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Edge states of two-dimensional time-reversal invariant topological superconductors with strong
interactions and disorder: A view from the lattice
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Two-dimensional time-reversal-invariant topological superconductors host helical Majorana fermions at their
boundary. We study the fate of these edge states under the combined influence of strong interactions and
disorder, using the effective one-dimensional (1D) lattice model for the edge introduced by Jones and Metlitski
[Phys. Rev. B 104, 245130 (2021)]. We specifically develop a strong-disorder renormalization-group analysis of
the lattice model and identify a regime in which time-reversal is broken spontaneously, creating random magnetic
domains; Majorana fermions localize to domain walls and form an infinite-randomness fixed point, identical to
that appearing in the random transverse-field Ising model. While this infinite-randomness fixed point describes a
fine-tuned critical point in a purely 1D system, in our edge context there is no obvious time-reversal-preserving
perturbation that destabilizes the fixed point. Our analysis thus suggests that the infinite-randomness fixed point
emerges as a stable phase on the edge of two-dimensional topological superconductors when strong disorder and
interactions are present.
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I. INTRODUCTION

Among many intriguing features of topological insulators
and superconductors, their nontrivial boundary states yield
the most direct experimental signatures. Whereas the bulk
of these phases is either fully gapped (in the clean limit)
or localized (when randomness is present and the notion of
spectral gap is less meaningful), their interfaces with the
trivial vacuum can host states that are gapless and delocal-
ized. In the canonical examples of two- and three-dimensional
(2D and 3D) topological insulators protected by time-reversal
symmetry [1–4], band structure calculations famously reveal
that their boundaries feature one-dimensional (1D) and 2D
massless Dirac fermions, respectively. Gapless, delocalized
boundary states are not always guaranteed, however. No-
tably, transcending band theory by adding disorder and/or
interactions opens up possibilities for other interesting types
of boundary states to emerge. Recent works in this direc-
tion include the construction of gapped, symmetry-preserving
topologically ordered surface states of strongly interacting 3D
topological insulators and superconductors [5–17] and fully
localized boundary states of 2D quantum spin Hall insulators
[18–20].

The theoretical concept that unites such distinct boundary
states is the quantum anomaly: (d − 1)-dimensional boundary
states of d-dimensional topological insulators and supercon-
ductors possess anomalies that preclude their appearance in
purely (d − 1)-dimensional systems with the same set of
symmetries acting in the same manner. The bulk of such
topological phases precisely cancels these anomalies, thereby
enabling the existence of anomalous boundary states [21]. Re-
versing this logic, one can in principle envision a menagerie of

possible boundary states for each type of topological insulator
and superconductor—all sharing the same quantum anomaly
canceled by the bulk. This viewpoint is especially relevant
when the boundary evades a band-theoretic description.

In this paper, we explore edge states of 2D time-reversal-
invariant topological superconductors [22] subjected to both
strong interaction and disorder. At the level of a noninteract-
ing Bogoliubov–de Gennes treatment, one can view such a
phase as a p + ip superconductor for spin-up electrons com-
posed with a p − ip superconductor for spin-down electrons.
The clean, noninteracting edge accordingly hosts helical
Majorana fermions that are perturbatively stable against
time-reversal-symmetric interaction and disorder [23]. This
stability can be contrasted with the critical point in the clean
quantum Ising chain where weak disorder is a relevant pertur-
bation, even when ferromagnetic interactions and transverse
fields are taken from the same distribution to maintain critical-
ity, and the system flows to an infinite-randomness fixed point
[24–27]. Stability of the clean gapless edge states of the 2D
time-reversal invariant topological superconductors to weak
disorder descends from the particular time-reversal symmetry
action in this case.1 On the other hand, strong interaction and

1We can loosely model the clean gapless edge of 2D time-reversal
invariant topological superconductors by a critical Ising chain, with
the time-reversal invariance corresponding to the self-duality condi-
tion, which is required to hold for each disorder realization. We can
in turn model this condition by requiring that the random transverse
field at site j equals, say, the ferromagnetic interaction between
spins at j and j + 1. We can argue that such a quantum Ising chain
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disorder of interest here may nevertheless drastically alter the
edge physics.

To attack the problem, we exploit exactly solvable,
commuting-projector Hamiltonians for 2D time-reversal in-
variant topological superconductors [33]. This starting point
not only incorporates strong interactions at the outset, but
also allows one to “peel off” a purely 1D lattice model
[34] that emulates the helical Majorana edge with an appro-
priate implementation of time-reversal symmetry; see also
Refs. [35–37]). The purely 1D lattice model—which inherits
strong interactions from the bulk—provides an efficient way
of incorporating disorder via a strong-disorder renormaliza-
tion group (RG) analysis [24–27] that we adapt to this setting.
Our treatment thereby probes a completely different limit from
the usual continuum field theory considerations that generally
start from clean fixed points.

Our strong-disorder RG analysis reveals a stable edge
phase enabled by a combination of strong disorder and inter-
action. This edge phase spontaneously breaks time-reversal
symmetry; spin degrees of freedom form local ferromagnetic
domains of random lengths, with neighboring domains ex-
hibiting opposite magnetizations. Each domain wall hosts
an unpaired Majorana fermion, which is the topological-
superconductor analog of the famous Jackiw-Rebbi ±e/2
mode [38] that appears on analogous ferromagnetic domain
walls in a quantum spin Hall edge [39]. The collection of
domain-wall Majorana fermions generically self-tunes to crit-
icality and forms an infinite-randomness fixed point, identical
to that found at the critical point of the 1D random transverse-
field Ising model [26,27] and at topology-changing critical
points in 1D dirty superconductors without spin-rotation in-
variance [40]; see Fig. 1 for a cartoon picture.

