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Graph theorem for chiral exact flat bands at charge neutrality
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Chiral exact flat bands (FBs) at charge neutrality have attracted much recent interest, presenting an intriguing
condensed-matter system to realize exotic many-body phenomena, as specifically shown in magic-angle twisted
bilayer graphene for superconductivity and triangulene-based superatomic graphene for exciton condensation.
Yet, no generic physical model to realize such FBs has been developed. Here we present a mathematical theorem
called bipartite double cover (BDC) theorem and prove that the BDC of line-graph (LG) lattices hosts at least two
chiral exact flat bands of opposite chirality, i.e., yin-yang FBs, centered-around/at charge neutrality (E = 0) akin
to the chiral limit of twisted bilayer graphene. We illustrate this theorem by mapping it exactly onto tight-binding
lattice models of the BDC of LGs of hexagonal lattice for strong topological and of triangular lattice for fragile
topological FBs, respectively. Moreover, we use the orbital design principle to realize such exotic yin-yang
FBs in non-BDC lattices to instigate their real material discovery. This paper not only enables the search for
exact chiral FBs at zero energy beyond moiré heterostructures but also opens the door to discovering quantum
semiconductors featured with FB-enabled strongly correlated carriers.
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I. INTRODUCTION

In recent years, the importance of topological flat bands
(FBs) in realizing exotic many-body phenomena, such as
superconductivity [1-4], excitonic superfluidity [5-8], and
magnetism [2,9-11], has been highlighted through a plethora
of studies [1-5,9-15] following magic-angle twisted bilayer
graphene (MATBG) [1,16-21]. Lately, there has also been
increasing interest in realizing the chiral limit of MATBG
with topologically fragile exact FBs of opposite chirality at
charge neutrality [22-25] using external perturbations, such
as periodic strain [23]. Another intriguing case where topo-
logical FBs emerge near charge neutrality is a superatomic
graphene lattice [5,26,27]. It hosts two topological strong
exact FBs of opposite chirality at E = +¢, i.e., the yin-yang
FBs centered symmetrically at £ = 0. These chiral exact
FBs around/at charge neutrality exhibit fascinating transport
properties of one-/two-body carriers due to their overlapping
Wannier functions, as manifested in unconventional super-
conductivity for fragile topological FBs of TBG [13,28,29]
and in excitonic Bose-Einstein condensation for strong
topological yin-yang FBs of superatomic graphene [5,6],
respectively.

Beyond these specific systems, however, no generic theory
or lattice design principle for constructing exact FBs with
opposite chirality around/at Fermi level has been reported
yet. On the other hand, topological FBs are also known to
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exist in a special class of two-dimensional (2D) lattices called
line-graph (LG) lattices [30-34], where the presence of at
least one FB is guaranteed by mathematical LG theorem [35].
Compared to FBs at (around) £ = 0 in MATBG (superatomic
graphene), however, FBs in LG lattices are at E = —2¢ [36],
with ¢ being the tight-binding (TB) hopping integral. Al-
though it was shown recently that LGs of so-called split-graph
lattices contain one additional FB at E = 0 [34], real material
with split-graph lattice has rarely been found due to physically
unrealistic hopping constraints.

In this paper, we present a graph theorem called bipartite
double cover (BDC) theorem and prove that the BDC of
LG lattices always has at least two FBs of opposite chirality
around/at the Fermi level formed by bonding and antibonding
pairing of the two copies of LG FB eigenfunctions, respec-
tively. We illustrate this theorem by mapping it exactly onto
realistic physical models of a TB Hamiltonian. First, we use
the BDC of kagome lattice (the LG of hexagonal lattice) to
show that it has two strong topological FBs of opposite chi-
rality as the valence and conduction band edge, respectively,
forming a quantum semiconductor as exemplified in the case
of superatomic graphene [6]. We then show that the BDC of
LG of triangular lattice has four fragile topologically exact
FBs at charge neutrality, as exemplified in the case of the chi-
ral limit of MATBG [22] but without the need of a superlattice
potential or external fields. The FB topology of both BDC-LG
lattices is confirmed using Chern number calculations and
Wilson loop analyses. Finally, we elaborate on the effective
orbital design principle [31] for chiral exact FBs, based on the
symmetries of BDC-LG wave functions to find orbitals that
can be placed in the non-LG lattices to overcome the hopping
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FIG. 1. (a) A finite cyclic graph (G) with five vertices indicated
by colored circles and five edges indicated by black solid lines.
(b) Adjacency matrix of G (Ag) with matrix element 1 between the
two circles which have an edge between them. (c) Line graph of G
[L(G)]. (d) BDC of L(G) [B(L(G))].

constraints in the BDC-LG lattices, and hence to facilitate
their material discovery.

