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Irreducible momentum-space spin structure of Weyl semimetals
and its signatures in Friedel oscillations
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Materials that break time-reversal or inversion symmetry possess nondegenerate electronic bands, which can
touch at so-called Weyl points. The spinor eigenstates in the vicinity of a Weyl point exhibit a well-defined
chirality ±1. Numerous works have studied the consequences of this chirality, for example, in unconventional
magnetoelectric transport. However, even a Weyl point with isotropic dispersion is not only characterized by
its chirality but also by the momentum dependence of the spinor eigenstates. For a single Weyl point, this
momentum-space spin structure can be brought into standard “hedgehog” form by a unitary transformation, but
for two or more Weyl points, this is not possible. In this work, we show that the relative spin structure of a pair
of Weyl points has strong qualitative signatures in the electromagnetic response. Specifically, we investigate the
Friedel oscillations in the induced charge density due to a test charge for a centrosymmetric system consisting
of two Weyl points with isotropic dispersion. The most pronounced signature is that the amplitude of the Friedel
oscillations falls off as 1/r4 in directions in which both Weyl points exhibit the same spin structure, while for
directions with inverted spin structures, the amplitude of the Friedel oscillations decreases as 1/r3.
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I. INTRODUCTION

The Dirac equation is one of the fundamental equations of
relativistic quantum mechanics [1]. Shortly after its discovery,
Weyl investigated the massless solutions of this equation,
which describe what is nowadays called Weyl fermions [2].
These fermions are chiral particles that occur as left-handed
and right-handed variants. Mathematically speaking, the chi-
rality of a relativistic spin- 1

2 particle is determined by its
transformation behavior with respect to the left-handed or
right-handed representations of the Lorentz group [3]. For the
massless Weyl fermions, helicity and chirality are identified,
which allows for an alternative interpretation of the handed-
ness: If momentum and spin are aligned (antialigned), the
Weyl fermion is right handed (left handed).

While they have not been found as fundamental particles,
Weyl fermions have been observed in condensed-matter sys-
tems as low-energy excitations around twofold-degenerate,
linearly dispersing band-touching points [4–6], so-called
Weyl points [7]. In the vicinity of a Weyl point that is not
tilted, the effective Bloch Hamiltonian is written as

HWeyl(k) = h̄
∑
i, j

kivi jσ j

= h̄
∑

i

ki

(
viz vix − iviy

vix + iviy −viz

)
, (1)
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where σ = (σx, σy, σz )T is the vector of Pauli matrices rep-
resenting the spin degree of freedom. The real velocity
tensor v ≡ (vi j ) (we notate tensors by writing a characteristic
component in parentheses) contains effective velocities that
express the anisotropy of the Weyl point [7,8]. The resulting
dispersion is

EWeyl(k) = ±h̄
√∑

i, j,l

kivi jv
T
jl kl . (2)

The chirality of the Weyl fermions is conveyed to the Weyl
points by v: If the determinant of v is positive (negative),
the chirality of the Weyl point is also positive (negative), i.e.,
it is right handed (left handed) [8]. A Weyl point is also a
monopole of the Berry curvature and its chirality equals the
Chern number obtained by integrating the Berry curvature
over a surface enclosing only this Weyl point [9,10]. This
topological invariant protects the Weyl point against small
symmetry-preserving perturbations [11,12]. According to the
fermion-doubling theorem [13,14], lattice realizations con-
taining Weyl fermions, so-called Weyl semimetals [7], require
the presence of pairs of Weyl points of opposite chirality so
that the net Chern number vanishes [8].

For a single Weyl point, the presence of a magnetic field
splits the Weyl bands into Landau levels [15]. In the quan-
tum limit, only the zeroth Landau level, which is chiral, is
partially occupied. Now, in the presence of an electric field
E parallel to the magnetic field, the electrons are acceler-
ated according to k̇ = −eE leading to the nonconservation of
charge at this Weyl point. A second Weyl point of opposite
chirality compensates this imbalance. The nonconservation
of charge at a single Weyl point is a manifestation of the
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Adler-Bell-Jackiw or chiral anomaly [16–18]. In the simplest
case, a Weyl semimetal consists of two isotropic Weyl points.
The chiral anomaly then leads to a negative longitudinal
magnetoresistance (LMR) [19–27]. However, the interplay
with the orbital magnetic moment [28,29] and strong inter-
valley scattering can change the sign of the LMR within the
semiclassical framework [30]. Another consequence of the
chiral nature of Weyl semimetals is the formation of Fermi
arcs [7,31,32]. These arcs are formed by surface states that
connect the projections of the Weyl points onto the surface
Brillouin zone.

The chiral anomaly and the presence of Fermi arcs only
rely on the presence of pairs of Weyl points of opposite
chirality, not on details such as the anisotropies of the Weyl
cones [24,32]. Other physical phenomena and quantities are
more sensitive to anisotropies. To name a few examples, good
agreement between experimentally observed and theoretically
calculated optical conductivities in TaAs, TaP, NbAs, and
NbP is only achieved if the anisotropy of the Weyl cones is
taken into account [33,34]. Furthermore, the dimensionless
conductance is strongly affected by the transport direction for
anisotropic Weyl cones [35]. In addition, the Fano factor, often
regarded as independent of system-specific details, heavily
depends on the tilt of the Weyl cones [35]. Finally, anisotropic
Weyl cones cause additional terms in the charge conductivity
that can change the sign of the LMR [36].

Aside from the anisotropy, the velocity tensor (vi j ) also
determines the spin structure of the Weyl point, i.e., it contains
information on the eigenstates of the Hamiltonian in Eq. (1). A
central point of this paper is that this spin structure has impor-
tant consequences even for isotropic Weyl points. Equation (2)
shows that an isotropic dispersion requires that

vvT = v2
F1, (3)

where vF > 0 is the Fermi velocity. The real velocity tensor v

thus has to be of the form v = vF R, where R is an orthog-
onal matrix. The matrix R describes a proper or improper
rotation if det R = 1 or det R = −1, respectively. In partic-
ular, both cases correspond to a continuum of eigenstates.
If R corresponds to a proper rotation one can find a unitary
transformation on the spin- 1

2 Hilbert space that transforms R
into the identity matrix, i.e., there exists a unitary 2 × 2 matrix
U acting on spin space such that

UHWeyl(k)U † = vF h̄
∑
i, j

kiRi jUσ jU
† = vF h̄

∑
i

kiσi. (4)

This is possible because the Pauli matrices are irreducible ten-
sor operators belonging to the three-dimensional irreducible
representation of SO(3). If R describes an improper rotation
one can write it as −1 multiplied by an orthogonal matrix with
determinant +1. The same argument as above then gives

UHWeyl(k)U † = −vF h̄
∑

i

kiσi. (5)

Hence, for a single isotropic Weyl point we can assume the
Weyl Hamiltonian to have the form of either Eq. (4) or (5),
depending on its chirality, without loss of generality. The spin
structure in momentum space than has isotropic hedgehog
form. Equations (4) and (5) are often referred to as standard

Weyl Hamiltonians, which were first proposed by Weyl in the
context of relativistic massless quantum mechanics [2].

The band structure of any Weyl semimetal contains in
general multiple Weyl points. Therefore, a unitary transforma-
tion of the entire Hamiltonian can generally only transform
the spin structure of one Weyl point to the desired form.
The spin structures of the other Weyl points will transform
along with the first one. The relative spin structure between
multiple Weyl points thus remains invariant. Signatures of
the relative spin structure occur due to transitions between
different Weyl cones, i.e., intervalley processes. Such pro-
cesses have frequently been neglected when calculating linear
response functions of Weyl semimetals [37–42], which is a
valid approximation in the long-wavelength limit. However,
the emergence of spin-structure-dependent characteristics are
anticipated for momenta that are approximately equal to the
separation of the Weyl points in momentum space.

Closely connected to the charge-density response func-
tion, or polarizability, are Friedel oscillations in the induced
charge density due to a test charge. In Ref. [39], these os-
cillations have been investigated in the single-Weyl-point
approximation, where the authors made assumptions about
the behavior of the Friedel oscillations caused by inter-
valley processes based on the standard Weyl Hamiltonians
in Eqs. (4) and (5). Energy-resolved Friedel oscillations in
the local density of states have previously been studied for
three-dimensional Weyl semimetals [43–45], while Friedel
oscillations in the induced charge density have been exam-
ined for graphene [46–48], which can be understood as two
degenerate copies of a two-dimensional Weyl semimetal if
spin-orbit coupling is neglected. However, to the best of our
knowledge, there have not been any quantitative studies of the
relative spin structure of Weyl points and its signatures in the
electromagnetic response or the resulting Friedel oscillations.

In this work, we show that intervalley processes induce
strong qualitative signatures of the relative spin structure in
the charge-density Friedel oscillations. The paper is organized
as follows. In Sec. II, we introduce three low-energy model
systems consisting of two isotropic Weyl points, where each
model exhibits a distinct relative spin structure. In Sec. III,
we calculate analytically the extrinsic polarizability for each
model system and investigate singularities of the intrinsic
polarizability based on a tight-binding model. Based on the
results, we numerically compute the Friedel oscillations for
each model system in Sec. IV. In Sec. V, we discuss ex-
tensions beyond the considered minimal models. Finally, we
summarize our results in Sec. VI and draw conclusions.

