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Exhaustive study of topological semimetal (TSM) phases of matter in equilibriated electonic systems and
myriad extensions has built upon the foundations laid by earlier introduction and study of Weyl semimetals,
with broad applications in topologically protected quantum computing, spintronics, and optical devices. We
extend recent introduction of multiplicative topological phases to find previously overlooked TSM phases
of electronic systems in equilibrium, with minimal symmetry protection. We show these multiplicative TSM
(MTSM) phases exhibit rich and distinctive bulk-boundary correspondence and response signatures that greatly
expand understanding of consequences of topology in condensed matter settings, such as the limits on Fermi arc
connectivity and structure, and transport signatures such as the chiral anomaly. In this paper, we therefore lay
the foundation for extensive future study of MTSMs.
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I. INTRODUCTION

Topological semimetals (TSMs) are a vast family [1,2]
of topological phases of matter studied in great depth ex-
perimentally [3–12] in the search for tabletop, quasiparticle
realizations of high-energy physics [13]. At the simplest level,
the topological degeneracies of band structures in these TSM
phases are realized quite generically if either time-reversal
symmetry [14] or inversion symmetry [15] is broken. This is
the requirement for twofold topological degeneracies charac-
teristic of the Weyl semimetal (WSM) phase, although it is
desirable to realize such degeneracies in the vicinity of the
Fermi level [16,17], with minimal contributions to the Fermi
surface from other electronic states. In such cases, the key
signatures of WSMs are especially prominent, including the
distinguishing Fermi arc surface states [18–23] and transport
signatures associated with the chiral anomaly [24–30]. Such
isolation of Weyl nodes in the vicinity of the Fermi level
is also facilitated—and the physics of TSMs enriched—by
systematic study of these topological phases in compounds
with wide-ranging phenomena, including superconductiv-
ity, strong spin-orbit coupling, and strong correlations
[31–37]. Much progress has also been made in identifying
other TSMs with more complex topological degeneracies
[2,38–41] in electronic band structures, protected by a large
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set of crystalline point group symmetries in combination with
additional antiunitary symmetries such as time reversal.

In this paper, we return to the foundations of TSM studies
by introducing previously unidentified TSM phases of mat-
ter of electronic systems in equilibrium, which may then be
generalized in the same manner as outlined above. We do
so by studying the first TSM realizations of multiplicative
topological phases, a recently identified set of topological
phases of matter described by Bloch Hamiltonians in an in-
finitely large, periodic bulk, which are symmetry-protected
tensor products of parent Bloch Hamiltonians. Here, we note
that multiplicative topological phases are distinct from square
root topological phases [42–48], which are based on matrix
multiplication rather than tensor products.

We therefore introduce multiplicative TSM (MTSM)
phases as all TSMs with symmetry-protected multiplicative
(tensor product) structure by first introducing the multi-
plicative WSMs (MWSMs), characterized by Hamiltonians
for multiplicative topological phases constructed specifically
from tensor products of WSM Bloch Hamiltonians.

We first review the WSM phase and its canonical models.
We then construct examples of MTSM phases using these past
results. The MTSMs are then characterized in the bulk and
their bulk-boundary correspondence established.

II. REVIEW OF THE WSM PHASE AND SUITABLE
MODELS FOR CONSTRUCTING MULTIPLICATIVE

PHASES

The WSM is a topologically nontrivial phase of matter
characterized by topologically protected, doubly-degenerate
and linearly dispersing band crossings in the Brillouin zone
(BZ) [13]. That is, these band crossings, known as Weyl points
or nodes, cannot be removed from the electronic structure
through smooth deformations of the Hamiltonian but rather
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only through mutual annihilation of the Weyl nodes by bring-
ing two nodes of opposite topological charge to the same
point in the BZ to gap out these band touchings. When the
Fermi level intersects only the Weyl nodes of this semimetal
phase, their low-energy physics dominates, yielding a va-
riety of intensely studied exotic phenomena of interest for
applications. At the simplest level, the Weyl nodes serve as
quasiparticle, tabletop realizations of Weyl fermions predicted
in high-energy physics [49]. However, they are also a starting
point in going well beyond high-energy physics by tilting the
Weyl cone to realize a type-II WSM phase [1], in which the
low-energy physics of the Weyl nodes is not Lorentz invariant.

WSM phases can be realized in effectively noninteracting
systems where certain discrete symmetries are broken rather
than respected, in contrast to many other effectively nonin-
teracting topological phases. They may be derived through
symmetry breaking starting from the Dirac semimetal (DSM)
state [39,40], for instance (which could be topologically ro-
bust or finetuned), by breaking either time-reversal symmetry
T or inversion symmetry I, which pulls the two Weyl nodes
comprising the Dirac node away from one another in mo-
mentum space [50]. This phase, characterized by Weyl nodes
in the BZ, is topologically stable if Weyl nodes of opposite
topological charge do not annihilate one another [51].

I-breaking WSM phases are of tremendous experimental
interest but are described by Bloch Hamiltonian models with
four bands at minimum. A more natural starting point in deriv-
ing MTSM phases is instead to use the minimal WSM Bloch
Hamiltonian achieved by breaking T , which possesses only
two bands. Such two-band models for the WSM correspond
to the nontrivial homotopy group π3(S2) and similarly to the
two-band Chern insulators (CIs) and Hopf insulators [52] and
the two-band Kitaev chain model [53], which may be com-
bined using known constructions [54] to form a multiplicative
counterpart of the WSM phase, the MWSM phase.

We therefore consider a well-established two-band Bloch
Hamiltonian previously used to study Weyl nodes, with var-
ious instances of this model serving as the parents of the
MWSM:

HWSM(k) = t1 sin kxτ
x + t2 sin kyτ

y

+ t3(2 + γ − cos kx − cos ky − cos kz )τ z. (1)

where τ j ( j = x, y, z) are the Pauli matrices in the orbital
basis. The two band spectrum:

E (k) = ±
√

t2
1 sin2 kx + t2

2 sin2 ky + ε(k)2,

ε(k) = t3(2 + γ − cos kx − cos ky − cos kz ), (2)

has two gapless nodes at k = (0, 0,±k0), for cos k0 = γ . We
refer to these as the Weyl nodes. The equation of motion
for Bloch electrons in the k space in the presence of Berry
curvature is represented by ṙ = vk + k̇ × F(k). Here, F(k) is
the Berry curvature, vk is the group velocity of the electron,
and r is the position space coordinate. For the equation of
motion to remain invariant under T symmetry, one must have
the equality F(k) = −F(−k). The breaking of T symmetry
then involves a minimum of two Weyl nodes with opposite
Berry curvature at opposite momenta. Therefore, close to the

Weyl nodes, we have

H±(k) = ±t1kxτ
x + t2kyτ

y ± t3 sin k0kzτ
z, (3)

which in turn corresponds to the Berry curvatures:

F±(k)|0,0,±k0 = ± t1t2t3 sin k0

2
[
t1k2

x + t2k2
y + (t3 sin k0)2k2

z

]3/2 k. (4)

The Chern number of the lower-energy band for the range
kx = 0, ky = 0, and kz ∈ (−k0, k0) is C = ±1 depending on
the direction of the magnetic field corresponding to the
monopoles at the two Weyl points. The Weyl nodes are in-
volved with exotic boundary states at surfaces perpendicular
to the z axis, called the Fermi arc surface states. For the case
where the surfaces are open in the x direction, the surface
dispersion is given by

E (ky) = ±t2 sin ky, (5)

and the arc states

�(x, ky, kz ) = exp(+ikyy + ikzz)

× [exp(−λ1x) − exp(−λ2x)]
1√
2

(
1
±i

)
.

In the k space, this includes all contours cos ky + cos kz > 1 +
cos k0.