II. LINE-GRAPH THEOREM - BIPARTITE DOUBLE
COVER

In mathematics, a graph (G) consists of a set of objects
with some pairs of objects coupled with each other [37], as
represented by vertices (objects) and edges (pair relation) in
Fig. 1(a). Each graph is assigned with an adjacency matrix
(Ag) that has a matrix element of 1 to denote an adjacent pair
of vertices [Fig. 1(b)]. An LG of G [L(G)] is constructed to
depict adjacencies between the edges of G, namely, L(G) is a
graph, in which each vertex of L(G) represents an edge of G,
and the two vertices of L(G) are adjacent if and only if their
corresponding edges share a common vertex in G [Fig. 1(c)].
G is sometimes referred to as the root graph of L(G). The LG
theorem states that the spectra of infinite LG [L(X)], i.e., the
eigenvalues of Apxy with X being an infinite graph, always has
at least one lowest eigenvalue at —?2 with infinite multiplicity
provided the number of vertices exceeds the number of edges
in the repeating unit of X [35], which works in any dimension,
including 1D lattice [31] (also see Sec. I in the Supplemental
Material (SM) [38—44]).

The striking implication of the LG theorem is seen in
the electronic structure of lattices based on LGs. The TB
model of a lattice (L) is defined as the set of atomic sites and
hopping matrix elements (t) between the sites. Each lattice
can be associated with an infinite graph: A vertex set of X
consisting of exactly one vertex for each lattice point, and an
edge between all the vertex pairs for which ¢ # 0. This leads
to a one-to-one correspondence between a TB lattice and a
mathematical graph [36],

Hp, =tAx, (D
where H; denotes the TB Hamiltonian matrix in real space.
Then, naturally, if L is based on a LG, there exists at least

one exact FB in the band structure at energy E = —2¢. The
degeneracy of the FB is given by the difference between the
number of independent vertices and edges in the unit cell
(SM Sec. I [38]), which can also be explained by the index
theorem or sublattice imbalance between the root graph and
LG [45,46]. The LG FBs can be strong or fragile topological
depending on if the root graph X is bipartite or nonbipartite,
respectively [34,47]. For the former, there is always a touching
point between the FB and another dispersive band which can
be viewed as a Berry flux center in analogy to the Dirac point
[48] and be gapped out in the presence of spin-orbit coupling
(SOC), leading to a strong topological quasi-FB while, for the
latter, fragile exact FBs are isolated from the rest of the bands
[47], also at E = —2¢.

In graph theory, a BDC can also be constructed from a
graph. BDC is one of the covering spaces of a graph, which is
known to link discrete graphs to topological crystal structures
[49]. BDC maps every vertex v; of G to two (double) vertices
u; and w;. It is called bipartite because the two vertices u;
and w; are connected by an edge in BDC if and only if the
corresponding v; and v; have an edge between them in G,
i.e., one can divide the vertices of BDC into two independent
subsets [50]. In Fig. 1(d), as an example, we show the BDC of
a finite LG [L(G)] in Fig. 1(b), denoted by B[L(G)]. BDC can
also be written as the tensor product of graphs, L(G) x K>,
where K, is simply a two-vertex graph, consisting of a circle
and a square in Fig. 1(d). Edges exist only between a circle
and a square and only if the two corresponding black circles
have an edge between them in L(G) [Fig. 1(b)].

In this paper, we focus on the BDCs [B(L(X))] of infinite
LGs [L(X)]. Following the BDC construction, the adjacency
matrix is given by

0 AL(X)
Apwix) = |: AT o | 2
LX)

where A (x) is the adjacency matrix of L(X) and the basis
of Apw(x)y is the set {{u;},{w;}} or {{circles},{squares}}
so the only nonzero matrix elements are in the off-diagonal
blocks. Note that Az x) is always a symmetric matrix, i.e.,
Apx) = AZ(X) [51]. Effectively, we have two copies of L(X)
but formed between two vertex subsets. Suppose one of the
infinite eigenvectors of Az (x) corresponding to eigenvalue —2
is v, satisfying Arxyv = A{(X)v = —2v. One can construct
a vector V = [v ; v] in the basis of A x). From Eq. (2),
it is clear that V' will be an eigenvector of Ap(x), satisfy-
ing ApxyV = —2V. Similarly, one can construct a vector
V' =[v; —v] that satisfies Ag(x) V' = 2V’. Note that there
are infinite possible v’s with eigenvalue —2 of A (x), and for
each of them one symmetrically (V) and one antisymmetri-
cally (V') paired eigenvector of A, x)) can be constructed,
formulating a new graph theorem, which we call the BDC
theorem: The spectra of BDC of infinite LGs contains at least
two eigenvalues with infinite multiplicity at —2 and 2.