The same edge physics was recently proposed by Chou
and Nandkishore [23] to arise when there is a statistical time-
reversal symmetry or, equivalently, the absence of long-range
ferromagnetic order. From the continuum-field-theory starting
point utilized in that work, however, the physical mecha-
nism and criteria for the emergence of statistical time-reversal
symmetry remains unclear. The present approach sheds new
light on this issue: Upon including a small amount of an-
tiferromagnetic couplings in the effective edge Hamiltonian,
our strong-disorder RG demonstrates that local ferromagnetic
domains form at intermediate length or energy scale; as the
RG progresses, effect of antiferromagnetic interactions fail to
become fully “screened” and dominate the ultimate infrared
(IR) physics. In particular, antiferromagnetic interactions that
persist all the way to the IR preclude long-range order in the

with perfectly correlated random local fields and interactions does
not flow to strong disorder, unlike the Ising chain with uncorrelated
random local fields and interaction with only “statistical symmetry”
(self-duality) between the two. One way to see this is by mapping to
extremal properties of an appropriate random walk [28–32], which
in the perfectly correlated disorder case essentially does not wander
at all. Instances explored in this paper wherein disorder yields more
dramatic consequences would likely need to start in a very different
regime in the quantum Ising analogy, loosely requiring spontaneous
breaking of self-duality but also other conditions, and it is not clear
a priori if one can make such analogies precise.

TSC

FIG. 1. “Cartoon picture” of edge states of 2D time-reversal
invariant topological superconductors, assumed to be in the param-
eter range where the time-reversal is spontaneously broken on the
edge. There is a 1D array of ferromagnetic domains with random
lengths, two neighboring domains having opposite magnetizations;
domains with up-magnetizations are colored green, while domains
with down-magnetizations are colored red. Majorana fermions that
live on the domain walls are illustrated as blue dots. These Majorana
fermions form an infinite-randomness fixed point. To illustrate the
infinite-randomness fixed point, we first define connecting two Ma-
jorana fermions γa and γb with a solid black line as representing a
quantum state which is an eigenstate of iγaγb with fixed eigenvalue
+1 or −1 depending on the specific situation. Then, we illustrate
the infinite-randomness fixed point by connecting paired Majorana
fermions with lines, lines not crossing with each other (the specific
pairing is determined by energetics resulting from the original ran-
dom couplings).

conventional sense.2 Our analysis therefore suggests that this
phase is a stable, generic edge state supported by time-reversal
symmetric Hamiltonians for 2D topological superconductors
with both strong disorder and interaction. We anticipate that
the results developed here may sharpen the understanding of
when similar novel boundary phases can emerge under the
influence of disorder and interactions in topological phases
more broadly.

The paper is organized as follows: In Sec. II, we briefly
review the purely 1D lattice model that mimics the edge state
of 2D time-reversal invariant topological superconductors. In
Sec. III, we take a closer look at the special limit in which spin
degrees of freedom are strongly pinned by nearest-neighbor
Ising interactions with random signs. Although this limit is ar-
guably somewhat special, it makes many key properties of the
edge states we are studying manifest. In Sec. IV, we carry out
a full-fledged strong-disorder renormalization group analysis.
There we provide evidence that in a certain parameter regime,
the RG flow is consistent with the physical scenario described
in the previous paragraph, suggesting that the proposed edge
state is a stable phase in this parameter regime. Concluding
remarks appear in Sec. V.

2Denote spin-up (spin-down) at site i as σ z
i = +1 (σ z

i = −1).
The conventional disorder averaged correlator 〈σ z

i σ z
j 〉 vanishes as

i − j → ∞. However, a correlator 〈σiσ j〉〈σiσ j〉, associated with a
time-reversal odd Edward-Anderson order parameter, is long-ranged
and may be used to diagnose spontaneous time-reversal symmetry
breaking
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(a) (b)

FIG. 2. (a) Illustration of degrees of freedom in the 1D model
we consider with Majorana fermion labelings. Arrows in the fig-
ure represent bosonic Ising spins, while blue dots represent Majorana
fermions. (b) Illustration of the state with iγ j1,α1γ j2,α2 = +1, or
equivalently, P j2,α2

j1,α1
= 1.

II. REVIEW OF THE one-dimensional MODEL

Here, we provide a brief review of the 1D model that
mimics edge physics of 2D time-reversal-invariant topological
superconductors, introduced by Jones and Metlitski [34] and
generalized to edges of 2D quantum spin Hall systems in
Refs. [41,42].

A. Setup and symmetries

In the 1D model of interest, each site i hosts two Majorana
fermions γi,A and γi,B and one spin-1/2 bosonic degree of
freedom σ z

i that we call an Ising spin. We interchangeably
denote the σ z

i eigenvalues by +1, −1 and ↑, ↓. Figure 2(a)
illustrates the setup, with arrows representing the bosonic
spins and blue dots denoting Majorana fermions.

