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We demonstrate that the fidelity between a pure state trivial insulator and the mixed state density matrix of
a Chern insulator generated from decoherence or measurement can be mapped to a variety of two-dimensional
conformal field theories (CFTs); more specifically, the quantity Z = tr{ρ̂D

c ρ̂�} is mapped to the partition function
of the desired CFT, where ρ̂� and ρ̂D

c are respectively the density matrix of a pure state trivial insulator
and the mixed state density matrix generated from the Chern insulator. For a pure state Chern insulator with
Chern number 2N , the fidelity Z is mapped to the partition function of the U(2N )1 CFT; under decoherence
or measurement, the Chern insulator density matrix can experience a certain instability, and the “partition
function” Z can flow to other interacting CFTs with smaller central charges. The Rényi relative entropy
F = − ln tr{ρ̂D

c ρ̂�} is mapped to the free energy of the CFT, and we demonstrate that the central charge of
the CFT can be extracted from the finite-size scaling of F , analogous to the well-known finite-size scaling of
2d CFT.

DOI: 10.1103/PhysRevB.109.035146

I. INTRODUCTION

The 2d Chern insulator [1] is the archetypal example of
a topological insulator (TI). The Chern insulator is defined
as the ground state (hence a pure state) of a two-dimensional
tight-binding Hamiltonian of electrons. In reality, any quan-
tum system is exposed to the environment, and experiences
a certain level of decoherence through forming entanglement
with the ancilla degrees of freedom in the environment. In
the last few years TIs or more generally symmetry protected
topological (SPT) states in open systems have attracted great
interest, and these studies belong to a larger paradigm of
classifying and characterizing topological features of density
matrices [2–10]. The strongest kind of decoherence would
be thermalization, when the system reaches a thermal equi-
librium with the environment after a long-time evolution
(compared with the microscopic timescales of the system) by
interacting and entangling with the ancilla degrees of freedom
in the environment. Under this type of long time and massive
scale of decoherence, many of the topological features of the
Chern insulator (such as its nontrivial edge states) would be
lost, and the topological insulators are strictly well defined at
zero temperature.

But one can also consider much weaker decoherence
caused by exposing the system to the environment for a short
amount of time, and the system will form weak entanglements
with the ancilla qubits. In this case, after tracing out the
ancilla qubits, the pure state topological insulator will still be
rendered a mixed density matrix, but in stark contrast with
thermalization, it is possible that some of the topological fea-
tures survive this procedure. This type of weak decoherence
is equivalent to the system being “weakly measured” by the
environment In the past few years phases and phase transitions
that involve quantum measurements have been actively pur-
sued, both theoretically and experimentally [11–35]. The fate
of the mixed density matrix after decoherence or measurement

strongly depends on the symmetry of the decoherence channel
or the measurement, as was pointed out in recent works.
It was shown recently that the topological information of a
mixed state density matrix can be extracted through “strange
correlators,” which were originally devised to probe the pure
state SPT states and TIs [8,9,36]. In particular, the notion of
a type-II strange correlator and a formalism in terms of a
“doubled Hilbert space” was developed in order to extract the
full anomaly of the mixed density matrix [8].

The notion of the strange correlator is based on the overlap
between the SPT state and a trivial state. This overlap is then
mapped, under a space-time rotation, to a correlation function
on the boundary. Power-law decay of the strange correlator
signifies an SPT or TI phase with gapless boundary modes,
even while bulk correlation functions remain short-ranged and
insensitive to the topological order of the bulk. Motivated
by the recent progresses on understanding the topological
features of mixed state density matrices, in this work, we in-
vestigate the fidelity between a pure state trivial insulator and
a mixed state density matrix generated from a Chern insulator
through quantum operations that correspond to decoherence
and weak measurement, and we will refer to the latter density
matrix as a “mixed state Chern insulator.” We demonstrate that
the fidelity can be mapped to the partition functions of a series
of conformal field theories (CFTs), whose central charges de-
pend on the decoherence channel or measurement. We stress
that the decoherence or measurements considered in this work
are supposed to be “weak”; a strong projective measurement
may drive the system into a product state. This includes weak
measurement with postselection of measurement outcomes.
We also propose a method to extract the central charge of the
effective CFT, which is analogous to the finite-size scaling of
the actual free energy of ordinary CFTs [37,38]. This analysis
enables us to extract the information of the mixed state Chern
insulator density matrix without having to know exactly which
order parameter to use for the strange correlator.
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II. CHERN INSULATOR WITH ν = 1