III. MWSM IN THE BULK

A protocol for constructing the child Hamiltonian for the
MWSM, Hc derived from Hp1 and Hp2 as reported by Cook
and Moore [54], is given as follows. Given two two-band
Bloch Hamiltonians Hp1 and Hp2 written in a general form,
with momentum dependence suppressed, as

Hp1 =
(

a b
c d

)
, Hp2 =

(
α β

γ δ

)
, (6)

the multiplicative child Bloch Hamiltonian constructed from
these two parents can be written as Hc

12, where

Hc
12 =

⎛
⎜⎜⎝

aδ −aγ bδ −bγ
−aβ aα −bβ bα
cδ −cγ dδ −dγ

−cβ cα −dβ dα

⎞
⎟⎟⎠. (7)

Expressing the two-band parent Bloch Hamiltonians
Hp1(k) and Hp2(k) more compactly as the following:

Hp1(k) = d1(k) · τ, Hp2(k) = d2(k) · σ, (8)

where d1(k) and d2(k) are momentum dependent, three-
component vectors of scalar functions, and each of σ and τ
is the vector of Pauli matrices, the multiplicative child Hamil-
tonian may more compactly be written as

Hc
12(k) = (d11, d21, d31) · τ ⊗ (−d12, d22,−d32) · σ (9)

to highlight the tensor product structure of the child Hamilto-
nian, which can be symmetry protected, as discussed by Cook
and Moore [54] on multiplicative topological phases, and
therefore can describe phases of matter, even in the presence
of additional bands.

The tensor-product structure guarantees that the energy
spectrum of the child Hamiltonian is a product of the energy
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spectrum of Hp1(k), i.e., Ep1(k), and of Hp2(k), i.e., Ep2(k),
respectively:

Ec
12(k) = ±Ep1(k)Ep2(k). (10)

This implies that bands of the child Hamiltonian dispersion
are at least doubly degenerate everywhere in the bulk BZ.

We will consider two cases in this paper: (1) The Weyl
node separation of each parent is along one axis in the BZ,
and (2) the axis along which Weyl nodes are separated in one
parent is perpendicular to the axis along which Weyl nodes are
separated in the other parent. Spectral and magnetotransport
properties differ significantly between these two cases, as we
will show, demonstrating the richness of MTSM phases of
matter.

A. MWSM—Parallel axis parents

The construction of the MWSM for both parents along the
same axis is derived from two parent WSMs. As an example,
we consider the following parents and the resulting child:

Hp1(k) = t11 sin kxτ
x + t21 sin kyτ

y

+ t31(2 + γ1 − cos kx − cos ky − cos kz )τ z,

(11a)

Hp2(k) = t12 sin kxσ
x + t22 sin kyσ

y

+ t32(2 + γ2 − cos kx − cos ky − cos kz )σ z, (11b)

Hc(k) = [t11 sin kxτ
x + t21 sin kyτ

y

+ t31(2 + γ1 − cos kx − cos ky − cos kz )τ z]

⊗ [−t12 sin kxσ
x + t22 sin kyσ

y

− t32(2 + γ2 − cos kx − cos ky − cos kz )σ z]. (11c)

Each parent Hamiltonian realizes Weyl nodes at k =
(0, 0, cos−1 γi ) when −1 < γi < 1, (i = 1, 2). Examples
of such topologically nontrivial dispersion are shown in
Figs. 1(a) and 1(b), respectively.

From these parent Hamiltonian dispersions, we can find the
dispersion of the child. As given in Eq. (10), the bulk spectrum
is doubly degenerate and determined by the spectra of the
parent 1, Ep1(k), and parent 2, Ep2(k), respectively, which
take the following forms:

Ep1(k) = [
t2
11 sin2 kx + t2

21 sin2 ky + ε1(k)2]1/2
,

Ep2(k) = [
t2
12 sin2 kx + t2

22 sin2 ky + ε2(k)2]1/2
, (12)

where ε1/2(k) = t31/2(2 + γ1/2 − cos kx − cos ky − cos kz ).
For the sake of convenience, we refer to the MWSM with

Weyl node separation for each parent along the same axis in
the BZ [as in the case of parents given by Eqs. (11a) and
(11b)] as MWSM||. For the MWSM|| bulk spectrum given by
Eqs. (10) and (12), gapless points occur at the positions in the
BZ where gapless points are present for the parent systems. As
γ1 and γ2 control separation of the Weyl nodes in the BZ for
the parents, they play a major role in determining the number
of nodes, the location of the nodes, and the polynomial order
of the nodes in the BZ for the child. When γ1 = γ2, for
instance, we have two gapless points, but the dispersion near
the nodes is quadratic. In contrast, for γ1 �= γ2 as for parents
depicted in Figs. 1(a) and 1(b), the child MWSM|| has four

FIG. 1. Dispersion E (k) for (a) Weyl semimetal (WSM) par-
ent Hamiltonian with γ1 = 0.5 along kz and t11 = t21 = t31 = 1,
(b) WSM parent Hamiltonian with γ2 = −0.5 along kz and t12 =
t22 = t32 = 1, and (c) the resulting multiplicative WSM (MWSM)
parallel child Hamiltonian along kz. Other momenta components are
set as zero.

nodes, and bands disperse linearly in the vicinity of the nodes,
as shown in Fig. 1(c). Each node is fourfold degenerate.

While such degeneracy naively suggests Dirac or Weyl
nodes of higher charge, the multiplicative nodes are distinct
in a number of ways. To examine this difference, we look at
the child Hamiltonian in the vicinity of each multiplicative
node for the case −1 < γ1 �= γ2 < 1. From the tensor product
structure, it easy to check that ∂E±

∂ki
= const., which implies

that the dispersion is linear at each of the gapless nodes of
the MWSM. Therefore, the possibility of a higher-order Weyl
node is nullified. The positions of each of the multiplicative
nodes are determined by the nodes in the respective parents.
We refer to (0, 0,±k01) as the Weyl node positions derived
from the first parent and (0, 0,±k02) as that from the second
parent. Here, γi = cos k0i, (i = 1, 2). If the gapless point is
(0, 0, k02), then we define MWSM|| in the vicinity as Hc

||,2,
and

Hc
||,2 = t31(γ1 − γ2)

× τ z(−t12kxσ
x + t22kyσ

y − t32 sin k02k̄z,2σ
z ), (13)

where k̄z,2 = (kz − k02). Surprisingly, this looks like a DSM
Hamiltonian, whose Dirac node has been shifted in k space.
Since it is no longer at the origin, the time-reversal symmetry
is broken. For the other node, γ1 = cos k01 for (0, 0, k01), we
define the multiplicative Hamiltonian in the vicinity as Hc

||,1,
so that

Hc
||,1 = (t11kxτ

x + t21kyτ
y + t31 sin k01k̄z,1τ

z )

× t32(γ1 − γ2)σ z, (14)

where k̄z,1 = (kz − k01), which contains off-diagonal terms
for the block Hamiltonian. Again, it is possible to perform
a similarity transformation on this Hamiltonian, in the form
U = R−1

τ (θ, φ) ⊗ Rσ (θ, φ), so that we get another shifted

035147-3



PAL, WINTER, AND COOK PHYSICAL REVIEW B 109, 035147 (2024)

DSM-type Hamiltonian:

H̄c
||,1 = t32(γ1 − γ2)

× τ z(t11kxσ
x + t21kyσ

y + t31 sin k01k̄z,1σ
z ). (15)

Again, the shift from the origin breaks the time-reversal sym-
metry of the original DSM. It is therefore appropriate to
refer to the MWSM|| as possessing degeneracies consisting
of Weyl nodes rather than possessing Dirac nodes, exhibiting
strikingly different physics as a result.