The Hilbert space for the bosonic and fermionic degrees of
freedom is constrained in the 1D model. Before writing down
this constraint explicitly, we introduce some mathematical and
graphical notations that we use throughout this paper. First, we
define the projector

P j2,α2
j1,α1

= 1 + iγ j1,α1γ j2,α2

2
, (1)

where α1, α2 ∈ {A, B}; P j2,α2
j1,α1

acts as the identity on states for
which iγ j1,α1γ j2,α2 has eigenvalue +1 but annihilates states
with −1 eigenvalue. We often denote two Majoranas γ j1,α1

and γ j2,α2 as paired on states with P j2,α2
j1,α1

= 1. Graphically, we
represent a pairing iγ j1,α1γ j2,α2 = +1 as a line connecting two
blue dots representing the paired Majorana fermions, with the
arrowhead directed from γ j1,α1 to γ j2,α2 . See Fig. 2(b) for an
illustration.

The constraint term Ri for each site i is given as

Ri = Pi,B
i,A

(|↑i↑i+1〉〈↑i↑i+1| + |↑i↓i+1〉〈↑i↓i+1|
)

+ |↓i↑i+1〉〈↓i↑i+1| + Pi+1,A
i,B |↓i↓i+1〉〈↓i↓i+1|. (2)

Here |↑i↑i+1〉〈↑i↑i+1| projects onto the state with Ising
spins σ z

i = σ z
i+1 = +1 = ↑; similarly, pairs of kets and bras

involving different combinations of arrows in the above equa-
tion represent projections onto specific Ising configurations.
Note that Ri commute with each other, and the constrained
Hilbert space is defined by Ri = 1 for all i.

To give some intuition about this constraint, we first exam-
ine Fig. 3(a) where we illustrate the constraint Ri = 1 for a

(b)

(a)

FIG. 3. (a) Graphical illustration of Ri of Eq. (2). (b) An example
of state with the constraint Ri = 1 satisfied for all i. The domain-wall
Majorana fermions that remain unpaired by constraints are circled.
In both panels (a) and (b), we suppressed arrowheads because they
are all directed left to right. In the future figures, all red lines between
Majorana fermions denote pairings enforced by the constraint Ri =
1, and the arrowheads for them will be omitted.

single i. In Fig. 3 and all other figures in the paper, we use red
lines exclusively for Majorana fermion pairings enforced by
the constraint Ri = 1; the arrowheads on the red lines always
point from the left to the right and will be suppressed. The two
key features are

(1) If σ z
i = ↑, then γi,A and γi,B, the two Majorana

fermions at site i, are paired.
(2) If σ z

i = σ z
i+1 = ↓, then γi+1,B and γi,A, the two

Majorana fermions that neighbor each other but belong to two
different sites, are paired.

Having the above in mind, it is straightforward to con-
struct states which satisfy the constraint Ri = 1 for all i. We
illustrated one example of such states in Fig. 3(b). In these
states, along spin-up domains, Majorana fermions are paired
within their own unit cells, but along spin-down domains, two
nearest-neighbor Majorana fermions in two different unit cells
are paired. The pairing patterns on up-domains and down-
domains resemble cartoon pictures of trivial and topological
states of Kitaev chains, respectively.

The constraints we discuss leave one Majorana fermion on
each Ising spin domain wall unpaired (γi,B when σ z

i = ↓ and
σ z

i+1 = ↑, γi+1,A when σ z
i = ↑ and σ z

i+1 = ↓). These unpaired
domain-wall Majorana fermions are fermionic low-energy de-
grees of freedom that “survive” after restricting the Hilbert
space with the constraints. We sometimes refer to these Ma-
jorana fermions as “free.” Hence, in our restricted Hilbert
space, each fixed configuration of Ising spins has a 2Ndw/2

Hilbert-space dimension, where Ndw is the number of domain
walls in the Ising spin configuration. Half of the domain walls
are ↑-↓ type, and the other half are ↓-↑ type (note that the 1D
chain has the topology of a circle, being a boundary of a 2D
region).

These free Majorana fermions on the Ising spin domain
walls have a close connection to the following physical
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setup: Given a topological superconductor, gap its edge out
by introducing two different ferromagnets that have oppo-
site magnetizations and hence are time-reversal partners to
each other. The domain wall then binds a single Majorana
zero mode. The constraints Ri = 1 precisely capture this
phenomenology on the lattice model. The 1D model being
reviewed here promotes these “magnetizations” to dynamical
degrees of freedom, i.e., Ising spins, and as we will soon see,
can capture other edge phases including the gapless helical
Majorana edge state.

Finally, we present the implementation of time-reversal
symmetry in this model. Time-reversal symmetry here acts
inherently nonlocally—any incarnation of local time-reversal
symmetry in this model would be a direct contradiction to the
fact that our 1D model mimics the edge of a 2D topological
superconductor. The time-reversal symmetry, denoted T from
now on, is defined as the following set of operations, applied
sequentially:

(1) flipping all Ising spins;
(2) Kramers-Wannier-like half-unit-cell translation of Ma-

jorana fermions, defined as

γi,A → γi,B, γi,B → −γi+1,A; (3)

(3) U = ∏
i Ui, with Ui a local unitary transformation de-

fined as

Ui = 1 + γi,Bγi+1,B√
2

|↓i↑i+1〉〈↓i↑i+1| + |↓i↓i+1〉〈↓i↓i+1|

+ |↑i↑i+1〉〈↑i↑i+1| + |↑i↓i+1〉〈↑i↓i+1|; (4)