One can physically understand the above theorem by care-
fully looking at the structure of Ap((xy. The absence of a
matrix element between the individual elements of u; or w;
renders the exact chiral symmetry to BDC which implies that
if A is an eigenvalue of Ag(;(G)), its opposite —A should also be
an eigenvalue. Alternatively, note that due to the chiral nature
of Ap(1(x)). its square matrix AIZ,( LX) would be block diagonal,
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FIG. 2. (a) Line graph of hexagonal lattice [L(H)] where gray
lines form the root graph (H) while black lines form the kagome
lattice [L(H)]. Unit cell with three sites numbered 1-3 is depicted
by gray dashed lines. Green arrows denote SOC hopping directions.
(b) Band structure of (a) without (dashed blue lines) and with (solid
red lines) SOC. (c) BDC construction of (a). Unit cell is depicted by
gray dashed lines. Green arrows are the directions of SOC hopping.
(d) Band structure of (c¢) with 7, = 0.

given by

A? 0
2 _ LX)
Ay = |: 0 Aim]' 3

Now, if A is an eigenvalue of A x), A2 is an eigenvalue of
A%(X). From Eq. (3), it can be easily seen that A? will also

be an eigenvalue of A%M(x)). Then, using the property of the
square-root matrix [46], the eigenvalue set of A (x)) should
consist of {£A}, implying that the spectra of Apqx) has
two copies of the spectra of A;(xy with one inverted with
respect to the other. Also, the eigenvectors corresponding
to the two opposite eigenvalues are formed by the bonding
([v;v]) and antibonding ([v;—v]) pairing of the individual
L(X) eigenvectors. This theorem has important consequences
on the electronic structure of a TB lattice associated with the
BDC of a LG. It guarantees a chiral symmetric band structure
having at least two FBs: one at £ = —2¢ and the other at
E =2t

III. CASE STUDY I KAGOME LATTICE

To gain intuition about BDC construction and confirm
the existence of two FBs in band structure, we revisit a
well-known TB lattice model based on the LG of bipartite
hexagonal lattice (H), i.e., kagome lattice [L(H )], shown in
Fig. 2(a). The energy eigenspectrum of Hj ) is the typical
kagome band structure [dashed lines in Fig. 2(b)], which has
an exact FB at E = —2¢ without SOC, in accordance with the
LG theorem. Considering a spinful TB model with SOC (1),
a gap opens at the band-touching point (I'), leading to a topo-
logically nontrivial quasi-FB [solid lines in Fig. 2(b) at A =
0.1¢] with Chern number C; ;) = —1(+41). The stable/strong

topology of this FB can be confirmed by ribbon calculations
where there are clear gapless edge states (Fig. S2(a) in the
SM [38]).

The BDC of kagome lattice [B(L(H))] is constructed using
the tensor product of L(H) with a two-vertex graph (K,) with
dark- and light-filled circles in Fig. 2(c). To maintain the trans-
lation symmetry, K, is placed along specific directions. Note
that the first-nearest neighbor (NN) hopping lines in L(H ) are
transformed into third-NN hopping lines in B(L(H)). The TB
Hamiltonian can be directly constructed using Eqgs. (1) and
(2), leading to chiral symmetric electronic band structure as
shown in Fig. 2(d) having two exact FBs at E = —2¢ and
E = 2t. However, the two FBs are not near/at charge neu-
trality as seen in the chiral limit of TBG or diatomic kagome
lattice [26]. This can be remedied by noting that the hopping
between dark and light filled atomic site in B(L(H)) is ne-
glected. This is because the BDC construction does not have
an edge between the vertices of K, [Fig. 1(d)]. Physically,
this is the shortest bond length in a lattice and usually has a
hopping integral [#,, yellow bonds in Fig. 2(c)] larger than the
third-NN hopping (#). An important observation here is that
including #o, i.e., including an edge between the two vertices
of K, will not alter the chiral symmetry of Ap ) since
this new edge introduces only a diagonal matrix element in
the off-diagonal block of Ag (). Hence, the spinless TB
Hamiltonian of B(L(H )) with the inclusion of #y can be written
as

0 I
HB’(L(H))ZtAB(L(H))+t()|:I O:|’ 4

where [ is identity matrix with the dimensions of the basis set
of L(H). The second term in Eq. (4) implies that the electronic
spectrum of root L(H) and of its chiral copy is shifted up-
and downward by )y, respectively, i.e., the band structure
of B'(L(H)) has two FBs, but now at £ = —2¢ + fy, and
E =2t —1.

