop braiding. The open strings
(orange, purple, and cyan) are possible linking strings.

linked to a third loop (see Fig. 22). This is known as three-loop
[25] or necklace braiding [27].

In this model, however, the result of three-loop braiding is
similar to that of the ordinary braiding. The only difference
is that the two loops may also drag linking strings with the
third loop. This is shown in Fig. 22. The transformation of the
loop labels is otherwise the same as in the ordinary case. One
exception is that the linking string of two magnetic excitations
can cancel the confining string of a confined blob excitation
(provided that the labels of the linking string and blob excita-
tion agree, as described in Sec. S-IV A 4 in the Supplemental
Material [20]), which enables those blob excitations to move
and braid freely while attached to a linked flux, which they
would not normally be able to do.

C. Loop-blob braiding

So far we have considered the excitations that are described
by the group G. The final nontrivial braiding is between the
two types of excitation that are associated to the group E , the
E -valued loops and blob excitations. In this case it is easy to
find the braiding relations by looking at the effect of the blob
ribbon operator on the surface measured by the operator that
produces the loop. We consider a situation where the blob ex-
citation passes through the loop excitation. To implement this
situation on our lattice, we apply both an E -valued membrane
operator and a blob ribbon operator whose path intersects with
that membrane, as shown in Fig. 23.

In order to compute the braiding relation, we compare the
situation where we first create the loop and then push the
blob through, thus performing the braiding move, with the one
where we push the blob through empty space before produc-
ing the loop. The relevant commutation relation is shown in
Fig. 24.

As we saw in Sec. III D, the blob ribbon operator with
label e multiplies the labels of the plaquettes pierced by its
path by e or e−1, depending on the relative orientation of the
plaquette and ribbon. This action is not sensitive to the pres-
ence of the E -valued loop excitation and so the blob ribbon

FIG. 23. Schematic of blob-loop braiding. The blue cubes (dark
gray in grayscale) represent the blob excitations at the ends of the rib-
bon operator (whose ribbon is represented by the translucent cuboid
and the arrow). The ribbon operator moves one of the blob excitations
through the looplike excitation produced by an E -valued membrane
operator applied on the translucent (green) membrane.

operator is unaffected by the commutation. On the other hand,
the membrane operator for the loop excitation is affected by
the action of the blob ribbon operator. Recall that the E -
valued membrane operator measures the surface element of
the membrane on which it is applied. This surface element,
ê(m), is a product of the elements of individual plaquettes:
ê(m) = ∏

plaquettes in m ê±1
plaquette, where the ± accounts for the

relative orientation of the surface and plaquette. We defined
the blob ribbon operator to intersect the membrane, and so it
will affect the label of one of the plaquettes in this product.
If the blob ribbon operator pierces the membrane m through a
plaquette q, then the label eq of that plaquette is multiplied by
e or e−1, depending on the relative orientation of the plaquette
and the ribbon. This in turn means that the contribution e±1

q of
the plaquette to the surface m will be multiplied by e or e−1,
depending on the relative orientation of the membrane and the
ribbon. The orientation of the membrane matters rather than
that of the plaquette because the ±1 in the expression for the

FIG. 24. In order to determine the blob-loop braiding relations,
we compare the situation shown in the top line, where we first apply
an E -valued membrane operator and then a blob ribbon operator that
intersects with that membrane, to the situation shown in the bottom
line, where we apply the operators in the opposite order. Here |ψ〉
is any state with no other excitations near the support of the two
operators (e.g., a ground state).
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surface label accounts for the relative orientation of plaquette
and membrane (if the plaquette is antialigned with the mem-
brane, the inverse in e−1

q converts a factor of e from the ribbon
operator into e−1 if the orientation of the ribbon opposes
the plaquette but matches the membrane, or vice versa if the
orientation of the ribbon matches the plaquette but opposes the
membrane). If the orientation of the membrane matches the
orientation of the blob ribbon operator, e±1

q will be multiplied
by e−1. This indicates that ê(m)Be(t ) = Be(t )e−1ê(m) in this
case. Then, considering the basis operator for our space of
E -valued membrane operators labeled by an irrep γ of E [as
defined in Eq. (12)], the commutation relation with the blob
ribbon operator Be(t ) is given by

Be(t )Lγ (m)|GS〉 = Be(t )
∑
e′∈E

γ (e′)δ(e′, ê(m))|GS〉

=
∑
e′∈E

γ (e′)δ(e′, eê(m))Be(t )|GS〉

=
∑
e′∈E

γ (e′)δ(e−1e′, ê(m))Be(t )|GS〉

=
∑

e′′=e−1e′
γ (ee′′)δ(e′′, ê(m))Be(t )|GS〉

= γ (e)
∑
e′′∈E

γ (e′′)δ(e′′, ê(m))Be(t )|GS〉,

where we used the fact that E is Abelian to take γ as a 1D
irrep and separate γ (ee′′) into γ (e) and γ (e′′). Therefore,

Be(t )Lγ (m)|GS〉 = γ (e)Lγ (m)Be(t )|GS〉. (19)

Having the E -valued membrane operator on the left of the
product (and the blob ribbon operator on the right) corre-
sponds to the unbraided case (because in this case the blob
excitation moved before the loop excitation is present), so
the braiding of our two excitations results in accumulating a
phase of γ (e). A similar argument holds in the case where the
membrane operator and blob ribbon operator are antialigned,
except that we should replace e by its inverse.

It is worth noting that the blob excitations with label not
in the kernel of ∂ (that is the confined blob excitations, as
we saw in Sec. III D) braid nontrivially with the condensed
E -valued loop excitations (those with trivial representation of
the kernel), while those with label in the kernel braid trivially
with them. This is because the condensed E -valued loop exci-
tations have trivial representation of the kernel: γ (eK ) = 1 for
eK in the kernel. Therefore, the phase gained is 1 when a con-
densed loop braids with an unconfined blob (which carries a
label in the kernel). This matches our expectation that only the
confined excitations can braid nontrivially with the condensed
excitations.

D. Summary of braiding when � is trivial

For convenience, we summarize the excitations that braid
nontrivially with each other in Table II. We can see that
the excitations split into two sets. The electric and magnetic
excitations (the excitations corresponding to the group G)
braid nontrivially with each other and the blob and E valued
loop excitations (the excitations corresponding to E ) braid

TABLE II. A summary of which excitations braid nontrivially
in case 1, where � is trivial. A tick indicates that at least some
of the excitations of each type braid nontrivially with each other,
while a cross indicates that there is no nontrivial braiding between
the two types. Notice that the table has a block-diagonal structure,
with nontrivial braiding only in the blocks.

Nontrivial Magnetic E -valued

Braiding? Electric flux Blob loop

Electric ✗ � ✗ ✗

Magnetic
flux � � ✗ ✗

Blob ✗ ✗ ✗ �
E -valued
loop ✗ ✗ � ✗

nontrivially with each other, but there is no nontrivial braiding
between the two sets.

V. RIBBON AND MEMBRANE OPERATORS
IN THE FAKE-FLAT CASE

Now that we have considered the first of our special cases,
where � is trivial, we move on to another of our special cases
(case 3). We consider the case where our groups G and E , as
well as our maps � and ∂ , are completely general, but we re-
strict our Hilbert space to only allow fake-flat configurations.
Many of the features of the excitations are common between
the two cases, so we will examine the differences between
them rather than repeating our previous discussion entirely.

A. Electric excitations

The electric excitations are unchanged by taking � non-
trivial. Just as in the � trivial case, we measure the value of
a path and assign a weight according to the value of the path.
This creates two pointlike excitations at the ends of the path.
The operators are best labeled by irreps of the group G, with
nontrivial irreps giving the excitations and the trivial irrep
giving the identity operator. The excitations labeled by irreps
with a nontrivial restriction to the image of ∂ are confined.

B. E-valued loop excitations

Next we consider the E -valued loop excitations, which are
produced by membrane operators that measure the surface
label of a membrane:

L�α (m) =
∑
e∈E

αeδ(ê(m), e).

Here ê(m) is the surface label of the membrane m and the αe

are a general set of coefficients. This operator has the same
form as the corresponding operator for the � trivial case.
However, there is a slight difference when we consider our
irrep basis for the space of E -valued membrane operators [see
Eq. (12) for the � trivial case]. Because our group E may
now be non-Abelian, the irreps are generally not 1D. This
means that our basis for the E -valued membrane operators
must include the matrix indices for those irreps, so that our
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general basis operator takes the form

Lμ,a,b(m) =
∑
e∈E

[Dμ(e)]abδ(ê(m), e), (20)

where μ is an irrep of E , and a and b are the matrix indices.
In addition to this slight difference in the presentation of

the basis operators, we also have some physical differences
compared to the � trivial case. When � is nontrivial, when-
ever we measure a surface we must specify a base point with
respect to which we measure that surface label [4]. Because
the membrane operator for the E -valued loop excitations in-
volves measuring a surface, we must specify a base point for
the measurement. We call that base point the start point of
our membrane operator. Similarly to the start point of the
magnetic membrane operator, this start point may be excited
by the action of the E -valued membrane operator. Recall from
Sec. II that a vertex transform at the base point of a surface
affects the value of that surface, with Ag

v taking the surface
label from e to g� e. This means that the vertex term (which
is made of a sum of vertex transforms) at the start point of
our membrane operator may not commute with our membrane
operator, which may result in the vertex being excited (while
the other vertex terms are still left unexcited). Whether the
start point vertex is excited or not depends on whether the
coefficients of δ(ê(m), e) are a function of the � classes of E ,
where two elements e1 and e2 are in the same � class if there
exists a g ∈ G such that e2 = g� e1 (this is an equivalence
relation). If the coefficient for each element e ∈ E is equal to
the coefficient for each element related by the � action, such
as g� e, then the start point is not excited. On the other hand,
if for each � class the coefficients for the elements within
that � class sum to zero, then the start point is excited. We
note that the irrep basis given in Eq. (20) does not provide
a good description for this phenomenon, because the coeffi-
cients [Dμ(e)]ab given by the matrix elements of an irrep do
not transform in a particular way under an � action, and this
action can even cause mixing between irreps. Generally, to
get membrane operators which either definitely excite the start
point or definitely leave it unexcited, we must consider linear
combinations of the basis operators given in Eq. (20).

In addition to the start point, we also need to be careful
when determining the boundary of the surface, which supports
the looplike excitation. The boundary of the surface always
starts and ends at the start point of the membrane operator
because this start point is the base point of the surface. This
means that if we nucleate a looplike excitation at the start
point and then try to move it away from the start point, part
of the boundary still connects to the start point, as shown in
Fig. 25. This section of the boundary is attached to the start
point and the edges in this section appear twice in the bound-
ary, with opposite orientation each time (see Sec. S-I C in the
Supplemental Material of Ref. [15] for more details about the
boundary of surfaces), just like a whiskering path of the type
considered in Sec. I D of Ref. [14] (also shown in Fig. 4). For
this reason, we will refer to such a section of boundary as a
whiskered section. As we showed in Sec. S-I C of the Supple-
mental Material of Ref. [15], the edges along such sections of
boundary may be excited if E is non-Abelian (whereas if E is
Abelian these edges are never excited). Whether these edges
are excited by a particular membrane operator or not depends

FIG. 25. The boundary of the surface (green) measured by the
membrane operator starts and ends at the start point (yellow sphere).
If this start point is away from the naive boundary of the membrane
(represented by the red torus) there may be a line of excited edges
(blue path) connecting the start point to the looplike excitation be-
cause the surface label measured by the membrane operator generally
transforms nontrivially under such edge transforms when E is non-
Abelian. This indicates that for some looplike excitations there is an
energetic cost to moving the excitation away from the start point.

on the coefficients associated to that membrane operator. For
an E -valued membrane operator

L�α (m) =
∑
e∈E

αeδ(ê(m), e)

with a general set of coefficients αe, the edges on the
whiskered section of boundary are left unexcited if the coef-
ficients are a function of conjugacy class, so that αe = α f e f −1

for all e, f ∈ E . For example, if the coefficients are given by
the characters of an irrep μ of E (which are invariant under
conjugation), then the edges will be unexcited. On the other
hand, the edges will be excited if the coefficients within each
conjugacy class sum to zero. One important thing to note
is that if the start point is not excited, then the edges from
the start point to the loop are not excited either (as we may
expect because the start point becomes unimportant when
it is unexcited). To see this, we note that if the start point
is unexcited, then the coefficients of the membrane operator
are invariant under the � action: αe = αg�e for all g ∈ G
and e ∈ E . In particular, this means that the coefficients are
invariant under an action of the form ∂ ( f )� for any f ∈ E :
αe = α∂ ( f )�e. However, because of the Peiffer condition (2),
∂ ( f ) � e = f e f −1. That is, the � action from an element in
∂ (E ) is equivalent to conjugation. Therefore, if the coefficient
is invariant under any � action, it is also invariant under
conjugation, and so if the start point is unexcited then so are
any edges on the whiskered section of the boundary.

This idea that there may be a string of excited edges from
the start point to the looplike excitation is significant for the
behavior of the excitation. If the edges are not excited, then it
indicates that we can move the looplike excitation created by
the membrane operator without dragging any excitations from
the start point. That is, the excitation is not confined. On the
other hand, if the edges are excited, then we cannot move the
looplike excitation away from the start point without incurring
an energy cost. This means that the excitation is confined.
However, note that the additional energy cost is associated to
a confining string which connects the loop to the start point.
This additional energy does not depend on the size of the
loop itself. As we discuss in Sec. IX A (although we do not
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consider the fake-flat case in that section, we would expect
a similar result), the looplike excitations of this model can
also carry pointlike charge (which is balanced by the charge
carried by the start point). The fact that the confining energy
cost depends on the separation of the loop and start point
(rather than the area of the membrane enclosed by the loop)
suggests that it is the pointlike charge that is confined, rather
than the looplike charge. This is further supported by the fact
that the membrane operators that do not produce an excitation
at the start point never produce confined looplike excitations.

C. Blob excitations

The blob excitations are changed significantly by taking �
nontrivial and enforcing fake flatness at the level of the Hilbert
space. First, as we saw in Sec. III D, in the � trivial case some
of the blob ribbon operators excite the plaquettes along their
length (and would still do so when we take � to be nontrivial).
These confined ribbon operators must be thrown out in the
fake-flat case because they violate fake flatness. This means
that the labels of the blob ribbon operators are restricted to
lie in the kernel of ∂ . Second, the action of each blob ribbon
operator is more complicated. In addition to the path between
the centers of blobs, we must specify a path on the lattice from
a privileged vertex, called the start point of the operator, to
the base points of each affected plaquette. We call this path
the direct path, and call the original path (which pierces the
affected plaquettes) the dual path. We can either have a single
direct path that runs through each of these base points (so that
the path to each base point is an extension of the path to the
previous base point), or instead have a set of paths, one for
each pierced plaquette. Now, instead of simply multiplying
the plaquette labels by e or e−1, the blob ribbon operator left
multiplies the label of each plaquette p pierced by the dual
path by g(s.p. − v0(p))−1 � e or right multiplies the plaquette
elements by the inverse, where [s.p. − v0(p)] is the path from
the start point of the ribbon operator to the base point of the
affected plaquette and g(s.p. − v0(p)) is the corresponding
group element. As in the � trivial case, whether the element or
its inverse are used depends on the orientation of the plaquette
with respect to the dual path of the blob ribbon operator, with
the inverse used if the plaquette aligns with the dual path. A
simple example of this action is shown in Fig. 26.