B. MWSM—Perpendicular axis parents

Before characterizing bulk-boundary correspondence and
transport signatures of MTSMs, we explore further richness
of multiplicative constructions by considering cases where
parent Weyl nodes are separated along orthogonal axes in k
space. As a specific case, we choose parent Hamiltonians such
that the first parent has Weyl node separation along the y axis,
the second along the z axis:

Hp1(k) = t11 sin kxτ
x + t21 sin kzτ

y

+ t31

(
2 + γ1 −

∑
i

cos ki

)
τ z, (16a)

Hp2(k) = t12 sin kxσ
x + t22 sin kyσ

y

+ t32

(
2 + γ2 −

∑
i

cos ki

)
σ z. (16b)

Again, the bulk spectrum is derived from the tensor product
structure:

Ep1(k) = [
t2
11 sin2 kx + t2

21 sin2 kz + ε2
1 (k)

]1/2
,

Ep2(k) = [
t2
12 sin2 kx + t2

22 sin2 ky + ε2
2 (k)

]1/2
,

Ec
⊥k = ±Ep1(k)Ep2(k), (17)

where ε1/2(k) = t31/32(2 + γ1/2 − cos kx − cos ky − cos kz ).
Examples of parent and child dispersion in this case are
shown in Fig. 2 for the values. γ1 = −0.5 and γ2 = 0.5.

We gain greater understanding of the multiplicative struc-
ture in this case by examining the low-energy expansion of
the child Hamiltonian in the vicinity of its nodes. Taylor
expanding up to linear order around the point (0, k0,1, 0) for
γ1 = cos k0,1, one gets

Hc
⊥,1(k) = (t11kxτ

x + t21kzτ
y + t31 sin k0,1k̄y,1τ

z )

⊗ [t22 sin k0,1σ
y − t32(γ2 − γ1)σ z]. (18)

Similarly, expanding around (0, 0, k0,2) for γ2 = cos k0,2, we
get

Hc
⊥,2(k) = [t21 sin k0,2τ

y + t31(γ1 − γ2)τ z]

⊗ (−t12kxσ
x + t22kyσ

y − t32 sin k0,2k̄z,2σ
z ).

(19)

FIG. 2. Dispersion E (k) (t11 = t12 = 1, t21 = t22 = 1, and t31 =
t32 = 1) for (a) Weyl semimetal (WSM) parent Hamiltonian with
γ1 = −0.5 along ky (kx = kz = 0), (b) WSM parent Hamiltonian
with γ2 = 0.5 along kz (kx = ky = 0), and the resulting multiplicative
WSM (MWSM) perpendicular child Hamiltonians along (c) kz (kx =
ky = 0) and (d) kz (kx = kz = 0). The energy dispersions plotted
along both ky and kz are shown in (e), and the dispersion along a
high-symmetry path in the first quadrant of the two-dimensional (2D)
Brillouin zone (BZ) is shown in (f). Inversion symmetry relates the
nodes in the first quadrant to those in the other quadrants, giving rise
to four gapless nodes in the 2D BZ.

One notices that Hc
⊥,2(k) is equivalent to a DSM [8,40]

when γ1 = γ2.

C. MWSM—Parent axes at relative angle θ

We briefly consider a more general MWSM construction
in which the Weyl axis of one parent is rotated relative to the
Weyl axis of the second parent by a general angle θ , which we
denote MWSMθ . (The MWSM|| and MWSM ⊥ cases then
correspond to θ = 0 and θ = π

2 , respectively.) Below, we pro-
vide the Hamiltonian for such a system. The Hamiltonians for
parents 1 and 2 as well as the multiplicative child Hamiltonian
are, respectively,

Hp1(k) = t11 sin kxτ
x + t21 sin k′

yτ
y + t31(2 + γ1

− cos kx − cos k′
y − cos k′

z )τ z, (20a)
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FIG. 3. Fermi arcs for different configurations of the parent systems. In the first row, we show Fermi arcs for (a) and (b) parents both
having Weyl axes along z and (c) child for the multiplicative Weyl semimetal (MWSM) parallel system. The second row shows Fermi arcs
for (f) the MWSM perpendicular system with (d) parent 1 having Weyl axis along y and (e) parent 2 with Weyl axis along z. The final row
displays the case when the Weyl axes (g) and (h) parent systems are at a relative angle θ = π

4 with (i) the child system. We have set the Weyl
node separation as γ1 = −0.5 for parent 1 and γ2 = 0.5 for parent 2 in all cases. All the Fermi arcs correspond to energy contours within the
interval [0.1t, 0.15t], where t = ti j = 1.

Hp2(k) = t12 sin kxσ
x + t22 sin k′′

y σ y + t32(2 + γ2

− cos kx − cos k′′
y − cos k′′

z )σ z, (20b)

Hc(k) = [t11 sin kxτ
x + t21 sin k′

yτ
y + t31(2 + γ1

− cos kx − cos k′
y − cos k′

z )τ z]

⊗ [−t12 sin kxσ
x + t22 sin k′′

y σ y − t32(2 + γ2

− cos kx − cos k′′
y − cos k′′

z )σ z]. (20c)

Here, k′ = Rx( θ
2 )k and k′′ = Rx(− θ

2 )k, where Rx(φ) de-
notes a rotation about the kx axis by angle φ. Examples of
Fermi arc configurations for the parents and corresponding
MWSMθ in this case are shown in Figs. 3(g)–3(i), respec-
tively, for θ = π/4. Like the MWSM ⊥ Fermi arcs shown in
Fig. 3(f), the child Fermi arcs exhibit a crosslike structure,
but it is skewed for the more general θ case. While this
suggests the general θ case might be well understood from
the perpendicular case, we expect this case could be quite
interesting: Notably, the MWSM|| and ⊥ derived from parents
defined over square lattices in real space are also defined
over a square lattice, with additional neighbor hoppings. For

general θ , however, the child Hamiltonian may instead be
defined on an effective moiré lattice even if each parent is in-
dividually defined on a square lattice, like systems considered
by Dunbrack and Cano [55].

D. Discrete symmetries of the MWSM

The discrete symmetries satisfied by the parent WSMs
include invariance under particle-hole conjugation given by
P = σ xκ , such that the Hamiltonian satisfies

σ xH∗
1/2(k)σ x = −H1/2(−k),

and invariance under spatial inversion given by I = σ z, such
that the Hamiltonian satisfies

σ zH1/2(k)σ z = H1/2(−k).

The MWSM|| or ⊥ child systems are instead invariant un-
der time reversal given by T = iτ xσ xκ , corresponding to the
transformation:

τ xσ xH∗
c (k)τ xσ x = Hc(−k).
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FIG. 4. Wannier spectra in multiplicative Weyl semimetal (MWSM) parallel and MWSM perpendicular for two filled bands derived from
Wilson loop around kx for parent 1 with γ1 = −0.5 and parent 2 with γ2 = 0.5. (a) and (b) have opposite orientation of the Weyl node dipole
for parent 2, as do (c) and (d). Both the corresponding Wannier eigenvalues of the MWSM for the two degenerate lowest-energy occupied
bands are shown separately in the second rows of (a)–(d).

They are also invariant under spatial inversion given by I =
τ zσ z, corresponding to the transformation:

τ zσ zHc(k)τ zσ z = Hc(−k).

The MWSM should then satisfy the symmetry T ′ = T I,
which may also protect the DSM phase. Indeed, in some
cases, the Dirac Hamiltonian for the MWSM near the nodes is
reminiscent of the corresponding low-energy Hamiltonian for
a DSM. This invariance of the multiplicative bulk Hamiltonian
under products of transformations, which leave each parent
Hamiltonian invariant, is expected given the multiplicative
dependence of the child on the parents.

E. Bulk characterization of topology with Wilson loops

As calculated in Supplemental Material Sec. S1 [56], the
Berry connection for the MWSM is given as

A = (
A1,kx − A2,kx , A1,ky − A2,ky , A1,kz − A2,kz

)
, (21)

where Aj,l = (i〈+ j |∂l |+ j〉, i〈− j |∂l |− j〉). Using this expres-
sion for the Berry connection, we compute Wilson loops
and associated Wannier spectra by integrating over kx for a
given ky and kz, as detailed by Alexandradinata et al. [57].
Here, we decompose the Wannier spectrum of the degenerate
occupied subspace of the child Hamiltonian into two parts,
corresponding to the two Wannier orbitals, to highlight the
complementary structures in the Wannier spectra and the fact
that they are also distinguished by whether the relevant state
in the degenerate manifold is a tensor product of an occupied
state from parent 1 and unoccupied state from parent 2 or
vice versa. In the parallel case illustrated in Fig. 4(a), the
Wannier spectra derived from Wilson loop calculations show
that only in regions where only one of the parent phases is
nontrivial do we get nontrivial Wannier spectra distinguished
by π values for Wannier charge centers. However, the Wannier
spectra in the region where each parent is topological appears
trivial, given the dependence of child Wannier spectra on par-
ent Wannier spectra distinctive of multiplicative topological
phases. We have referred to a pair of Weyl nodes of equal and
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opposite topological charge as a dipole. We observe that the
orientation of this dipole due to the two constituent parents
is important, as antiparallel dipoles, as depicted in Fig. 4(b),
show nontrivial Wilson loop eigenvalues in a region in the
two-dimensional (2D) BZ, where neither of the parent systems
have nontrivial topological character. Analogous results for
the MWSM ⊥ are shown in Fig. 4(d), although the Wannier
spectrum structure is far richer than in the parallel case. The
mod 1 constraint in the Wannier spectra fails to characterize
the case where the parents are both topological. To resolve this
situation, we discuss an alternate strategy below.