In Figs. 3(a) and 3(b) (dashed lines), we show the band
structure obtained by diagonalizing Hp ) With fp = 2t and
to = 3t, respectively. For #y = 2¢, there are two exact FBs
completely degenerate at charge neutrality (£ = 0), while for
to = 3t, the two FBs are gapped (E = *t), forming valence
and conduction band edges. Thus, the chiral symmetric band
structures are guaranteed by the BDC theorem even with the
inclusion of #y. Importantly, both FBs have a band-touching
point with another dispersive band at I". Similar to the case of
L(H), they can be gapped out via SOC. A spinful Hamilto-
nian can be written by adding SOC effect containing positive
(negative) hopping terms along (opposite to) the directions in-
dicated by green dashed arrows in Fig. 2(c). As seen from the
solid lines in Fig. 3(b), two quasi-FBs emerge with SOC hav-
ing opposite chirality given by CEFLC) = —Cfi“) = —1(+1),
where FB,) indicates valence (conduction) FB. They are
hence called yin-yang FBs, which have recently been shown
to be an ideal platform for exotic optoelectronic properties,
such as excitonic condensation [6] and giant circular dichro-
ism [52]. We have confirmed the strong topology of these FBs
using ribbon calculations (Fig. S2(b) in the SM [38]).

An interesting feature of strong topological FBs is their
compact localized (plaquette) states [30], manifesting a
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FIG. 3. (a) Band structure of Fig. 2(c) with #, = 2¢ containing
two exact FBs at £ = 0. (b) Band structure of Fig. 2(c) with 7y = 3t.
(c) Compact localized state (CLS) for kagome FB in Fig. 2(b).
(d) CLS for yin-yang valence (left) and conduction (right) FB in
(b) formed by bonding and antibonding pairing of (c), respectively.
Blue and red circles indicate the opposite phases of the wave func-
tions, respectively.

completely localized FB wave function and real-space topol-
ogy, as shown in Fig. 3(c) for kagome FBs. Outward hopping
from the plaquette vanishes due to opposite phases of the wave
function on neighboring sites that cancel each other out, lead-
ing to a destructive interference pattern. Interestingly, each
of the yin-yang FBs also shows the destructive interference
patterns around a plaquette, but importantly with a bonding
and antibonding nature for the valence and conduction FB
wave functions, respectively [26], as shown in Fig. 3(d). Here
we show that this is a direct consequence of the BDC theorem

involving bonding and antibinding paring of the LG eigen-
functions.

IV. CASE STUDY II KAGOME-3 LATTICE

Next, we show the BDC construction for fragile topo-
logical FBs at charge neutrality. We consider the LG of a
nonbipartite triangular (7') lattice, the so-called kagome-3 lat-
tice [L(T)] [47,53] as depicted in Fig. 4(a). Similar to L(H),
the unit-cell of L(T') also contains three sites. The difference
arises in the hopping terms. In L(T), in addition to NN,
there are second-NN and third-NN hopping terms [Fig. 4(a)]
[38], leading to a TB band structure with two exact FBs at
E = —2¢ shown in Fig. 4(b). The two FBs are fragile topo-
logical, i.e., topological obstruction to Wannier localization
can be resolved by adding a trivial band [54,55]. Previous
studies [47,53] have confirmed the fragile topology of these
FBs using Wilson loop analysis [56], which we include in the
SM [38]. An essential point to note here is that the topology
of these FBs at £ = —2¢ is akin to the single-particle bands
of MATBG centered/at E = 0 [53]. Following the procedure
illustrated above for strong topological FBs, one can also
construct a BDC lattice of L(7T') as shown in Fig. 4(c) to obtain
fragile LG FBs centered/at E = 0. The BDC construction
leads to doubled sites in the unit cell with a six-band TB
Hamiltonian formulated following Egs. (1) and (2) and the
inclusion of #y [Eq. (4)] [38]. The band structure of B(L(T))
is shown in Fig. 4(d) for #y = 2¢. There are four exact FBs at
charge neutrality, which are fragile topological. To illustrate
this, in Fig. 4(e) we calculate the Wilson loop of each spin
sector separately, since the spinful time-reversal and S° sym-
metries are conserved. The winding in the Wilson loop spectra
of the four FBs establishes their topological nature, without
SOC, with two pairs each belonging to the nontrivial Euler
class |e;| = 1 [57]. We next add trivial bands to the system
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FIG. 4. (a) Kagome-3 lattice: Line-graph of triangular lattice [L(7")]. Dashed red circle denotes a Wycoff position. (b) Band structure of
(a). (c) BDC of (a) [B(L(T))]. (d) Band structure of (c) with #, = 2¢. (¢). Wilson loop spectrum of the four FBs at charge neutrality in (d). (f)
Same as (e) but with two additional s-orbitals in B(L(T')) at sites corresponding to the Wycoff position in (a).
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by introducing an additional s orbital on the Wycoff position
indicated by the red circle in Fig. 4(a) [53]. The BDC of this
extended model becomes an eight-band model [38]. The Wil-
son loop spectra of six middle bands is shown in Fig. 4(f). The
nontrivial winding of FBs is now clearly removed, confirming
the fragile topology of these FBs at charge neutrality.