We are most interested in the following quantities:

Z = tr
{
ρ̂D

c ρ̂�

}
, F = − lnZ. (1)

The density matrix of a pure state Chern insulator is ρ̂c =
|�c〉〈�c|, and ρ̂� is the density matrix of a trivial insulator.
The quantity Z is the fidelity between a pure state trivial in-
sulator density matrix and the Chern insulator density matrix,
which is either a pure state Chern insulator or a mixed state
density matrix generated from decoherence or measurement.
F is the Rényi relative entropy. The definition of the fidelity
between two general mixed density matrices is more compli-
cated, but it reduces to the simple form of Eq. (1) when one of
the density matrices is pure. In our work, it suffices to always
keep ρ̂� the density matrix of the pure state trivial insulator.
Later we shall see that Z is mapped to the partition function of
an effective (2 + 0)d or (1 + 1)D nonchiral conformal field
theory (CFT), and F is mapped to the free energy of the
CFT. If we compute the overlap between the wave functions
(rather than density matrices) of a pure state Chern insulator
and trivial insulator, the overlap would become the partition
function of a chiral CFT [39]. Throughout the paper we will
always use d to label the spatial dimension, and D to label the
space-time dimension.

The quantities Z and F encode the “distance” between the
two density matrices. We start with a tight-binding Hamil-
tonian that realizes the Chern insulator with Chern number
ν = 1, but we would like to pursue generic physics that is
independent of the microscopic details; hence we tune the
system close to the topological transition to a trivial insulator.
In the case where the system is tuned close to the topological
transition, the difference between the Chern insulator and the
trivial insulator can be well captured by a single Dirac fermion
with a mass (fermion doubling demands there be another
Dirac fermion in the momentum space, with presumably a
much larger mass), where the sign of the mass determines
whether the system is a Chern insulator or a trivial insula-
tor. We also assume that there is sufficient crystal symmetry
such as spatial inversion and discrete rotation, which render
terms that deviate from a simple Dirac fermion irrelevant
in the infrared when the Dirac mass is small. One example
of such model is the spinless version of the so-called BHZ
model on the square lattice [40], which has multiple discrete
symmetries such as charge conjugation, spatial inversion, dis-
crete rotation, etc. These symmetries ensure that close to the
topological-trivial transition with band inversion, the system
is well captured by a single Dirac fermion at the Gamma point
of the Brillouin zone with emergent Lorentz symmetry. The
Hamiltonian and the Euclidean space-time Lagrangian of the
Dirac fermion read

H =
∫

d2x H

=
∫

d2x ψ†(iσ z∂x + iσ x∂y + mσ y)ψ,

L = ψ†(∂τ + iσ z∂x + iσ x∂y + mσ y)ψ

= ψ̄ (γ0∂τ + γ1∂x + γ2∂y)ψ + mψ̄ψ

(γ0, γ1, γ2) = (σ y,−σ x, σ z ) (2)

with ψ̄ = ψ†γ0.

We would like to consider a mixed state density matrix
generated from a Chern insulator after a quantum operation
such as weak measurement, with the local quantities mea-
sured being invariant under the U(1) charge symmetry. For
example, the local quantities being measured could be the
current density of the system, and the measurement outcomes
are summed over. After this operation, the density matrix of
the mixed state Chern insulator can take the following form,

ρ̂D
c = ⊗xEx[ρ̂c],

Ex[ρ̂c] ∼ ρ̂c +
∑

μ

pμ

(
Ĵμ

x ρ̂cĴμ
x

)
, (3)

where Ĵμ is the three-component Hermitian current vector:

Ĵμ = (ψ̄γ 0ψ, iψ̄γ 1ψ, iψ̄γ 2ψ )

= (ψ†ψ,−ψ†σ zψ,−ψ†σ xψ ). (4)

The local charge density or current operators are part of
the set of “Kraus operators.” We would like to to clarify
that we do not require the Kraus operators to satisfy the
probability-conserving constraint; i.e., we allow a certain level
of postselection in our measurement. Since the Kraus opera-
tors are invariant under the U(1) symmetry, the mixed density
matrix generated will be in the canonical ensemble with a
fixed number of fermions.