The way the direct path affects the action of the blob ribbon
operator is similar to how the direct path affects the action
of the magnetic ribbon in (2+1)D (as we saw in Ref. [15]),
except that instead of conjugation by the path element we
have this � action. If we were allowed blob ribbon opera-
tors labeled by a general element of E (rather than just an
element in the kernel of ∂), the precise path chosen for this
direct path would be significant. This is because when we
deform a path t over a fake-flat surface, while keeping the
start and end points fixed, the path label g(t ) is altered by a
factor of the form ∂ ( f ) for some f ∈ E . When E is general,
this additional factor of ∂ ( f ) causes a nontrivial difference
in expressions of the form g(t )−1 � e, such as those which
appear in the action of the blob ribbon operator. Specifically,
from the Peiffer conditions [Eqs. (1) and (2) in Sec. II] we
have (∂ ( f )g(t )−1) � e = f [g(t )−1 � e] f −1. However, when
we restrict the element e labeling the blob ribbon operator to

FIG. 26. When � is nontrivial, the effect of the blob ribbon
operator on a plaquette depends on the (inverse of the) path label
for a path from a designated start point of the operator (yellow
sphere labeled s.p.) to the base point of the plaquette (the gray sphere
attached to each plaquette). As in the � trivial case, the orientation
of the plaquette (indicated by the curved yellow arrows) determines
whether the plaquette label is left multiplied by e or right multiplied
by e−1.

be in the kernel of ∂ , we also ensure that e is in the center of
the group E . To see that elements in the kernel of ∂ are also
in the center of E , we again use the Peiffer conditions. Given
that ek is an element of the kernel of ∂ , the second Peiffer
condition [Eq. (2)] tells us that

ek f e−1
k = ∂ (ek ) � f = 1G � f = f

⇒ ek f = f ek ∀ f ∈ E .

That is, elements in the kernel must commute with all el-
ements of E . We also note that if ek is an element of the
kernel, then so is g� ek for any g ∈ G. This is because ∂ (g�
ek ) = g∂ (ek )g−1 = gg−1 = 1G, from the first Peiffer condition
[Eq. (1)]. Therefore, for any element ek in the kernel of ∂ ,
g� ek is also in the kernel of ∂ and so is in the center of E .
This means that in our earlier expression, f [g(t )−1 � e] f −1 is
equal to g(t )−1 � e when e is in the kernel, and so the addi-
tional factor of ∂ ( f ) from deforming the path t is irrelevant, at
least when we act on states that obey fake flatness. Therefore,
when we restrict our blob excitations to the nonconfined ones,
which are labeled by elements of the kernel of ∂ , the precise
choice of paths from the start point to the base points of the
affected plaquettes does not matter. This insensitivity to the
path is only for smooth deformation over fake-flat regions,
so if the lattice supports noncontractible cycles then different
choices of path may give different actions for the ribbon op-
erator, with these different actions being equivalent to taking
different labels for all or part of the ribbon operator.

Much as we saw with the magnetic excitation in (2+1)D,
this dependence of the action of the blob ribbon operator on
the value of (sections of) the direct path may lead to the blob
ribbon operator exciting the start point of the operator. This
is because vertex transforms at the start point can affect the
path label of the direct path. As we show in Sec. S-I B 2 of
the Supplemental Material [20], the start-point vertex is not
excited if the ribbon operator is an equal superposition of all
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the ribbon operators labeled by elements in an � class (the
sets of elements related by the � action), but is excited if the
coefficients for the elements in each � class sum to zero.

D. Condensation and confinement

In Sec. III E, we discussed the pattern of confinement and
condensation exhibited by the excitations of the higher-lattice
gauge theory model when � is trivial. In addition, we ex-
plained that for any pair of groups G and E that form a
valid crossed module with � trivial, there is a family of
crossed modules (and so lattice models) differentiated from
each other by different maps ∂ (assuming that the two groups
can support different homomorphisms ∂). In each family, the
model described by the crossed module for which ∂ maps
only to the identity of G is an “uncondensed model” where
there is no condensation or confinement present. Then the
transition to other models described by the same groups G and
E (but different ∂) is a condensation-confinement transition.
When � is nontrivial, however, the picture is less clear. This
is because, given a model described by an arbitrary crossed
module, we cannot necessarily construct a corresponding un-
condensed model. To see this, consider a generic crossed
module (G, E , ∂,�). Now suppose that E is a non-Abelian
group. This means that there are some pairs of elements e, f ∈
E such that e f e−1 �= f . From the Peiffer condition (2) (see
Sec. II), this means that ∂ (e) � f �= f for this pair. However,
there is condensation and confinement when ∂ (E ) is not the
trivial group (as we discussed in the � trivial case in Sec. III E
and will describe in the fake-flat case later in this section).
If there were an “uncondensed” model with ∂ → 1G, then
∂ (e) � f �= f from the non-Abelian nature of the group E
implies that 1G � f �= f . However, this is incompatible with
the definition of � as a group homomorphism from G to en-
domorphisms on E (see Sec. II), because this definition means
that the identity element 1G should be mapped to the identity
map on E . Therefore, there is no such crossed module and so
no “uncondensed” model corresponding to the pair of groups
G and E . Because the Hilbert space is fixed by the lattice
and the groups G and E , for a model described by a general
crossed module there does not seem to be a corresponding
uncondensed model with the same Hilbert space (at least not
in the space of higher-lattice gauge theory models, though
there may well be another model giving the “uncondensed”
phase). This means that we are unable to describe the general
model in terms of a condensation-confinement transition in
this work. However, we can still describe the pattern of con-
finement (i.e., which excitations cost energy to separate from
their antiparticle) and condensation (i.e., which operators act
equivalently to “local” operators on the ground state), which
we aim to do briefly in this section.

The first excitations to consider are the electric excitations,
some of which are confined due to their ribbon operators
exciting the edge terms along the ribbon. These excitations
have the same pattern of confinement as in the � trivial case
considered in Sec. III E. Namely, the confined electric rib-
bon operators

∑
g αgδ(ĝ(t ), g) have coefficients which satisfy∑

e∈E α∂ (e)g = 0 for all g ∈ G and the unconfined ribbon oper-
ators have coefficients which satisfy α∂ (e)g = αg for all g ∈ G
and e ∈ E (while general ribbon operators can be split into

contributions from the two cases and leave the edges along
the ribbon in a superposition of excited and unexcited states).

We next consider the blob excitations. Some of these,
namely, those created by blob ribbon operators with label
outside the kernel of ∂ , would be confined, but because the
mechanism for this confinement is the violation of the pla-
quette terms that enforce fake flatness, these ribbon operators
must be excluded from the fake-flat model.

So far, this pattern of confinement is the same as for the
� trivial case described in Sec. III E. However, unlike in
that case, some of the E -valued loops are also confined, as
we described in Sec. V B. That is, the E -valued membrane
operators ∑

e∈E

αeδ(ê(m), e)

whose coefficients αe are sensitive to conjugation (i.e., αe

does not equal α f e f −1 for some pair e, f ∈ E ) may produce an
excited string (in addition to the loop excitation itself) as the
loop is moved away from the start point of the membrane. In
particular, if the coefficients satisfy

∑
f ∈E α f e f −1 = 0 for each

e ∈ E , then the string is definitely excited (whereas the string
is definitely not excited if αe = α f e f −1 for all e, f ∈ E ). As
we noted in Sec. V B, this confinement appears to correspond
to confinement of the pointlike charge carried by the loop
excitation, rather than of the looplike charge, because the
confinement energy does not depend on the area of the loop,
and the confinement can only occur when the start point of the
membrane is excited (an excited start point seems to indicate
the presence of a nontrivial pointlike charge, as we are able to
show in Sec. IX A 1 for the less general case where ∂ maps to
the center of G and E is Abelian).

Next, we consider the pattern of condensation evident in
the model in this fake-flat case (case 3 from Table I). By this,
we mean that we want to look at which excitations can be
produced by operators that are local to the excitation itself.
That is, condensed pointlike excitations can be produced by
operators that act only on a few degrees of freedom near the
excitations, and condensed looplike excitations can be pro-
duced by operators near the loops (which have linear extent,
so the operators need not be local in the traditional sense).
Because we are unable to construct the magnetic excitations
when we restrict to fake flatness, the only condensed excita-
tions remaining are E -valued loop excitations. Just as in the
� trivial case, the condensed E -valued loop excitations are
those that are produced by membrane operators which are
not sensitive to surface elements in the kernel of ∂ . This is
because if the membrane operator is only sensitive to ∂ (ê(m))
(i.e., is not sensitive to the kernel of ∂), then it has the same
action as an electric ribbon operator measuring the boundary
label (whereas a membrane operator sensitive to the kernel of
∂ can resolve information not obtainable from the boundary
path element).

One interesting fact about this pattern of condensation
is that it can coexist with the confinement of the E -valued
loop excitations. Recall that the condition for the E -valued
loop excitation to be confined is that

∑
f ∈E α f e f −1 = 0 for

all e ∈ E . This is not mutually exclusive with the condition
that the excitation is condensed [αe = αeek for any e ∈ E
and ek ∈ ker(∂ )]. For example, consider a crossed module of
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the form (G, E = G, ∂ = id,� → conj.), for which the two
groups G and E are the same, with ∂ being the identity map,
while � maps to conjugation (i.e., g� e = geg−1). In this
case, the only element of the kernel of ∂ is the identity element
1G = 1E . Therefore, any E -valued membrane operator will
satisfy the condensation condition (i.e., any coefficients αe

satisfy αe = αeek for all ek in the kernel of ∂ , because ek can
only be the identity element). This means that any coefficients
satisfying the confinement condition

∑
f ∈E α f e f −1 = 0 for this

crossed module will also trivially satisfy the condensation
condition. How can it be that an excitation is simultaneously
confined and condensed? This is because, as we discussed
previously in this section, it is the pointlike charge carried by
the excitation that is confined. On the other hand, the way
we have defined condensation means that the condensation
must be of the looplike charge: we have shown that the loop
excitation can be produced by an operator local to the exci-
tation (which has linear extent), but this does not mean that
the pointlike charge can be produced locally in a pointlike
sense (i.e., with support only on a few degrees of freedom).
This fact demonstrates that in future study of condensation
and confinement in (3+1)D, we must be careful to consider
what exactly we mean by condensation or confinement, and
which charges (not just excitations) undergo condensation.

VI. BRAIDING IN THE FAKE-FLAT CASE

Next we discuss the braiding relations in this special case,
case 3 from Table I, in which we restrict to fake-flat configu-
rations. The fact that we are unable to include the magnetic
excitations (because they violate fake flatness) means that
the braiding relations are rather simple. Indeed, the only
remaining nontrivial braiding is between the E -valued loop
excitations and the blob excitations. Just as in the (2+1)D
case considered in Ref. [15], however, the signatures of the
magnetic excitations are still present in the ground states of
manifolds with noncontractible cycles, which can have labels
outside of ∂ (E ). Before we discuss the braiding proper, we
will briefly describe how the excitations transform as they are
moved around such noncontractible cycles.

A. Moving excitations around noncontractible cycles

The first type of excitation that we wish to consider mov-
ing around a noncontractible cycle is the electric excitation.
The transformation obtained by moving an electric excitation
around such a cycle is the same in the (3+1)D case as in the
(2+1)D case considered in Ref. [15]. Namely, if we compare
an electric ribbon operator applied on a path s to one that is
applied on the path s · t obtained by concatenating the original
path with a noncontractible closed path t is

SR,a,b(s · t ) =
|R|∑

c=1

[DR(ĝ(t ))]cbSR,a,c(s), (21)

where SR,a,b(s · t ) is the electric ribbon operator labeled by
irrep R of G and matrix indices a and b. We see that there is
mixing between different electric ribbon operators labeled by
the same irrep R, with this mixing controlled by the matrix
DR[ĝ(t )] representing the path element ĝ(t ) in irrep R. The

FIG. 27. Given an E -valued membrane operator (green) wrap-
ping around a closed cycle, we can deform the section wrapping
around the cycle and shrink it down to nothing. This just leaves a
whiskering string (yellow) connecting the start point (yellow sphere)
to the small part of the membrane remaining (the green disk in the
final image).

path element ĝ(t ) is an operator, and the ground states are not
typically eigenstates of this operator even for closed paths t .

In a similar way, we can find how the E -valued looplike
excitations transform as they are moved around a noncon-
tractible cycle. In order to do so, we compare E -valued
membrane operators applied on two membranes m and m′
which are the same except that m′ is whiskered around the
noncontractible cycle t . This is because the membrane op-
erators are topological, and so a membrane traveling around
the cycle can be deformed by shrinking the section of the
membrane around the cycle down to nothing, so that only
a whiskering path t remains, as shown in Fig. 27. Then
the E -valued membrane operator Lμ,a,b(m′) applied on this
whiskered membrane is given by

Lμ,a,b(m′) =
∑
e∈E

[Dμ(e)]abδ(e, ê(m′)),

where μ is the irrep of E labeling the membrane operator
(and a and b are the matrix indices labeling the operator). The
surface element ê(m′) can be written in terms of the surface
element of the unwhiskered membrane m using the rules for
whiskering surfaces given in Ref. [4]. We have

ê(m′) = ĝ(t ) � ê(m),
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where t is the closed cycle, which is also the path [s.p.(m′) −
s.p.(m)] between the start points of the two membranes. Then
we have

Lμ,a,b(m′) =
∑
e∈E

[Dμ(e)]abδ(e, ê(m′))

=
∑
e∈E

[Dμ(e)]abδ(e, ĝ(t ) � ê(m))

=
∑
e∈E

[Dμ(e)]abδ(ĝ(t )−1 � e, ê(m))

=
∑

e′=ĝ(t )−1�e∈E

[Dμ(ĝ(t ) � e′)]abδ(e′, ê(m)). (22)

The matrix Dμ(ĝ(t ) � e′) can be considered as the matrix rep-
resentation for element e′ in a new irrep, ĝ(t ) � μ. Therefore,
we see that moving the E -valued loop excitation around the
path t mixes the irreps related by this � action. We say that
irreps related by the action of g� for some g ∈ G belong to
the same �-Rep class of irreps.

The final type of excitation to consider passing around
a noncontractible cycle is the blob excitation. Recall from
Sec. V C that the action of a blob ribbon operator Be(r) on a
plaquette p pierced by the ribbon r is (choosing the plaquette
to be aligned with r for simplicity)

Be(r) : ep = ep{g(s.p.(r) − v0(p))−1 � e−1}.
Taking the path s.p.(r) − v0(p) to be t · s, where t is a

closed noncontractible cycle, we can write this action as

Be(r) : ep = ep[g(t · s)−1 � e−1]

= ep{[g(s)−1g(t )−1] � e−1}
= ep{g(s)−1 � [g(t )−1 � e−1]}

which is the same as the action of a blob ribbon operator that
does not wrap around the cycle (so that the path [s.p.(r) −
v0(p)] is just s) except with e replaced by g(t )−1 � e. Note
that here we have taken the direct path of the ribbon operator
to wrap around the noncontractible cycle, but not the dual
path. If we also let the dual path wrap around the cycle, then
the plaquettes pierced by s obtain two factors acting on the
plaquette label, one from the ribbon before it wraps the cycle
(corresponding to the label e) and one from the ribbon after
it wraps the cycle [corresponding to the label g(t )−1 � e as
above].

B. Loop-blob braiding

Compared to the loop-blob braiding that we saw in
Sec. IV C, the loop-blob braiding in this special case is slightly
more complicated. This is because the action of the ribbon
and membrane operators involved now depends on the val-
ues of various paths on the lattice. For example, as we saw
in Sec. V C, the blob ribbon operator multiplies plaquette
elements by a group element ĝ[s.p. − v0(p))]−1 � e which
depends on the label of a path. This label is really an operator
because the value of the path label depends on what state we
are acting on. In particular, the ground state does not have a
definite value of this label, instead being made up of a linear
combination of states with different path labels. Because of

FIG. 28. (Copy of Fig. 25 from Ref. [14]) The 2-holonomy of a
surface (in this case a sphere) can be measured by a transport process.
A small loop is created at the base point (the small red sphere), then
dragged over the surface (the larger blue sphere), as indicated by the
arrow.

this, we may expect that the braiding does not generally give
us a definite result and that the braiding relation may depend
on such operator-valued labels. However, as with the braiding
of the flux tubes that we saw in Sec. IV B 2, the braiding
relations are simple for particular cases where the start points
of the operators match. Therefore, we are most interested in
these same start-point commutation relations. To understand
these, it will be useful to first discuss the interpretation of the
blob and loop excitations in 2-gauge theory.