F. Bulk characterization of topology with Euler numbers

The approach using Wilson loops fails to characterize the
topology in regions where both the parents are topological.
In the case of the MWSM parallel system, there exists an
alternate approach derived from the discrete symmetries of the
child system. The (T ′)2 = +1 symmetry implies that there is
an alternate basis where T ′ = κ . Therefore, it is possible to
convert the child Hamiltonian into a purely real system, as
done in similar systems in a previous study [58]. We provide
the details in Supplemental Material Sec. S4 [56]. We use the
fact that the MWSM parallel case can be understood in terms
of stacking of multiplicative CIs (MCIs) in parallel along the
kz direction as discussed later in Sec. IV C and consider the
topology derived from each such MCI parallel system. This
allows us to express the topology of the MCI at a given kz in
terms of two Euler numbers given by

EI = q1 + q2, EII = q1 − q2, (22)

where q1 and q2 are, respectively, the skyrmion numbers of
the parent two-band systems. A MWSM|| with each par-
ent topologically nontrivial is then characterized by the pair
(EI , EII ) = (2, 0). If parent 1 is topological but parent 2 is
instead trivial, however, (EI , EII ) = (1, 1). In Sec. IV C, we
demonstrate that this bulk characterization successfully de-
termines bulk-boundary correspondence in the case of the
MWSM||.

IV. MWSM WITH OPEN-BOUNDARY CONDITIONS

A. Slab spectra of MWSM

An important aspect of WSM physics is its distinctive
bulk-boundary correspondence: Weyl nodes in the three-
dimensional (3D) bulk BZ serve as termination points of
topologically protected boundary states known as Fermi arcs
when projected to a slab BZ corresponding to open boundary
conditions in one direction. We expect analogous topologi-
cally protected surface states in MTSMs and explore possible
realizations of these Fermi arc states in this section.

One might expect that the tensor product structure of the
multiplicative phases is visible in the surface spectrum of the
MWSM. Numerical simulations show that this is the case. For
the parent WSMs, the surface spectra is given as E (ky) ∼
sin(ky) [Figs. 5(a), 4(b), and 6, second row] (analytically
calculated in Supplemental Material Sec. S2 [56]) for nodes
along the z axis and open boundaries along the x direction
and E (kz ) ∼ sin(kz ) (Fig. 6, first row) for nodes along the
y axis and open boundaries along the x direction. Indeed,

FIG. 5. Finite slab spectra (in the x direction, Lx = 80) along ky

(kz = 0) and kz(ky = 0), respectively, for (a) and (b) Weyl semimetal
(WSM) with γ1 = −0.5, (c) and (d) WSM with γ2 = 0.5. (e) and
(f) Slab spectra (Lx = 80) E vs ky for the multiplicative WSM
(MWSM)|| child created from the above two parents for kz = 0
and kz = π

2 , respectively. (g) Slab spectra E vs kz at ky = 0 for the
same MWSM|| child system. Twofold degeneracies in the child slab
spectra are highlighted by dashed red and black lines.

corresponding surface spectra of child Hamiltonians depend
on these surface spectra in a multiplicative way. Numerical
simulation from Fig. 5(e) shows that, for MWSM||, the slab
spectra disperses as E (ky) ∼ sin2(ky) for two parents each
with surface spectrum E (ky) ∼ sin(ky). In contrast, the lower-
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FIG. 6. Finite slab spectra (in the x direction, Nx = 80) with the constituent parent Hamiltonians: (a) Weyl semimetal (WSM) parent
Hamiltonian 1 with γ1 = −0.5 and Weyl nodes along the ky direction, (b) WSM parent Hamiltonian 2 with γ2 = 0.5 with Weyl nodes along
the kz direction, and (c) the multiplicative WSM (MWSM) perpendicular child Hamiltonian. It is apparent how the surface spectra along kz(for
ky = 0) and ky(for kz = 0) combine multiplicatively to create the surface spectra for the MWSM perpendicular system. The lowest diagram
along column (c) especially shows the spectra along the diagonal kz + ky direction where the component spectra sin(kz ) and sin(ky ) have
combined to produce sin(kz ) sin(ky ) as the leading term. Twofold degeneracies in the child slab spectra are highlighted by dashed red and black
lines.

most plot in Fig. 6(c) shows that the surface spectrum instead
disperses as E (ky, kz ) ∼ sin(ky) sin(kz ) for MWSM ⊥ when
one parent has the former surface spectrum and the other has
the latter. We also show that the case of each parent surface
spectrum along kz, which exhibits flat bands between the two
Weyl nodes [Figs. 5(b) and 5(d)], corresponds to flat bands
between all four gapless points in the MWSM parallel system
[Fig. 5(g)]. However, fitting sin2(ky) curves to each of the
parallel and perpendicular MWSM spectra reveals that, except
in special cases when γ1 = γ2 where the fit is exact, the slab
spectra does not disperse as sin2(ky) and instead exhibits kz

dependence. One can check this by comparing E vs ky slab
spectra in the range −min(k0,1, k0,2) < kz < min(k0,1, k0,2)
and min(k0,1, k0,2) < kz < max(k0,1, k0,2). The spectra appear
linear near zero in the latter case. We show the Fermi arcs
for the MWSM systems where the Weyl axes of the parents
are parallel, perpendicular, and at a relative angle θ = π

4 in
Fig. 3.

B. Stability of surface states of MWSM

In this section, we show that, although the MWSM appears
similar to a DSM, the Fermi arcs are topologically robust,
and it is ultimately distinct from previous TSMs. The key
difference is that DSM Fermi arcs may be separated from their
Dirac nodes with certain symmetry-preserving perturbations
[59]; in contrast, WSMs have Fermi arcs connected to their
Weyl nodes irrespective of symmetry-preserving perturbation.
To show MWSMs also share this robustness, we recall that
MWSMs possess Euler topology due to their T ′ = T I sym-
metry. Therefore, with the aid of Qsymm [60], we check for
combinations of τ iσ j (i, j = x, y, z, 0) which preserve just T ′.
Consequently, the following satisfy our criterion: τ xσ x, τ yσ y,
τ zσ z, τ xσ y, and τ yσ x. Employing these perturbations in our
system, we plot the corresponding Fermi arc contours. From
the plots shown in Fig. S15 in the Supplemental Material [56],
we can show that these T ′-only preserving perturbations do
not disconnect the Fermi arcs from the nodes, and the Fermi
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arc states are topologically protected, unlike the case for
the DSM.

C. Fermi arcs for the MWSM as a stack of MCIs

WSMs can be interpreted as a set of CIs, each de-
fined in a 2D submanifold of the 3D BZ of the WSM
(e.g., each kx-ky plane) for a given value of kz, stacked
in the kz direction. The Weyl nodes then correspond
to topological phase transitions—corresponding to gap
closings—in the stack between intervals in kz with topolog-
ically distinct CIs. Specifically, we use the Qi-Wu-Zhang
(QWZ) model [61], HCI = B(2 + M − cos kx − cos ky)σ z +
sin kxσ

x + sin kyσ
y in particle-hole space. In the WSM, the

mass term is given as M = γ − cos kz. Here, for the range
−1 < γ < 1, kz ∈ [− cos−1 γ , cos−1 γ ]. The Fermi arcs we
observe in the 2D BZ defined in the ky-kz for open boundary
conditions in the x direction are projections of the chiral edge
states of the slices of the corresponding CIs in the stack.