The exact density matrix of a system is often tedious
to work with. For a quantum many-body system, we of-
ten only care about the long-wavelength behaviors of the
system, and this physics can be captured through coarse-
graining or renormalization-group techniques. There is a
rather convenient formalism that allows us to use these tech-
niques when we study the effects of quantum operations
including decoherence or weak measurement. This formal-
ism is based on the well-known fact that the density matrix
of the ground state of a system can be generated through
path integral in the Euclidean space-time [ρ̂0]φ1(x),φ2(x) ∼
limβ→∞

∫
Dφ(x, τ ) exp(−S0), with the temporal boundary

condition φ(x, 0) = φ1(x) and φ(x, β ) = φ2(x). Here S0 is
the action of the system whose ground state is the desired pure
state |�0〉. Then under decoherence or weak measurement, the
mixed density matrix becomes [29,41] [Fig. 1(a)]

[ρ̂D]φ1(x),φ2(x) ∼ lim
β→∞

∫
Dφ(x, τ ) exp(−S0 − S int ),

S int =
∫

dx Lint(φ(x, 0), φ(x, β )); (5)

the boundary condition φ(x, 0) = φ1(x), φ(x, β ) = φ2(x)
must hold in this path integral. The effect of decoherence is
mapped to the interaction Lint between fields at τ = 0 and
τ = β.

The symmetry is the most important condition one needs
to consider in order to determine the form of Lint. A density
matrix can have a doubled (or strong) symmetry condition
when it is invariant under separate actions from left and right
multiplication of the symmetry operation [6–8]. When the
measurement only involves quantities that are invariant under
the charge-U(1) symmetry, or more technically the Kraus
operators that generate the mixed state density matrix are
invariant under the U(1) symmetry, Lint needs to preserve
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FIG. 1. (a) The fidelity Z corresponds to path integral in
Euclidean space-time, with interfaces at τ = 0 and τ = β; the de-
coherence is mapped to interaction between the two interfaces.
(b) Under space-time rotation, the temporal interfaces at τ = 0, β

become spatial interfaces y = 0, L, and there are chiral edge modes
at each interface. (c) Example of type-II strange correlator. (d) The
central charge of the effective CFT can be extracted from the
finite-size scaling of the Rényi relative entropy F on a cylindrical
geometry.

separate U(1) transformations acting from the left and right
side of the density matrix, which translate to the separate U(1)
symmetries of the fields at τ = 0 and τ = β. In this case Lint

should include the following term:

Lint ∼
∑

μ

−gμJμ(x, 0)Jμ(x, β ), (6)

where gμ ∼ pμ for small pμ. The charge current operator
J = (Jx, Jy ) is odd under spatial inversion, and all components
of Jμ are odd under charge conjugation. In addition to the
doubled U(1) symmetry, we demand the density matrix pre-
serve the diagonal (or weak) charge conjugation and spatial
inversion symmetry. This condition precludes terms linear
with current operators Jμ(x, 0), Jμ(x, β ) in Lint .