Similar to lattice gauge theory, it is useful to consider the
gauge invariants of higher-lattice gauge theory, which can be
built from quantities associated to closed loops and surfaces
[4]. In addition to the “1-flux” of loops, which is also present
in ordinary gauge theory, we have the “2-flux” or 2-holonomy
of closed surfaces. The 2-flux itself, described by an element
of E , is not a gauge-invariant quantity. However, the 2-flux of
a closed surface is only changed within certain equivalence
classes of elements by the gauge transforms [4] (as we will
see for tori and spheres in Secs. S-V B and S-V D in the
Supplemental Material [20]), and so these classes in E are
gauge invariant, with the identity element in particular be-
longing to a class of its own. This means that the 2-flux is
still a useful quantity. In this model, the blob excitations are
associated to nontrivial 2-flux on a surface enclosing the blob
excitation. The boundary of the excited blob is itself a surface
with nontrivial 2-flux because an excited blob by definition
has a nontrivial surface label on its boundary. To measure this
2-flux, we must pass a loop over the closed surface whose
2-flux we wish to measure. When we measure the 2-flux,
we must specify the base point with respect to which we
measure the 2-flux. The choice of base point is equivalent to
a gauge choice, so choosing a different base point can give a
different element for the 2-flux, within the same � class (i.e.,
the new element is related to the old one by a � action). Once
we have chosen the base point, our measurement loop must
be nucleated at that base point before being passed over the
surface, as shown in Fig. 28. In this model, the E -valued loop
excitations measure 2-flux, as we can see from the fact that
the corresponding measurement operators assign a weight to
each possible surface label.

035152-25



JOE HUXFORD AND STEVEN H. SIMON PHYSICAL REVIEW B 109, 035152 (2024)

FIG. 29. The result of loop-blob braiding (|ψ〉 is a state with no
excitations near the two operators).

This idea about measuring a 2-flux has important ramifica-
tions for our braiding. We have seen that the blob excitations
are nontrivial 2-fluxes and the E -valued loop excitations mea-
sure surface elements, so these loop excitations can measure
the 2-flux of the blob excitations. This is why there is nontriv-
ial braiding between these two types of excitation. When we
compare the situation where the loop excitation is passed over
the blob to the situation where it is not (i.e., we compare the
braided case to the unbraided case), we measure the 2-flux
of the blob excitation. However, the blob ribbon operator
produces excitations that have definite 2-flux only with respect
to the start point of the blob ribbon operator. Similarly, the
E -valued loop measures 2-flux with respect to the start point
of the membrane operator that creates the loop excitation.
Therefore, we expect a definite braiding relation when the
start point for our blob ribbon operator matches the start point
for our E -valued loop membrane operator. Note that when
� is trivial, the start points lose meaning (we do not need a
direct path for the blob ribbon operators and the surface does
not need a base point for the E -valued loop) and the loop can
be nucleated at any point before being passed over the blob
excitation (rather than at the specified start point of the blob
ribbon operator). This is why the braiding is simple when �
is trivial (as discussed in Sec. IV C) and it is not necessary to
fix the positions of the start points in that case.

While we have discussed braiding of the blobs and the
loops so far in terms of passing the loop over the blob, we
can equally move the blob excitation through the loop instead.
These are equivalent, but it is slightly easier to calculate the
latter situation. The relevant commutation relation to calculate
this braiding relation is shown in Fig. 24. Again, we must
ensure that the start points of each operator are in the same
location.

The result of this same-site braiding, where we pass a rib-
bon operator Be(t ) through an E -valued membrane operator
δ(em, ê(m)), is then

Be(t )δ(em, ê(m)) = δ(eme−1, ê(m))Be(t ),

as illustrated in Fig. 29 (and proven in Sec. S-IV B in the
Supplemental Material [20]). The operators δ(em, ê(m)) for
each label em ∈ E form a basis for our space of E -valued

membrane operators, but we want to consider the commuta-
tion of one of the basis operators labeled by an irrep of E
instead. We have that

Be(t )
∑
em∈E

[Dα (em)]abδ(ê(m), em)

=
∑
em∈E

[Dα (em)]abδ(ê(m), eme−1)Be(t )

=
∑

e′=eme−1∈E

[Dα (e′e)]abδ(ê(m), e′)Be(t )

=
∑
e′∈E

|α|∑
c=1

[Dα (e′)]ac[Dα (e)]cbδ(ê(m), e′)Be(t )

=
|α|∑

c=1

[Dα (e)]cb

∑
e′∈E

[Dα (e′)]acδ(ê(m), e′)Be(t ). (23)

If α is a 1D representation the braiding therefore results
in the accumulation of a phase of α(e). If α is higher dimen-
sional, then it would seem that there is mixing between the
different matrix indices. However, recall from Sec. V C that
in order to ensure fake flatness we restricted the label e of the
blob ribbon operators to be in the kernel of ∂ and therefore
the center of E . The matrix representation of an element of
the center is a scalar multiple of the identity from Schur’s
lemma, so we can write [Dα (e)]cb = δcb[Dα (e)]11 (where the
index 1 could be replaced with any index). This means that
the braiding relation 23 simplifies to

Be(t )
∑
em∈E

[Dα (em)]abδ(ê(m), em)

= [Dα (e)]11

∑
e′∈E

[Dα (e′)]abδ(ê(m), e′)Be(t ), (24)

so again we only accumulate a phase [Dα (e)]11 (this matrix
element must be a phase because the matrix is diagonal and
unitary, and in fact the matrix element can be used to define
an irrep of the kernel of ∂).

We see that the braiding relation between the E -valued
loops and blob excitations is similar to the result we found for
the braiding of magnetic fluxes and charges that we discussed
in Sec. IV B 1, except that in this case the irrep labels the
looplike, rather than pointlike, excitation.

C. Summary of braiding in the fake-flat case

In Table III, we summarize the braiding in the fake-flat
case by indicating which excitations can braid nontrivially.
Note that when we enforce fake flatness on the level of the
Hilbert space, there are no magnetic excitations, although we
can still have nontrivial flux labels around noncontractible
loops on manifolds that are not simply connected (e.g., the
3-torus).

VII. RIBBON AND MEMBRANE OPERATORS IN THE
CASE WHERE ∂ → CENTER(G) AND E IS ABELIAN

So far, we have examined the excitations of the higher-
lattice gauge theory model in two cases. First, we looked at the
case where � is trivial, where we can find all of the excitations
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TABLE III. A summary of the nontrivial braiding in the fake-flat
case. In the fake-flat case, there are no magnetic excitations and
the nontrivial braiding between excitations only involves the blob
excitations and E -valued loops. However, there are nontrivial results
from moving excitations around handles (noncontractible cycles),
which can support nontrivial 1-flux.

Nontrivial E -valued Around
braiding? Electric Blob loop handle

Electric ✗ ✗ ✗ �
Blob ✗ ✗ � �
E -valued
loop ✗ � ✗ �

of the model. However, in this case the membrane operators
corresponding to the 2-gauge field (labeled by the group E )
are simple, and produce no excitations at the start point of
the corresponding operators. Second, we looked at the case
where � is general, but where we restrict our Hilbert space to
the fake-flat subspace, thus having to exclude the magnetic
excitations. This gave us more interesting excitations from
our 2-gauge field, allowing the E -valued membrane operators
and blob ribbon operators to produce additional excitations
at the start points of the operators. However, excluding the
magnetic excitations removes the interesting features from
the 1-gauge field excitations. In the following sections, we
consider a generalization of the � trivial case, which will
allow us to keep all of the excitations while also gaining many
of the features from the � general case. This means that we
will be able to see how the magnetic excitation interacts with
the more general 2-gauge excitations. We consider the case
where E is Abelian and ∂ maps onto the center of G (case
2 in Table I). Note that this case includes the � trivial case
as a subcase, so this is a strict generalization of the situation
considered in Secs. III and IV.

In this case, many of the features of the general crossed
module (but fake-flat) case are preserved, despite our restric-
tions on the crossed module. The electric, E -valued loop
and blob excitation creation operators are all the same as in
the general crossed module (but fake-flat) case (see Sec. V),
except that we also allow blob ribbon operators with labels
outside the kernel of ∂ and the irreps that label the basis
E -valued membrane operators are 1D. Because of this, we
will not describe the operators that produce these excitations
again. On the other hand, we can include excitations analo-
gous to the magnetic excitations from the � trivial case. The
membrane operators that produce these magnetic excitations
are significantly altered from the � trivial case that we consid-
ered in Sec. III B, however. This alteration of the membrane
operators is necessary to ensure that each membrane operator
commutes with the various energy terms, apart from those
near the boundary of the membrane. The magnetic membrane
operators affect the edge labels in the same way as in the �
trivial case, but they also affect the plaquette labels near the
membrane. Recall that to specify our magnetic membrane we
had to define a dual membrane, with the operator changing
the labels of the edges cut by the dual membrane, and a direct
membrane, with paths on the direct membrane controlling

how the cut edges were changed (see Fig. 7). As well as
edges, the dual membrane cuts through the plaquettes between
these edges (such as the vertical plaquettes in Fig. 30). In this
new case, the magnetic membrane operator changes the label
of the “cut” plaquettes if their base points lie on the direct
membrane. We say that plaquettes whose base points lie on
the direct membrane are based on the direct membrane. The
action of the operator on these plaquettes depends on paths
on the direct lattice, in a similar way to the action on the
edges. Given a cut plaquette based on the direct membrane,
the action of the membrane operator on the plaquette depends
on the label of a path from the start point of the membrane
to the base point of the plaquette. An example of this type
of path is shown in Fig. 30. We denote the group element
assigned to the path between the start point and the base point
of plaquette p by g[s.p. − v0(p))], where s.p. is the privileged
start point of the membrane operator and v0(p) is the base
point of the plaquette p. If p is cut by the dual membrane
and based on the direct membrane, then its label is changed
from ep to {g[s.p. − v0(p)]−1hg[s.p. − v0(p)]} � ep. As we
mentioned previously, the magnetic membrane operator only
acts on a cut plaquette in this way if the plaquette is based on
the direct membrane. That is, if the plaquette has its base point
away from the direct membrane, then the label of the plaquette
is not affected by this � action. It may seem arbitrary that
the plaquette label is only changed in this way if its base
point is on the direct membrane. However, this is analogous to
the action of vertex transforms, which only affect plaquettes
that are based at the vertex on which we apply the transform
(except instead of only affecting surfaces based at the vertex,
the membrane operator affects surfaces based on that surface).
Indeed, we demonstrate that closed magnetic membrane oper-
ators are closely related to the vertex transforms in Secs. S-II
D and S-II E of the Supplemental Material [20].

The � action on the plaquettes is not the only additional
feature to the magnetic membrane operator in this new special
case. Changing some of the edge labels by multiplication and
plaquette labels by this � action leaves the blob conditions
for blobs cut by the dual membrane unsatisfied (recall that
the blob condition enforces that the total surface label of the
blob is trivial). To correct this and ensure that the membrane
operator commutes with the blob energy terms near the bulk of
the membrane, blob ribbon operators (of the type considered
in Sec. V C) are added to the membrane operator. For every
plaquette that is entirely on the direct membrane (not cut
by the dual membrane, but instead lying flat on the direct
membrane), we have one such blob ribbon operator associated
to that plaquette. We call the associated plaquette the base
plaquette for that blob ribbon operator. The blob ribbon oper-
ators all start at the same privileged blob, which we call blob
0 and must define when specifying the magnetic membrane
operator. The blob ribbon operators end at the blob that is
connected to the base plaquette and cut by the dual membrane,
as shown in Fig. 31. The label of this blob ribbon operator, for
a base plaquette b on the direct membrane and with orienta-
tion away from the dual membrane (downwards in Fig. 31,
as shown in Fig. 32), is given by f (b) = {g[s.p. − v0(b)] �
eb}{[h−1g(s.p. − v0(b)]} � e−1

b ], where eb is the label of the
base plaquette and v0(b) is the base point of the plaquette. If
the plaquette has the opposite orientation, we must invert the
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FIG. 30. In addition to changing the edges cut by the dual membrane, when � is nontrivial the magnetic membrane operator affects the
plaquettes cut by the dual membrane if their base points lie on the direct membrane.

label eb in this expression. After incorporating this additional
action for the magnetic membrane operator, we write the total
magnetic membrane operator [denoted by Ch

T (m), where T
indicates that it is the total operator] as

Ch
T (m) = Ch

�(m)
∏

plaquette b∈m

B f (b)(blob 0 → blob b), (25)

where blob b is the blob attached to base plaquette b and cut
by the dual membrane (note, however, that the same blob may
be attached to multiple base plaquettes). In Eq. (25), Ch

�(m)
performs the action of the membrane operator on the edges
and the � action on the plaquettes, while the B f (b)(blob 0 →
blob b) operators are the added blob ribbon operators (see
Sec. V C for a description of blob ribbon operators).

Even with these modifications, the magnetic membrane op-
erator still excites more energy terms than in the � trivial case
(i.e., more than just the boundary plaquettes and potentially
the start-point vertex). First, the privileged blob, blob 0, is not
generally left in an energy eigenstate. This is because the blob
ribbon operators that we added to the magnetic membrane all
originate in this blob and so change the surface label of the
blob, from 1E in the ground state to [h � ê(m)−1]ê(m), where
ê(m) is the total surface label of the direct membrane. ê(m) is
an operator, which means that blob 0 is not generally left in an
energy eigenstate. Second, the edges around the boundary of
the direct membrane are potentially excited. This is because
the labels of the added blob ribbon operators depend on the

labels of the plaquettes on our direct membrane. Edges in the
bulk of the membrane are attached to two plaquettes on the
membrane and so the edge transform affects the blob ribbon
operators associated with both plaquettes. These effects on the
labels of the two ribbon operators (together with a contribu-
tion from the edge transform on the plaquettes cut by the dual
membrane) cancel out, so that the edge transform commutes
with the membrane operator, as we show in Sec. S-I D 3 of
the Supplemental Material [20]. On the other hand, edges
on the boundary of the membrane are only attached to one
plaquette on the membrane, so there is no such cancellation.
These boundary edges are therefore not generally left in an
energy eigenstate.

A. Condensation and confinement

In the previously considered � trivial (see Sec. III E) and
fake-flat cases (see Sec. V), we saw that many of the excita-
tions are confined, meaning that it costs energy to separate
a pair of excitations, in addition to the energy required to
produce the pair. We also found that other particle types
are condensed, meaning that they can be produced by local
operators (local to the excitation, in the sense discussed in
Sec. III E) and so carry trivial topological charge. The pattern
of condensation and confinement in the ∂ → center(G) case
is the same as in the � trivial case discussed in Sec. III E.
The blob excitations with label not in the kernel of ∂ are
confined, as are the electric excitations labeled by irreps of
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FIG. 31. When we define the magnetic membrane operator
Ch

T (m), we must include blob ribbon operators. There is one blob
ribbon operator per plaquette on the direct membrane (which is rep-
resented by the large blue surface here, while the dual membrane is
omitted and would be above this surface, cutting through the vertical
edges). Here we show an example, corresponding to the plaquette b
(red square). The dual path for the blob ribbon operator runs from
the privileged blob 0 to the blob, blob b, which is attached to the
plaquette b and cut by the dual membrane (not shown for clarity, but
it would be above the direct membrane and bisect the vertical edges).
The direct path for the ribbon operator runs from the start point of
the membrane, s.p, to the base point of plaquette b.

FIG. 32. We consider the case where the plaquettes on the mem-
brane point downwards, away from the cut edges. To obtain the case
where some of the plaquettes point upwards, we must invert the
labels of those plaquettes. Note that the orientation of the plaquette
is related to the circulation by the right-hand rule.

G that have nontrivial restriction to the subgroup ∂ (E ) of G.
On the other hand, the condensed excitations are the magnetic
excitations with label in the image of ∂ and the E -valued loops
that are labeled by irreps of E which are trivial on the kernel
of ∂ . These properties, along with the other properties of the
excitations in this case, are summarized in Fig. 33.