II. MODEL SYSTEMS

We introduce three centrosymmetric model systems that
break time-reversal symmetry and differ in their spin struc-
tures. Each system consists of two isotropic Weyl points of
opposite chirality that are separated along the kz axis. For
isotropic Weyl points, the Fermi velocity tensor in Eq. (1)
is written as (vi j ) = vF (Rαχ

i j ), where (Rαχ
i j ) is the orthogonal

spin structure tensor for the Weyl point with chirality χ = ±1,
and α specifies the specific model as described below. Without
loss of generality, we assume the Fermi energy EF to coincide
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with the Weyl points or to lie in the conduction band, i.e.,
EF � 0.

The spin structures are different for the three model sys-
tems. As we have argued above, the tensor (Rαχ

i j ) of one Weyl
point can always be made proportional to the identity matrix.
Therefore, without loss of generality, the spin structure tensor
of the Weyl point of positive chirality is chosen as

(Rα+
i j ) =

⎛
⎝+1 0 0

0 +1 0
0 0 +1

⎞
⎠. (6)

As mentioned below Eq. (3), the chirality of a Weyl point
is associated with a continuum of eigenstates. Out of the
continuum of possible spin structures of the Weyl point with
negative chirality, we choose three limiting cases. Taking the
spin structure in Eq. (6) of the Weyl point with positive chi-
rality as the reference, the spin structure of the Weyl point
with negative chirality for model system a is inverted along all
directions, i.e., the Weyl points are described by the standard
forms in Eqs. (4) and (5). In contrast, for model system b,
the spin structure of the latter Weyl point is inverted only
along the direction parallel to the separation vector of the
Weyl points, i.e., the z direction. For model system c, the spin
structure is inverted along the x direction, which is orthogonal
to the separation vector of the Weyl points. For the three
model systems, the spin-structure tensors of the Weyl point
with negative chirality then read as

(
Ra−

i j

) =
⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠, (7)

(
Rb−

i j

) =
⎛
⎝+1 0 0

0 +1 0
0 0 −1

⎞
⎠, (8)

(
Rc−

i j

) =
⎛
⎝−1 0 0

0 +1 0
0 0 +1

⎞
⎠. (9)

In Fig. 1, the spin structures of the Weyl points are illustrated.
In the vicinity of each Weyl point, the Bloch Hamiltonian

for model α = a, b, c is given by

Hαχ (k) = vF h̄
∑
i, j

(
ki − χ

Qi

2

)
Rαχ

i j σ j, (10)

where Q = (Qx, Qy, Qz )T is the separation vector between the
two Weyl points. Here, we assume Q = Qêz, where êz is the
unit vector in z direction. The eigenvalue equation for Hαχ (k)
reads as

Hαχ (k)
∣∣uαχ

s (k)
〉 = Eχ

s (k)
∣∣uαχ

s (k)
〉
. (11)

For the eigenenergies, we obtain

Eχ
s (k) = svF h̄

∣∣∣∣k − χ
Q
2

∣∣∣∣ (12)

for all three model systems, where s labels the conduction
band (s = +1) and the valence band (s = −1), respectively.
On the other hand, the eigenstates |uαχ

s (k)〉 depend on the
model system, i.e., they depend on Rαχ

i j .

FIG. 1. Top left: Spin structure of the Weyl point with posi-
tive chirality for all three models. The spin of the Bloch states
on a constant-energy surface surrounding the Weyl point are given
by |→〉 = (|↑〉 + |↓〉)/

√
2, | ←〉 = (|↑〉 − |↓〉)/

√
2, |⊗〉 = (|↑〉 +

i|↓〉)/
√

2, and |
〉 = (|↑〉 − i|↓〉)/
√

2, where {|↑〉, |↓〉} is the eigen-
basis of the Pauli matrix σz. Top right to bottom right: Spin structures
of the Weyl point with negative chirality for models α = a, b, c.

III. POLARIZABILITY

Within the linear-response regime, the static polarizability
or charge-density response function is given by the Lindhard
function

πα (q) = − 1

V
∑

χχ ′ss′

∑
k

nF
(
Eχ

s (k)
) − nF

(
Eχ ′

s′ (k′)
)

Eχ
s (k) − Eχ ′

s′ (k′) + iη

× Fα;χχ ′
ss′ (k, k′), (13)

where V is the volume of the system, χ and χ ′ denote
chiralities (valleys), s and s′ are band indices, nF (E ) is the
Fermi function, and here and for the rest of the paper we
set [39,41,42]

k′ = k + q. (14)

The spinor overlap of the eigenstates is described by

Fα;χχ ′
ss′ (k, k′) = ∣∣〈uαχ ′

s′ (k′)
∣∣uαχ

s (k)
〉∣∣2

. (15)

The intravalley (χ ′ = χ ) spinor overlap is independent of the
spin structures of the Weyl points,

Fα;χχ

ss′ (k, k′) = 1

2

(
1 + ss′

(
k − χ

Q
2

) · (
k′ − χ

Q
2

)
∣∣k − χ

Q
2

∣∣∣∣k′ − χ
Q
2

∣∣
)

(16)

since the relative spin structure of each Weyl point with re-
spect to itself is always the same. On the other hand, the
intervalley (χ ′ = −χ ≡ χ̄ ) spinor overlap does depend on the
relative spin structure,

Fα;χχ̄

ss′ (k, k′) = 1

2

⎛
⎝1 + ss′

(
k − χ

Q
2

)T (
Rα−

i j

)(
k′ − χ̄

Q
2

)
∣∣k − χ

Q
2

∣∣∣∣k′ − χ̄
Q
2

∣∣
⎞
⎠.

(17)
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The charge response function can be decomposed into in-
travalley and intervalley contributions as

πα (q) = πα
intra (q) + πα

inter (q), (18)

where

πα
intra (q) = − 1

V
∑
χss′

∑
k

nF
(
Eχ

s (k)
) − nF

(
Eχ

s′ (k′)
)

Eχ
s (k) − Eχ

s′ (k′) + iη

× Fα;χχ

ss′ (k, k′), (19)

πα
inter (q) = − 1

V
∑
χss′

∑
k

nF
(
Eχ

s (k)
) − nF

(
E χ̄

s′ (k′)
)

Eχ
s (k) − E χ̄

s′ (k′) + iη

× Fα;χχ̄

ss′ (k, k′). (20)

The intravalley polarizability describes processes occurring
within a single Weyl cone, whereas the intervalley polariz-
ability describes processes occurring between Weyl cones of
opposite chirality. In the following, we evaluate these two
contributions separately, in the zero-temperature limit.

A. Intravalley polarizability

As discussed above, the intravalley spinor overlap,
Eq. (16), does not depend on the spin structure of the Weyl
points. Consequently, the intravalley polarizability also is in-
dependent of the spin structure and is the same for all three
models. The intravalley polarizability can be split further into
an extrinsic and an intrinsic contribution [39–41,49],

πα
intra (q) = π ext,α

intra (q) + π int,α
intra (q), (21)

which originate from the partially filled conduction band and
from the fully occupied valence band, respectively. At zero
temperature, the two contributions read as

π ext,α
intra (q)

= −
∑
χs

[∫
d3k

(2π )3

�[EF − Eχ
+ (k)]

Eχ
+ (k) − Eχ

s (k′) + iη
Fα;χχ

+s (k, k′)

−
∫

d3k

(2π )3

�[EF − Eχ
+ (k′)]

Eχ
s (k) − Eχ

+ (k′) + iη
Fα;χχ

s+ (k, k′)
]

(22)

and

π int,α
intra (q)

= −
∑
χs

[∫
d3k

(2π )3

�[EF − Eχ
− (k)]

Eχ
− (k) − Eχ

s (k′) + iη
Fα;χχ

−s (k, k′)

−
∫

d3k

(2π )3

�[EF − Eχ
− (k′)]

Eχ
s (k) − Eχ

− (k′) + iη
Fα;χχ

s− (k, k′)
]
,

(23)

where EF � 0 is the Fermi energy and the integrals are over
the entire momentum space. In the following, we evaluate
these two contributions separately.

1. Extrinsic polarizability

The extrinsic intravalley polarizability π ext,α
intra (q) corre-

sponds to the static polarizability of two isotropic Weyl points
of opposite chirality that do not interact with each other.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
−1

0

1

2

3
f(x)

u(x, 5)

g(x)

FIG. 2. Functions f (x), u(x, 5), and g(x) of x = q/2kF , given in
Eqs. (25), (30), and (35), respectively.

The extrinsic contribution originates from the partially filled
conduction band. In particular, only states with energies in the
range of the Weyl nodes and the Fermi energy contribute. This
is reflected by the Heaviside step functions in Eq. (22), which
restrict the integration volume to spheres the radius of which is
the Fermi wave number. The calculation has been performed
in Refs. [38,39]. It yields

π ext,α
intra (q) = 2

2

(2π )2

k2
F

vF h̄
f

(
q

2kF

)
, (24)

where kF = EF /vF h̄ is the Fermi wave number and

f (x) = 2

3

(
1 + 1 − 3x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ − x2

2
ln

∣∣∣∣1 − x2

x2

∣∣∣∣
)

,

(25)
which is illustrated in Fig. 2. Note that 2kF provides a natural
momentum scale. π ext,α

intra (q) is a radial function the second
derivative of which is logarithmically divergent at momenta
with modulus q = 0 or q = 2kF . The latter case defines a
sphere

Sintra = {q | |q| = 2kF } (26)

on which the extrinsic intravalley polarizability is singular.
Singularities in the polarizability lead to Friedel oscilla-

tions in the charge density induced by a point charge. For an
isotropic metal, the first derivative of the polarizability shows
a logarithmic divergence at q = 2kF , the origin of which lies
in the Lindhard function [see Eq. (13)]: contributions by mo-
menta q < 2kF permit terms with E (k + q) ≈ E (k), while for
q > 2kF such terms cannot arise [50]. Due to the divergence
in the first derivative, the Friedel oscillations in an isotropic
metal are given by ρ ∼ cos(2kF r)/r3, where r is the distance
from the point charge and 2kF r � 1.