Hence the quantity Z can be computed through a path in-
tegral of a Chern insulator action sharing temporal interfaces
with a trivial insulator at τ = 0, β, and this computation can
be approximated by a path integral with the following action
on the (2 + 0)d temporal interfaces τ = 0, β,

S =
∫

d2x ψ̄ (γ1∂1 + γ2∂2)ψ + Lint, (7)

as there are low-energy modes localized at the temporal in-
terfaces. The low-energy modes at the temporal interface are
eigenstates of σ y. It is much more physically intuitive for us to
perform a space-time rotation in the (τ, y) plane, and position
the interface at y = 0, L, and the modes localized at the spatial
interface would be eigenstates of σ z. The action that describes

the low-energy states at both boundaries is

S1d =
∫

dτdx L1d =
∫

dτdx ψ†(∂τ + iσ z∂x )ψ

=
∫

dτdx ψ̄ (γ0∂τ + γ1∂x )ψ. (8)

This action corresponds to a 1d Hamiltonian of Dirac fermion,
whose bosonized form is

H0 =
∫

dx H0(x), H0(x) = K

2π
(∇xθ )2 + 1

2πK
(∇xφ)2.

(9)

For free fermions without any interaction, K = 1. Here we
stress that Eq. (8) and its bosonized form already includes
physics at the two opposite spatial interfaces, which corre-
spond to the temporal interfaces τ = 0 and β combined before
the space-time rotation.

After the space-time rotation, Lint would take the form of
interaction between currents on the spatial interfaces y = 0
and y = L:

Lint ∼
∑

μ

−gμJ ′
μ(x, 0)J ′

μ(x, L), (10)

where

J ′
μ = (ψ̄γ2ψ, iψ̄γ1ψ, iψ̄γ0ψ )

= (−iψ†σ xψ,−ψ†σ zψ, iψ†ψ ). (11)

The g0 term does not project to an obvious nontrivial operator
at the spatial boundary after space-time rotation; g1 and g2

have very similar effect, as they both project to the following
term at the spatial boundary [Fig. 1(b)]:

Lint ∼ Hint = gρL(x)ρR(x), g ∼ g1 + g2; (12)

hence the effect of the quantum operation is now mapped to a
repulsive interaction between the left and right moving charge
densities in the effective (1 + 1)D system corresponding to
the Hamiltonian density H0 + Hint.

This interaction would renormalize the Luttinger parame-
ter K , i.e., K = √

(2π − g)/(2π + g), but it will not gap-out
the boundary states. This is because the “doubled symmetry”
condition demands that the effective action after space-time
rotation be invariant under independent U(1)L and U(1)R sym-
metries which act on the left and right moving modes of H0,
and it is well known that a system with these symmetries has
a perturbative ’t Hooft anomaly and cannot be gapped.

III. CHERN INSULATOR WITH ν = 2

We now consider two copies of Chern insulators described
by the BHZ model, both with Chern number ν = 1; topolog-
ically this is also equivalent to a Chern insulator with Chern
number ν = 2. After the quantum operation which preserves
the charge number, the density matrix of the Chern insulator
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becomes

ρ̂D
c = ⊗xEx[ρ̂c],

Ex[ρ̂c] ∼ ρ̂c +
∑
i=1,2

∑
μ

pi,μ
(
Ĵμ

i,xρ̂cĴμ
i,x

)

+ pe
(
Ôxρ̂cÔ†

x + Ô†
xρ̂cÔx

)
,

Ôx = c†
1,xσ

zc2,x, (13)

with small pi,μ and pe. The subscript i = 1, 2 labels the two
copies of the Chern insulators. In addition to the current
operators of the system, the quantum operation now involves
the exciton operator Ô, which is also invariant under the total
charge U(1) symmetry. Our goal is to explore the possible
effective CFTs that can be realized through tr{ρ̂D

c ρ̂�}; hence
a specific form of exciton operator was chosen in Eq. (13),
which ensures that the realized CFT is unitary.

Following the procedure in the previous section, after a
space-time rotation in the (y, τ ) plane, the quantity Z =
tr{ρ̂D

c ρ̂�} can be mapped to the following path integral of
(1 + 1)D interacting nonchiral fermions:

Z ∼
∫

D[ψi]D[ψ†
i ] exp

(
−

∫
dτdx L1d + Lint

)

Lint =
∑
i=1,2

giρi,Lρi,R + ge(ψ†
1,Lψ2,Lψ

†
2,Rψ1,R + H.c.), (14)

where L1d is the Lagrangian of two flavors of free (1 + 1)D
Dirac fermions. We can turn the path integral problem Eq. (14)
into a Hamiltonian formalism in 1d:

H =
∫

dx
∑
i=1,2

Ki

2π
(∇xθi ) + 1

2πKi
(∇xφi)

2

+u cos(2φ1 − 2φ2). (15)

Here u is proportional to ge ∼ pe, and Ki =√
(2π − gi )/(2π + gi ) with gi ∼ pi,1 + pi,2 > 0. Here

exp(i2φi ) ∼ ψ
†
i,Lψi,R corresponds to the backscattering terms,

and exp(i2θi ) ∼ ψi,Lψi,R corresponds to the Cooper pairs.
For the most natural choice of parameters where Ki < 1,

the vertex operator u cos(2φ1 − 2φ2) is relevant. A relevant
u will gap-out the channel θ− ∼ θ1 − θ2 and φ− ∼ φ1 − φ2,
while leaving the channel θ+ ∼ θ1 + θ2 and φ+ ∼ φ1 + φ2

gapless and algebraic. All the fermions will acquire a gap, for
example

ψ1,L ∼ eiθ1+iφ1 ∼ ei 1
2 (θ++θ− )+i 1

2 (φ++φ− ), (16)

as the short-range correlation of the φ− channel will render all
the fermion operators short-ranged. But some composite oper-
ators will acquire quasi-long-range or power-law correlation,
such as the following four-body operators:

ψ1,Lψ1,Rψ2,Lψ2,R ∼ ei2θ+ . (17)

The correlation function 〈ei2θ+(0,0)e−i2θ+(0,x)〉 of the (1 + 1)D
CFT is actually a “type-II strange correlator” that was pro-
posed in Ref. [8] in the (2 + 0)d space before the space-time
rotation:〈

ei2θ+(0,0)e−i2θ+(τ,x)
〉 ∼ tr

{
ρ̂D

c �̂(0)�̂†(x)ρ̂��̂(0)�̂†(x)
}
,

(18)

where �̂(x) is a Cooper pair operator �̂(x) ∼ c1,α (x)c2,α (x)
with the same Dirac index α = 1, 2, and x = (x, y) labels the
2d spatial coordinate before the space-time rotation.

Hence even under weak measurement, the Chern insulator
experiences a certain instability in the sense that the CFT
whose partition function corresponds to tr{ρ̂D

c ρ̂�} can have
its central charge reduced from c = 2 to c = 1 through weak
measurement. The change of the central charge can be ex-
tracted through the finite-size scaling of F = − lnZ , which
we will discuss later in this paper.

IV. CHERN INSULATOR WITH ν = 2N

Now we consider ν = 2N copies of the Chern insulator.
The system can have a large U(2N ) flavor symmetry. There
could be many possible choices of the quantum operations
that generate a mixed state. As an example, we choose the
following quantum operation that acts on the Chern insulator
density matrix in the following way:

Ex[ρ̂c] ∼ ρ̂c +
∑

a

∑
μ

pa,μ

(
Ĵa,μ

x ρ̂cĴa,μ
x

)
,

Ĵa,μ
x = (ψ̄γ 0τ aψ, iψ̄γ 1τ aψ, iψ̄γ 2τ aψ ); (19)

Ĵa,μ
x with a = 1, 2, 3 is the current operator for the SU(2) sub-

group of the U(2N ) flavor symmetry. This quantum operation
corresponds to the physics that the currents of the SU(2) flavor
symmetry are weakly measured. We would like to keep a
diagonal SU(2) flavor symmetry; hence pa,μ does not depend
on the SU(2) index a.

Following the same procedure as before, after space-time
rotation we arrive at the following effective Hamiltonian at the
(1 + 1)D space-time:

H(x) = H0(x) +
∑

a

gJa
L (x) · Ja

R (x). (20)

Since the quantum operation breaks the doubled SU(2) sym-
metry down to the diagonal SU(2), the

∑
a gJa

L (x) · Ja
R (x)

term is allowed, and most naturally g > 0. This interaction
is marginally relevant, and its effect is to gap-out the SU(2)
sector of the CFT. The original U(2N )1 CFT has the following
decomposition [42]:

U(2N )1 � SU(N )2 ⊕ U(1)2N ⊕ SU(2)N , or

U(2N ) � O(4N )1 � Sp(N )1 ⊕ SU(2)N . (21)

Since the SU(2)N sector of the CFT is gapped out, eventually
the central charge is reduced from c = 2N to

c = N (2N + 1)

N + 2
. (22)

Other CFTs with a coset construction can also be engineered
through different types of quantum operations.