VIII. BRAIDING IN THE CASE WHERE ∂ → CENTER(G)
AND E IS ABELIAN

Now that we have described the membrane and ribbon
operators that produce our excitations, we can consider the
braiding relations of these excitations. Any braiding not in-
volving the magnetic excitations is the same as in the fake-flat
case described in Sec. VI. Namely, there is nontrivial braiding
between the blob excitations and the E -valued loops, with
the same start-point braiding resulting in an accumulation of
phase. The result is a phase, rather than the more general
transformation given in Eq. (23) for the case considered in
Sec. VI B, because the irreps of E are 1D when E is Abelian.

Unlike for the fake-flat case, we can find the magnetic
excitations and so describe their braiding relations. However,
rather than using the magnetic membrane operator directly,
it is convenient when considering braiding to combine the
magnetic membrane operator with an E -valued membrane
operator. We multiply the magnetic membrane operator by
an E -valued membrane operator such as δ(em, ê(m)), acting
before the magnetic membrane operator. That is, we construct
membrane operators of the form Ch

T (m)δ(em, ê(m)), which we
denote by Ch,em

T (m). We note that combining the magnetic
membrane operator with this E -valued membrane operator
in this way does not excite regions of the lattice not already
excited by the magnetic membrane operator, because both
membrane operators only cause excitations near the boundary
of the membrane, and possibly at blob 0 and the start point of
the membrane. We will shortly explain why we perform this
combination of membrane operators (in essence, it gives the
looplike excitation a well-defined 2-flux), but before we dis-
cuss this we shall consider the combination of the membrane
operators in more detail.

In order to combine the magnetic and E -valued membrane
operators, there are some details that we must specify. The
first of these is the relative orientation of the two membrane
operators. We take the orientation of the E -valued membrane
operator to point away from the dual membrane of the mag-
netic membrane operator. The second detail is more subtle.
In addition to combining this E -valued membrane operator
with the magnetic membrane operator, we move blob 0 and
the start point of the membrane operator so that they are
displaced slightly away from the membrane itself, as shown
in Fig. 34. We do this because the E -valued membrane may
cause an excitation at the start point, which would prevent us
from using the topological nature of the magnetic membrane
operator to deform the membrane. It is not necessary to move
blob 0 in this way, but it will be convenient when consid-
ering topological charge to have a clear separation between
the pointlike excitations (blob 0 and the start point) and the
looplike excitation at the boundary of the membrane. A third
detail is our convention for the overall orientation of the to-
tal membrane operator. Because we have displaced the start
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FIG. 33. A summary of the excitations in the E Abelian, ∂ → center(G) case.

point away from the membrane in a particular direction, it
is sensible to define the orientation of the membrane to be
consistent with this displacement. That is, we imagine that the
loop excitation is nucleated at the start point and moves away
from the start point along the membrane. Therefore, the loop
excitation would be oriented downwards in Fig. 34, matching
the orientation of the E -valued membrane operator.

Having considered these details about the combined mem-
brane operator, we now explain why this combination was
useful. As we mentioned in Sec. VII, the action of the mag-
netic membrane operator generally causes the privileged blob,
blob 0, of the membrane to acquire a nontrivial 2-flux (non-
trivial surface label). However, this surface label is given in
terms of an operator [the surface label ê(m) of the membrane
itself] and so is not well defined. Including the E -valued mem-
brane operator ensures that the 2-flux of the privileged blob 0
after the action of the magnetic membrane operator is well
defined. Giving blob 0 a definite 2-flux is significant because
we expect the looplike excitation to also carry a nontrivial
2-flux to balance the 2-flux of blob 0, and we expect the value
of this 2-flux to be important in braiding relations. As we show
in Sec. S-IV C of the Supplemental Material [20], the surface
label of blob 0 after the action of the combined membrane
operator (with displaced start point, which does affect the
label) is given by e−1

m [h−1 � em]. As we show in Sec. S-IV C

[see Eq. (S105)] [20], the 2-flux of the loop excitation labeled
by h and em is given by

ẽm = em
[
h−1 � e−1

m

]
, (26)

which is the inverse of the 2-flux carried by blob 0. Due to the
fact that the excitations produced by this combined membrane
operator carry both ordinary magnetic flux and this 2-flux,
we call the combined membrane operator a “higher-flux
membrane operator” and call the excitations higher-flux ex-
citations. If we wish to instead consider the original magnetic
membrane operator (without the attached E -valued membrane
operator), we can simply sum over each value of em because
this gives us a complete sum of projectors δ(em, ê(m)). That
is

∑
em∈E δ(em, ê(m)) = 1 and so∑

em∈E

Ch,em
T (m) = Ch

T (m). (27)

Having constructed this higher-flux membrane operator,
we can now use it to find the braiding relations involving the
higher-flux excitations. Because the action of the higher-flux
membrane operator on the edges is the same as that of the
magnetic membrane operator from the � trivial case, the
braiding relation between the magnetic and electric excita-
tions is the same as in that case (which is described in Sec. IV).
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FIG. 34. Rather than place blob 0 and the start point (represented
by the yellow cube and sphere, respectively) of the membrane oper-
ator on the direct membrane (green) itself, as in the upper image, we
displace them away from the membrane as shown in the lower image.
Then blob 0 and the start point are on the other side of the edges cut
by the dual membrane (where the edges are represented by the green
cylinders). This allows us to deform the membrane away from the
start point and blob 0 (downwards in the figure) using the topological
property of the magnetic and E -valued membrane operators which
make up the higher-flux membrane operator.

However, as we will see shortly, the braiding between the
higher-flux loop excitation and the other excitations is signif-
icantly altered. In particular, because the higher-flux excita-
tions can carry a nontrivial 2-flux, we expect nontrivial braid-
ing relations with the E -valued loops, which measure 2-flux.

A. Braiding of the higher-flux excitations with blob excitations

The first braiding relation we examine is between the
higher-flux excitations and the blob excitations. We consider a
blob ribbon operator Be(t ), applied on a ribbon t , piercing the
membrane of a higher-flux membrane operator Ch,em

T (m), ap-
plied on a membrane m. The ribbon t intersects the membrane
m at a plaquette q, as shown in Fig. 35. Note that the orien-
tation of the operators is significant. We first look at the case
where the blob ribbon operator pierces the direct membrane of
the magnetic membrane operator before the dual membrane.
If the membrane is oriented downwards, as in Fig. 35 (note
that the pointlike excitation is above the loop) then the ribbon
is oriented upwards (at the point of intersection at least).

FIG. 35. We consider a blob ribbon operator Be(t ) (between the
two red blobs) that passes through a higher-flux membrane operator
Ch,em

T (m) (where m is shown in green). The ribbon t pierces the
membrane m through a plaquette q (blue square).

We have seen in previous cases that braiding is frequently
well defined only when the start points of the membrane and
ribbon operators match. However, we shall first examine the
general case where the start points are arbitrary. As usual, we
can relate the braiding relation to a commutation relation be-
tween the two operators. We compare the case where the mag-
netic membrane is produced first, and then the blob excitation
moved through it, to the reverse case. We find that, as demon-
strated in Sec. S-IV C 1 in the Supplemental Material [20],

Be(t )Ch,em
T (m)|GS〉

= Ch,em{ĝ(s.p.(m)−s.p.(t ))�e}
T (m)Be(t ′

1)

× B{ĝ(s.p.(t )−s.p.(m))h−1 ĝ(s.p.(t )−s.p(m))−1}�e(t ′
2)|GS〉. (28)

In this expression, we note that the original ribbon operator is
split into two parts, on ribbons t ′

1 and t ′
2, which transform dif-

ferently under the braiding. Here t ′
1 starts at the original origin

of ribbon t and ends at blob 0 of the membrane m (corre-
sponding to the part of the ribbon before the intersection with
the membrane, except that it is diverted to end at blob 0 of m),
while t ′

2 starts at blob 0 and ends at the original end of ribbon t
(corresponding to the part of the ribbon after the intersection),
as shown in Fig. 36. We therefore see that, under commuta-

FIG. 36. The blob ribbon operators after commutation.
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tion, the ribbon t is diverted to pass through blob 0 of the
membrane, and after passing through this blob it changes label
from e to {ĝ(s.p.(t ) − s.p.(m))h−1ĝ(s.p.(t ) − s.p.(m))−1} � e.

The fact that the label of the blob ribbon operator before
the intersection is unaffected by the commutation relation is
perhaps unsurprising because this part of the operator corre-
sponds to the motion of the blob excitation before it braids
with the magnetic excitation and so before it has undergone
its transformation. This can be seen from the fact that the
blob ribbon operator actually creates two excitations and the
one which is not moved should not be affected by the other
one moving through the loop excitation. Another thing to
note is that, as long as the blob ribbon operator is not con-
fined, we can deform the ribbons of the blob ribbon operators
without changing their action, as long as we keep the end
points fixed. Because of this, it does not matter at which
plaquette q our magnetic membrane and blob ribbon operators
intersect.

In addition to the transformation undergone by the blob
ribbon operator, the E label of the higher-flux excitation
changes from em to em{ĝ(s.p.(m) − s.p.(t )) � e}. This trans-
formation of the E label of the membrane operator is simply
the standard braiding relation between a blob excitation
and an E -valued membrane, as we saw in Sec. VI. We
note that this result and the other results given in this sec-
tion are proven fully in Sec. S-IV C 1 in the Supplemental
Material [20].

If we give the magnetic membrane operator and the blob
ribbon operator the same start point, the braiding relation that
we explained above simplifies and we are able to remove the
operator ĝ(s.p.(m) − s.p.(t )) from the relation. We move the
start points together, without moving them through the higher-
flux membrane (which would alter the commutation relations
found so far). In this case the blob label goes from e before
the braiding to h−1 � e afterwards (at least in the part after
the intersection) and the E label of the higher-flux membrane
operator goes from em beforehand to eme. If we had used the
opposite orientation, obtained by reversing the direction of the
blob ribbon operator, instead the blob label e becomes h �
e and the membrane label em becomes em[h � e−1]. Again,
this result is proven in Sec. S-IV C 1 of the Supplemental
Material [20].

If we want to consider the braiding of the original mag-
netic excitation, produced by the membrane operator Ch(m) =∑

em∈E Ch,em (m), we simply need to sum over the E -valued
label e of the higher-flux membrane operator. Then we have,
from Eq. (28),

Be(t )Ch
T (m)|GS〉

=
∑
em∈E

Be(t )Ch,em
T (m)

=
∑
em∈E

Ch,em{ĝ(s.p.(m)−s.p.(t )}�e]
T (m)Be(t ′

1)

× B{ĝ(s.p.(t )−s.p.(m)]h−1ĝ(s.p(t )−s.p(m)]−1}�e(t ′
2)|GS〉

=
∑

e′
m=em{ĝ(s.p.(m)−s.p.(t )]�e}

Ch,e′
m

T (m)Be(t1)

FIG. 37. We consider the braiding move where we pull one
higher-flux loop excitation (small red torus) through another (large
green torus). This can be implemented using higher-flux membranes
applied on the (green and red) membranes in the figure. If we first
apply the membrane operator Ch,e1

T (m1) on the larger (green) mem-
brane, then Cg,e2

T (m2) on the narrower (red) membrane, then we are
considering the case where we first produce the larger (green) loop
excitation then move the smaller (red) one through it. Comparing this
to the opposite order of operators gives us the braiding relation.

× B{ĝ(s.p.(t )−s.p.(m)]h−1ĝ(s.p.(t )−s.p.(m)]−1}�e(t ′
2)|GS〉

= Ch
T (m)Be(t1)

× B{ĝ(s.p.(t )−s.p.(m)]h−1ĝ(s.p.(t )−s.p.(m)]−1}�e(t ′
2)|GS〉, (29)

from which we see that the magnetic excitation is unchanged
by the braiding, whereas the blob excitation is affected
in the same way as in the braiding with the higher-flux
excitation.

B. Braiding with other higher-flux excitations

Next, we consider the braiding between two higher-flux
excitations. As we described in Sec. IV A 2, there are two
kinds of braiding for loops. The first, which we call permu-
tation, involves moving two loops around each other without
passing through one another. The other, which we term braid-
ing, involves passing one though the other. As we discussed
in Sec. IV A 2, the permutation move is trivial in this model.
Therefore, we just consider the braiding move. In this motion,
shown in Fig. 37, one of the magnetic loop excitations (indi-
cated by a small red ring) is moved along the red surface and
through another loop (indicated by a large green loop attached
to a large green surface). To calculate the braiding relation we
apply membrane operators on these surfaces and examine the
commutation relations between the membrane operators.

We define the membrane operators as indicated in Fig. 37,
but then we use the topological nature of the magnetic mem-
brane operators to pull m2 through m1 (as we did in the � triv-
ial case in Sec. IV B 2), while keeping the start point and blob
0 fixed. In Sec. S-IV C 2 in the Supplemental Material [20],
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we show that this leads to the commutation relation

Cg,e2
T (m2)Ch,e1

T (m1)|GS〉 =C
h,e1[g((1)−(2))�{(h[2−1]�e−1

2 )[(h[2−1]g−1 )�e2]}]
T (m1)C

h[2−1]gh−1
[2−1]

� (m2)

×

⎛
⎜⎜⎝ ∏

plaquette
p∈m2

B[h−1
[2−1]�ep|2][(g−1h−1

[2−1] )�e−1
p|2]((2) − (1))Bep|2[(h[2−1]g−1h−1

[2−1] )�e−1
p|2]((1) − p)

⎞
⎟⎟⎠

× δ(h[2−1] � e2, ê(m2))|GS〉, (30)

where g((1) − (2)) is the path element for the path between the two start points of the membranes and

h[2−1] = g((1) − (2))−1hg((1) − (2)) = g((2) − (1))hg((2) − (1))−1. (31)

To simplify the expression, we used ep|2 to denote the label of the plaquette p when we move its base point to the start point of
m2. This quantity is equivalent to g[s.p.(m2) − v0(p)] � ep. Furthermore, we used B···[(2) − (1)] to denote a blob ribbon operator
that runs from blob 0 of m2 to blob 0 of m1 and B···[(1) − p] to denote a blob ribbon operator running from blob 0 of m1 to the
blob on m2 that is attached to plaquette p. These blob ribbon operators may seem complicated, but the situation is analogous
to the braiding of blob ribbon operators with the magnetic membranes. Each of the blob ribbon operators that we added to the
magnetic membrane operator has a similar commutation relation with the magnetic membrane operator as an ordinary blob
ribbon operator. Namely, the blob ribbon operator splits into two parts, one that runs from blob 0 of m2 to blob 0 of m1 and
one which runs from blob 0 of m1 to the final destination of the original blob ribbon operator. The only difference from the
ordinary blob ribbon operator braiding is that the label of the blob ribbon operator is an operator (depending on the label of a
plaquette on m2), which causes an additional apparent change to the label even for the part of the blob ribbon operator before
the intersection. However, this does not reflect a real change to the blob ribbon operators before the intersection. This is because
we can combine the blob ribbon operators that pass from blob 0 of m2 to blob 0 of m1 into a single blob ribbon operator, and
use δ(h[2−1] � e2, ê(m2)) to fix its label in terms of e2 instead of an operator. As shown in Sec. S-IV C 2 in the Supplemental
Material [20], this gives us

Cg,e2
T (m2)Ch,e1

T (m1)|GS〉 =C
h,e1(g((1)−(2))�{(h(2−1)�e−1

2 )[(h[2−1]g−1 )�e2]}]
T (m1)C

h[2−1]gh−1
[2−1]

� (m2)Be2[g−1�e−1
2 ]((2) − (1))

×
( ∏

plaquette
p∈m2

Bep|2[(h[2−1]g−1h−1
[2−1] )�e−1

p|2]((1) − p)

)
δ(h[2−1] � e2, ê(m2))|GS〉. (32)

Now the section of blob ribbon operator between blob 0
of each membrane, which is the part of the ribbon opera-
tor before the intersection of the membranes, is labeled by
e2[g−1 � e−1

2 ]. This is the same label as it would have if we
combined the blob ribbons on these sections in the absence of
the second higher-flux membrane Ch,e1

T (m1). That is, this part
of the blob ribbon operator is unaffected by the braiding, as
we may expect given that this section of ribbon operator is the
part before the intersection of the membranes. We can contrast
this with the sections of the blob ribbon operators after the
intersection (which should be affected by the braiding) which
have their labels changed from

ep|2
[
g−1 � e−1

p|2
]

to

ep|2
[(

h[2−1]g
−1h−1

[2−1]

)
� e−1

p|2
]
.