The multiplicative counterpart of a CI was introduced
recently by Cook and Moore [54] as an MCI. Here, by con-
struction, the MCI has two mass terms derived from each
of the parent systems, one from each of the parent systems.
Hence, there exists more than one way to stack the MCIs
in the kz direction. For instance, either the mass term of a
single parent can be kz dependent, or both can be. Here,
we have defined the momentum dependence in both of the
mass terms such that the difference in parent mass parameters
remains constant. This is the case when M1 = γ1 − cos kz and
M2 = γ2 − cos kz, which leads to a certain linear path in the
M1-M2 phase diagram as a function of kz, which is the trend
we observe from our Wannier spectra plots in the parallel case
in Fig. 4 derived from a stacking of MCI parallel systems and
illustrated for two different cases in Fig. 7.

We then characterize the multiplicative Fermi arc states by
opening boundary conditions in the x and y directions and
plotting the the sum of the probability densities for the 40
eigenstates nearest in energy to zero. We show this in Fig. 8
for kz = 0 (a 2D submanifold of the BZ realizing an MCI with
both parents topologically nontrivial) and kz = π

2 (a 2D sub-
manifold of the BZ in which only one parent is topologically
trivial). For the former case with parents shown in Figs. 8(a)
and 8(b), the probability density in the corresponding child
as shown in Fig. 8(c) is localized at sites at the boundary as
well as at the sites adjacent to these sites. For the latter case,
parent 1 has edge states, and parent 2 does not, as shown in
Figs. 8(d) and 8(e). The resultant child probability density
shows low-energy states localize only at the boundary sites,
as shown in Fig. 8(f). We discussed in Sec. III F that a pair
of Euler numbers should provide us a characterization of the
bulk topology. Here, we observe the direct bulk boundary
correspondence. The Euler number pair (2,0) links to the case
where both kz slices are topological, as shown in Fig. 8(c).
When one slice is topological while the other is trivial, it
corresponds to the Euler number pair (1, 1) and the local-
ization in Fig. 8(f). This localization behavior is similar to
that of the multiplicative Kitaev chain presented in a second
work [62] by the present authors, where, if each parent is
topological, edge states are localized at lattice sites right at the
edge, but also at sites adjacent to these sites. We expect such

FIG. 7. The argument that multiplicative Weyl semimetal
(MWSM) is a stacking of multiplicative Chern insulator (MCI)
parallel systems only applies in the parallel case. The solid black
line shows the stacking direction, with arrows indicating change
with kz. The red dot indicates the point at kz = π

2 . We show two
cases: (a) where both the parents have only C1,2 = 1 Chern number
regions and (b) where parent 1 has C1 = 1, −1 Chern numbers,
while parent 2 has only C2 = 1 Chern number regions. The case
(b) corresponds to Sec. IV D where we get edge states separate from
the bulk.

localization to protect the edge states from backscattering to
some extent, which we will explore in future work. Addition-
ally, we note that the peaks in probability densities near the
corners of the lattice reflect corner modes coexisting with edge
modes in the low-energy manifold, with an example probabil-
ity density for an individual corner mode shown in Figs. S16
and S17 in the Supplemental Material [56] for two separate
cases. Similar corner modes appear for gapless symmetry-
protected topological (SPT) phases realized by combining
a topological insulator parent Hamiltonian and a critical,
gapless parent Hamiltonian in the symmetry-protected mul-
tiplicative construction to form a child Hamiltonian [63]. In
these cases, however, the corner modes derive from known
models for gapless SPT phases realized within the child
Hamiltonian. In future work, we will explore more general
characterization of the rich bulk-boundary correspondence of
multiplicative topological phases and to understand the co-
existence of edge and corner modes as well as the broader
link between multiplicative topological phases and SPT
phases.

D. Boundary states disconnected from bulk states

The MCI can exhibit topologically robust yet floating edge
states which are separated from the bulk by a finite energy gap
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FIG. 8. Probability densities of superposition of 40 edge state eigenvectors in a 30 × 30(Lx × Ly) square lattice at kz = 0 and kz = π

2 for
(a) and (d) parent Weyl semimetal (WSM) 1 (γ1 = −0.5), (b) and (e) parent WSM 2 (γ2 = 0.5), and (c) and (f) multiplicative WSM (MWSM)||
child (γ1 = −0.5 and γ2 = 0.5), respectively. At kz = 0, both the parent systems are topological, as seen from a visible edge state which results
in localization at both the edge and second last edge sites in the MWSM|| child system. When kz = π

2 , parent 1 is still topological, but parent
2 is trivial, as seen from the absence of edge states which results in localization only at the edge sites of the MWSM|| child system.

[54]. MTSMs constructed from MCIs can inherit this exotic
boundary state connectivity.

To realize this in a MWSM, we first need to consider the
Hamiltonian for the MCI:

HCI,p1(k) = B1(2 + M1 − cos kx − cos ky)τ z

+ sin kxτ
x + sin kyτ

y, (23a)

HCI,p2(k) = B2(2 + M2 − cos kx − cos ky)σ z

+ sin kxσ
x + sin kyσ

y, (23b)

HMCI,c(k) = [B1(2 + M1 − cos kx − cos ky)τ z

+ sin kxτ
x + sin kyτ

y]

⊗ [−B2(2 + M2 − cos kx − cos ky)σ z

− sin kxσ
x + sin kyσ

y]. (23c)

To achieve the edge spectrum finitely gapped from the bulk,
we require the parameter regime M1 ∈ [−4,−2] and M2 ∈
[−2, 0], which corresponds to Chern numbers C = −1 and
+1, respectively.

Therefore, to construct a MWSM with such an edge spec-
trum, we choose one parent WSM where the Weyl nodes
are separated in k space by a stack of CIs, each with Chern
number C = +1, and the Weyl nodes of the other parent
are separated by a stack of CIs, each with Chern number

C = −1. Comparing Eq. (24a) with Eq. (23a) and Eq. (24b)
with Eq. (23b), it is clear that, for each CI in the stack,
the following mapping holds: Mi = γi − cos kz, i ∈ {1, 2},
where i labels the parent. From this mapping, it is not pos-
sible to have M2 ∈ (−4,−2) while γi ∈ (−1, 1), i ∈ {1, 2}.
We therefore generalize the mapping to the following form:
Mi = γi − ri cos kz, i ∈ {1, 2}, so that the parents and the child
Hamiltonian for the MWSM parallel are

Hp1(k) = t11 sin kxτ
x + t21 sin kyτ

y

+ t31(2 + γ1 − cos kx − cos ky − r1 cos kz )τ z,

(24a)
Hp2(k) = t12 sin kxσ

x + t22 sin kyσ
y

+ t32(2 + γ2 − cos kx − cos ky − r2 cos kz )σ z,

(24b)
Hc(k) = [t11 sin kxτ

x + t21 sin kyτ
y

+ t31(2 + γ1 − cos kx − cos ky − r1 cos kz )τ z]

⊗ [−t12 sin kxσ
x + t22 sin kyσ

y − t32(2 + γ2

− cos kx − cos ky − r2 cos kz )σ z]. (24c)

To construct one parent with the Chern number of this stack
nontrivial and opposite in sign to the Chern number of the
stack in the other parent, we first introduce some terminology.
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We refer to the region between Weyl nodes including kz = 0
as the regular Weyl region (RWR) and the region including
kz = ±π as the irregular Weyl region (IWR). The existence of
Weyl nodes requires |r1,2| � 1 for |γ1,2| < 1. It is then possi-
ble to realize a RWR with a negative Chern number by varying
r1,2, so that γ1,2 − r1,2 cos kz ∈ (−4,−2). These RWRs—one
of each parent system—must then occur over the same interval
in kz, however, to realize topological floating surface states.
We set γ1 = 0 and r1 = 3, which means we have C = −1 for
the range [− cos−1( 2

3 ), cos−1( 2
3 )] when M1 = γ1 − r1 cos kz ∈

[−3,−2]. Then we must have γ2 = cos π
3 = 0.5 and r2 = 1,

so that in the region kz ∈ [− cos−1( 2
3 ), cos−1( 2

3 )], we have the
same kind of MCI with edge states separated from the bulk
as described in previous work [54]. These results are shown
in Fig. 9. This case can also be represented as a stack of
MCI parallel systems, but the regions vary with parent Chern
number pairs ranging between (0,0), (0,1), (0,−1), (1,0), (1,1),
and (1,−1), as shown in Fig. 7(b).