V. CENTRAL CHARGE OF THE EFFECTIVE CFT

In the previous sections we have shown that under weak
measurement the effective CFT with partition function Z =
tr{ρ̂cρ̂�} can become instable and flow to CFTs with smaller
central charges. In this section we propose that, if we de-
sign our tight-binding Hamiltonian on a cylinder with finite
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circumference L along the x direction, while infinite length
along y [Fig. 1(d)], the “free energy” F = − lnZ per unit
length along the y direction will have the following finite-size
scaling,

F
Ly

= f0L − πc

6L
+ O

(
1

L2

)
, (23)

where c is the central charge. This equation is directly inspired
by the well-known formula derived in Refs. [37,38] for the
actual 2d CFTs.

In the following we compute F for the pure state Chern
insulator, and demonstrate that its finite size-scaling does
encode the correct central charge. In Eq. (2), for the Chern
insulator we take its mass to be m > 0 while for the trivial in-
sulator we take its mass to be −m. The Hamiltonian densities
are

Hc ∼ ψ†(k)(−kxσ
z − kyσ

x + mσ y)ψ (k), (24)

H� ∼ ψ†(k)(−kxσ
z − kyσ

x − mσ y)ψ (k). (25)

The Bloch Hamiltonians can be diagonalized in the momen-
tum basis labeled by

ky ∈ R, kx = 2π (n − 1/2)

L
, n ∈ Z. (26)

Here we have chosen an antiperiodic boundary condition for
the fermions along the x direction, as one can show that the
ground state wave function for the Chern insulator with an
antiperiodic boundary condition has a lower energy compared
with that with a periodic boundary condition.

The fidelity Z becomes a product of the overlap between
Bloch wave functions at each momentum:

Z = |〈��|�c〉|2 =
∏

k

b(k),

b(k) = k2
x + k2

y

k2
x + k2

y + m2
. (27)

The “free energy” F per unit length in the y direction is

F
Ly

= − lnZ
Ly

= − 1

2π

∑
kx

∫
dky ln[b(kx, ky)]. (28)

The integral in ky can be performed explicitly, and yields

F
Ly

= 1

2π

∑
kx

( − 2π |kx| + 2π

√
k2

x + m2
)
. (29)

We examine the term
∑

kx
−|kx| first:

∑
kx

−|kx| =
∞∑

n=−∞
−2π

L
|n − 1/2| =

∞∑
n=1

−2π

L
(2n − 1).

(30)
In order to perform the sum of all odd integers, we need to use
the Zeta function regularization:

∞∑
n=1

(2n − 1)−s = (1 − 2−s)ζ (s). (31)

Plugging in s = −1 would give us
∑

n(2n − 1) = 1/12.
Hence eventually we obtain the following result:∑

kx

−|kx| = −πc

6L
, (32)

where c = 1. This result is consistent with the well-known for-
mula of finite-size scaling of 2d CFTs given in Refs. [37,38].

However, there is also correction from finite mass m which
is attained by analyzing the second term of Eq. (29). This term∑

kx

√
k2

x + m2 would physically correspond to the Casmir
effect of a massive particle in 1d . Intuitively a massive particle
would not lead to any Casmir effect with large mass, but we
will test this intuition as follows. This sum can be regularized
using a special form of the Abel-Plana formula for half-integer
sums [43]:

∞∑
n=0

fn+ 1
2

=
∫ ∞

0
dt f (t ) − i

∫ ∞

0
dt

[ f (it ) − f (−it )]

1 + e2πt
. (33)

Only the second integral contains a finite piece independent of
the regularization scheme, and for a large |m| the integral can

be approximated as −
√

2|m|
πL e−|m|L. Therefore, for large |m|,

the quantity F/Ly with antiperiodic boundary condition reads

FAPBC

Ly
∼ −πc

6L
+

√
2|m|
πL

e−|m|L, (34)

with c = 1. As expected, the correction to F arising from the
second term of Eq. (29) decays rapidly in the large mass limit
and one recovers the exact CFT scaling.