For a Weyl point, processes with q ≈ 2kF are suppressed
by the spinor overlap since the eigenstates at opposite points
on the Fermi surface are orthogonal (see Fig. 1). For this
reason, the polarizability possesses a logarithmic singularity
in its second derivative at q = 2kF . The resulting Friedel os-
cillations for isolated Weyl points therefore read as

ρ(r) ∼ sin 2kF r

r4
(27)
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for large r [39]. Since these Friedel oscillations originate in
the universal intravalley polarizability, they occur for all Weyl
semimetals but do not allow to distinguish between different
spin structures. Note that the singularity at q = 0 in the extrin-
sic polarizability does not cause any Friedel oscillations since
the spatial frequency of such oscillations would be zero.

2. Intrinsic polarizability

The intrinsic intravalley polarizability in Eq. (23) stems
from the fully occupied valence band. Within this band, no
transitions are possible so that the summand with s = −1 van-
ishes. Furthermore, there are no natural momentum or length
scales for two reasons. First, only transitions within a single
Weyl cone are included so that the separation between the
Weyl points is irrelevant. Second, we have EF − Eχ

− (k) � 0
for all k. Consequently, the integration volume is unlimited.
This is in contrast to π ext,α

intra (q), where the integration volume
is constrained by kF .

The infinite integration volume causes the integral in
Eq. (23) to formally diverge for large momenta since the
integrand does not fall off sufficiently rapidly. This requires
a momentum cutoff 	. For the linearized model in Eq. (10),
the cutoff is understood as a momentum scale beyond which
the linear approximation for the dispersion around the Weyl
points fails [51]. Due to the lack of any natural momentum
scale, the cutoff is only limited by the size of the Brillouin
zone.

The cutoff can be implemented in various ways. We follow
Ref. [39] and introduce two spheres with radius 	, where each
sphere is centered around one Weyl point. Mathematically,
this is achieved by∫

d3k

(2π )3
→

∫
d3k

(2π )3
�

(
	 −

∣∣∣∣k − χ
Q
2

∣∣∣∣
)

. (28)

By applying Eq. (28) to (23) and performing a change of
coordinates for each integral, we obtain an integral that has
been evaluated in Ref. [39]. The result reads as

π int,α
intra (q) = 2

2

(2π )2

k2
F

vF h̄
u

(
q

2kF
,

	

2kF

)
, (29)

with

u(x, λ) = 2

3
x2 ln

2λ

x
. (30)

Note that the momentum scale of the extrinsic intravalley
polarizability 2kF has been artificially introduced in Eq. (29)
to achieve a form similar to Eq. (24); this scale cancels out.
The function u(x, 5) is depicted in Fig. 2. The dependence of
the intrinsic intravalley polarizability on the momentum cutoff
differs from the one for the two-dimensional Dirac semimetal
graphene, where it is independent of the cutoff [49]. For
q → 0, π int,α

intra (q) is logarithmically divergent in its second
derivative.

To conclude, the intravalley polarizability for a pair of
isotropic Weyl points is universal. In particular, it is inde-
pendent of the relative spin structure of the Weyl points.
Furthermore, it depends only quantitatively but not qualita-
tively on the details of the band structure through kF and 	.

B. Intervalley polarizability

In analogy to Eq. (21), the intervalley polarizability is also
decomposed into extrinsic and intrinsic components

πα
inter (q) = π ext,α

inter (q) + π int,α
inter (q), (31)

where

π ext,α
inter (q)

= −
∑
χs

[∫
d3k

(2π )3

�[EF − Eχ
+ (k)]

Eχ
+ (k) − E χ̄

s (k′) + iη
Fα;χχ̄

+s (k, k′)

−
∫

d3k

(2π )3

�[EF − E χ̄
+ (k′)]

Eχ
s (k) − E χ̄

+ (k′) + iη
Fα;χχ̄

s+ (k, k′)

]
,

(32)

π int,α
inter (q)

= −
∑
χs

[∫
d3k

(2π )3

�[EF − Eχ
− (k)]

Eχ
− (k) − E χ̄

s (k′) + iη
Fα;χχ̄

−s (k, k′)

−
∫

d3k

(2π )3

�[EF − E χ̄
− (k′)]

Eχ
s (k) − E χ̄

− (k′) + iη
Fα;χχ̄

s− (k, k′)

]
.

(33)

For both π ext,α
inter (q) and π int,α

inter (q), the spinor overlaps depend
on the relative spin structure of the two Weyl points, unlike
for their intravalley counterparts. As a result, the intervalley
polarizability in Weyl semimetals is not universal but rather
contains signatures of distinct spin structures, as we will see.

1. Extrinsic polarizability

First, we consider the extrinsic contribution in Eq. (32). In
contrast to Eq. (22), where the integrand becomes isotropic af-
ter a suitable change of coordinates, the integrand in Eq. (32)
is anisotropic due to the separation of the Weyl points and
the spin structure. For models a and b, the integrands are
rotationally symmetric around the kz axis, while there is a
preferred direction orthogonal to the separation direction for
model c. In Appendix A, we present the evaluation of Eq. (32)
for model c. The calculations for the other two models are
performed analogously. For each model system, the extrinsic
intervalley polarizability is of the form

π ext,α
inter (q) = 2

(2π )2

k2
F

vF h̄

∑
χ

[
cχ,α

f f (yχ ) + cχ,α
g g(yχ )

]
, (34)

where yχ = (yχ
x , yχ

y , yχ
z ) = (q + χQ)/2kF , yχ = |yχ |,

g(x) = x2 ln

∣∣∣∣1 − x2

x2

∣∣∣∣ + x ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ − 1, (35)

and the coefficient functions cχ,α

f and cχ,α
g , which depend on

the model system, are given in Table I. The function g(x) is
plotted in Fig. 2.

The first point to notice is that the extrinsic intervalley
polarizability contains the new function g(yχ ) for every model
system, while the function f (yχ ), which was introduced for
the extrinsic intravalley polarizability, appears only for mod-
els b and c. The origin of g(yχ ) is best understood for model
a. For this model, the two Weyl points of opposite chirality
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TABLE I. Coefficient functions for the extrinsic intervalley po-
larizability in Eq. (34) for each model system.

Model system cχ,α

f cχ,α
g

a 0
1

2

b
1

2

[
1 +

(
yχ

z

yχ

)2] 1

2

(
yχ

z

yχ

)2

c
1

2

[
1 +

(
yχ

x

yχ

)2] 1

2

(
yχ

x

yχ

)2

have inverted spin structures (see Fig. 1). This means that tran-
sitions between states at opposing points on Fermi surfaces
surrounding the two Weyl points are enhanced. For instance,
transitions with momentum transfers q = (Q + 2kF ) êz [q =
(Q − 2kF ) êz] are enhanced between the south (north) pole
of the negative-chirality Weyl point’s Fermi surface and the
north (south) pole of the positive-chirality Weyl point’s Fermi
surface. This is similar to the transitions in an isotropic metal
(see Sec. III A). Hence, g(yχ ) has to possess a logarithmic
divergence in its first derivative at yχ = 1. Thus, there is
a logarithmic divergence in the first derivative of π ext,a

inter (q),
and the extrinsic intervalley polarizability is singular on two
spheres with radius 2kF centered around ∓Q:

S±
inter = {q||q ± Qêz| = 2kF }. (36)

For models b and c, the spin structures of the two Weyl
points are only partially inverted. For this reason, certain
transitions between states at opposing points on the Fermi
surfaces surrounding the two Weyl points are either enhanced
or suppressed depending on the specific spin structures. Sim-
ilar to model a, the extrinsic polarizabilities of models b and
c show singularities on S±

inter. However, in contrast to model
a, the character of the singularities on S±

inter is anisotropic:
In different directions logarithmic divergences in the deriva-
tives may occur in different orders. This is reflected by the
momentum-dependent coefficient functions cχ,α

f and cχ,α
g . In

Sec. IV, the consequences of this anisotropy for the Friedel
oscillations are discussed in more detail.

Note that the extrinsic intervalley polarizability in Eq. (34)
has further logarithmic divergences in its second derivative
at q = ±Q for each model system. These singularities are of
essentially the same nature as the singularity of the extrinsic
intravalley polarizability in Eq. (24) at q = 0. This becomes
apparent from the comparison of the last and first terms in
f (x) and g(x), respectively.

2. Intrinsic polarizability and tight-binding model

Our next task is to evaluate the intrinsic intervalley polar-
izability in Eq. (33). In analogy to Eq. (23), the summands
for s = −1 vanish and the integration volume is unrestricted.
Therefore, we introduce the same cutoff as for the intrinsic
intravalley polarizability, i.e., we apply Eq. (28) to (33). In
contrast to the intrinsic intravalley polarizability, the intrinsic
intervalley polarizability depends on the momentum scale Q.
To prevent the Weyl cones from overlapping, the cutoff should
satisfy 	 < Q/2.