We see that the only change is that we replace g with
h[2−1]g−1h−1

[2−1]. This matches how the label g of the higher-
flux membrane operator transforms under braiding [as we see

from the operator C
h[2−1]gh−1

[2−1]
� (m2) in Eq. (32)]. That is, the

labels of the blob ribbon operators after the intersection (i.e.,
after braiding) are the labels we expect given the label of the
magnetic part of the membrane operator after intersection.

Apart from this splitting of the blob ribbon operators at the
intersection of the membranes, we see that the labels of the
two membrane operators change (as we mentioned previously
for g). We have that

h → h,

e1 → e1
(
g((1) − (2)) �

{(
h[2−1] � e−1

2

)
× [(h[2−1]g

−1) � e2]}),
g → h[2−1]gh−1

[2−1],

e2 → h[2−1] � e2.

As usual for our braiding, when the start points of the
operators are not the same, we have operators in our braiding
relations. When we take the start points to be the same, these
relations simplify to

h → h,

e1 → e1
[
h � e−1

2

]
[(hg−1) � e2],

g → hgh−1,

e2 → h � e2. (33)

This removes any operators from the labels, so that we have
definite braiding. Note that the transformation of the 1-flux
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labels (h and g) is the same as for the braiding of two mag-
netic excitations in the �-trivial case, as given in Eq. (18) in
Sec. IV B 2, replacing k with g (that equation in particular
because we used the specific orientation of the loops also
used to find that equation). However, the expression for the
change of the E labels is not so easy to interpret. It is easier
to understand these results if we change variables, from the
surface labels of the membranes to the 2-fluxes possessed
by the looplike excitations, as we discussed at the start of
Sec. VIII. The 2-flux of the loop excitation ẽ1 is related to
the 1-flux label h and the surface label e1 of the membrane
operator by ẽ1 = e1[h−1 � e−1

1 ]. Therefore, we define

ẽ1 = e1
[
h−1 � e−1

1

]
,

ẽ2 = e2
[
g−1 � e−1

2

]
.

Then, from our braiding relations in Eqs. (33), under braid-
ing these 2-fluxes transform according to

ẽ1 → e1
[
h � ẽ−1

2

][
h−1 � e−1

1

]
ẽ2

= ẽ1
[
h � ẽ−1

2

]
ẽ2,

ẽ2 → [h � e2]
[
(hg−1h−1) �

(
h � e−1

2

)]
= h �

(
e2

[
g−1 � e−1

2

])
= h � ẽ2. (34)

This means that the product of the two fluxes transforms as

ẽ1ẽ2 → ẽ1[h � ẽ−1
2 ]ẽ2[h � ẽ2] = ẽ1ẽ2

under the braiding, which indicates that the product of these
2-fluxes is conserved.

Putting this together, we can see that the 1-fluxes and 2-
fluxes of the looplike excitations transform as

((g, ẽ2), (h, ẽ1)) → ((
h, ẽ1ẽ2

[
h � ẽ−1

2

])
, (hgh−1, h � ẽ2)

)
under braiding, where the fact that one loop is moved past the
other during the braiding is represented by swapping the order
of their labels in the brackets.

We also wish to work out the inverse transformation, which
describes the reversed braiding process. Denoting the result of
the forward transformations as primed versions, we have from
Eqs. (34)

ẽ′
2 = h � ẽ2, with h′ = h ⇒ ẽ2 = h′−1 � ẽ′

2,

g′ = hgh−1 ⇒ g = h′−1g′h′,

ẽ′
1 = ẽ1

[
h � ẽ−1

2

]
ẽ2 ⇒ ẽ1 = ẽ′

1ẽ′
2

[
h′−1 � ẽ′−1

2

]
.

The inverse transformation is therefore

((h′, ẽ′
1), (g′, ẽ′

2))

→ (
(h′−1g′h′, h′−1 � ẽ′

2),
(
h′, ẽ′

1ẽ′
2h′−1 � ẽ′−1

2

))
. (35)

This matches the braiding proposed in Ref. [28] for higher
gauge theory based on discussions of the loop braid group. It
is important to note that the braiding depends on the result of
fusing the two excitations. Given two loops with 1-flux and
2-flux given by (h, ẽ1) for the first loop and (g, ẽ2) for the
second loop, there are many possible fusion products. The fact
that the products of 1-fluxes hg → hgh−1h = hg (swapping
the order after braiding to account for the swapping of loop
positions) and of 2-fluxes ẽ1ẽ2 are conserved indicates that
these are the total 1-flux and 2-flux of the combined loops,
and so we have obtained the braiding when they fuse to give
the labels (hg, ẽ1ẽ2). We could equally have considered the
braiding in a different situation, such as when the start points
of the two operators are in different positions, for which the
loops (h, ẽ1) and (g, ẽ2) fuse to give different total quantum
numbers than (hg, ẽ1ẽ2).

As we did when considering the braiding of the higher-flux
with the blob excitation, we can also consider the braiding of
our original magnetic excitation, before we pinned an addi-
tional E -valued loop to it. As described by Eq. (27), we can
obtain the original magnetic membrane operators from the
higher-flux membrane operators by summing over all possible
elements of e for the E label. That is, we consider

Cg
T (m2)Ch

T (m1)|GS〉 = Cg
T (m2)

∑
e2∈E

δ(e2, ê(m2))Ch
T (m1)

∑
e1∈E

δ(e1, ê(m1))|GS〉

=
∑
e2∈E

∑
e1∈E

Cg,e2
T (m2)Ch,e1

T (m1)|GS〉.

Using Eq. (30), we see that this gives us

Cg
T (m2)Ch

T (m1)|GS〉 =
∑
e1∈E

∑
e2∈E

C
h,e1[g((1)−(2))�{(h[2−1]�e−1

2 )[(h[2−1]g−1 )�e2]}]
T (m1)C

h[2−1]gh−1
[2−1]

� (m2)

×

⎛
⎜⎜⎝ ∏

plaquette
p∈m2

B[h−1
[2−1]�ep|2][(g−1h−1

[2−1] )�e−1
p|2]((2) − (1))Bep|2[(h[2−1]g−1h−1

[2−1] )�e−1
p|2]((1) − p)

⎞
⎟⎟⎠

× δ(h[2−1] � e2, ê(m2))|GS〉.
Then we have ∑

e1∈E

C
h,e1[g[(1)−(2)]�{(h[2−1]�e−1

2 )[(h[2−1]g−1 )�e2]}]
T (m1) = Ch

T (m1)
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because summing over e1 gives us an equal sum over all Kronecker deltas δ(ê(m1), e), regardless of the actual value of e2. This
gives us

Cg
T (m2)Ch

T (m1)|GS〉 =
∑
e1∈E

∑
e2∈E

Ch
T (m1)C

h[2−1]gh−1
[2−1]

� (m2)

×
( ∏

plaquette
p∈m2

B[h−1
[2−1]�ep|2][(g−1h−1

[2−1] )�e−1
p|2]((2) − (1))Bep|2[(h[2−1]g−1h−1

[2−1] )�e−1
p|2]((1) − p)

)

× δ(h[2−1] � e2, ê(m2))|GS〉.
We can similarly use the sum over e2 ∈ E to remove the other Kronecker delta. We have∑

e2∈E

δ(h[2−1] � e2, ê(m2)) = 1

because h[2−1] � e2 runs over all e ∈ E . This gives us the final result

Cg
T (m2)Ch

T (m1)|GS〉 =
∑
e1∈E

∑
e2∈E

Ch
T (m1)C

h[2−1]gh−1
[2−1]

� (m2)

×
( ∏

plaquette
p∈m2

B[h−1
[2−1]�ep|2][(g−1h−1

[2−1] )�e−1
p|2]((2) − (1))Bep|2[(h[2−1]g−1h−1

[2−1] )�e−1
p|2]((1) − p)

)
|GS〉. (36)

Then looking at the effect of braiding on the G-valued
label, we see that the result is simply conjugation of one of
the magnetic flux labels by the other. The labels of the blob
ribbons corresponding to m2 are also changed before and after
the intersection of the two membranes. Just as we discussed
for the higher-flux membrane operators earlier in this section,
the label after the intersection reflects the change to the label
g of the membrane operator applied on m2, while the change
to the label before the intersection is only an apparent change
due to the operator label.

C. Braiding with E-valued loops

The final braiding relation to consider is the braiding be-
tween these higher-flux excitations and the E -valued loops.
We can obtain this relation from the calculation for two
higher-flux membrane operators in the previous section be-
cause the E -valued loops are simply higher-flux excitations
with trivial G label. We therefore simply need to take the
special case of that calculation when one of the G elements
is 1G. Rather than repeating the full equations, we will only
present the results in the same-start-point braiding case.

First we consider the case where the red excitation shown
in Fig. 37 is a higher-flux excitation, produced by a membrane
operator C

g,emag

T (m2), while the green excitation is a pure E -
valued loop, labeled by em. In this case the label of the E -
valued loop transforms as em → eme−1

mag[g−1 � emag] under the
braiding, while the labels of the magnetic membrane operator
are unaffected by the braiding. When we change to consider
our irrep basis for the E -valued loops [given in Eq. (12)] this
transformation gives us a phase of

γ
(
e−1

mag[g−1 � emag]
)−1

, (37)

where γ is the irrep of E labeling the E -valued loop. Note that
if we consider the ordinary magnetic excitation by averaging

over emag, the braiding relation is different for each value of
emag, so the different terms in the sum accumulate different
transformations. This is part of the reason why it was nec-
essary to consider the higher-flux membrane instead of the
magnetic one in the first place. The result of this different
transformation for the different E labels is that, even if the
excitation is initially an ordinary magnetic excitation, with
an equal superposition of the different E labels, it will not
necessarily remain so after braiding, instead becoming an
uneven superposition of the different higher-flux excitations,
with labels coupled to the state of the E -valued loop.

Now we consider the opposite case where the E -valued
loop passes through the magnetic one. In this case, the red
excitation from Fig. 37 is a pure E -valued loop excitation
produced by the membrane operator δ(ê(m2), em), while the
green excitation is a higher-flux loop excitation produced by
the membrane operator Ch,e1

T (m1). In this case the label em

of the E -valued loop transforms as em → h � em under the
braiding, while the labels of the higher-flux operator are again
unaffected by the braiding move. In our irrep basis for the
E -valued membrane operators, this transformation actually
changes the irrep γ labeling the membrane operator to a
different irrep h−1 � γ in the same �-Rep class of irreps
[where two irreps of E , α and β, are in the same �-Rep class if
there exists a g ∈ G such that α(g� e) = β(e) for all e ∈ E ].
This suggests that the irreps of E are not by themselves good
labels for the topological charge because the irreps are not
invariant under braiding, and instead the �-Rep classes should
be important (although the condensation further affects the
topological charge). However, as we see in Sec. IX A 1, the
pointlike charge of the looplike excitations actually depends
on how the coefficients of the membrane operator transform
under the � action, and so this topological charge has some
dependence on quantities within the � class as well. We will
discuss the topological charge in more detail in Sec. IX.
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TABLE IV. A summary of which excitations braid nontrivially in
case 2, where the group E is Abelian and ∂ maps onto the center of
G. A tick indicates that at least some of the excitations of each type
braid nontrivially with each other, while a cross indicates that there
is no nontrivial braiding between the two types.

Nontrivial Higher E -valued

braiding? Electric flux Blob loop

Electric ✗ � ✗ ✗

Higher
flux � � � �
Blob ✗ � ✗ �
E -valued
loop ✗ � � ✗

D. Summary of braiding in this case

Table IV summarizes which types of excitation can have
nontrivial braiding relations in the case where E is Abelian
and ∂ maps to the center of G, where nontrivial braiding
between the types of excitation is indicated by ticks. Note that
the higher-flux excitations have potentially nontrivial braiding
relations with every class of excitation.

IX. TOPOLOGICAL CHARGE

In Ref. [14] we explained the concept of topological charge
and in Ref. [15] we presented a detailed construction of the
measurement operators for topological charge in the (2+1)D
case. To briefly restate our explanation from Ref. [14], topo-
logical charge is a quantity that is conserved, so that the
only way to change the topological charge in a region is
to apply an operator that connects this region to the rest of
our lattice. Further conditions are imposed on the topological
charge relevant to our model by requiring that the ground state
is the topological vacuum. There is a significant difference
between the (2+1)D and (3+1)D cases, however. Whereas
we consider the topological charge in regions isomorphic to
disks (or unions and differences of disks, like annuli) when
there are only two spatial dimensions, there are more topolog-
ically distinct regions to consider when there are three spatial
dimensions. For example, we have both topological balls and
solid tori. The charge in these regions should be measured by
operators on the surfaces of the regions, i.e., on spheres and
tori. This variety of regions is related to our excitations. We
have both pointlike and looplike excitations, both of which
should carry topological charge. While we expect pointlike
charges to be fully measured by spheres, the sphere has no
features that would allow it to distinguish between a loop and
a point. On the other hand, a torus has handles which can link
with a looplike excitation and we expect this to allow the torus
to distinguish between point particles and loops. We therefore
expect that the loop excitations should carry a charge that is
not measured by the sphere (in addition to some charge that
can be measured by the sphere). Therefore, we need to include
the toroidal measurement surfaces as well.

In order to measure the topological charge held within or
without a particular surface, we follow a similar procedure to
the one used for the (2+1)D case in Ref. [15], except that the

FIG. 38. If an excitation pierces the measurement surface, then
the charge within the surface is ill defined. In the case shown in
this figure, measuring the 1-flux along the two potential loops may
give different results (to the point of not giving the same topological
charge).

boundary for our region is a surface rather than a path. We take
our surface of interest and apply every closed membrane or
ribbon operator that we can on this surface, before considering
only the sums of these operators that will commute with the
Hamiltonian. Combinations of ribbon and membrane opera-
tors can produce any linear operator on the Hilbert space. This
is because we can consider ribbon and membrane operators
that act only on a single edge or plaquette. An electric ribbon
operator acting on a single edge can measure any value for
that edge, while a magnetic membrane operator acting only
on a single edge can multiply that edge by any group label.
Together these allow us to freely control the label of any
edge. Similarly, an E -valued membrane operator can measure
the label of a single plaquette and a blob ribbon operator
can multiply its label by any value. Combinations of these
operators can therefore control the label of every edge and
plaquette in the lattice. However, when we restrict to operators
that commute with the Hamiltonian, we are left only with
closed ribbon and membrane operators. This restriction of
commuting with the Hamiltonian is because our measurement
operator should not by itself produce or move topological
charge.

We consider this process of measuring the charge for
spherelike and toruslike surfaces. Theoretically, we could do
the same for an arbitrary surface. However, because the simple
excitations of the model are either pointlike or looplike, it
does not appear necessary to consider the charge measured
by higher-genus surfaces. Nevertheless, this may not be the
case and it would be interesting to construct the higher-genus
measurement operators, but we leave this for future study.
One subtlety with measuring a looplike excitation is that,
because the loops are extended, the excitations may pierce
the measurement surface and not be wholly contained within
or without the surface. As an example, consider the situation
shown in Fig. 38. As part of the measurement procedure, we
must choose closed paths on which to measure any magnetic
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flux enclosed by the torus. However, in the presence of excita-
tions on the surface itself, two choices of loops to measure on
(for example, the blue or yellow paths in the figure) would
give different results. This is because different loops may
or may not link with the excitation (the thicker red torus).
Because both choices are supposed to measure the charge
within the torus (the partially transparent green torus), this
leads to a contradiction. If we want to measure the charge held
within a surface without knowing what excitations are present
and where they are, this presents a difficulty. Therefore, we
include in our charge measurement operators a projector to
the space where the surface has no excitations. This sidesteps
the above issue, but it does mean that we cannot measure the
charge of confined excitations (which always cause excita-
tions on a surface enclosing them) using this procedure.