V. ORBITAL DESIGN OF BIPARTITE DOUBLE
COVER LATTICES

Next, we notice that the BDC-LG lattice construction in-
volves unusual hopping constraints, such as the absence of
second-NN hopping term (¢’ = 0) in B(L(H)) [Fig. 2(c)]
while requiring a nonzero third-NN hopping integral (¢ # 0).
Realizing such peculiar hopping integrals in real materials
could prove significantly challenging. On the other hand,
most real materials are composed of multi-atomic orbitals on
each site instead of a single s-orbital. Therefore, we finally
illustrate orbital realization of chiral exact FBs of B(L(H))
following the procedure described in Ref. [31] that may in-
stigate real material discovery of these exotic FBs. We first
calculate the six eigenstates at I' of the B(L(H)) band struc-
ture [Fig. 3(b)] and plot them in Fig. 5(a). If one groups three
sites into a superatom site, then the six sites of B(L(H)) can
be mapped onto two sites of a hexagonal lattice with three
orbitals on each site. And based on the symmetry of the eigen-
states, six eigenstates in Fig. 5(a) can be viewed as (s, px, px)
orbitals on two hexagonal sites. Then, by choosing the two-
center Slater-Koster hopping integrals [58] as e = 1€V,

tipe = 0.8t5, 1pps = 0.45,, in a spinless TB model [38],
yin-yang FBs are reproduced as shown by dashed blue lines
in Fig. 5(b). We further add the on-site SOC on p orbitals and
consider a spinful model which opens a gap between disper-
sive band and FB [red solid lines in Fig. 5(b)]. The calculated
Chern numbers for two FBs are C??f) = —C?i”) = —1(+1).
Note that the condition t' = 0 in the single s-orbital model
transforms into the condition 7,,, = 0 for the sp*-hexagonal
model. Physically, 1,,, is the weakest hopping integral by
symmetry. A candidate real material should be one with sp?
frontier orbitals on hexagonal symmetric lattice but a large lat-
tice parameter which reduces ?,,,. Indeed, triangulene-based
superatomic graphene satisfies this condition [26] and has
also been recently synthesized [59]. A similar orbital design
principle can be used for other BDC-LG constructions [38].

VI. CONCLUSION

The BDC theorem, as derived and illustrated in this paper,
allows for the discovery of exact FBs at charge neutrality lead-
ing to an intrinsic lattice/material [B(L(T)] that can realize
strongly correlated physics of MATBG without the need of
external fields or fine-tuning of twist angles. Moreover, we
point to the possibility of an unusual quantum semiconduc-
tor in B(L(H)) with valence and conduction FBs (yin-yang
FBs), which upon doping create FB electron and hole car-
riers with unique transport properties due to their nontrivial
quantum metric and nonzero superfluidic weight [28,60]. This
can have significant implications for the discovery and design
of beyond-silicon electronic and optoelectronic devices [61].
We emphasize that our BDC design principle works for all
LG lattices, both in 2D and 3D [38]. In addition, it can be
easily extended to precursor-based organic materials such as
triangulene crystals [62] and artificial lattice systems [63-65],
where the hopping parameters can be manipulated by design.
One can also consider weighted graphs with varying NN
hopping integrals [36] to realize materials/models with FBs of
opposite chirality. Another possible future direction could be
to investigate the properties of the FBs in BDC lattices under
external magnetic field [66,67].
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