The evaluation of Eq. (33) up to the leading order in 	

yields

π int,α
inter (q) ≈ 2

(2π )2

1

vF h̄
	2, (37)

for all three model systems. In contrast to the weak, log-
arithmic divergence of π int,α

intra (q), π int,α
inter (q) shows a strong,

quadratic divergence. Such strong dependencies of physical
quantities on cutoffs for Weyl semimetals have been encoun-
tered before [52,53]. However, Eq. (37) is surprising since we
would not expect a large contribution of the intervalley polar-
izability for small q. Rather, large contributions should only
appear for momenta q comparable to Q. Additionally, Eq. (37)
causes unphysical long-range screening of the Coulomb in-
teraction in the absence of free charge carriers, as shown in
Appendix B.

The intrinsic intervalley polarizability has been obtained
based on the Weyl Hamiltonian, which is an approximation
for the dispersion of a realistic system in the vicinity of a
Weyl point. For any reasonable approximation, the devia-
tions between its predictions and the exact quantities should
be negligible. For the continuum Weyl approximation, this
means that the contributions of the realistic lattice model that
originate from the nonlinear regions away from the Weyl
points must be small. These contributions are in general sys-
tem specific and contain no Weyl physics. As discussed in
Appendix C, the integrand of the intrinsic intravalley polar-
izability in Eq. (23) is small at the boundary of the linear
regime, which is described by the cutoff. This suggests that
contributions that stem from regions beyond the linear regime
are small as well. Consequently, the intrinsic intravalley po-
larizability in Eq. (29) should describe a realistic system
qualitatively correctly. On the other hand, the integrand of
the intrinsic intervalley polarizability is large at the boundary
of the integration volume. Hence, nonlinear regions may con-
tribute significantly to the full polarizability. For this reason,
Eq. (37) is at least questionable.

Lattice models avoid the convergence problems introduced
by continuum models. In the following, we study the full
intrinsic polarizability for a tight-binding model, focusing on
the following points. First, we need to verify whether Eq. (37)
is indeed incapable of describing a realistic system. In other
words, we need to check if a constant term in the intrinsic
polarizability for q = 0 exists. Second, if the cutoff approxi-
mation fails for the intrinsic intervalley polarizability, this also
raises doubts concerning its validity for the intravalley one.
For this reason, we need to verify if Eq. (29) is describing
the full polarizability for small q qualitatively correctly. Third,
for a full picture of the Friedel oscillations, it is necessary to
investigate whether the full intrinsic polarizability of the tight-
binding model contains singularities. If this is the case, we are
interested in strengths and locations of these singularities.

We employ the tight-binding Hamiltonian [8,54,55]

Htb(k) = tx sin kx τx + ty sin ky τy

+ tz (2 − cos kx − cos ky + γ − cos kz ) τz, (38)

where tx, ty, and tz are hopping amplitudes and γ controls
the Weyl phase. This model breaks time-reversal symmetry
and can be constructed employing two orbitals of opposite
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parity, namely, an s and a pz orbital, per lattice site and a
strong magnetic field that shifts states of opposite spin to high
energies [8]. The local degree of freedom described by the
Pauli matrices τx, τy, and τz is a combination of spin and
orbital contributions due to strong spin-orbit coupling but for
simplicity we continue to call it the “spin.” Then, inversion
symmetry is described by the matrix P = τz (see Appendix D
for further discussions of symmetries). The dispersion relation
is given by

E tb
s (k) = s

[
t2
x sin2 kx + t2

y sin2 ky

+ t2
z (2 − cos kx − cos ky + γ − cos kz )2

]1/2
, (39)

where s = ±1 is the band index. In the Weyl phase, which is
characterized by −1 < γ < 1, a pair of Weyl points exists on
the kz axis at kz = k±

z0 = ± arccos γ , as shown in Fig. 3(a) for

three values of γ . For tx = ty = tF and tz = tF /
√

1 − γ 2, the
dispersion in the vicinity of the Weyl points is isotropic, which
we assume in the following. By expanding Htb(k) around the
Weyl points up to first order in momentum, one can verify
that the relative spin structure of the tight-binding model cor-
responds to the one of model b in Eq. (8).

For the tight-binding model, the intrinsic polarizability is
calculated using

π int
tb (q)

= −
[∫

BZ

d3k

(2π )3

1

E tb− (k) − E tb+ (k′) + iη
F tb

−+(k, k′)

−
∫

BZ

d3k

(2π )3

1

E tb+ (k) − E tb− (k′) + iη
F tb

+−(k, k′)
]
, (40)

where F tb
+−(k, k′) is the absolute value squared of the spinor

overlap for states with momenta k and k′ in the conduction
and valence bands, respectively, and the integration volume
is the first Brillouin zone. In contrast to the low-energy con-
tinuum model, we cannot naturally separate intravalley and
intervalley contributions for the tight-binding model.

Equation (40) can be evaluated numerically. In Fig. 3(b),
we plot π int

tb (q) along the separation direction of the Weyl
points, i.e., on the qz axis. We compare this figure with
Eqs. (29) and (37). For |q| → 0, π int

tb (q) vanishes. This is con-
sistent with π int,α

intra (q), but in contradiction to π int,α
inter (q). Noting

the discussion in Appendix C, we conclude that the intrinsic
intervalley polarizability cannot be calculated within the Weyl
approximation.

Next, we compare π int
tb (q) and π int,α

intra (q) for small qz. As
illustrated in Fig. 3(c), good agreement between the numeri-
cal and analytical results is achieved by choosing the cutoff
	 for the continuum model appropriately. In addition, this
comparison emphasizes that for small q, the intrinsic charge
response function π int

tb (q) of the tight-binding model, the spin
structure of which corresponds to model b in Eq. (8), is indeed
independent of the spin structure of the Weyl points.

To summarize, there is no universal expression for the total
polarizability of a centrosymmetric Weyl semimetal within
the continuum Weyl approximation due to an unphysical di-
vergence of the intrinsic intervalley polarizability. Ultimately,
this divergence can be traced back to a breakdown of the low-
energy continuum approximation for a realistic model system.

−π −π
2 0 π

2 π

kz

−2

−1

0

1

2

E
tb ±

(0
,0

,k
z
)

γ = 0.0

γ = 0.2

γ = 0.5γ = 0.5

0 π
4

π
2

3π
4

π

qz

0.00
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0.06

π
in

t
tb

(q
z
)

0.00 0.05 0.10 0.15 0.20
qz

0.0000
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0.0020

π
in

t
tb

(q
z
)

Λ = 2.00

Λ = 1.60

Λ = 1.14

(a)

(b)

(c)

FIG. 3. Band structure and intrinsic polarizability for the tight-
binding model given in Eq. (38) with γ = 0 (black), γ = 0.2 (dark
brown), and γ = 0.5 (light brown). (a) Band structure along the kz

axis. (b) Intrinsic polarizability as a function of qz for qx = qy = 0.
(c) Comparison of π int

tb (q) (solid lines) and π int,α
intra (q) for 	 = 2 (tri-

angles), 	 = 1.6 (stars), and 	 = 1.14 (plus signs). The remaining
parameters for the tight-binding model are η = 3 × 10−4, tx = ty =
1, and tz = 1/

√
1 − γ 2. For π int,α

intra (q), h̄vF = 1 was chosen.

On the other hand, our analysis suggests that the intrinsic
intravalley polarizability in Eq. (29), which was obtained
within the continuum Weyl approximation, well describes the
intrinsic polarizability of a realistic system for small q.

Although the Weyl approximation fails to describe the full
intrinsic polarizability of a centrosymmetric Weyl semimetal,
the full intrinsic polarizability might still contain potential sin-
gularities, which we investigate for the tight-binding model.
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FIG. 4. Second derivatives of the intrinsic polarizability of the
tight-binding model with respect to different momentum components
for various γ and broadenings η. (a) Second derivative in qz for
qx = qy = 0 and various γ . The separations between the Weyl points
are given by Q0 = π , Q1 = 2.74, and Q2 = 2.09 for the three values
of γ . (b) For γ = 0.5, comparison of the second derivative in qz in
the vicinity of Q2 along the qz axis for various η with αz ln |qz − Q2|,
where αz = 0.0078. (c) For γ = 0.5, comparison of the second
derivative in qx for qy = 0 and qz = Q2 for various η with αx ln |qx|,
where αx = −0.024. Unless stated otherwise, the used parameters
are the same as in Fig. 3.

To get further insight, we plot the second derivative of π int
tb (q)

with respect to qz along the separation direction of the Weyl
points in Fig. 4(a). For each value of γ , we observe a sin-
gularity at qz = 0. According to Eqs. (29) and (30), this
singularity is logarithmic. Furthermore, we find singularities
at Q = 2 arccos γ , the separation between the Weyl points.
Note that a small but nonzero broadening η used in the nu-
merical evaluations cuts off the divergences. In Fig. 4(b), the
singularity for γ = 0.5 is shown for several η. As we can

see, the singularity fits a logarithmic divergence centered at
Q2. Similarly, the second derivative of π int

tb (qx, 0, Q2) with
respect to qx for the same η fits a logarithmic divergence
centered around zero [see Fig. 4(c)]. We conclude that the in-
trinsic polarizability has logarithmic divergences in its second
derivative at q = ±Qêz.