For completeness, one can also compute the sum Eq. (29)
for the more energetic case of periodic boundary conditions
where the momentum in the x direction now takes values of
kx ∈ 2π

L Z, which would yield the result

FPBC

Ly
∼ π

3L
−

√
2|m|
πL

e−|m|L. (35)

One can also use the general formula Eq. (33) to evaluate
the first sum of Eq. (29). The first integral in Eq. (33) diverges
in the UV, and it is proportional to L; the second integral leads
to the desired result of −π/(6L).

VI. CHERN INSULATOR WITH ν = 4

If we start with the Chern insulator with ν = 4, the
physics should be qualitatively similar to the case with other
Chern numbers, as long as the quantum operation only per-
forms measurements on quantities that preserve the U(1)
charge symmetry. The U(1) charge symmetry will always
become a doubled symmetry in the density matrix formal-
ism, and map to the U(1)L and U(1)R symmetry after the
space-time rotation. Then the perturbative ’t Hooft anomaly
will exclude the possibility of a gapped “partition function”
Z ∼ tr{ρ̂D

c ρ̂�}.
Let us now break the doubled U(1) symmetry down to

a diagonal U(1) symmetry, meaning we allow the quantum
operation to measure all bosonic operators, such as all fermion
bilinear operators including Cooper pairs. Effectively the 1d
system after space-time rotation has four left-moving and
four right-moving complex fermions, and there is only one
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global (diagonal) U(1) charge symmetry, when there is no
postselection that breaks the diagonal U(1) symmetry. There is
also a separate fermion parity of left and right chiral fermions:
ZL

2 × ZR
2 . The effect of the weak measurement is mapped

to interacting terms of the 1d system. According to the
classification of interacting TIs, four copies of (1 + 1)D
nonchiral complex fermions can be gapped out by four
fermion interactions without breaking any symmetry or
ground state degeneracy [44–47]. This mechanism also gener-
alizes to other models and higher dimensions, and is in general
referred to as symmetric mass generation (SMG) [48–61]. But
the interaction terms in our case have a more restrictive form,
and need to be generated by weak measurement. We have not
found the corresponding Kraus operators that can generate
the exact form of the interactions that have been definitely
proven to cause SMG for the system. We leave the possibility
of SMG caused solely by decoherence or weak measurement
as an open question for future study.

By considering proper Kraus operators and their Hermitian
conjugates that respect fermion parity, one can indeed gap out
the CFT described by Z and F . However we note here that the
(1 + 1)D system so obtained from space-time rotation is not a
completely trivial state; instead it would spontaneously break
the ZL

2 × ZR
2 symmetry down to a diagonal fermion parity. Let

us consider the following quantum operation as an example:

Ex[ρ̂c] ∼ ρ̂c +
4∑

i=1

pi
(
Ôi,xρ̂cÔ†

i,x, + Ô†
i,xρ̂cÔi,x

)
,

Ô1,x = c†
1,xσ

z(c†
2,x)T and Ôi �=1,x = c†

1,xσ
zci,x. (36)

Following our previous procedure, the fidelity is mapped to
a path integral problem of four flavors of (1 + 1)D Dirac
fermions with the following interactions:

Lint =
∑
i �=1

gi(ψ
†
1,Lψi,Lψ

†
i,Rψ1,R + H.c.)