A. Topological charge within a sphere in the case where
∂ → center(G) and E is Abelian

Before we look at the charge measured by a torus, which
is sensitive to both looplike and pointlike charge, we will first
examine the charge measured by a sphere. We will do this
in the case where E is Abelian and ∂ maps onto the center
of G (case 2 in Table I), which includes the � trivial case
(case 1 in Table I) as a subcase. Because a sphere has no
noncontractible cycles, the sphere should only be sensitive to
pointlike charge. Nonetheless, the sphere charge is interesting,
not only because it lets us look at the properties of point
particles, but because loop excitations also possess pointlike
charge. As we explained in the previous section, to measure
the charge within a sphere we first project to the case where
there are no excitations on the measurement surface. Then
we consider which independent closed ribbon and membrane
operators we can apply on this surface.

While it may seem that we can independently apply ribbon
operators around any closed loop on the surface of the sphere,
this is not the case. Any ribbon operators are either topological
or confined (or can be written as a linear combination of
ribbon operators of the two types), as we show in Sec. S-II
in the Supplemental Material [20]. If a ribbon operator is con-
fined, then applying it leads to excitations on the measurement
surface, which we do not allow. On the other hand, if a ribbon
operator is topological, then because all closed paths on the
sphere are contractible on the spherical surface (and we do not
allow excitations on the surface), the ribbon can be contracted
to nothing without affecting the action of the ribbon operator.
This means that applying a closed topological ribbon operator
on the surface of the sphere is equivalent to applying the
identity operator (at least in the subspace on which we apply
measurement operators). Therefore, any ribbon operators that
we are allowed to apply (the nonconfined ones) act trivially.

This leaves us only with the membrane operators Ch
T (m)

and Le(m), where Ch
T (m) is the total magnetic membrane

operator defined in Sec. VII [see Eq. (25)] and Le(m) is the
E -valued membrane operator δ(e, ê(m)). We consider apply-
ing these two operators over the sphere. Although we apply
both operators on the same sphere, when we define the mem-
brane m for each operator to act on we need to define a
start point for the membrane. It would seem that we could
choose the start points of the membranes to be different for

the two membrane operators, giving us many potential mea-
surement operators. However, this is not the case because of
the requirement that the total measurement operator commute
with the energy terms on the sphere. As we have discussed
previously, and prove in Sec. S-I D 3 in the Supplemental
Material for this work [20] and Sec. S-I C in the Supple-
mental Material for Ref. [15], both the magnetic membrane
operator and E -valued membrane operator commute with the
vertex transforms except those at the start points. If the two
operators have different start points, then each must individu-
ally commute with their specific start-point vertex transform
(rather than their combination having to commute with a
mutual start-point transform). However, when a membrane
operator commutes with the start-point vertex transforms, the
start point of the operator becomes arbitrary. That is, if the
start point is not excited we can move the start point without
affecting the action of the membrane operator because parallel
transport of a vertex is equivalent to applying a vertex trans-
form (see Sec. S-I D 4 in the Supplemental Material [20] for a
proof of this for the magnetic membrane operator and Sec. S-I
C in the Supplemental Material of Ref. [15] for a proof for the
E -valued membrane operator). This means that we can move
the start points to be in the same location anyway, without af-
fecting the action of the two membrane operators. Therefore,
without loss of generality, we can consider the two start points
of the membrane operators to be in the same location.

The most general operator we can apply is a linear com-
bination of terms with the form Ch

T (m)Le(m) for different
labels h and e, where m is the spherical membrane that we are
measuring the charge within. We might also consider products
that include multiples of one or more of the two types of op-
erators, such as Ch

T (m)Le(m)L f (m)Cg
T (m). However, because

the two types of operator commute, we can always collect
the separate instances of each type of operator, to give us
terms like Ch

T (m)Cg
T (m)Le(m)L f (m). Then we can use the

algebra of the membrane operators to combine them, which
just gives us δ(e, f )Chg

T (m)Le(m) for the above example. This
is just an example of a linear combination of terms of the
form Ch

T (m)Le(m), so we only need consider such terms. We
take the membrane m to be oriented inwards to match the
orientation of the surface label of the direct membrane used in
Ch

T (m). Taking the opposite orientation would be equivalent
to using e−1 instead of e. We also do not displace blob 0
and the start point of Ch

T (m) and Le(m) from the membrane,
contrary to the approach used in Sec. VIII when considering
the braiding of the higher-flux excitations. This choice does
not matter because the fact that we enforce the start point and
blob 0 to be unexcited by the combined action of the measure-
ment operator means that we can freely move the start point
and blob 0 around without affecting the total action of the
measurement operator. Moving the start point is equivalent to
applying a vertex transform at the start point, which is trivial
when the start point is unexcited, and we show in Sec. S-I D 5
of the Supplemental Material [20] that moving blob 0 is trivial
when that blob is unexcited.

Having found that the operator we apply must have the
form

∑
h∈G

∑
e∈E αh,eCh

T (m)Le(m), where αh,e are a set of
coefficients, we next have to find which coefficients lead to
the operator commuting with the energy terms on the sphere.
In Sec. S-V D of the Supplemental Material [20], we show
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that requiring commutation with the energy terms leads to
two types of restrictions for the coefficients. Some of these
restrictions enforce that the coefficient αh,e must be zero for
certain labels [i.e., certain pairs of label (h, e) for Ch

T (m)Le(m)
are disallowed], while other conditions mean that the coeffi-
cients of two pairs (h1, e1) and (h2, e2) must be the same (i.e.,

αh1,e1 = αh2,e2 ). As a shorthand, we write (h1, e1)
S∼ (h2, e2)

for two pairs that are subject to this latter type of restriction
(must have equal coefficients). Then the restrictions that we
find are

h � e = e, (38)

∂ (e) = 1G, (39)

h
S1∼ ∂ ( f )h ∀ f ∈ E , (40)

and
(h, e)

S2∼ (ghg−1, g� e) ∀ g ∈ G. (41)

The two equivalence relations
S1∼ and

S2∼ together form the

equivalence relation
S∼, where any pairs of labels (h1, e1) and

(h2, e2) related by
S∼ must have equal coefficients. We can

write
S∼ explicitly as

(h, e)
S∼ (∂ ( f )ghg−1, g� e), (42)

for each g ∈ G and f ∈ E [i.e., (h, e) is in the same equiva-
lence class as (h′, e′) if there exists any g ∈ G and e ∈ E such
that (h′, e′) = (∂ ( f )ghg−1, g� e)]. Given all of these condi-
tions for our measurement operators, we can construct a basis
for the space of allowed measurement operators. As we show
in Sec. S-V D of the Supplemental Material [20], one such
basis is given by a set of operators labeled by two objects. The
first object, C, is a � class of the kernel of ∂ . A �-class of the
kernel is a subset of the kernel consisting of elements related

by the equivalence relation e
�∼ f if there exists a g ∈ G such

that g� e = f . It is convenient to pick a representative ele-
ment rC for each such class C. Then we define the centralizer
of the class C as Z�,rC = { h ∈ G | h � rC = rC }. The second
object that labels our basis operators is a class within this
centralizer, this time described by the equivalence relation

h
Z�,rC∼ xhx−1∂ (w) (43)

for any elements x ∈ Z�,rC and w ∈ E . Note that this

equivalence relation is similar to
S∼, in that it gives the same

form of relation, but only for elements x ∈ Z�,rC (for which
x � rC = rC) rather than general elements g ∈ G. The basis
operator corresponding to a particular � class C of the
kernel and equivalence class D [defined by Eq. (43)] of the
associated centralizer is

T D,C (m) =
∑
q∈QC

∑
d∈D

Cqdq−1

T (m)Lq�rC (m),

where QC is a set of elements of G that move us between
the elements of the � class C, so that each element ei ∈ C
has a unique qi ∈ QC such that ei = qi � rC . As we show in
Sec. S-V D of the Supplemental Material [20], any element
g ∈ G can be uniquely decomposed as a product of an

FIG. 39. We measure the charge held at the end of an electric
ribbon, using our spherical surface (large green sphere).

element of QC and an element of Z�,rC . We can use this basis
of operators to construct the projectors to definite topological
charge within the sphere. These projectors are given by

T R,C (m) = |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)T D,C (m), (44)

where R is an irrep of the quotient group Z�,rC /∂ (E ) with
dimension |R| and (Z�,rC )cl is the set of classes in the
centralizer defined by the equivalence relation (43). Note
that the character χR of irrep R is independent of the element
d ∈ D [because characters are a function of conjugacy class,
and R being an irrep of the quotient group means that it is also
insensitive to factors of ∂ (w) from Eq. (43)]. In Sec. S-V D
of the Supplemental Material [20] we prove that the operators
defined by Eq. (44) are indeed projectors and are orthogonal
and complete in our space.

1. The pointlike charge of simple excitations

Having worked out the projectors for the charges, it will
be instructive to use them to check the topological charge
of some of our simple excitations (those produced by single
ribbon or membrane operators). To do this we try enclosing
these charges with our measurement operators.

We first consider measuring the charge of an electric exci-
tation at the end point of a ribbon operator. To do this, we
first need to create our electric excitation, by applying an
electric ribbon operator to our ground state. Considering a
ribbon operator labeled by irrep X of G and matrix indices
a and b, we obtain the state∑

g∈G

[DX (g)]abδ(ĝ(t ), g)|GS〉.

Next we want to measure this charge, by applying a mea-
surement operator, as shown in Fig. 39. Therefore, we want to
calculate

T R,C (m)
∑
g∈G

[DX (g)]abδ(ĝ(t ), g)|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

Cqdq−1

T (m)

× δ(ê(m), q � rC )
∑
g∈G

δ(ĝ(t ), g)[DX (g)]ab|GS〉.
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The operator δ(ê(m), q � rC ) commutes with δ(ĝ(t ), g), so
we can commute δ(ê(m), q � rC ) all the way to the right, so
that it acts directly on the ground state. Then we have

δ(ê(m), q � rC )|GS〉 = δ(1E , q � rC )|GS〉
because m is a sphere, and any contractible sphere in the
ground state must have a surface label of 1E due to the
blob energy terms. We can write δ(q � rC, 1E ) as δ(rC, 1E ) =
δ(C, { 1E }) (using the fact that the identity is invariant under
the � action and so is the only element of its � class). There-
fore, we find that the result of measurement is zero unless the

class that we are trying to measure is the trivial one. This is
as we expect because the electric excitations do not possess
nontrivial 2-flux.

Having found that the class C must be trivial for a nonzero
result, we can also simplify the other mathematical objects
appearing in the projector. When rC = 1E , we have that
h � 1E = 1E ∀ h ∈ G, which implies that Z�,rC = G and the
quotient group Z�,rC /∂ (E ) is simply G/∂ (E ). In addition, the
set QC is the trivial group containing just the identity element,
so we may drop the sum over q ∈ QC . Then the result of our
measurement is

δ(C, {1E })
|R|
|G|

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

Cd
T (m)

∑
g∈G

δ(ĝ(t ), g)[DX (g)]ab|GS〉

= δ(C, { 1E })
|R|
|G|

∑
d∈G

∑
g∈G

χR(d )[DX (g)]abC
d
T (m)δ(ĝ(t ), g)|GS〉.

Then we just need to find the commutation relation between Cd
T (m) and δ(ĝ(t ), g). The calculation of this is analogous to the

calculation performed to find the braiding relation between the electric and magnetic excitations (see Sec. IV B 1), except that
we have the opposite orientation of the magnetic membrane operator. We find that

Cd
T (m)δ(ĝ(t ), g)|GS〉 = δ(ĝ(t − m)dĝ(t − m)−1ĝ(t ), g)Cd

T (m)|GS〉,
where ĝ(t − m) is shorthand for ĝ(s.p.(t ) − s.p.(m)), the path element for the path from the start point of t to the start point of m.
We also have that Cd

T (m)|GS〉 = |GS〉 because the sphere is contractible and the operator is topological (so that we can deform
the operator to nothing). Using these results in our previous expression gives

T R,C (m)
∑
g∈G

[DX (g)]abδ(ĝ(t ), g)|GS〉 = δ(C, { 1E })
|R|
|G|

∑
d∈G

∑
g∈G

χR(d )[DX (g)]abδ(ĝ(t ), ĝ(t − m)d−1ĝ(t − m)−1g)|GS〉.

We then rewrite ĝ(t − m)dĝ(t − m)−1 as d ′ and replace the sum over the dummy index d with a sum of d ′. Noting that the
character χR is a function of conjugacy class, so that χR(d ′) = χR(d ), we then see that

T R,C (m)
∑
g∈G

[DX (g)]abδ(ĝ(t ), g)|GS〉 = δ(C, { 1E })
|R|
|G|

∑
d ′∈G

∑
g∈G

χR(d ′)[DX (g)]abδ(ĝ(t ), d ′−1g)|GS〉

= δ(C, { 1E })
|R|
|G|

∑
d ′∈G

∑
g′=d ′−1g∈G

χR(d ′)[DX (d ′g′)]abδ(ĝ(t ), g′)|GS〉

= δ(C, { 1E })
|R|
|G|

∑
d ′,g′∈G

|X |∑
c=1

|R|∑
e=1

[DR(d ′)]ee[DX (d ′)]ac[DX (g′)]cbδ(ĝ(t ), g′)|GS〉.

We now want to use the orthogonality relations for irreps
of a group to simplify this. There is a slight complication
in that X is an irrep of G whereas R is an irrep of G/∂ (E ).
However, R induces a representation RG of G defined by
RG(g) = R[g̃∂ (E )], where g̃∂ (E ) is the coset which g belongs
to. Therefore, each matrix from R is copied |∂ (E )| times in
RG. Given that R is an irrep of G/∂ (E ), RG must also be
irreducible (as a representation of G). This is because the same
matrices appear in the two representations R and RG, so if R
cannot be reduced to a block-diagonal form then neither can
RG. Then we can use RG instead of R and apply the standard
irrep orthogonality relations to obtain

T R,C (m)
∑
g∈G

[DX (g)]abδ(ĝ(t ), g)|GS〉

= δ(C, { 1E })
|R|
|G|

∑
g′∈G

|G|
|R| δecδebδ(RG, X )

× [DX (g′)]cbδ(ĝ(t ), g′)|GS〉
= δ(C, { 1E })δ(RG, X )

∑
g′∈G

[DX (g′)]cb

× δ(ĝ(t ), g′)|GS〉. (45)

We see that the final result of applying the measurement
operator is that we recover our original electric operator acting
on the ground state, multiplied by δ(C, { 1E })δ(RG, X ). This
indicates that the charge of the excitation is ({ 1E }, X ). If
the irrep X corresponds to a confined excitation, none of our
measurement operators will give a nonzero result because RG
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FIG. 40. We measure the topological charge of the blob excita-
tion at the start of the blob ribbon operator.

derives from an irrep of the quotient group, and so cannot have
a nontrivial restriction to the image of ∂ . This is a result of
our requirement that we project out the states that have exci-
tations on the measurement membrane itself, which naturally
precludes the measurement of any confined excitations.

We can similarly check the charge of a blob excitation.
We expect that the corresponding charge will be labeled by
a nontrivial class C because this class is associated to the
2-flux measured by the measurement operator. We may think
that because the blob excitation can have an excited vertex,
in addition to the excited blob, that this means that the rep-
resentation labeling the charge should be nontrivial, just like
with the electric excitation. However, we will see that the
vertex excitation does not in this case result in a nontrivial
representation. We measure the topological charge of the blob
excitation at the start of the path of a blob ribbon operator,
as indicated in Fig. 40. We choose to measure the charge of
the excitation at the start of the ribbon, rather than the end as
we did with the electric excitation, because this will highlight
the fact that the excited vertex enclosed by the measurement
surface does not lead to a nontrivial representation R.