The MWSM ⊥ case of topologically robust yet floating
Fermi arc surface states is constructed similarly, and we defer
thorough investigation of this case to later work.

V. EFFECT OF MAGNETIC FIELD ON MWSM
AND CHIRAL ANOMALY

We now investigate response signatures of MTSMs. As
we consider MWSMs here, which may be constructed from
WSM parent systems, we focus particularly on the question
of whether there is a multiplicative generalization of the chiral
anomaly, one of the most important signatures of WSMs:
Application of nonorthogonal electric and magnetic fields can
pump electrons between Weyl nodes of opposite chirality
[64]. More specifically, applying an external magnetic field
parallel to the axis along which Weyl nodes are separated in
k space yields a single chiral Landau level (LL) near each
of the Weyl nodes. In WSMs, this suppresses backscattering
of electrons with opposite chirality, manifesting as negative
magnetoresistance (MR). WSMs therefore serve as condensed
matter platforms for study of the chiral anomaly, also known
as the Adler-Bell-Jackiw anomaly, associated with the stan-
dard model of particle physics [24,65,66]. When the external
magnetic field is instead oriented perpendicular to the k-space
axis along which Weyl nodes are separated, semiclassical cal-
culations indicate the presence of quantum oscillations in the
density of states [19], observable in magnetization, magnetic
torque, and MR measurements [66,67].

To study the effects of external fields on the MWSM,
we first derive the LL structure for the WSM in the cases
of external magnetic fields applied parallel and perpendic-
ular to the Weyl node axis. We can then draw parallels
between these results and their generalizations in the case of
the MWSM.

A. Chiral anomaly in WSM

To study the chiral anomaly in a WSM, we consider a
particular Bloch Hamiltonian HWSM(k) characterizing a WSM
phase and its expansion around the kz axis, i.e., k → (0, 0, kz )

FIG. 9. Slab spectra along (a) ky and (b) kz for Weyl semimetal
(WSM) parent 1 with γ1 = 0, r1 = 3, and slab spectra along (c) ky

(kz = 0) and (d) kz (ky = 0) for WSM parent 2 with γ2 = 2
3 , r2 = 1,

respectively. Corresponding slab spectra for the multiplicative WSM
(MWSM)|| with t11 = t12 = 1, t21 = t22 = 1, and t31 = t32 = 1 along
(e) ky(kz = 0), (f) ky(kz = π

2 − 0.1), and (f) kz(ky = 0), respectively,
with edges separate from the bulk slab spectra along ky.

(up to second order in kx and ky):

HWSM(k) = t (2 + γ − cos kx − cos ky − cos kz )σ z

+ t ′ sin kyσ
y + t ′ sin kxσ

x,

≈ t

[
Q + 1

2

(
k2

x + k2
y

)]
σ z + t ′kyσ

y + t ′kxσ
x,

(25)
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where Q = γ − cos kz. Applying the magnetic field B = Bẑ
along the Weyl node axis, Peierls substitution changes the mo-
menta in the following way: kx → k′

x = kx, ky → k′
y = ky +

eBx, and kz → k′
z = kz. The position-momentum commutator

implies [k′
y, k′

x] = ieB, so that it is possible to define bosonic
ladder operators:

a = k′
x − ik′

y√
2eB

, a† = k′
x + ik′

y√
2eB

, [a, a†] = 1. (26)

Applying Eq. (26) after substituting k → k′, we get the
following system which looks like the polariton-conserving
Jaynes-Cummings Hamiltonian:

HWSM(k′) ≈ t

[
Q + eB

(
a†a + 1

2

)]
σ z

+ t ′√2eB(aσ+ + a†σ−), (27)

where σ± = 1
2 (σ x ± iσ y) are the spin-ladder operators in the

basis {|+〉, |−〉} of σ z (σ z|±〉 = ±|±〉). The ground state from
the above Hamiltonian is given by the eigenvector |ψLLL〉 =
|0; −〉 (states denoted as |n; s〉, where n is the bosonic number
and s is the spin direction), which leads to the lowest LL
(LLL) energy:

ELLL = −t

(
Q + 1

2
eB

)
. (28)

Near each of the Weyl nodes, it is easy to observe that |ψLLL〉
is chiral, as shown in Fig. 10. The other LLs can be derived
by restricting to the 2D disjoint spaces {|n,−〉, |n − 1,+〉},
parameterized by the bosonic number n, so that in each such
basis, the Hamiltonian is

H (kz, n) = − teB

2
σ 0 − t (Q + eBn)σ z + t ′√2eBnσ x. (29)

The energy for the other LLs parameterized by n = 1, 2, . . .

is given by the eigenvalues of Eq. (29):

EnLL = − teB

2
±

√
t2(Q + eBn)2 + 2t ′2eBn. (30)

We have illustrated the analytically calculated LLs in Fig. 10
and compared them to numerical calculations of LLs. The
numerical computation involves plotting the bands for the
Peierls-substituted WSM with periodic boundary conditions,
say, in the x direction, and subjected to a magnetic field in
integer multiples of 2π

L , where L is the size of the lattice in the
x direction. We observe that the chiral LL from both analytical
and numerical methods overlap, with an approximate overlap
of the other LLs since we only considered until second order
in kx and ky.

Next, we consider the case when the magnetic field is
directed perpendicular to the Weyl node axis, say, B =
Bŷ. Expanding the first line of Eq. (25) around the Weyl
node k = (0, 0, k0 = cos−1 γ ) of positive chirality and setting
t = t ′ = 1, we get

HWSM(k) ≈ sin k0(kz − k0)σ z + kyσ
y + kxσ

x,

⇒ H ′
WSM(k) ≈ −kyσ

z + kxσ
x + sin k0(kz − k0)σ y, (31)

where in the second line we have rotated the Hamiltonian to
a new basis via σ x → σ z and σ x → −σ x. In the presence

FIG. 10. Landau levels (LLs) for the two-band Weyl semimetal
calculated analytically from Eq. (27) and numerically, with t = 1 =
t ′, γ = 0, and B = 2π

51 ẑ (upper) and B = 2π

51 ŷ (lower). The black
bands indicate the numerically calculated LLs and the red bands the
analytically calculated LLs for n = 1, 2, . . . , 19. The blue band and
the dotted magenta band are the lowest LL (LLL) calculated numer-
ically and analytically and are responsible for the chiral anomaly in
the upper figure and Weyl orbits in the lower figure.

of the mentioned magnetic field perpendicular to the Weyl
node axis, Peierls substitution is applied as kx → k′

x = kx,
ky → k′

y = ky, and kz → k′
z = kz − eBx. The commutation re-

lation [kx, sin k0(kz − k0 − eBx )] = ieB sin k0 then constructs
the bosonic ladder operators:

b = kz − k0 − eBx − ikx√
2eB sin k0

,

b† = kz − k0 − eBx + ikx√
2eB sin k0

. (32)

The system in Eq. (31) then changes to

HWSM(k′) ≈ −kyσ
z +

√
2eB sin k0(bσ+ + b†σ−). (33)

Like the previous case, it is possible to resolve the Hamil-
tonian into the subspaces spanned by {|n,−〉, |n − 1,+〉},
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where n is the eigenvalue of the number operator b†b. We get
two chiral LLLs with energies E = ±ky in the bulk, which are
responsible for the chiral anomaly [66].