(4) complex conjugation.
The above set of operations does not map Ri to the same

operator. However, one can easily show that the restricted
Hilbert space defined by the condition Ri = 1 and the re-
stricted Hilbert space defined by R̃i = 1, the “time-reversal
partner” of Ri = 1, are identical. Hence, the above set of
operations is indeed closed under the restricted Hilbert space
of interest. Additionally, due to the nonlocal half-unit-cell
transformation, one might naively think that T 2 implemented
in this way is also a nonlocal operator. However, one can show
that the free Majorana fermions on Ising spin domain walls
are transformed into free Majorana fermions on the same
domain walls under the above definition of T . Because of this
property, T 2 = (−1)F (where F denotes fermion parity) in the
restricted Hilbert space, satisfying all the defining properties
of time-reversal symmetry.

B. Symmetry-respecting local terms

Having discussed the Hilbert space and the time-reversal
symmetry action of the model, we now present simple local
time-reversal symmetric terms that one can add to the edge
Hamiltonian and that will appear throughout this paper.

1. Flip term

We define a “flip term” Fi at site i to be a Hermitian term
that is compatible with time-reversal symmetry and flips an
Ising spin at site i when the action is nontrivial. It turns out that
these conditions are restrictive enough to specify the flip term
Fi with just one complex parameter pi and one U(1) phase

0

(a)

(b)

FIG. 4. Action of the flip term Fi, when there are an (a) even or
(b) odd number of domain walls in between sites i − 1, i, and i + 1.

parameter φ, up to a real constant which can be thought as a
“magnitude” of the flip term when this term is added to the
Hamiltonian. Specifically, Fi is defined as

Fi = eiφPi,B
i,A Pi−1,B

i−1,A |↑i−1↑i↑i+1〉〈↑i−1↓i↑i+1|

+ eiφ

√
2

Pi,B
i,A Pi+1,A

i−1,B Pi,A
i−1,BPi+1,A

i,B |↓i−1↑i↓i+1〉〈↓i−1↓i↓i+1|

+ pi
1√
2

Pi,B
i,A Pi,A

i−1,B|↓i−1↑i↑i+1〉〈↓i−1↓i↑i+1|

+ pi
1√
2

Pi,B
i,A Pi+1,A

i,B |↑i−1↑i↓i+1〉〈↑i−1↓i↓i+1|

+ H.c. (5)

We illustrate the action of this flip term in Fig. 4. When
there are zero or two domain walls between site i − 1 and
site i + 1, the relevant terms in Eq. (5) are the first two lines
and their Hermitian conjugates. These terms create or anni-
hilate two domain walls and reconfigure Majorana fermions
accordingly—see Fig. 4(a). For the Ising spin configurations
with two domain walls, there are two free Majorana fermions.
These two free Majorana fermions should be paired in a spe-
cific way for the action to be nontrivial due to the fermion
parity conservation. For states with the wrong pairings [the
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bottom two rows in Fig. 4(a)], there is no local operation to
flip a spin at site i and reconfigure Majorana fermion pairings
according to the constraint Ri = 1. Hence, Fi annihilates these
states.

Figure 4(b) illustrate action of Fi on the states with a single
domain wall between site i − 1 and site i + 1. These states
are acted upon by terms with coefficient pi or p∗

i in Eq. (5),
i.e., the third and fourth lines and their Hermitian conjugates.
In this case, Fi always acts nontrivially and simply shifts the
location of the domain wall and the corresponding unpaired
Majorana fermions.

We note that a local time-reversal-symmetric gauge trans-
formation ei φ

2 σ z
i absorbs the U(1) phase parameter φ into

argument of pi. In other words, one can always perform a
gauge transformation to set φ = 0, at the cost of modifying
pi. For the rest of the paper, and without loss of generality, we
therefore set φ = 0; Fi is then only parametrized by a complex
number pi.

From a naive viewpoint, Fi plays a role similar to that of
a Pauli operator σ x

i in the sense that both operators flip an
Ising spin at site i. However, the key difference is that for
Fi to be compatible with the restricted Hilbert space we are
working in, Fi should nontrivially modify Majorana fermion
degrees of freedom as well. Due to this feature, the commuta-
tor between two neighboring flip terms is generally nonzero,
i.e., [Fi, Fi+1] �= 0. Hence, the simple time-reversal symmetric
Hamiltonian H = −∑

i Fi already exhibits nontrivial quan-
tum dynamics. Metlitski and Jones showed through numerics
that the low-energy physics of this Hamiltonian with all pi =
1 is described by a central charge c = 1/2 Ising conformal
field theory [34]. The 1D model we review here thus indeed
captures the familiar helical Majorana fermion edge state of
2D time-reversal invariant topological superconductors!

In this paper, we find that if the parameter pi is assumed
to be spatially uniform, the natural value is pi = ±2−1/4. It
turns out that pi = ±2−1/4 corresponds to the only two at-
tractive fixed-point values of pi under the strong-disorder RG
transformations we introduce (see Appendix C for the proof).
Additionally, a gauge transformation exp[i π

2 (Ndw + ∑
i σ

z
i )]

maps all pi to −pi, implying that the models where pi =
+2−1/4 versus pi = −2−1/4 are identical. In most cases we
simply fix pi = 2−1/4. However, we also emphasize that even
if pi are spatially random or are set to be a different value
from ±2−1/4 (for example, pi = 1 to make comparison to the
disorder-free system studied in Metlitski and Jones), deep in
the RG flow, the effective Hamiltonian will have pi very close
to ±2−1/4.