− g1(ψ†
1,Lψ

†
2,Lψ2,Rψ1,R + H.c.). (37)

These terms after Abelian bosonization become

Lint =
∑
i �=1

ui cos(2φ1 − 2φi ) − u1 cos(2φ1 + 2φ2)

=
∑
i �=1

ui cos
(
�T

i K�
) − u1 cos

(
�T

1 K�
)
. (38)

The vector � is � = (φL,1, . . . , φL,4; φR,1, . . . φR,4)T where
φL,i = θi − φi and φR,i = θi + φi, and the K matrix is
K = diag(−1, . . . ,−1; 1, . . . , 1). In this basis, one can verify
that the four �-vectors take the following form:

�1 = (1,−1, 0, 0; 1,−1, 0, 0)T ,

�2 = (1, 0,−1, 0; 1, 0,−1, 0)T ,

�3 = (1, 0, 0,−1; 1, 0, 0,−1)T ,

�4 = (1, 1, 0, 0; 1, 1, 0, 0)T . (39)

We will outline the conditions that these vectors satisfy and
show that they drive the theory into a Z2 SSB state. A more
complete discussion of these conditions and the �-vector
formalism can be found in Refs. [47,62].

In order for these vertex operators to completely gap the
system, the � vectors must be four linearly independent

vectors that satisfy the so-called Haldane null-vector condi-
tion: �T

i K� j = 0 for all i, j. This condition ensures that the
fields can be rotated to a new basis where each vertex operator
contains only one single field instead of a linear combina-
tion, and this condition is indeed met by the four vectors in
Eq. (39). However, if these terms can indeed trivially gap out
the (1 + 1)D system without any degeneracy (i.e., SMG), it is
necessary that the determinants of all possible 4 × 4 minors
of the matrix with rows of �T

i do not share a common factor
larger than 1. One can verify that this condition is not met by
the four interaction terms generated by Kraus operators cho-
sen above, and our choice of Kraus operators must drive the
boundary into a state that spontaneously breaks the fermion
parity ZL

2 × ZR
2 down to its diagonal. As a consequence, the

following fermion bilinears in the effective (1 + 1)D theory
acquire a nonzero expectation value,

〈ψ†
L,iψR,i〉 �= 0. (40)

The correlation of these fermion bilinears is the follow-
ing type-II strange correlator first introduced in Ref. [8]
[Fig. 1(c)]:

〈ψ†
L,iψR,i(0, 0)ψ†

R,iψL,i(τ, x)〉

∼ CII(x) = tr
[
c†

i,α (0)ci,α (x)ρ̂D
c c†

i,α (x)ci,α (0)ρ̂�

]
tr(ρ̂cρ̂�)

, (41)

where i = 1, 2, 3, 4 and α labels the Dirac index. x = (x, y)
labels the 2d spatial coordinate before the space-time rotation.

VII. SUMMARY AND DISCUSSION

In this work, we investigate the fidelity between the mixed
state Chern insulator, i.e., the mixed state density matrix gen-
erated from a Chern insulator under quantum operations such
as decoherence or measurement, and a pure state trivial insula-
tor. We demonstrate that the fidelity is mapped to the partition
function of a (2 + 0)d or (1 + 1)D CFT, and the Rényi relative
entropy is mapped to the free energy of the CFT. This quantum
operation can lead to a variety of CFTs with different central
charges. We also devised a procedure to extract the central
charges, without having to know the details of the order pa-
rameters that would lead to nontrivial strange correlators.

The Hermiticity of the density matrix demands that, after
space-time rotation, the (1 + 1)D theory is invariant under
antiunitary transformation ψL → ψ

†
R, ψR → ψ

†
L , and i → −i.

This alone does not guarantee that the effective (1 + 1)D CFT
be unitary. Indeed, the strange correlator has been utilized as
a tool to engineer nonunitary CFTs [9,63,64]. In our current
work, the symmetries of the system and the operations ensure
that at least there are no relevant non-Hermitian terms in the
effective (1 + 1)D theory.

As we have seen in this work, the effect of quantum
operation is mapped to interaction terms in the fidelity,
which corresponds to the partition function of the (1 + 1)D
CFT. The same physical picture also applies to all other
free fermion topological insulators and topological supercon-
ductors (TSCs). But as we have mentioned, the quantum
operation only realizes certain restricted forms of interactions.
We leave a complete discussion of TIs and TSCs under quan-
tum operations for a future study.
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