B. Chiral anomaly in the MWSM

We now study the response of the MWSM to external fields
for comparison with the signatures of the chiral anomaly in the
WSM reviewed in the previous section. We treat the MWSM
parallel and perpendicular cases separately, given the expected
sensitivity of the response to orientation of the axes of node
separation relative to the orientation of the external fields.

1. LLs in the MWSM parallel system

In Sec. III A, we have derived the Dirac Hamiltonian for the
MWSM|| in the vicinity of each of its two nodes (0, 0, k01)
and (0, 0, k02) derived, respectively, from each of its two
parents:

Hc
||,1(k) = (t ′

1kxτ
x + t ′

1kyτ
y + t1 sin k01k̄z,1τ

z )t2(γ1 − γ2)σ z,

Hc
||,2(k) = t1(γ1 − γ2)

× τ z(−t ′
2kxσ

x + t ′
2kyσ

y − t2 sin k02k̄z,2σ
z ),

where k̄z,i = kz − k0,i (i = 1, 2). In this section, we will only
consider cases where γ1 �= γ2. To investigate the response to
external fields for the MWSM||, we consider the effect of the
magnetic field along the Weyl node axis, i.e., B = Bẑ. We
use the exact Peierls substitution in Eq. (26), so that the two
expressions above transform as follows:

Hc
||,1(k′) = t2(γ1 − γ2)[t1 sin k01k̄z,1τ

z + t ′
1

√
2eB

× (aτ+ + a†τ−)]σ z,

Hc
||,2(k′) = t1(γ1 − γ2)τ z[−t2 sin k01k̄z,2σ

z − t ′
2

√
2eB

× (aσ− + a†σ+)]. (34)

Here, τ± = 1
2 (τ x ± iτ y) and σ± = 1

2 (σ x ± iσ y) are the pseu-
dospin ladder operators in the τ and σ spaces. The LLLs from
the above two expressions are given below:

Hc
||,1 →E1,LLL = ±(γ1 − γ2)t1t2 sin k01k̄z,1,

|ψ1,LLL〉 = |0; −,±〉,
Hc

||,2 →E2,LLL = ∓(γ1 − γ2)t2t2 sin k02k̄z,2,

|ψ2,LLL〉 = |0; ±,+〉. (35)

One may notice that the eigenvector |0; −,+〉 occurs in the
vicinity of each node. Therefore, we calculate its energy
eigenvalue if one expands the MWSM parallel system in the
vicinity of the kz axis. The details of the calculation can be
found in Supplemental Material Sec. S3 [56]. We find the
energy is given as

E|0;−,+〉 = [
Q1Q2 + 1

2 eB(Q1 + Q2)
]
. (36)

We show that this expression is consistent with the nu-
merically calculated LLs in Fig. 11. The other chiral LL
is consistent with the other two eigenvectors |0; −,−〉 and
|0; +,+〉 near their respective Weyl nodes. However, it ap-
pears distinct from |0; −,+〉 away from the Weyl nodes.

FIG. 11. The Landau levels (LLs) for the multiplicative Weyl
semimetal (MWSM) parallel Hamiltonian with γ1 = −0.5, γ2 = 0.5,
t1 = t ′

1 = t2 = t ′
2 = 1, and B = 2π

80 . (a) and (b) LLs for the magnetic
field along the Weyl axis and perpendicular to the Weyl axis [at Weyl
node (0, 0, π

3 )], respectively. The red bands refer to the lowest LLs,
and the black bands form the bulk LLs.

In Fig. 11, for certain values of γ1 and γ2, it appears at
first glance as if there are two separate chiral LLs correspond-
ing to |0; −,−〉 and |1; ,−,−〉, respectively. All four Weyl
nodes are connected by each of these LLLs, however, and
the two LLLs in combination furthermore account for each
chirality at each node. Although this is reminiscent of the
DSM, there is potentially a distinction in character between
the chiralities at each node. If each parent corresponds to a
particular degree of freedom (dof), for instance, and these dofs
are physically distinct from one another in some sense, such as
one parent corresponding to a twofold valley dof and the other
corresponding to a twofold layer dof, the chiral anomalies are
inequivalent and do not compensate one another as they would
for a DSM.

The two apparently separated LLLs seem to only scat-
ter between the Weyl nodes derived from their respective
parents, i.e., intraparent scattering. Upon closer inspection,
however, we see the intersection point between two appar-
ently separated LLs is actually a very small gap. We have
verified in Supplemental Material Sec. S3 [56] that the gap
is finite in analytical calculations performed to second order
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in momenta. The gap is an emergent feature of the multi-
plicative chiral anomaly, with the single LLL reducing to
|0; −,−〉 and |0; +,+〉 at nodes associated with a partic-
ular parent. We therefore interpret the multiplicative chiral
anomaly as exhibiting parent-graded features as well as emer-
gent features not associated with either individual parent. This
is reminiscent of the topologically robust floating bands of
the MCI [54].

A calculation like that yielding Eq. (33) provides the chiral
LLLs for the MWSM parallel system when the magnetic field
is oriented perpendicular to the Weyl axis along the y direction
B = Bŷ. We show this using the Hamiltonian up to linear or-
der near the node derived from parent 1 calculated in Eq. (15).
The LLL should have energies E = ±(γ1 − γ2)ky. However,
this calculation also shows that the linear order calculations
dominate only if the distance between parents 1 and 2 Weyl
nodes are large. Otherwise, quadratic order effects become
more significant. This is expected since quadratic order effects
affect the chiral LLs when the magnetic field is parallel to the
Weyl axis, as mentioned earlier. We defer further study of the
details of such quadratic order effects to future work.

2. LLs in the MWSM perpendicular system

In Sec. III B, we have shown the linear expansion of the
MWSM ⊥ Bloch Hamiltonian near each of the nodes cor-
responding to one parent with Weyl nodes separated along
the ky axis and that of the other parent along the kz axis in
Eqs. (18) and (19). Without loss of generality, we consider
t31 = t32 = t21 = t22 = 1 = t11 = t12. There exist three sepa-
rate cases one needs to check: (i) the magnetic field along the
Weyl axis of the first parent B = Bŷ, (ii) the magnetic field
along the Weyl axis of the second parent B = Bẑ, and (iii) the
magnetic field perpendicular to the Weyl axis of both parents
B = Bx̂. In cases where the magnetic field is parallel to one
parent Weyl axis, we expand up to quadratic order in kx and
ky to include the zero-point energy contribution.

(1) Case 1 (B = Bŷ): Substituting kx → k′
x = kx + eBz

and using the bosonic ladder operators a⊥,y = kz−ik′
x√

2eB
, a†

⊥,y =
kz+ik′

x√
2eB

, we have, from Eq. (18),

H⊥,1(k′) =
[

(sin k0,1(ky − k0,1) + eB

(
a†

⊥a⊥ + 1

2

)]
τ z

+
√

2eB(a⊥,yτ
+ + a†

⊥,yτ
−)

⊗ [sin k0,1σ
y + (γ1 − γ2)σ z]. (37)

For the expression from Eq. (19), we instead consider the

following bosonic ladder operators: ã⊥,y = k̃z−ik′
x√

2eB sin k0,2
and

ã†
⊥,y = k̃z+ik′

x√
2eB sin k0,2

, which give us

H⊥,2(k′) = [sin k0,2τ
y + (γ1 − γ2)τ z]

⊗ [kyσ
y − √

2eB sin k0,2(ã⊥,yσ
+
y + ã†

⊥,yσ
−
y )].