2. Ising interaction

A simple Ising interaction term σ z
i σ z

i+1 is time-reversal
symmetric and hence can be added to the Hamiltonian.

3. Domain-wall Majorana fermion bilinears

Consider the following operator:

Ti = iγi,Aγi,B|↑i−1↓i↑i+1〉〈↑i−1↓i↑i+1|
+ iγi−1,Bγi+1,A|↓i−1↑i↓i+1〉〈↓i−1↑i↓i+1|. (6)

The two ket-bras project onto Ising spin configurations which
have two domain walls between site i − 1 and i + 1. Two
Majorana fermions in front of each Ising spin projector are
precisely free Majorana fermions corresponding to the two
domain walls. Hence, one may interpret the above term as
a nearest-neighbor hopping between free Majorana fermions.
Especially, for the second row of Eq. (6), the constraints Ri =
1 freeze γi,A and γi,B that lie between γi−1,B and γi+1,A, so the
term that appears in the second line is indeed nearest-neighbor
hopping between two “free” domain-wall Majoranas. One can
readily show that the above term is Hermitian and invariant
under the time-reversal symmetry. We will see that this term
governs the low-energy behavior of most of the phases of
matter that appear in this paper.

Similarly, one can think of the following term that medi-
ates next-nearest-neighbor hoppings between free Majorana
fermions, in the same sense as in the preceding paragraph:

Si = iγi,Aγi+1,B|↑i−1↓i↓i+1↑i+2〉〈↑i−1↓i↓i+1↑i+2|
+ iγi−1,Bγi+2,A|↓i−1↑i↑i+1↓i+2〉〈↓i−1↑i↑i+1↓i+2|. (7)

The bosonic parts of the operator are projections onto spin
configurations in which there is a domain wall between sites
i − 1 and i and another between sites i + 1 and i + 2. The
operator Si is also a valid local term for our Hamiltonian and
makes occasional appearances in this paper.

III. INFINITE-RANDOMNESS FIXED POINT FROM
ISING-INTERACTION-DOMINATED LIMITS

In this section, we study the Hamiltonian

H =
∑

i

−hiFi − Jiσ
z
i σ z

i+1 (8)

in two analytically tractable limits. The two limits are
(1) Ji = −J with positive J � |hi|, i.e., Ji is chosen to

be antiferromagnetic and uniform with a magnitude much
stronger than the flip terms.

(2) Ji is randomly chosen to be either positive or neg-
ative, and when Ji > 0, its magnitude is strongly random.
The magnitude of any Ising interaction coefficient Ji is nev-
ertheless always much larger than hi. We relegate the precise
description of this limit to Sec. III C, which provides relevant
technical details.

In either limit, the spin degrees of freedom are effectively
pinned by strong nearest-neighbor Ising interactions, and the
low-energy degrees of freedom are Majorana fermions that
appear on spin domain walls. One can systematically derive
an effective low-energy Hamiltonian consisting of domain-
wall Majorana fermions in both cases and show that these
Majorana fermions form infinite-randomness fixed points.

The first limit is the simplest case imaginable where
such an infinite-randomness fixed-point physics can arise.
Since each “ferromagnetic domain” has length one, how-
ever, it does not correspond to the edge phase we described
in the introduction (Fig. 1) yet serves as a useful stepping
stone for understanding more complicated cases. The second
limit allows some interactions to be ferromagnetic and real-
izes the scenario we described in the introduction in which
ferromagnetic domains have random lengths. While the
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Hamiltonian is fine-tuned here too, in the sense that Ising
interactions are set to be much stronger than flip terms, this
limit provides the most analytically well-controlled Hamilto-
nian that realizes the essential edge physics we are envisioning
in this paper and makes key properties of the edge phase
transparent. Also, the way we analyze the second limit serves
as a primer to the more complicated strong-disorder RG we
develop in the next section.

A. Preliminary example: One-dimensional model with uniform
antiferromagnetic interaction

As a preliminary and illustrative exercise, we examine
the Hamiltonian in Eq. (8) with Ji = −J and J > 0. First,
let us assume that hi = 0 for all i. In this case, the strong
Ising interaction breaks time-reversal symmetry and induces
antiferromagnetic ordering of the Ising spins. While Ising
spins are then essentially frozen, Majorana zero modes arise
between any two neighboring Ising spins. The Ising interac-
tion contains no information on how these Majorana fermions
couple with each other, and the ground state of the Hamilto-
nian correspondingly exhibits a massive degeneracy. (In stark
contrast, when the Ising interactions are purely ferromagnetic,
i.e., Ji = −J and J < 0, the Ising spins fix the pairing of
Majorana fermions and produce a unique ground state.)

Now we allow hi to be nonzero but take J � hi. In this
limit, one may use degenerate perturbation theory to study
how flip terms generate Majorana-fermion couplings that lift
the aforementioned degeneracy. Specifically, the unperturbed
Hamiltonian H0 contains the Ising interactions J

∑
i σ

z
i σ z

i+1,
and the perturbation Hp is the sum of flip terms −∑

i hiFi. The
degenerate eigenstates of H0 to which we apply perturbation
theory are states with perfectly antiferromagnetically ordered
Ising spins.