As mentioned before, the Weyl points of our tight-binding
model possess the spin structure of model b. Thus, the spin
structures of the Weyl points are different for directions par-
allel and orthogonal to the separation direction of the Weyl
points. However, at q = ±Qêz, logarithmic divergences in the
second derivatives occur along both these directions, as we
have just discussed. For this reason, the strength of these
singularities is independent of the spin structure. We conjec-
ture that the intrinsic polarizability for other centrosymmetric
Weyl semimetals with different spin structures shows analo-
gous behavior near the points q = 0 and ±Qêz.

IV. FRIEDEL OSCILLATIONS

In this section, we calculate the charge-density Friedel os-
cillations induced by a point charge Qc > 0. For this purpose,
we consider the dielectric function within the random-phase
approximation, which reads as

εα (q) = 1 + VC (q) πα (q), (41)

where VC (q) = e2/ε0q2 is the Coulomb interaction, e > 0 is
the elementary charge, and ε0 is the dielectric constant. The
induced charge density is then expressed as [50]

ρα (r) = Qc

∫
d3q

(2π )3

[
1

εα (q)
− 1

]
eiq·r. (42)

As discussed above, Friedel oscillations in the induced charge
density arise from singularities in the derivatives of the po-
larizability. For Weyl semimetals, a variety of singularities
appear in the different parts of the total polarizability. To
summarize, both the extrinsic and the intrinsic polarizabil-
ities contain singularities at q = 0 and ±Q. However, only
the former contribution contains additional singularities that
occur on spheres with radius 2kF centered around the afore-
mentioned momenta q. In the following, we first focus on the
point singularities at q = 0 and ±Q.

For the intrinsic polarizability of a Weyl semimetal, there
is no universal expression. From the tight-binding model, we
have found three properties. First, singularities in the intrinsic
polarizability occur at q = 0 and ±Qêz. Second, these singu-
larities are logarithmic divergences in the second derivative.
Third, they are independent of the spin structure of the Weyl
points. All three properties also apply to the singularities of
the extrinsic polarizability at the same momenta for each
model system. We therefore conjecture that all centrosymmet-
ric Weyl semimetals that host one pair of Weyl points give rise
to singularities with the same properties as those of the present
tight-binding model.

In the total polarizability, the singularities contributed by
the extrinsic and intrinsic polarizabilities are added together.
They do not cancel in general since the coefficients of the
singular terms in the extrinsic and intrinsic polarizabilities
depend and do not depend, respectively, on the Fermi energy
[see Eqs. (24), (34), and (40)]. For this reason, the total
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polarizability of a Weyl semimetal contains logarithmic sin-
gularities in its second derivative at q = 0 and ±Q.

The relevant features of Friedel oscillations are the scaling
of their amplitude vs distance and their oscillation frequency.
The former depends on the strengths (orders) of the singular-
ities in the polarizability, while the latter is governed by the
locations of the singularities in momentum space. For Weyl
semimetals, the locations and strengths of all singularities of
the total polarizability are identical to those of the extrinsic
contribution, whereas the intrinsic polarizability has only the
point singularities in common with them. For this reason, it is
sufficient to calculate the Friedel oscillations in the induced
charge density in Eq. (42) by including only the extrinsic
polarizability. The singularities of the intrinsic polarizability
cannot give rise to Friedel oscillations with different scaling
and frequencies.

A. Model system a

For the calculation of the Friedel oscillations, where we
take into account only the extrinsic polarizability, it is con-
venient to introduce 2kF as a natural momentum scale. Then,
the dimensionless induced charge density due to the extrinsic
polarizability reads as

ρ̃α (r̃) = ρext,α
ind (r̃)

Qc(2kF )3
=

∫
d3x

(2π )3

[
1

εext,α (x)
− 1

]
eix·r̃, (43)

with r̃ = 2kF r, x = q/2kF ,

εext,α (x) = 1 + rs

4x2
π̃ ext,α (x), (44)

π̃ ext,α (x) = 2 f (x) +
∑
χ

[
cχ,α

f f (yχ ) + cχ,α
g g(yχ )

]
, (45)

where rs = e2/2π2ε0vF h̄ is the effective fine-structure con-
stant of the Weyl semimetal. Here, π̃ ext,α (x) is the dimen-
sionless extrinsic polarizability consisting of intravalley and
intervalley contributions. Aside from the point singularities at
q = 0 and ±Qêz, π̃ ext,α (x) is singular on the surfaces Sintra and
S±

inter [see Eqs. (26) and (36), respectively]. For each model,
the interplay of these singularities causes unique Friedel os-
cillation patterns, as we will see in the following.

For model a, we have already explored the singularities
on Sintra and S±

inter. While there are logarithmic divergences in
the second derivative on Sintra, logarithmic divergences appear
in the first derivative of the dielectric function on S±

inter. A
logarithmic divergence in the first derivative causes Friedel os-
cillations of the form cos r̃/r̃3. Since the singularities on S±

inter
are stronger than those on Sintra they determine the Friedel
oscillations at larger separations. For directions parallel and
orthogonal to the separation direction of the Weyl points, the
Friedel oscillations therefore behave as

ρ̃a(r̃z ) ∼ cos[(Q̃ − 1)r̃z] + A cos[(Q̃ + 1)r̃z]

r̃3
z

, (46)

ρ̃a(r̃⊥) ∼ cos r̃⊥
r̃3
⊥

(47)

for large r̃z and large r̃⊥, respectively. A is the relative ampli-
tude between the oscillations with spatial frequencies Q̃ − 1
and Q̃ + 1, where Q̃ = Q/2kF .

To understand how the distinct Friedel oscillations result-
ing from the singularities on Sintra and S±

inter merge, we plot
the dimensionless charge density from Eq. (43) along the r̃z

axis for model system a in Fig. 5(a). For comparison, we
also show the induced charge density of systems consisting
of two isolated Weyl cones, i.e., including only the intravalley
contribution. The long-distance behavior is then described by
Eq. (27).

For Weyl points separated by Q̃ = Q/2kF = 4π [upper
plot in Fig. 5(a)], the induced charge density for small r̃z fol-
lows the charge density obtained for two isolated Weyl points.
For larger r̃z, small deviations become noticeable. Moving the
Weyl points closer together (middle plot) reduces the small-r̃z

region in which the induced charge densities for model a and
for isolated Weyl points agree. As one can see, the intervalley
contribution generates additional oscillations, the amplitudes
of which fall off more slowly than 1/r̃4

z . By moving the Weyl
points even closer together (lower plot), we see that the in-
duced charge density for model a and for isolated Weyl points
agrees only in a narrow region. Most importantly, we observe
that ρ̃α (r̃z ) falls off as 1/r̃3

z , as expected from Eq. (46), in
contrast to the induced charge density of isolated Weyl points,
which falls off as 1/r̃4

z .
We analyze the spatial oscillation frequencies of the in-

duced charge densities by calculating the discrete Fourier
transforms F for the oscillations of ρ̃a(r̃z ) r̃n

z for intervals
that comprise approximately eight periods (see Appendix E
for details). Within the investigated intervals, the dominant
oscillation frequency for Q̃ = 4π is x = q/2kF = 1, as shown
in Fig. 5(b). As Q̃ decreases to Q̃ = 2π [see Fig. 5(c)], the
oscillations with frequencies x = Q̃ ± 1 increase and eventu-
ally become dominant for Q̃ = 3, as shown in Fig. 5(d). We
conclude that the intravalley singularity on Sintra dominates for
small r̃z, while the intervalley singularities on S±

inter dominate
for large r̃z, where the length scale of the crossover between
these two regimes depends on the separation Q̃ between the
Weyl points.

Interestingly, we do not observe Friedel oscillations with
spatial frequency x = Q̃, which could be expected due to
the logarithmic divergences in the second derivative of the
dimensionless extrinsic polarizability at x = ±Q̃êz. The ab-
sence of such oscillations is likely due to the fact that point
singularities form a null set in momentum space compared
to the Friedel oscillations originating from the surfaces Sintra

and S±
inter. Our results are in disagreement with a conjecture in

Ref. [39], where cosinusoidal Friedel oscillations with spatial
frequency q = Q that fall off as 1/r3

z have been suggested.
So far, we have focused on the direction parallel to the

separation vector between the Weyl points. We now turn to
the orthogonal direction. Figure 6 shows the Friedel oscilla-
tions along the r̃x axis. The results are similar to the previous
case. Specifically, we observe a crossover from 1/r̃4

x scaling
for small r̃x to 1/r̃3

x scaling for large r̃x. For small r̃x, the
intravalley singularity dominates so that the induced charge
density is close to the one for two isolated Weyl points. For
larger r̃x, the intervalley singularities become more and more
pronounced so that the induced charge density approaches
Eq. (47). Note that no oscillations with frequencies on the
order of Q̃ appear. This is reasonable because Q̃ refers to a
direction that is orthogonal to r̃x. However, the scale Q̃ still
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FIG. 5. Induced charge density and frequency spectrum of the Friedel oscillations for model system a. (a) Induced charge density for
various Q̃ = Q/2kF along the r̃z axis (r̃x = r̃y = 0), scaled with r̃n

z , where n = 4 for the upper two plots and n = 3 for the lower plot. The black
dashed curve shows the induced charge density including only the extrinsic intravalley polarizability. The effective fine-structure constant is
taken to be rs = 1. (b)–(d) Fourier components of the discrete Fourier transform of the Friedel oscillations from (a).

determines the crossover between the regimes of small and
large r̃x.