We consider measuring the charge of a blob excitation
produced by the blob ribbon operator∑

e∈[ẽ]�

αeBe(t ),

where [ẽ]� is the � class containing ẽ, which is defined by

e ∈ [ẽ]� ⇐⇒ ∃g ∈ G s.t. e = g� ẽ. (46)

In order to measure the charge, we apply a measurement
operator T R,C on the state produced by acting with the blob
ribbon operator on the ground state. That is, we examine a
state

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

Cqdq−1

T (m)

× δ(ê(m), q � rC )
∑

e∈[ẽ]�

αeBe(t )|GS〉, (47)

where αe is a set of coefficients that we keep general, so that
we can show that the topological charge does not depend on
the coefficients within the � class, only on the class itself.

From a calculation analogous to the one for braid-
ing between higher-flux excitations and blob excitations in
Sec. VIII A, we know that

Cqdq−1

T (m)δ(ê(m), q � rC )Be(t )|GS〉
= Be(start(t ) − blob 0)

× B[g(m−t )−1qdq−1g(m−t )]�e(blob 0 − end(t ))Cqdq−1

T (m)

× δ(ê(m), [q � rC]{ĝ(s.p.(m) − s.p.(t )) � e−1})|GS〉,
(48)

where all of the blob ribbon operators have the same start
point as t and g(m − t ) is shorthand for the path element
g[s.p.(m) − s.p.(t )]. Then, because the membrane m is con-
tractible, its surface element must be the identity in the ground
state. Therefore, we have

δ(ê(m), [q � rC]{ĝ(s.p.(m) − s.p.(t )) � e−1})|GS〉
= δ([q � rC]{ĝ(s.p.(m) − s.p.(t )) � e−1}, 1E )|GS〉.

(49)

Substituting the relations from Eqs. (48) and (49) into
Eq. (47), we have

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

∑
e∈[ẽ]�

αe

× Be(start(t ) − blob 0)B[g(m−t )−1qd]�rC (blob 0 − end(t ))

× δ(q � rC, ĝ(m − t ) � e)|GS〉, (50)

where we used the Kronecker delta to rewrite the label of
the second blob ribbon operator in terms of rC . But then
d is an element of Z�,rC , so d � rC = rC . This means that
[ĝ(m − t )−1qd] � rC = [ĝ(m − t )−1q] � rC . Then the Kro-
necker delta enforces that q � rC = ĝ(m − t ) � e, so that

[ĝ(m − t )−1q] � rC = ĝ(m − t )−1 � (q � rC )

= ĝ(m − t )−1 � [ĝ(m − t ) � e]

= e.

Substituting this into Eq. (50), we see that the result of our
measurement is

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

∑
e∈[ẽ]�

αe

× Be(start(t ) − blob 0)Be(blob 0 − end(t ))

× δ(q � rC, ĝ(m − t ) � e)|GS〉.
We see that the labels of the two sections of the blob ribbon

operator are the same, and so we can recombine them into a
single ribbon operator applied on the original ribbon t . We
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then have

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

∑
e∈[ẽ]�

αe

× Be(t )δ(q � rC, ĝ(m − t ) � e)|GS〉.
Next, note that if the Kronecker delta

δ(q � rC, ĝ(m − t ) � e)

is satisfied, then e and rC must be in the same � class [they are
related by the action of q−1ĝ(m − t )], and so we can extract
δ([ẽ]�,C) from the Kronecker delta to obtain

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

∑
e∈[ẽ]�

αe

× Be(t )δ([ẽ]�,C)δ(q � rC, ĝ(m − t ) � e)|GS〉.
In addition, the dummy variable q now only appears in the
expression

δ(q � rC, ĝ(m − t ) � e).

However, provided that rC and e are in the same � class
[as enforced by δ([ẽ]�,C)], there is precisely one value of
q ∈ QC that satisfies q � rC = ĝ(m − t ) � e, and so we can
remove the sum over q along with the Kronecker delta, to
obtain

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= δ([ẽ]�,C)
|R|

|Z�,rC |
∑

d∈Z�,rC

χR(d )
∑

e∈[ẽ]�

αeBe(t )|GS〉.

Next, we wish to use orthogonality of characters to find the
irrep R. To do so, we note that the character of the trivial irrep
is one for all elements, and so∑

d∈Z�,rC

χR(d ) =
∑

d∈Z�,rC

χR(d )χ1Rep (d−1).

The index d appears only in this expression, and so we can
use orthogonality of characters to write

T R,C (m)
∑

e∈[ẽ]�

αeBe(t )|GS〉

= δ([ẽ]�,C)
|R|

|Z�,rC |

( ∑
d∈Z�,rC

χR(d )χ1Rep (d−1)

)

×
∑

e∈[ẽ]�

αeBe(t )|GS〉

= δ([ẽ]�,C)
|R|

|Z�,rC |
(
δ(R, 1Rep)|Z�,rC |) ∑

e∈[ẽ]�

αeBe(t )|GS〉

FIG. 41. We measure the spherical charge of an E -valued loop.
To simplify the calculation, we deform the E -valued membrane to
pull it inside the measurement operator, while keeping the start point
outside.

= δ([ẽ]�,C)δ(R, 1Rep)
∑

e∈[ẽ]�

αeBe(t )|GS〉. (51)

This expression is just our original blob ribbon operator acting
on the ground state, multiplied by δ([ẽ]�,C)δ(R, 1Rep). This
indicates that our blob excitation has charge ([ẽ]�, 1Rep). Note
that because our measurement operator only runs over classes
C in the kernel of ∂ , if the blob ribbon operator is confined
we will always get zero when we act with our measurement
operator. We also note that the representation R is always the
trivial representation, regardless of which set of coefficients
αe we have. This means that, as we stated earlier, even if the
coefficients αe are such that the blob ribbon operator excites
the start-point vertex, this is not reflected in the charge of
the excitation. The idea that the extra vertex excitation on an
object may not correspond to an additional charge is some-
thing that is familiar from Kitaev’s quantum double model in
(2+1)D [16,29].

We previously mentioned that the looplike excitations of
this model may also carry a pointlike topological charge that
can be measured by the spherical measurement operators.
As an example, consider the E -valued loop excitations (we
also examine the higher-flux excitations, but this is left to
Sec. S-V D 1 in the Supplemental Material [20] due to the
increased mathematical complexity of the calculation). We
wish to measure the topological charge of such a loop exci-
tation using our spherical measurement operator, as shown in
Fig. 41. Note that if the start point were inside the measure-
ment sphere, the entire membrane operator would be wholly
within the sphere (or could be deformed to be within the
sphere), so the membrane operator would commute with any
measurement operator applied on that sphere. Therefore, the
measurement operator would just measure the charge of the
ground state, i.e., the vacuum charge. This means that the
combined pointlike charge of the start point and the loop
excitation is trivial, and so any pointlike charge carried by
the loop must be balanced by a charge belonging to the start
point.
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In order to find the charge of the looplike excitation, we
want to calculate

T R,C (n)
∑
e∈E

aeδ(e, ê(m))|GS〉.

To do so, we must first evaluate

Ch
T (n)Len (n)δ(ê(m), e)|GS〉,

where h and en are stand ins for any label that can appear for
the individual operators in our measurement operators. First,
we note that Len (n) = δ(ê(n), en) commutes with δ(ê(m), e)
because both are diagonal in the configuration basis (the basis
where each edge is labeled by an element of G and each
plaquette is labeled by an element of E ). On the other hand,
δ(ê(m), e) does not commute with the magnetic membrane
operator Ch

T (n). We can see this by writing the surface element
ê(m) in terms of the constituent plaquettes, as

ê(m) =
∏
p∈m

ĝ(s.p.(m) − v0(p)) � êp,

where ep is the label of plaquette p and we have assumed
each plaquette aligns with m (otherwise we must replace the
plaquette label with the inverse). We see that this depends
on the group element associated to the path [s.p.(m) − v0(p)]
from the start point of the membrane to the base point of the
plaquette. This path passes through the membrane n and so is
affected by the magnetic membrane operator. As we prove in
Sec. S-IV A 1 of the Supplemental Material [see Eq. (S72)]
[20], such a path element satisfies the commutation relation

ĝ(s.p.(m) − v0(p))Ch
T (n)

= Ch
T (n)ĝ(s.p.(m) − s.p.(n))h−1ĝ(s.p.(m) − s.p.(n))−1

× ĝ(s.p(m) − v0(p)).

Defining

h[m−n] = ĝ(s.p.(m) − s.p.(n))hĝ(s.p.(m) − s.p.(n))−1,

this leads to the surface label satisfying the commutation
relation

Ch
T (n)ê(m) = h[m−n] � ê(m)Ch

T (n),

so that

Ch
T (n)δ(ê(m), e) = δ(h[m−n] � ê(m), e)Ch

T (n)

= δ
(
ê(m), h−1

[m−n] � e
)
Ch

T (n).

Then if we take the start points of m and n to be the same
(which has no effect on the result because the start point of
the measurement operator can be changed without affecting
the measurement operator), this becomes

Ch(n)Len (n)δ(ê(m), e)|GS〉
= δ(ê(m), h−1 � e)ChLen (n)|GS〉
= δ(ê(m), h−1 � e)δ(en, 1E )|GS〉,

where in the last line we used the fact that the contractible
closed surface n must have trivial label in the ground state,
while the magnetic membrane operator applied on n acts
trivially on the ground state (again, because n is closed and
contractible). We can then use this result to evaluate the action

of the measurement operator, to obtain

T R,C (n)
∑
e∈E

aeδ(e, ê(m))|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

× Cqdq−1
(n)Lq�rC (n)

∑
e∈E

aeδ(e, ê(m))|GS〉

= |R|
|Z�,rC |

∑
D∈(Z�,rC )cl

χR(D)
∑
d∈D

∑
q∈QC

∑
e∈E

ae

× δ(qd−1q−1 � e, ê(m))δ(en, 1E )|GS〉.

Then δ(en, 1E ) enforces that C = { 1E } and so, just as
with the calculation for the charge of the electric excitation,
the groups involved in the projector simplify greatly. Z�,rC ,
the group of elements in G which stabilize rC , becomes the
whole group when rC = 1E . This also means that the sum over
representatives q ∈ QC becomes trivial, with q = 1G being the
only element. This gives us

T R,C (n)
∑
e∈E

aeδ(e, ê(m))|GS〉

= δ(C, { 1E })
|R|
|G|

∑
d∈G

χR(d )
∑
e∈E

aeδ(d−1 � e, ê(m))|GS〉

= δ(C, { 1E })
|R|
|G|

∑
d∈G

χR(d )
∑

e′=d−1�e

ad�e′δ(e′, ê(m))|GS〉

= δ(C, { 1E })
|R|
|G|

∑
e′∈E

(∑
d∈G

χR(d )ad�e′

)
δ(e′, ê(m))|GS〉.

(52)

Examining the term in parentheses, (
∑

d∈G χR(d )ad�e′ ),
we see that treating ad�e′ as a coefficient for d will result in
this coefficient being decomposed into irreps of G, describing
the way in which the group G acts on the coefficients by
the � action. Only the contribution from R survives, due to
orthogonality of characters, meaning that the measurement
only gives a nonzero result if the a coefficients contain the
irrep R. Therefore, the E -valued loop can have a nontrivial
spherical topological charge labeled by a representation of G,
depending on the choice of a coefficients. If the a coefficients
are invariant under the � action, so that ad�e′ = ae′ for all
d ∈ G and e ∈ E , then the term in parentheses is zero unless
R is the trivial irrep, because a must only contain the trivial
irrep of G. We note that this is the same condition for the start
point to be unexcited, as discussed in Sec. V B, and so if the
start point is not excited then there is no pointlike charge for
the loop (this is to be expected because if the start point is not
excited then it should not carry a charge to be balanced by
the loop). However, if ad�e′ �= ae′ in general, then there will
be some contribution from a nontrivial irrep. In particular, if∑

d∈G ad�e′ = 0 for all e′ ∈ E (which is the condition for the
start point to definitely be excited, as proven in Sec. S-I C of
the Supplemental Material for Ref. [15]) then the contribution
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FIG. 42. The surface of the torus is conveniently represented
by a square with periodic boundary conditions. The edges of this
square (which are glued due to the periodic boundary conditions)
are referred to as the seams of the torus. We apply electric ribbon
operators along these seams to measure the noncontractible cycles of
the torus and apply an E -valued membrane operator on the surface.
We will also apply blob ribbon operators around the two cycles and a
magnetic membrane operator over the surface. The edges cut by the
dual membrane of the magnetic membrane point outwards from the
page.

from the trivial irrep is proportional to∑
d∈G

χ1Rep (d )ad�e′ =
∑
d∈G

ad�e′ = 0

and so there is no contribution from the trivial charge mea-
surement operator. This means that the pointlike charge is
definitely nontrivial if the start point is excited.

B. Topological charge within a torus

Now we consider measuring the topological charge using a
toroidal surface. To do this, we first choose such a surface to
measure on. Then we project onto the space where the surface
has no excitations on it, so that we only measure the charge if
no objects intersect the surface itself. This is to avoid the case
where a loop excitation is only partially inside the measure-
ment surface because then we cannot unambiguously define
the charge within the torus, as explained earlier in Sec. IX.
A torus will allow us to measure both looplike and pointlike
charge. One important thing to note is that the excitations
that we measure need not lie inside the torus itself. Indeed,
we measure the looplike charge of loop excitations that link
with one of the cycles of the torus. For the meridian of the
torus, those excitations will live inside the torus. However, the
excitations that link with the longitude will be outside of the
torus. This means that the torus surface can actually measure
linklike excitations, made from loops outside the torus linking
with those inside, rather than just looplike excitations.

The topological charges measured by the torus are more
numerous and mathematically complicated to derive than
those measured by the sphere. We therefore first consider the
case where � is trivial (case 1 from Table I) as an introduction.
As illustrated in Fig. 42, we represent the torus surface as a
rectangle with opposite sides identified. These sides are then
one particular choice for the two independent cycles of the
torus. We will choose to apply any membrane operators on
this rectangle with the boundary at the cycles, before clos-
ing the rectangle by gluing the opposite edges. This leaves
“seams” at the two cycles, which may have special properties
because the action of the membrane operators on either side of

the seam may not match. We can understand this by imagining
taking a membrane operator applied on a rectangle and folding
it up to glue the opposite edges together. There is no guarantee
that a membrane operator acts the same on opposite sides of
the rectangle, and this disparity may remain when we glue
the sides together. We will see that this leads to additional
joining conditions required to prevent additional excitations
being present at these seams.

To find the measurement operators, we have to first project
onto the case where the surface itself is not excited, then
we see what degrees of freedom are left over. After pro-
jecting onto all of the plaquettes on the surface being flat,
these two cycles of the torus are still left undetermined. We
therefore apply two closed electric operators δ(ĝ(c1), gc1 ) and
δ(ĝ(c2), gc2 ), where c1 and c2 are the two cycles of the torus.
We also apply a closed membrane operator δ(ê(m), em) on the
torus, with the glued boundary of this torus being c1c2c−1

1 c−1
2 .

Requiring fake flatness on the torus (this requirement
follows from the plaquette terms) leads to the following con-
straint on the surface label em of the torus and the labels gc1

and gc2 of the two cycles:

∂ (em)gc1 gc2 g−1
c1

g−1
c2

= 1G.

Together with the other conditions that we will discuss in
this section, we prove this constraint in Sec. S-V A in the
Supplemental Material [20]. We can use the fact that � is
trivial to rewrite this constraint in a simpler way. When � is
trivial, conjugating an element ∂ (e) ∈ ∂ (E ) by any element
g ∈ G is trivial because g∂ (e)g−1 = ∂ (g� e) = ∂ (e) for all
g ∈ G and e ∈ E . Then defining [g, h] = ghg−1h−1, we can
write the above constraint in various ways. For example, we
have

∂ (em)gc1 gc2 g−1
c1

g−1
c2

= 1G

⇒ ∂ (em) = gc2 gc1 g−1
c2

g−1
c1

= [
gc2 , gc1

]
⇒ (

gc2 gc1

)−1
∂ (em)gc2 gc1 = g−1

c2
g−1

c1
gc2 gc1

⇒ ∂
[(

gc2 gc1

)−1 � em
] = [

g−1
c2

, g−1
c1

]
⇒ ∂ (em) = [

g−1
c2

, g−1
c1

]
,

where in the fourth line we used one of the Peiffer conditions
[Eq. (1) in Sec. II] and in the last line we used the fact that �
is trivial. We can also write the condition as

∂ (em)−1 = [
g−1

c1
, g−1

c2

]
. (53)

Next we apply our magnetic membrane operator Ch(m).
Because we already projected to the subspace where the torus
satisfies fake flatness, some of the details of the operator are
arbitrary; in particular the set of paths on the direct membrane,
which affect the action on the edges, can be freely chosen, as
long as these paths do not cross the seams of the membrane
(we take this convention because two choices of path that
differ by a noncontractible cycle may give different results and
this gives us a consistent way of choosing the paths).