Recall that a flip term Fi either annihilates a state or flips
an Ising spin. Consequently, any first-order correction in de-
generate perturbation theory vanishes. At second order, all
terms generated from perturbation theory correspond to the
following process: One may flip an Ising spin at site i with a
flip term Fi to create an excited state with respect to H0 and
apply Fi again to return to the original spin state. Hence, the
second-order correction is given by

H (2) = −
∑

i

h2
i

4J
F 2

i . (9)

When acted on states with antiferromagnetically aligned
Ising spins, either F 2

i = 1 or 0 depending on the Majo-
rana degrees of freedom. On the states with σ z

i = ↓ and
σ z

i−1 = σ z
i+1 = ↑, one can show that F 2

i ≡ (1 + iγi,Aγi,B)/2.
Similarly, on states with σ z

i = ↑ and σ z
i−1 = σ z

i+1 = ↓, one
obtains F 2

i ≡ (1 + iγi−1,Bγi+1,A)/2. Equation (9) may then be
expressed as

H (2) = −
∑

i

tiTi + const, ti = h2
i

8J
, (10)

where Ti corresponds to nearest-neighbor Majorana hopping
terms we introduced in Eq. (6). Note that we are working
on top of one of the antiferromagnetic ground states, i.e.,
assuming a frozen antiferromagnetic spin pattern. The free

(a)

(b)

FIG. 5. (a) Illustration of the infinite-randomness fixed point that
arises when Ising spins are antiferromagnetically aligned due to
strong Ising interactions. Majorana fermions on the domain walls can
pair with other Majorana fermions arbitrarily far away (albeit such
events are rare), and these Majorana pairings form random-singlet-
like infinite-randomness fixed points. (b) When Ising interactions
have mixed sign, assuming Ising interactions are much larger than
flip terms, the interactions spin configurations in IR, and the low-
energy physics is governed by domain-wall Majorana fermions,
which are shown in the figure as blue dots with no red line attached
to them.

Majorana fermions are γi,A, γi,B for sites with σ z
i = ↓ [blue

dots not connected by red lines in Fig. 5(a)]. Each Ti in
the effective Hamiltonian retains a single fermion bilinear
term that contains nearest-neighbor free Majoranas to the left
and to the right of site i. When hi are random, the low-
energy domain-wall Majorana fermions are expected to flow
to an infinite-randomness fixed point—the same one gov-
erning the critical point in the random transverse-field Ising
model [26,27,40]. Figure 5(a) illustrates this phase.

This infinite-randomness fixed point, which represents a
critical state and is hence delocalized in some sense, can be
driven to a localized phase upon adding some perturbations.
The most straightforward way to generate localization is to
give a dimerization to the distribution of hi, i.e., h2k > h2k+1,
with the overlines denoting disorder averages here and below.
Another, more indirect way is to add a small but uniform Zee-
man field −B

∑
i σ

z
i to the Hamiltonian, with B � J . Then,

one may similarly use degenerate perturbation theory to find
that the coefficient ti is modified to

ti =
⎧⎨
⎩

h2
i

8J+4B , σ z
i = ↑

h2
i

8J−4B , σ z
i = ↓.

(11)

In stark contrast with the B = 0 case where Majorana fermion
couplings across up spins and down spins are statistically
the same, adding a B field makes Majorana fermion hop-
ping across down spins statistically stronger than the hopping
across up spins. The resulting effective dimerization to ti
drives the Majorana fermions into a localized state.

For later purposes, it is useful to understand how Zee-
man field terms and spatial modulations of flip terms localize
Majorana fermion degrees of freedom from a symmetry per-
spective. The Hamiltonian we consider has two symmetries:
time-reversal symmetry T and statistical translation sym-
metry T x. The composite symmetry T T x guarantees the

035138-6



EDGE STATES OF TWO-DIMENSIONAL TIME-REVERSAL … PHYSICAL REVIEW B 109, 035138 (2024)

Majorana fermions to be critical. Spatial modulation of the
flip terms or the Zeeman field terms break one of the two
symmetries and hence break the composite symmetry. The
explicit violation of T T x tunes the Majorana fermions away
from criticality and drives localized behavior.

B. The case with random Ising interactions: Overview

Now we consider the same Hamiltonian Eq. (8), with
the Ising interaction coefficients allowed to be in general
random—both in magnitude and sign. We still maintain the
condition |Ji′ | � hi for any i and i′ so that in the low-energy
limit the Ising spins are pinned by the Ising interactions. How-
ever, note that due to the mixed sign of the Ising interactions,
the magnetic ordering of the Ising spins is neither perfectly
ferromagnetic nor antiferromagnetic.