B. Model system b

We now turn to model system b, starting with the Friedel
oscillations along the r̃x axis, which are shown in Fig. 7(a).
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FIG. 6. Induced charge density for various Q̃ = Q/2kF along
the r̃x axis for model system a. The black dashed curve shows the
induced charge density including only the extrinsic intravalley polar-
izability. The effective fine-structure constant is taken to be rs = 1.

There are two major differences in comparison to model a (cf.
Fig. 6). First, there is no crossover in the scaling of the Friedel
oscillations, which fall off as 1/r̃4

x for all Q̃. Second, only for
small Q̃ there are deviations from the induced charge density
of isolated Weyl points, which are observable near the minima
and maxima.

In order to explain these features, we recall that the scaling
of the Friedel oscillations depends on the order of the sin-
gularities of the polarizability. To be more precise, it is also
important that the singularities are found in the direction in
which the integrand in Eq. (43) oscillates, which is the x di-
rection in this case. The decay of the Friedel oscillations with
1/r̃4

x signifies that the logarithmic singularity in the polariz-
ability is found in the second derivative in the x direction. The
Friedel oscillations along the r̃x axis are thus in disagreement
with Ref. [39], where cosinusoidal Friedel oscillations with
spatial frequency x = 1 that decay as 1/r̃3

x were conjectured.
For model b, the spin structures of both Weyl cones are

the same at the equators of their Fermi surfaces, as illustrated
in Fig. 8. Hence, a transition from a state at the equator of
one Fermi surface to the equator of the other Fermi surface is
enhanced if the momentum transfer is q = ±Qêz, as indicated
by the transition shown in blue. If the momentum transfer is
such that the initial and final momenta are opposing points
on the Fermi surfaces, the transition is suppressed due to the
spin structure (red transition). Note that only for the latter
transition the momentum transfer carries a component in the
x direction. Hence, we conclude that the mechanism that
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FIG. 7. Induced charge density for different Q̃ = Q/(2kF ) for
model system b along (a) the r̃x axis, and (b) the r̃z axis. The black
dashed curve shows the induced charge density including only the
extrinsic intravalley polarizability. The effective fine-structure con-
stant is taken to be rs = 1.

FIG. 8. Illustration of transitions between states at the equators
of the Fermi surfaces for model b. The transition shown in blue is
enhanced due to the spin structure, while the one in red is suppressed.

occurs for transitions between states at the equators of the
two Fermi surfaces is essentially the same mechanism that
occurs for intravalley transitions with a momentum transfer
of 2kF for states on the same Fermi surface and that has
been discussed above. For this reason, the Friedel oscillations
along the r̃x axis stem from a logarithmic singularity in the
second derivative of the polarizability. This is also reflected
by Eq. (45). For q = Qêz + 2kF êx, yχ = (q + χQ)/2kF , and
yχ = |yχ |, we have c−,b

g = 0, c−,b
f = 1

2 , and y− = 1, i.e., we
are on S−

inter. Note that for the same q the second intervalley
summand with χ = +1 is not evaluated on S+

inter since y+ �= 1
for this q.

Since the intravalley and intervalley singularities are of the
same strength, both singularities give rise to Friedel oscil-
lations that behave like those for isolated Weyl points [see
Eq. (27)]. However, the amplitude of the oscillations caused
by intravalley singularities is larger than the amplitude of the
oscillations resulting from intervalley singularities. In partic-
ular, the latter decreases for increasing Q̃. Hence, deviations
from the induced charge density for isolated Weyl points are
only significant for small Q̃ [see the black dashed curve in
Fig. 7(a)].

At the poles, the spin structures of the Weyl points are
inverted for both models a and b. Hence, we expect the Friedel
oscillations along the r̃z axis to behave in the same way for
models a and b. As depicted in Fig. 7(b), the induced charge
density for model b along the r̃z axis shows the same crossover
as for model a, where the induced charge density corresponds
to the one for isolated Weyl points for small r̃z and to Eq. (46)
for large r̃z [see also Fig. 5(a) for comparison].

C. Model system c

For model system c, the spin structures of the two Weyl
points are inverted along the x direction. Hence, the Friedel
oscillations along the r̃x axis behave like those for model a in
the same direction, i.e., as described by Eq. (47) and plotted
in Fig. 6. In Fig. 9(a), the induced charge density along the r̃x

axis is depicted for model system c and Q̃ = 3 [56].
Along the z direction, the spin structures of the Weyl

points are identical. Thus, the Friedel oscillations fall off as
1/r̃4

z . While the Friedel oscillations caused by the intraval-
ley singularity oscillate with spatial frequency 2kF , the ones
due to the intervalley singularities oscillate with frequencies
Q ± 2kF . However, the amplitude of the latter is smaller than
the amplitude of the former. This is similar to the Friedel
oscillations along the r̃x axis for model b. Therefore, de-
viations from the induced charge density of isolated Weyl
points are only observable for small Q̃. In a weakly doped
Weyl semimetal, the separation between the Weyl points is
much larger than the extensions of the Fermi surfaces, i.e.,
Q̃ = Q/2kF is large. Thus, we expect Friedel oscillations with
spatial frequency x = 1. Our results for the charge-density
oscillations of model c along the r̃z axis contradict Ref. [39],
where Friedel oscillations with spatial frequencies Q̃ and Q̃ ±
1 and decaying as 1/r̃3

z have been conjectured. In Fig. 9(b), the
Friedel oscillations for model system c along the r̃z axis are
illustrated.
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(a)

(b)

FIG. 9. Induced charge density for model system c along (a) the
r̃x axis for Q̃ = Q/(2kF ) = 3, and (b) the r̃z axis for different Q̃. The
black dashed curve shows the induced charge density including only
the extrinsic intravalley polarizability. The effective fine-structure
constant is taken to be rs = 1.

V. BEYOND CENTROSYMMETRIC ISOTROPIC
WEYL POINTS

In this section, we discuss extensions of our work be-
yond the minimal centrosymmetric models considered so
far. The Weyl points in real Weyl semimetals are frequently
anisotropic. An anisotropic Weyl point can be described by
an anisotropic velocity tensor in Eq. (1). Consequently, the
spin structure and the shape of the Fermi surface change.
For anisotropic Fermi surfaces, different momentum scales
kF are expected in different directions. Therefore, the spa-
tial oscillation frequencies are direction dependent. Like for
the isotropic case, two Weyl points with opposite chirality
cannot have the same spin structure. In the directions with
identical (inverted) spin structure, the Friedel oscillations are
sinusoidal (cosinusoidal) and their amplitude falls off as 1/r4

(1/r3). By investigating the Friedel oscillations along different
directions, the relative spin structure can thus be deduced
from the exponent of the inverse power law, while the spatial
frequencies provide information about the shapes of the Fermi
surfaces.

A distinct form of anisotropy is described by adding a term
of the form v0 · k σ0 to the Weyl Hamiltonian in Eq. (1). While
such a term tilts the Weyl cone in the direction parallel to v0, it
does not affect the eigenstates since the term is proportional to
the identity matrix. Hence, the spin structure is left invariant
but the Fermi surface becomes anisotropic. We expect that our
analysis essentially remains valid for type-I Weyl semimetals,

which have closed Fermi surfaces, but not for overtilted type-
II Weyl semimetals.

Most Weyl semimetals contain more than two Weyl points.
For such systems, intervalley processes between all possible
pairs contribute to the Friedel oscillations. Every individual
contribution conforms to the analysis presented in this work.
Note that a pair of Weyl points with the same chirality in gen-
eral has a nontrivial relative spin structure, which is reflected
by the Friedel oscillations. By investigating the direction
dependence of the Friedel oscillations and noting relations
between the spin structures of Weyl points imposed by crystal
symmetries, it should generally be possible to determine all
relative spin structures.

Although we have focused on centrosymmetric Weyl
semimetals, our results are also applicable to Weyl semimetals
with broken inversion symmetry. We first discuss a minimal
model of a time-reversal-symmetric, i.e., nonmagnetic, Weyl
semimetal with isotropic Weyl points. Due to time-reversal
symmetry, two Weyl points at momenta k0 and −k0 form a
pair, where the two Weyl points possess identical spin struc-
tures since time reversal inverts both spin and momentum.
Thus, both Weyl points have the same chirality. Based on the
results of Secs. IV B and IV C, the Friedel oscillations due
to this pair are of the form sin 2kF r

r4 in directions parallel and
orthogonal to the separation vector of the Weyl points. Note
that the amplitudes of oscillations with spatial frequencies q =
Q ± 2kF are suppressed for Weyl points possessing identical
spin structures along their separation direction. Time-reversal-
symmetric Weyl semimetals host at least a second pair of Weyl
points with opposite chirality. The relative spin structure be-
tween all Weyl points can again be analyzed by investigating
the direction dependence of the Friedel oscillations.

A different situation occurs in nonmagnetic chiral crys-
tals, where so-called Kramers-Weyl points are enforced at all
time-reversal-invariant momenta, e.g., the � point, as shown
by symmetry-based classifications [57,58]. These Kramers-
Weyl points do not possess a time-reversal partner since
time-reversal symmetry maps them onto themselves. In non-
magnetic chiral crystals, the fermion-doubling theorem is
satisfied by Weyl points or higher-dimensional band touchings
that are not related by symmetry and are thus not energetically
degenerate.