Finally, we apply blob ribbon operators around the cycles,
so that our measurement operator so far is given by

Bec1 (c1)Bec2 (c2)Ch(m)δ(ê(m), em)δ(ĝ(c1), gc1

)
δ
(
ĝ(c2), gc2

)
.
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In principle, we could put closed blob ribbon operators any-
where on the membrane, rather than just on the cycles c1 and
c2. However, any blob ribbon operators with label in the kernel
of ∂ can be freely deformed on the surface without affecting
the action of the ribbon operators because these operators are
topological and there are no edge excitations on the surface
(edge excitations in particular are relevant because we deform
blob ribbon operators by applying edge transforms, which
are trivial when the edges are unexcited). This means that
any such blob ribbon operator that does not wrap around a
noncontractible cycle may be contracted into nothing, while
an operator that does wrap around a noncontractible cycle
on the torus may be deformed to wrap around the chosen
cycles c1 and c2 (if the ribbon operator wraps both cycles,
or wraps one multiple times, we split it into multiple ribbon
operators on the cycles). This is not true for the other blob
ribbon operators (those with label outside the kernel) because
they are confined and so are not topological. Instead, we find
that this confinement leads to their position being fixed and
their labels being restricted (as described in Sec. S-V A of
the Supplemental Material [20]), in order not to create any
excitations. This is because the magnetic membrane operator
may create plaquette excitations on the seams of the torus, but
these excitations can be removed if the confined blob ribbon
operators lie along the seam and have appropriate labels to
cancel the effect of the magnetic membrane operator. We
cannot place confined ribbon operators elsewhere (away from
these seams) without producing new excitations. The appro-
priate labels for blob ribbon operators Bec1 (c1) and Bec2 (c2),
applied around the cycles c1 and c2, respectively, satisfy

∂
(
ec2

) = [
gc1 , h

]
, (54)

∂
(
ec1

) = [
h, gc2

]
. (55)

So far we have restricted the labels by requiring that our
operator does not violate the plaquette conditions. However,
we also need the combined operator to commute with the
vertex and edge transforms on the surface so that the operator
does not create vertex and edge excitations. This forces us
to use linear combinations of operators with different labels.
In particular, we show in Sec. S-V A of the Supplemental
Material [20] that we need an equal sum of the operators
with sets of labels in certain equivalence classes. If two sets
of labels must appear with equal coefficients in the linear
combination, we denote this with an equivalence relation. We
find the relations(

gc1 , gc2 , h
) ∼ (

x−1gc1 x, x−1gc2 x, x−1hx
) ∀ x ∈ G, (56)

gc1 ∼ ∂ (e)gc1 ∀ e ∈ E , (57)

gc2 ∼ ∂ (e′)gc2 ∀ e′ ∈ E , (58)

h ∼ ∂ (e′′)h ∀ e′′ ∈ E . (59)

These conditions show a striking resemblance to the relations
that appear in the calculation of the ground-state degeneracy
of the 3-torus in Ref. [4] and indeed they map perfectly onto
them in the � trivial case. This indicates that the number of
topological charges we can measure within a 2-torus is the

same as the ground-state degeneracy of the 3-torus in the �-
trivial case, as found more generally in Ref. [19].

We can repeat this calculation for the special case (case
2 from Table I) where we only enforce that E is Abelian
and ∂ → center(G). Following the same argument as for the
previous case (with full proofs given in Sec. S-V B in the
Supplemental Material [20]), we obtain the restrictions

∂ (em) = [
gc2 , gc1

]
; (60)

∂
(
ec2

) = [
gc1 , h

]
; (61)

∂
(
ec1

) = [
h, gc2

]
; (62)

1E = [
h � e−1

m

]
eme−1

c1
[g−1

c1
� ec1 ]e−1

c2

[
g−1

c2
� ec2

]
, (63)

together with the equivalence relations((
gc1 , gc2 , h

)
,
(
ec1 , ec2 , em

))
∼ (

g
(
gc1 , gc2 , h

)
g−1, g�

(
ec1 , ec2 , em

))
(64)

(gc1 , ec2 , em)

∼ (
∂ (e)−1gc1 , ec2 [h � e] e−1, eme−1

[
g−1

c2
� e

])
(65)(

gc2 , ec1 , em
)

∼ (
∂ (r)gc2 , ec1 [h � r] r−1, emr−1

[
g−1

c1
� r

])
(66)

and(
h, ec1 , ec2

) ∼ (
∂ (e)h, ec1

[
g−1

c2
� e

]
e−1, ec2

[
g−1

c1
� e−1

]
e).
(67)

These restrictions can again be mapped onto the ground-
state conditions given in Ref. [4], as we demonstrate in
Sec. S-V B in the Supplemental Material [20]. This indicates
that again there are the same number of ground states on the
3-torus as there are charges that can be measured by the 2-
torus. We note that this relationship between the ground-state
degeneracy on the manifold M × S1 and the charge sectors
measured by the surface M (with M in this case being the
2-torus T 2 = S1 × S1 and M × S1 being the 3-torus) is some-
thing we may expect for a topological quantum field theory
(TQFT) [30].

We can use these conditions for the measurement operators
to produce a set of projection operators that span the space of
allowed measurement operators, just as we did for the spher-
ical topological charge. Each such projector then corresponds
to a particular value of topological charge. We find that these
projectors are labeled by certain mathematical objects that
were used by Bullivant et al. [19] when examining the ground
states of the higher lattice gauge theory model. Specifically,
each projector is labeled by a class C of a particular space
(to be described shortly) and an irrep R of a particular group.
To define these objects, we must follow some of the workings
from Ref. [19]. We note that some of our notation is slightly
different from that paper, in order to match notation that we
have previously used (and that was used in Ref. [4]). To un-
derstand C, we must first define boundary G colorings. These
are sets of three elements (gy, gz, ex ), where gy, gz ∈ G and
ex ∈ E . If this set satisfies gz = g−1

y ∂ (e−1
x )gzgy, it is called a

boundary G coloring [19]. These sets are then divided into
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classes, by the equivalence relation [19]

(gy, gz, ex ) ∼ (
a−1∂

(
b−1

2

)
gya, a−1∂

(
b−1

1

)
gza,

a−1 �
(
b−1

1

(
gz � b−1

2

)
ex(gy � b1)b2

))
, (68)

for each a ∈ G and b1, b2 ∈ E . Then the label C of the projec-
tor is one of these classes. The elements in C are denoted by
(cy,i, cz,i, dx,i ) and (cy,1, cz,1, dx,1) is called the representative
element of the class (i is an index that runs from 1 to the size
|C| of the class C) [19].

Expressions similar to the right-hand side of Eq. (68) will
appear frequently in this section, so we introduce some short-
hand from Ref. [19], defining

gk; f = k−1∂ ( f )−1gk, (69)

where g and k are elements of G and f is an element of E . We
also introduce the notation from Ref. [19] that

ek,h1,h2; f1, f2 = k−1 �
(

f −1
1 (h2 � f2)−1e[h1 � f1] f2

)
, (70)

where k, h1, and h2 are elements of G and f1 and f2 are
elements of E . Then using this notation, Eq. (68)n can be
written as

(gy, gz, ex ) ∼ (
ga;b2

y , ga;b1
z , e

a,gy,gz ;b1,b2
x

)
. (71)

In addition to the boundary G colorings, Bullivant et al.
introduce sets of three elements (gx, ey, ez ), where gx ∈ G and
ey, ez ∈ E , with these sets of elements being called “bulk G
colorings” [19]. These colorings are also divided into classes,
this time using an equivalence relation that depends on the
boundary coloring. The equivalence relation is [19]

(gx, ey, ez ) ∼
gy,gz

(∂ (λ)gx, [gz � λ]eyλ
−1, [gy � λ]ezλ

−1)

for each λ ∈ E . The corresponding set of equivalence classes
is denoted by Bgy,gz . Then for a class Egy,gz in the set Bgy,gz ,
the elements in Egy,gz are denoted by

(sx,i, fy,i, fz,i ),

for i = 1, 2, . . . , |Egy,gz |. The element (sx,1, fy,1, fz,1) is called
the representative element for this class. A subset of these
classes form a group called the stabilizer group of the class
C, ZC [19]:

ZC := {
EC ∈ BC |(cy,1, cz,1, dx,1)

= (
csx,1; fz,1

y,1 , c
sx,1; fy,1

z,1 d
sx,1,cy,1,cz,1; fy,1, fz,1

x,1

)}
,

where BC = Bcy,1,cz,1 and the subscript C in EC is to remind
us that EC belongs to BC (and is interchangeable with the
subscript cy,1, cz,1). The product for this group is defined so
that the product of two classes EC and E ′

C ∈ ZC , EC · E ′
C , is the

equivalence class in BC whose representative element is

(sx,1s′
x,1, fy,1(sx,1 � f ′

y,1), fz,1(sx,1 � f ′
z,1)).

The label R of a projector to definite topological charge is an
irrep of this stabilizer group.

Using the objects that we have discussed so far, we can
finally define our projectors. First we define our product of

individual membrane and ribbon operators:

Y (h, gc1 , gc2 , em, ec1 , e−1
c2

)(m)

= Bec1 (c1)Be−1
c2 (c2)Ch

T (m)

× δ(ê(m), em)δ
(
ĝ(c1), g−1

c1

)
δ
(
ĝ(c2), g−1

c2

)
. (72)

Then we take appropriate linear combinations to construct the
projector labeled by R and C:

PR,C (m) =
|C|∑
i=1

∑
Ecy,i ,cz,i

∈Bcy,i ,cz,i

|R|∑
m=1

∑
λ∈E

δ
(
cy,i, csx,1; fz,1

y,i

)

× δ
(
cz,i, c

sx,1; fy,1

z,i

)
δ
(
dx,i, d

sx,1,cy,i,cz,i ; fy,1, fz,1

x,i

)
× DR

m,m

([
E stab.

C

]
i,i

)
× Y (∂ (λ)sx,1, cy,i, cz,i, dx,i, [cz,i�λ] fy,1λ

−1, [cy,i�λ] fz,1λ
−1 )(m).

In this expression, [E stab.
C ]i,i is the class in BC with represen-

tative element(
p−1

x,i sx,1 px,i, p−1
x,i �

(
q−1

z,i fz,1(sx,1 � qz,i )
)
,

p−1
x,i �

(
q−1

y,i fy,1[sx,1 � qy,i]
))

,

where the p and q elements are defined as representatives
which satisfy

(cy,1, cz,1, dx,1) = (
cpx,i ;qz,i

y,i , c
px,i ;qy,i

z,i , d
px,i,cy,i,cz,i ;qy,i,qz,i

x,i

)
and (px,1, qy,1, qz,1) = (1G, 1E , 1E ) (that is the p and q move
us around in the class C to get from element i to the representa-
tive element labeled by 1). In Sec. S-V C of the Supplemental
Material [20] we perform the lengthy algebraic task of proving
that the operators PR,C (m) labeled by the objects R and C form
an orthogonal and complete set of projectors, indicating that
the topological charges that we can measure with the torus are
appropriately labeled by a class C of boundary G colorings
and an irrep R of the corresponding stabilizer group.

X. CONCLUSION

In this work, we have discussed in detail the features of
the higher-lattice gauge theory model in (3+1)D. We started
by constructing the ribbon and membrane operators which
create the simple excitations of the model. We found that
there were two categories of excitation, those best labeled
by objects related to the group G and those best labeled
by objects related to the other group, E . The former type
of excitation, consisting of pointlike electric excitations and
looplike magnetic flux tubes, are analogous to the excitations
we expect from ordinary lattice gauge theory. The other type,
consisting of pointlike 2-gauge fluxes and looplike 2-gauge
charges, are related to properties of the surfaces of the lattice,
instead of paths. We then considered the braiding properties
of these excitations. When the map �, defined as part of the
crossed module, is trivial, these two types of excitations form
separate sectors that do not have nontrivial braiding between
them (only within each sector). However, when � is nontrivial
(although we had to restrict to the case where E is Abelian and
∂ maps to the center of G) some magnetic excitations acquire
a 2-flux and can braid nontrivially with all other types of
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excitation. This is reflected in the fact the membrane operator
that produces the magnetic excitation must be modified to
depend on the surface elements of the lattice.

Another feature that we looked at was the condensation
of certain excitations, and the accompanying confinement of
others. We found that this was controlled by the map ∂ , with
no condensation or confinement when ∂ maps only to the
identity element (at least in the case where E is Abelian).
By altering ∂ while keeping the groups fixed, we introduce
condensation for some of the looplike (magnetic and E -valued
loop) excitations while causing some of the pointlike (electric
and blob) excitations to become confined. This can be thought
of as a condensation-confinement transition, where the con-
fined excitations are those that had nontrivial braiding with
the condensed excitations. We also looked at the topological
charge carried by the excitations, by constructing projectors to
definite topological charge. The available charges depend on
the surface of measurement, and we constructed the projectors
for a spherical and toroidal surface. Similar to results found in
Ref. [19], we found that the charges measured by the 2-torus
surface matched the ground-state degeneracy on the 3-torus.
We saw that these 2-torus surfaces generally measured links,
rather than simple looplike excitations, suggesting that the
number of inequivalent linklike excitations is equal to the
ground-state degeneracy.

In Ref. [14], we already mentioned several potential av-
enues of interest for further study based on this work. Rather
than repeat ourselves here, we would like to discuss one of
these directions further. In this paper, we gave braiding rela-
tions in terms of the simple excitations produced by the mem-
brane and ribbon operators. However, it would be useful to ob-
tain the braiding relations and other properties in terms of the
topological charge. To do so, it would first be necessary to find
the fusion rules for the various topological charges. Because
the topological charge depends on the measurement surface,
we would need additional machinery to describe how different
charges can fuse in a simple way. Once this has been done, we
can consider a braiding process where the individual excita-
tions are projected onto states of definite charge, and the over-
all system is similarly projected to definite total charge, in or-
der to find the braiding relations satisfied by the charges [anal-
ogous to the approach used for (2+1)D theories]. In addition
to better understanding this particular model, creating this ma-

chinery would give us a structure with which to study different
models for topological phases in (3+1)D and understand what
properties we expect. We note that, as mentioned in Ref. [14],
from some preliminary calculations we can see that different
torus charges can only fuse if they have the same value of a
certain “threading flux,” meaning that the quantum numbers
passing through the two loops must be the same (for example,
if they are linked to the same excitation). When this threading
flux is nontrivial, we are considering the fusion of two loop-
like excitations while both are linked to another excitation.
This means that the braiding of these charges would corre-
spond to so-called “necklace braiding” [27] (or three-loop
braiding [25]), meaning the braiding of two loops while linked
to another. For general models this braiding can give differ-
ent results compared to the usual two-loop braiding [25,26].
Therefore, having a structure in which to consider this process
for generic (3+1)D topological models would be most useful.

Related to this idea, it would also be useful to understand
better where the higher-lattice gauge theory models fit into the
wider landscape of (3+1)D topological phases. It is conjec-
tured that all (3+1)D bosonic topological phases with bosonic
pointlike particles can be realized by Dijkgraaf-Witten the-
ories [5]. This implies that the higher-lattice gauge theories
should also be equivalent to lattice gauge theory, albeit with
some additional nontopological content in the form of the
condensed and confined excitations. It would be interesting
to explicitly demonstrate this equivalence (or else disprove
it), whether through a direct mapping or by considering the
topological charges and other data as we described above and
showing that they match between the two models. We have
made some progress in this direction, but leave the results for
future study.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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