The low-energy degrees of freedom, similar to the example
in the previous section, are Majorana fermions living at the
Ising spin domain walls; see Fig. 5(b) for an illustration. One
may again employ perturbation theory to derive couplings
between Majorana fermions. The key difference from the
case with the uniform strong antiferromagnetic Ising inter-
actions covered in the previous section is that one needs to
go to higher order in perturbation theory to derive effective
couplings between Majorana fermions. To understand this
point, recall that in the previous example, nearest-neighbor
couplings between Majorana fermions are generated by the
second-order perturbation theory term that corresponds to a
process of flipping a spin at one site and flipping it back. As
a generalization, when treating the flip terms perturbatively,
terms in the 2nth-order perturbation theory can be under-
stood as a process of flipping n spins back and forth. In
the cases of interest in this section, between two consecutive
antiferromagnetic bonds, there can be n � 1 spins that are fer-
romagnetically linked. Couplings between a pair of Majorana
fermions located at two such antiferromagnetic bonds first
appear in the 2nth order perturbation theory, corresponding to
processes that flip n spins between the two antiferromagnetic
bonds one-by-one and then flip these spins back.

There is no a priori obstruction to computing all terms in
perturbation theory and deriving effective couplings between
Majorana fermions that result. Nevertheless, we further re-
strict how the coefficients in the Hamiltonian of Eq. (8) are
chosen to make the analysis more concise; importantly, the
case we consider can be naturally generalized to the strong-
disorder RG analysis covered in Sec. IV. We specifically
assume that the parameters {hi}, {Ji} in Eq. (8) are randomly
selected according to the following rules:

(1) When Ji is negative, we assume Ji to take a uniform
value �A � 1. Additionally, we require that if Ji < 0 for a
certain i, then Ji′ > 0 for i′ = i − 2, i − 1, i + 1, i + 2, i.e.,
within the next-nearest neighbors of an antiferromagnetic
bond, one may not find another antiferromagnetic bond.

(2) When Ji takes a positive value, we assume Ji to be
infinitely random in some limit. As a specific example, one
can imagine drawing Ji from the following probability distri-
bution, with the limit �F → 0:

P(J ) =
{

1
J ln 1

�F

, �F < J < 1

0, otherwise.
(12)

(3) The parameter hi is chosen to be random and much
smaller than �F . For example, drawing hi uniformly from
(0,�H ) with �H � �F will achieve this condition.

The analysis we perform in the next two sections is ex-
pected to be asymptotically accurate in the limit �A → ∞,
�F → 0, �H → 0 with �H/�F → 0 (and is expected to be
qualitatively correct for a range of parameters close to this
limit). The key feature here is that all the Ising interactions
are much larger than the flip terms and strongly random,
approaching infinite randomness in the aforementioned limit.
We see in the next section that this strong randomness
condition allows us to derive couplings between Majorana
fermions via sequence of local, real-space transformations.
These real-space transformations are simplified versions of
RG transformations that appear in Sec. IV.

C. The model with mixed-sign Ising interactions:
Transformation rule

Let us first sketch the big ideas behind real-space trans-
formations that we employ to derive the couplings between
Majorana fermions. In the Hamiltonian we are considering,
the largest local terms are given by strong antiferromagnetic
nearest-neighbor Ising interactions. Remaining ferromagnetic
Ising interactions and flip terms are assumed to be much
smaller than the antiferromagnetic Ising interactions. Hence,
to capture the low-energy physics, we imagine projecting our
system onto the low-energy subspace in which two spins
joined by an antiferromagnetic Ising interaction are always
anti-aligned. In Fig. 6(a), we graphically depict the projection
by marking the antiferromagnetic bond with a gold line—two
spins neighboring the gold line are rigidly constrained to
be antiferromagnetically aligned with each other within the
subspace. To encode the nontrivial effect of the flip terms
which may locally change the Ising spin orientation and
bring the system out of the low-energy subspace, we employ
second-order degenerate perturbation theory and incorpo-
rate the terms generated from the perturbation theory in the
Hamiltonian.

That is, we effectively “integrate out” or “decimate”
strongly antiferromagnetic bonds and incorporate the local
couplings generated from such procedures into the Hamil-
tonian. The key feature behind this transformation is that
a process in the second-order perturbation theory that flips
a spin at site i and flips the spin back generates Ti, via
a similar mechanism we saw in the earlier section, see
Fig. 6(b).

One can pursue similar ideas to treat ferromagnetic bonds
as well. After decimating all strongly antiferromagnetic
bonds, we then pick the strongest ferromagnetic bond cor-
responding to an Ising interaction −Jiσ

z
i σ z

i+1. Due to the
assumptions we made about parameters, all local terms in
the Hamiltonian involving site i or i + 1 are much smaller
in magnitude than |Ji|. Once again, we do a low-energy
projection to the states where two spins i and i + 1 are fer-
romagnetically aligned. In this case, one may combine two
ferromagnetically aligned spins into a single spin and also
appropriately modify Majorana fermion degrees of freedom
to combine two sites i and i + 1 into a single supersite
[Fig. 6(c)].
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(c)

(a)

(b)

FIG. 6. (a) Graphical notation for the transformations. (b) Graph-
ical illustration of the processes that give rise to Tj term in the
second-order perturbation theory. When starting with the state with
iγ j,Aγ j,B = +1 (left panel), one may flip a spin at site j and flip it
back. However, this process is forbidden on the state with iγ j,Aγ j,B =
−1 (right panel). Hence, the spin-flip process gives rise to the energy
difference between the states in the left panel and the right panel,
and this energy difference is encoded precisely by the effective Tj

term. (c) Illustration of the transformation that decimates a strong
ferromagnetic Ising interaction −Jjσ

z
j σ

z
j+1. In the right panel, one

removes Majorana fermions in red squares to reduce number of
Majorana fermions in the system by two.