So far, we have been concerned with Weyl semimetals,
which are characterized by twofold-degenerate linearly dis-
persing Weyl points. However, there exist also semimetals
with higher-order band-touching points. For example, cu-
bic systems such as Pr2Ir2O7 host quadratic band-touching
points [59], while ferromagnetic HgCr2Se4 hosts “double
Weyl points” with quadratic dispersion in two directions and
linear dispersion in the remaining one [60]. Friedel oscilla-
tions are charaterized by the scaling of their amplitude vs
distance and their spatial oscillation frequency. Neither of
these two features depends on the leading power law in the
dispersion. Consequently, we expect that our results, which
have their origins in the relative spin structure, are essentially
also applicable to higher-order semimetals. In particular, we
expect sinusoidal (cosinusoidal) Friedel oscillations decay-
ing as 1/r4 (1/r3) along directions in which 2kF transitions
between opposing sites of the different Fermi surfaces are
suppressed (enhanced).
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TABLE II. Behavior of the Friedel oscillations for large distances
from the origin for each model system along the r̃z and r̃x axes. The
oscillatory behavior in Eq. (46) is abbreviated as ρ̃α (r̃z ) ∼ cos(Q̃±1)r̃z

r̃3
z

.

Model system ρ̃α (r̃z ) ρ̃α (r̃x )

a ∼cos(Q̃ ± 1)r̃z

r̃3
z

∼cos r̃x

r̃3
x

b ∼cos(Q̃ ± 1)r̃z

r̃3
z

∼sin r̃x

r̃4
x

c ∼sin r̃z

r̃4
z

a ∼cos r̃x

r̃3
x

aThere are additional oscillations ρ̃a(r̃z ) ∼ sin(Q̃±1)r̃z
r̃4
z

with a much

smaller amplitude.

VI. SUMMARY AND CONCLUSIONS

In this work, we have shown that the Friedel oscillations
of the induced charge density qualitatively depend on the
relative spin structure of the Weyl points in Weyl semimetals.
We have employed minimal centrosymmetric and time-
reversal-symmetry-breaking models with two Weyl points of
opposite chirality. For three model systems with different
spin structures, we have analytically calculated the extrinsic
polarizability. This allowed us to compute the induced charge
densities due to a test charge for each model along various
directions. The results are summarized in Table II.

Our work shows that Weyl semimetals possess spin-
structure-dependent Friedel oscillations due to an interplay of
intravalley and intervalley singularities on the surfaces Sintra

and S±
inter, which are spheres with radius 2kF centered around

the points q = 0 and ∓Q, respectively. The Friedel oscilla-
tions show the following properties: First, for small distances
r, the Friedel oscillations due to the intravalley singularity,
which are sinusoidal and decay as 1/r4 [39], are dominant
for all Weyl semimetals. The length scale that divides small
from large distances, at which intravalley and intervalley sin-
gularities dominate, respectively, depends on the separation
Q between the Weyl points in momentum space. Second,
for large distances r, intervalley processes dominate and the
Friedel oscillations depend on the relative spin structure of
the two Weyl points. If the spin structures of the Weyl points
are identical along a certain direction the Friedel oscillations
are sinusoidal and fall off as 1/r4, while for inverted spin
structures they are phase shifted to a cosine and fall off more
slowly as 1/r3. Third, along directions that are orthogonal to
the separation vector of the Weyl points, the spatial oscillation
frequency is in general 2kF . Fourth, for large distances r,
the spatial oscillation frequencies along directions that are
parallel to the separation vector of the Weyl points depend on
the relative spin structure. If the spin structures are identical
along these directions, the oscillation frequency equals 2kF

since the amplitude of the oscillation due to the intravalley
singularity is much larger than the ones from the intervalley
singularities. In contrast, the intervalley singularities dominate
the Friedel oscillations for large distances for inverted spin
structures, where the corresponding spatial frequencies are
Q ± 2kF . Note that we do not find oscillations with spatial
frequency Q, which have been conjectured in Ref. [39].

On surfaces, the local density of states associated with
surface Friedel oscillations can be observed using scanning
tunneling microscopy [61–64]. It is highly desirable to extend
our analysis to systems with a surface, where the presence
of Fermi-arc surface states is expected to lead to additional
contributions [45]. The observation of Friedel oscillations
in the bulk is difficult. Their indirect observation might be
possible using inelastic x-ray scattering (IXS) [65–67]. In
IXS experiments, the dynamic structure factor S(q, ω) is
measured [68]. Using the fluctuation-dissipation theorem,
one can calculate the imaginary part of the polarizabil-
ity as Im π (q, ω) = −πS(q, ω) [69]. The real part of the
polarizability is then calculated by employing the Kramers-
Kronig relation. In particular, the static polarizabilities of
graphene [70] and lithium [71] have been measured using
this approach. In IXS experiments, the total polarizability
is obtained, which consists of extrinsic and intrinsic contri-
butions. Although the latter dominates over the former for
q ≈ Q in a Weyl semimetal, the singularities on S±

inter in
the derivatives of the extrinsic polarizability still give rise
to spin-structure-dependent Friedel oscillations. Recently, the
material K2Mn3(AsO4)3 has been proposed to be a magnetic
Weyl semimetal with only two Weyl points [72]. Similar to
the tight-binding model employed in Sec. III B, it belongs to
the point group C2h and gives rise to a pair of Weyl points
on the kz axis. Therefore, K2Mn3(AsO4)3 constitutes an ideal
experimental test candidate for our theory.

Our work emphasizes the importance of intervalley pro-
cesses for the response of Weyl semimetals. These processes
have often been neglected or treated approximately. We ex-
pect that spin-structure-dependent intervalley processes are
not only relevant for Friedel oscillations but also for other
phenomena. As we have seen, the induced charge distribu-
tion due to an impurity is anisotropic for Weyl semimetals.
This suggests an anisotropic Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [73–75] between local moments. We
hence expect that the RKKY interaction is strongly affected
by the relative spin structure of the Weyl points. Further-
more, effects of scattering on magnetotransport, where the
spin structure enhances or suppresses certain transitions, are
another promising example for signatures for the relative spin
structure.
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APPENDIX A: CALCULATION OF THE EXTRINSIC
INTERVALLEY POLARIZABILITY

In this Appendix, we calculate the extrinsic intervalley
polarizability in Eq. (32) for model system c. By performing
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the coordinate transformation k̃ = k − χ
Q
2 , we obtain

π ext,c
inter (q) = − 1

vF h̄

∑
χs

[∫
d3k̃

(2π )3

�(kF − k̃)

k̃ − s|k̃ + q + χQ| + iη̃
F c;χχ̄

+s

(
k̃ + χ

Q
2

, k̃ + q + χ
Q
2

)

−
∫

d3k̃

(2π )3

�(kF − |k̃ + q + χQ|)
sk̃ − |k̃ + q + χQ| + iη̃

F c;χχ̄
s+

(
k̃ + χ

Q
2

, k̃ + q + χ
Q
2

)]
, (A1)

where η̃ = η/vF h̄. After substituting k = −(k̃ + qχ ) with qχ = q + χQ in the second integral and relabeling k̃ = k in the first
one, we obtain

π ext,c
inter (q) = − 1

vF h̄

∑
χs

∫
d3k

(2π )3
�(kF − k)

(
1

k − s|k + qχ | + iη̃
+ 1

k − s|k + qχ | − iη̃

)

× 1

2

[
1 + s

−kx
(
kx + qχ

x

) + ky
(
ky + qχ

y

) + kz
(
kz + qχ

z

)
k|k + qχ |

]
. (A2)

Next, we rewrite Eq. (A2) as

π ext,c
inter (q) = π ext,c

inter,1(q) + π ext,c
inter,2(q), (A3)

where

π ext,c
inter,1(q) = − 1

vF h̄

∑
χs

∫
d3k

(2π )3
�(kF − k)

(
1

k − s|k + qχ | + iη̃
+ 1

k − s|k + qχ | − iη̃

)
1

2

[
1 + s

k · (k + qχ )

k|k + qχ |
]
, (A4)

π ext,c
inter,2(q) = 1

vF h̄

∑
χs

∫
d3k

(2π )3
�(kF − k)

(
1

k − s|k + qχ | + iη̃
+ 1

k − s|k + qχ | − iη̃

)
s

kx
(
kx + qχ

x

)
k|k + qχ | . (A5)

We first focus on Eq. (A4). The integrand only depends on scalar products involving the vectors k and qχ . Hence, we can choose
k such that qχ is parallel to the z direction qχ‖êz. To solve the two-center integral, it is useful to employ prolate spheroidal
coordinates

kx = 1
2 qχ sinh μ sin ν cos θ, (A6)

ky = 1
2 qχ sinh μ sin ν sin θ, (A7)

kz = 1
2 qχ (cosh μ cos ν − 1), (A8)

where μ ∈ [0,∞), ν ∈ [0, π ), θ ∈ [0, 2π ). These coordinates describe spheroids the foci of which are separated by qχ along
the z direction. In these coordinates, the Jacobi determinant is written as

J = 1
8 (qχ )3 sinh μ sin ν (cosh2μ − cos2ν), (A9)

and we have

k = 1
2 qχ (cosh μ − cos ν), (A10)

|k + qχ | = 1
2 qχ (cosh μ + cos ν), (A11)

k · (k + qχ ) = 1
4 (qχ )2(cosh2μ + cos2ν − 2). (A12)

Evaluating Eq. (A4), we arrive at

π ext,c
inter,1(q) =

∑
χ

2

(2π )2

k2
F

vF h̄
f (yχ ). (A13)

Note that Eq. (A13) is similar to the extrinsic intravalley polarizability in Eq. (24).
Next, we consider Eq. (A5). Since we want to employ the same prolate spheroidal coordinates, we have to rotate the coordinate

system such that qχ ‖ êz. In contrast to Eq. (A4), the integral in Eq. (A5) contains terms that are not expressible as scalar products
of the two vectors k and qχ . As a consequence, any rotations of the coordinate system result in additional terms that stem from
the rotations and have to be taken into account.