(38)

It is easy to find the LLL energies in the vicinity of each
node. From Eqs. (37) and (38), we respectively have the LLL

FIG. 12. Landau levels (LLs) for the multiplicative Weyl
semimetal (MWSM) perpendicular system with γ1 = −0.5 and γ2 =
0.5 representing separation of Weyl nodes along the ky and kz di-
rections, respectively. We show two cases: when the magnetic field
is along the (a) y and (b) z directions. We have shown that lowest
LLs calculated numerically match the analytical expressions (red
dotted) from Eqs. (39) and (40) in (a) and (b), respectively, near
the Weyl nodes. Since the magnetic field is parallel to one Weyl
node separation and perpendicular to another, the above behavior is
expected.

energies:

Ey,1,LLL = ±
√

sin2 k0,1 + (γ1 − γ2)2

× [
sin k0,1(ky − k0,1) + 1

2 eB
]
,

Ey,2,LLL = ±
√

sin2 k0,2 + (γ1 − γ2)2ky. (39)

We then find two ky-dependent chiral LLLs connecting the
nodes of the first parent, while we have two chiral LLLs at
ky = 0 due to the second parent, as shown in Fig. 12(a). The
following result was expected if one considers the LLs for the
parents for different directions of the magnetic field discussed
in the previous subsection. For the MWSM perpendicular
case, the incident magnetic field in this case is both parallel to
the Weyl axis of parent 1 and perpendicular to the Weyl axis
of parent 2, so that we get both kinds of LLs simultaneously.
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FIG. 13. Landau levels (LLs) for multiplicative Weyl semimetal
(MWSM) perpendicular system with γ1 = 0.5 and γ2 = 0.0 with
magnetic field B = Bx̂ (one flux quantum) perpendicular to Weyl
axes of both parents. We plot at k = (0, 0, π

2 ) which is the Weyl node
of the second parent and find our analytical calculation in Eq. (41) fits
the numerics near kx = 0 for the lowest LLs.

(2) Case 2 (B = Bẑ): This produces results like Case 1, as
shown in Fig. 12(b). A similar calculation gives us the LLL
energies:

Ez,1,LLL = ±
√

sin2 k0,1 + (γ1 − γ2)2kz,

Ez,2,LLL = ±
√

sin2 k0,2 + (γ1 − γ2)2

× [
sin k0,2(kz − k0,2) + 1

2 eB
]
. (40)

(3) Case 3 (B = Bx̂): Since the magnetic field is perpen-
dicular to both Weyl axes, we expect two types, in total four,
of chiral LLs at kx = 0. Each chiral LL corresponds to one
of the nodes of the MWSM perpendicular system, and their
energies can be calculated as follows:

Ex,1,LLL = ±
√

sin2 k0,1 + (γ1 − γ2)2kx,

Ex,2,LLL = ±
√

sin2 k0,2 + (γ1 − γ2)2kx. (41)

We illustrate this case in Fig. 13 for γ1 = 0.5 and γ2 = 0.0.
Like the analytical calculation, we have two pairs of LLLs
with different slopes, which hence must correspond to differ-
ent velocities in the bulk contribution to the Weyl orbits. We
look for such an effect on transport in a future work.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced the previously uniden-
tified MTSM phases of matter, distinguished by Bloch
Hamiltonians with a symmetry-protected tensor product struc-
ture. Parent Bloch Hamiltonians, with either one or both of the
parents being topologically nontrivial, may then be combined
in the tensor product to realize MTSM phases inheriting topol-
ogy from the parent states.

We consider foundational examples of MTSMs, with
Bloch Hamiltonians constructed as tensor products of two-
band Bloch Hamiltonians, each characterizing a WSM phase.
These MTSM phases are protected by a combination of

symmetries of class DIII at the level of the child, and each par-
ent Bloch Hamiltonian in class D. Given the great variety of
exotic crystalline point group symmetries considered to pro-
tect most recently identified TSM phases, it is remarkable that
the symmetry protection of these multiplicative semimetal
phases is relatively simple and suggests many additional mul-
tiplicative semimetal phases may be identified by enforcing
these many other symmetries on parent Bloch Hamiltonians.
While this more extensive symmetry protection is largely
beyond the scope of this paper, we do note that generalized
time-reversal symmetry corresponding to invariance of the
child Hamiltonian under operation T ′ = T I, where T is time
reversal and I is spatial inversion, also yields a multiplicative
structure for parent Hamiltonians without particle-hole sym-
metry.

We first characterize MTSM phases in the bulk, showing
the bulk spectrum of the child Bloch Hamiltonian depends
in a multiplicative way on the spectra of the parent Bloch
Hamiltonians: Each eigenvalue of the child, at a given point
in k space, is a product of eigenvalues, one from each
parent. We furthermore consider two different constructions
of the MWSM, either for the case of each parent hav-
ing a pair of Weyl nodes separated along the same axis
in k space (parallel construction) or along perpendicular
axes in k space (perpendicular construction). For either con-
struction, the multiplicative symmetry-protected structure can
then naturally yield nodal degeneracies reminiscent of Dirac
nodes or higher-charge Weyl nodes. However, the multiplica-
tive degeneracies are distinguished from these more familiar
quasiparticles by distinctive Wannier spectra signatures in the
bulk and exotic bulk-boundary correspondence. Importantly,
bulk characterization by Wannier spectra reveals a complex
dependence of Berry connection in the child Bloch Hamilto-
nian on Berry connection of each parent Bloch Hamiltonian,
depending on whether the parents are constructed with Weyl
nodes separated along the same axis in momentum space (par-
allel) or not (perpendicular). Additionally, the connectivity of
Fermi arc surface states for the MWSM is far more complex
than in standard DSMs or WSMs, reflecting the underlying
dependence of the child topology on the topology of the
parents. An especially interesting example is the realization
of topologically protected—yet floating—boundary states.

Response signatures of the MWSM also inherit response
signatures of the parents, with the potential for emergent
phenomena beyond that of either parent individually. Here,
we consider the multiplicative analog of one of the defining
response signatures of the WSM, the chiral anomaly, finding
instead multiple coexisting chiral anomalies graded by the
parent dofs as well as emergent features in the LL structure
not inherited from a particular parent. In the case of parents
corresponding to effectively the same dof, the response re-
duces to a signature reminiscent of a DSM. This brings up the
possibility of controlled manipulation of particular properties
of an electronic system like spintronics.

We briefly comment on features expected in more general
cases of multiplicative topological phases to be explored in
future work, either with parent Hamiltonians possessing larger
matrix representations than 2 × 2 or with >2 parent Hamilto-
nians. For one, the dimensionality of the grandchild could be
even higher relative to dimensionality of the parents than the
dimensionality of a child with two parents. For another, one
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could, in principle, imagine combining four different parent
topological phases together, such as a Hopf insulator, WSM,
CI, and topological one-dimensional superconductor. For just
two parents, we can only combine two of these together, so
physics of these more general multiplicative child Hamiltoni-
ans can be far richer than that discussed in this paper.

We also briefly speculate about the physical meaning of
results for general twist angle θ between the parent Hamilto-
nians (and effectively parent lattices) considered in Sec. III C:
While we only consider multiplicative child Hamiltonians to
be quadratic in creation and annihilation operators in this
paper, the multiplicative Hamiltonian may also be assigned
a basis that is purely quartic in creation and annihilation
operators. That is, the multiplicative Hamiltonian may be
interpreted instead as a strong interaction term governing
correlations between the parent systems. This alternative in-
terpretation may be important in fully understanding the
connection between the general θ multiplicative Hamiltonians
and Moiré systems.

In future work, we will characterize other signatures
of MTSMs anticipated given the extensive characterization
of WSMs and DSMs, particularly optical and nonlinear

responses [68–74], given the tremendous interest in the bulk
photovoltaic effect in WSMs, as well as symmetry protection
of more exotic topological quasiparticles, such as multiplica-
tive generalizations of multifold fermions or nodal lines. In
a separate work studying the circular photogalvanic effect
(CPGE) in MWSMs [75], in fact, we find quantization of
the CPGE in the presence of perturbations spoiling quanti-
zation for WSMs and multifold fermions [68–72], indicating
the promise of multiplicative topology in the search for truly
topological response signatures akin to those of the quantum
Hall effect. Given the immense body of work on TSMs and the
surprising consequences of multiplicative topology for bulk-
boundary correspondence, nodal band structure, and Berry
phase structure, our introduction of previously unidentified
MTSMs into the literature lays the foundation for consid-
erable future theoretical and experimental study, which will
greatly expand and deepen our understanding of TSM phases.
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