Let (Ri j ) ∈ SO(3) be a rotation matrix such that

qχ êz = (Ri j ) qχ . (A14)
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We suppress the dependence of (Ri j ) on qχ for notational convenience. Using (Ri j ), we define new coordinates via

k̃ = (Ri j )k. (A15)

Plugging Eq. (A15) into Eq. (A5), we obtain

π ext,c
inter,2(q) = π ext,c

inter,2A(q) + π ext,c
inter,2B(q), (A16)

with

π ext,c
inter,2A(q) = 1

vF h̄

∑
χs

∫
d3k̃

(2π )3
�(kF − k̃)

(
1

k̃ − s|k̃ + q̃χ | + iη̃
+ 1

k̃ − s|k̃ + q̃χ | − iη̃

)
s

(R11)2k̃2
x + (R21)2k̃2

y + (R31)2k̃2
z

k̃|k̃ + q̃χ |
(A17)

and

π ext,c
inter,2B(q) = 1

vF h̄

∑
χs

qχ
x

∫
d3k̃

(2π )3
�(kF − k̃)

(
1

k̃ − s|k̃ + q̃χ | + iη̃
+ 1

k̃ − s|k̃ + q̃χ | − iη̃

)
s

R31k̃z

k̃|k̃ + q̃χ | , (A18)

where q̃χ = qχ êz. In Eq. (A17), we have omitted terms that are odd functions of k̃x or k̃y since they vanish after performing the
integration. Evaluation of Eq. (A17) yields

π ext,c
inter,2A(q) = −1

2

2

(2π )2

1

vF h̄

∑
χ

{[(R11)2 + (R21)2] f (yχ ) + (R31)2g(yχ )} (A19)

and from Eq. (A18) we obtain

π ext,c
inter,2B(q) = 2

(2π )2

1

vF h̄

∑
χ

R31
yχ

x

yχ
g(yχ ). (A20)

In order to determine the rotation matrix in Eq. (A14), we employ Rodrigues’ formula

Ri j = cos θ δi j + (1 − cos θ ) nin j − sin θ εi jknk, (A21)

where n = v1 × v2/|v1 × v2|, and cos θ = v1 · v2/|v1||v2|. With v1 = q̃χ/qχ and v2 = qχ/qχ in Eq. (A21), we find

π ext,c
inter,2A(q) = −1

2

2

(2π )2

1

vF h̄

∑
χ

⎡
⎣(

yχ
y

)2 + (
yχ

z

)2

(yχ )2
f (yχ ) +

(
yχ

x

yχ

)2

g(yχ )

⎤
⎦, (A22)

π ext,c
inter,2B(q) = 2

(2π )2

1

vF h̄

∑
χ

(
yχ

x

yχ

)2

g(yχ ). (A23)

Utilizing Eqs. (A13), (A16), (A22), and (A23), the final result is Eq. (34). For model systems a and b, the calculations are
performed analogously.

APPENDIX B: COULOMB SCREENING DUE
TO THE INTRINSIC POLARIZABILITY

The intrinsic intervalley polarizability given in Eq. (37)
leads to unphysical screening of the Coulomb interaction for
the continuum models, as we show in the following. Using
Eq. (41), the screened Coulomb interaction is calculated as

V α
sc (q) = VC (q)

εα (q)
= VC (q)

1 + VC (q) πα (q)
. (B1)

Furthermore, we assume that the Fermi energy is right at
the Weyl nodes so that the extrinsic polarizability van-
ishes. If we only include the intravalley contribution π int,α

intra (q)
from Eq. (29), we find that the dielectric function diverges
logarithmically for q → 0. The Coulomb potential is thus
anomalously weakly screened in the long-distance limit [76].
This result seems reasonable since the density of states at the
Weyl nodes vanishes. On the other hand, if we also include
the intervalley contribution π int,α

inter (q) from Eq. (37) the dielec-

tric function approaches the Thomas-Fermi form for q → 0.
Hence, there is metallic screening, which is unexpected since
there are still no free charge carriers. As shown in Appendix C,
this unphysical result is an artifact of the continuum model.

APPENDIX C: STRONG CUTOFF DEPENDENCE
OF THE INTRINSIC INTERVALLEY POLARIZABILITY

The goal of this Appendix is to understand the origin of
the constant term in the intrinsic intervalley polarizability
in Eq. (37), whereas such a term is absent in the intrinsic
intravalley polarizability in Eq. (29). In the following, we
focus on model a. First, we inspect the intrinsic intravalley
Lindhard function in Eq. (23). Since we are interested in
constant terms in the polarizability, we assume q to be small.
The dispersion appears in the denominator in the integrand,
while the spinor overlap is found in the nominator. Let us
ignore the spinor overlap for the moment. We are left with
the dispersion in the denominator and the Jacobi determinant.
In spherical coordinates and for large momenta, the product
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of the two is linear in momentum k. The intrinsic intravalley
spinor overlap reads as

F a;χχ
+− (k, k′) = 1

2

(
1 −

(
k − χ

Q
2

) · (
k′ − χ

Q
2

)
∣∣k − χ

Q
2

∣∣∣∣k′ − χ
Q
2

∣∣
)

. (C1)

For large k, we have k ≈ k′ and the intrinsic intravalley spinor
overlap vanishes. As one can verify, the full integrand in
Eq. (23) vanishes for large momenta as well. However, the
full integrand does not fall off sufficiently rapidly for the
integral to be convergent. For this reason, the restriction of
the integration volume by a momentum cutoff is necessary,
as we have argued in Sec. III A 2. As a result, the intrin-
sic intravalley polarizability depends logarithmically on the
cutoff [see Eq. (29)]. Note that the integrand in Eq. (23) is
small at the boundary of the integration volume, which is des-
cribed by the cutoff. For a realistic system, this suggests that
contributions that stem from regions beyond the linear regime
are insignificant.

Next, we turn to the intrinsic intervalley Lindhard function
in Eq. (33). In the linear regime and for large momenta,
the product of the Jacobi determinant and the inverse of the
dispersion is again linear in momentum. The different cutoff
dependencies in Eqs. (29) and (37) must therefore result from
the intrinsic intervalley spinor overlap, which is given by

F a;χχ̄
+− (k, k′) = 1

2

(
1 +

(
k − χ

Q
2

) · (
k′ − χ̄

Q
2

)
∣∣k − χ

Q
2

∣∣∣∣k′ − χ̄
Q
2

∣∣
)

. (C2)

At the boundary of the integration volume, this spinor overlap
remains finite. This is best seen in the limit |k| → ∞, where
F a;χχ̄

+− (k, k′) → 1. Hence, the integrand in Eq. (33) grows
towards the boundary of the integration volume described by
the cutoff. For this reason, Eq. (37) diverges strongly as a
function of the cutoff. In a realistic system, the integrand is
large at the boundary of the linear regime so that it is also large
and still increasing at the beginning of the nonlinear regime.
Therefore, significant contributions from the nonlinear region
are expected, which may counter the strong cutoff dependence
of the intrinsic intervalley polarizability in the linear regime.

Ultimately, the nonvanishing intervalley interband spinor
overlap is a consequence of the different spin structures of
Weyl points with opposite chiralities. For this reason, the
above arguments also apply to models b and c. The cutoff
dependence can be avoided by working with lattice models,
such as the tight-binding model introduced in the main text.
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FIG. 10. Intervals of the Friedel oscillations in Fig. 5(a) chosen
to calculate the Fourier components in Figs. 5(b)–5(d).

APPENDIX D: ADDITIONAL INFORMATION ON THE
TIGHT-BINDING MODEL

Let us consider the point group C2h, for which the sym-
metry operators are written as P = τz (inversion), UC2z = τz

(rotation about the z axis), and Uσh = τ0 (mirror reflection in
the horizontal plane). For the irreducible representations Ag

and Bu, the orbital-pseudospin and momentum basis functions
up to second order are given by

Ag : τz, 1, k2
x , k2

y , kxky, k2
z , (D1)

Bu : τx, τy, kx, ky. (D2)

By regularizing the basis functions on a simple cubic lattice
and choosing the coefficients appropriately, the model Hamil-
tonian in Eq. (38) is obtained. To simplify the Hamiltonian,
the coefficient of the second-order term kxky is set to zero since
this term does not affect the existence of the Weyl points on
the kz axis. For the isotropic case described in the main text,
the point group is extended to C4h.

APPENDIX E: DISCRETE FOURIER TRANSFORM
OF FRIEDEL OSCILLATIONS

For the calculation of the discrete Fourier transforms in
Figs. 5(b)–5(d), we have used the Friedel oscillations in
the intervals depicted in Fig. 10. For Q̃ = 3, the interval is
[50.36, 100.53], while the interval is [50.62, 100.44] for Q̃ =
2π and Q̃ = 4π . The intervals were chosen in such a way that
they comprise eight full periods of the Friedel oscillations as
good as possible. However, since the Friedel oscillations in
the investigated intervals are not perfectly periodic functions,
additional nonzero Fourier components apart from x = 1 and
Q̃ ± 1 occur.
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