After decimating the strongest bond in the system, one
may decimate the bond associated with the next strongest
ferromagnetic interaction, or equivalently, the strongest fer-
romagnetic bond in the system after the first ferromagnetic
decimation, and so on. One can continue this process until
all ferromagnetic Ising interactions are decimated or inte-
grated out. At the end of the procedure, all bonds in the
system are marked with gold lines in our graphical illustra-
tion [recall Fig. 6(a) for the definition of gold lines]; each
Ising spin represents a cluster of original Ising spins linked
by ferromagnetic Ising interactions. Since all the remaining
Ising spins are hard-constrained to be antiferromagnetically
aligned, the only meaningful local degrees of freedom at this

point are Majorana fermions. The low-energy fate of the sys-
tem is controlled by the nearest-neighbor Majorana fermion
hopping terms Ti generated along the way via a sequence of
transformations.

We now present these transformation rules in more for-
mal, quantitative language (deferring precise technical details
about the derivations of these rules to Appendix A). At any
stage of the transformations, we keep track of the follow-
ing information: non-negative parameters at each site/bond
{hi, Ji, ti, si}, which determine coefficients of each term in the
Hamiltonian, and {mi = 0, 1}, a binary label on each bond.
The label mi = 0 indicates a bond with a gold line between
site i and i + 1, as in Fig. 6(a), generated from integrating out
the antiferromagnetic Ising interaction.

The Hamiltonian at each stage takes the form

H ({mi, hi, Ji, ti, si}) =
∑

i

( − himi−1miFi

− Jiσ
z
i σ z

i+1 − 2tiTi − 2siSi
)
. (13)

We refer to Sec. II B for the definition of each term in the
Hamiltonian. Here {Ji, ti, si} directly specifies coefficients of
local terms in the Hamiltonian, while hi only enters as a
coefficient of the flip term Fi when mi−1 = mi = 1. Physically,
mi−1 = mi = 1 means that the Ising spin at site i is not hard-
constrained to be anti-aligned with respect to the Ising spin at
site i − 1 or i + 1 and hence can be flipped without violating
the constraint. Although the coefficient of the flip term at site
i vanishes when mi−1 or mi is 0, we see that the values of hi

when the coefficient of the actual flip term vanishes plays an
important role in some of the analysis in the Appendixes. We
thus keep track of hi for all i regardless of the value of mi−1

and mi.
At the beginning, ti = si = 0 for all i, and mi = 1 for all

bonds i. Observe that the initial Hamiltonian has the same
form as in Eq. (8). The transformation proceeds by integrating
out strong antiferromagnetic bonds first, then ferromagnetic
bonds. To integrate out an antiferromagnetic bond j with
Jj = −�A, we perform the following transformation:

mj = 1 → mj = 0,

t j = 0 → t j = h2
j

8�A
, (14)

t j+1 = 0 → t j+1 = h2
j+1

8�A
.

Assigning mj = 0 emphasizes that the strong antiferromag-
netic bond enforces σ z

j = −σ z
j+1 as a hard constraint after

the transformation. Changes in Hamiltonian parameters are
derived from the second-order perturbation theory. As we
saw earlier in the section and in Fig. 6(b), the second-order
perturbation theory generates t j and t j+1, whose precise values
are given above.

Decimation of ferromagnetic bonds proceeds from
the largest to the smallest. Decimating a ferromagnetic
bond between site j and j + 1 transforms the param-
eters {mi, hi, Ji, ti, si} into the new set of parameters
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{m′
i, h′

i, J ′
i , t ′

i , s′
i} given by

(m′
i, J ′

i ) =
{

(mi, Ji ), i < j
(mi+1, Ji+1), i � j,

h′
i =

⎧⎪⎨
⎪⎩

hi, i < j
2−1/4h j h j+1

Jj
, i = j

hi+1, i > j,

t ′
i =

⎧⎨
⎩

ti, i < j
t ′

j, i = j
ti+1, i > j,

(15)

s′
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si, i < j − 1

mj−1
t j−1t j+1h2

j

2J3
j

, i = j − 1

mj+1
t j t j+2h2

j+1

2J3
j

, i = j

si+1, i > j,

t ′
j = mj+1t j

h2
j+1

4
√

2J2
j

+ mj−1t j+1

h2
j

4
√

2J2
j

+ s j .

The transformation rule for h′
i comes from the second-order

degenerate perturbation theory, while keeping track of t ′
i and s′

i
requires going to the third order and fourth order, respectively.
At first glance, it may appear unnatural that one should include
terms from the higher-order perturbation theory—nontrivial
corrections appear already at the second order, and the higher-
order terms are generally much smaller than the second-order
terms. However, in our case, Ti control the eventual low-
energy physics of the system, and keeping track of these
hoppings requires going to higher-order in perturbation the-
ory. The necessity of including the higher-order perturbation
theory results to keep track of couplings between domain-wall
Majorana fermions is a recurrent theme in this paper and plays
an important role in understanding the strong-disorder RG
flow presented in the next section.

Let us now pinpoint which processes in perturbation theory
generate effective ti and si, relegating the detailed justification
to Appendix A. The nontrivial transformation rule of ti under
a ferromagnetic bond decimation is encoded in the last line
of Eq. (15). As we mentioned earlier, there is no term in
the second-order perturbation theory that gives a nontrivial
t ′

j . However, when t j �= 0, mj+1 = 1, the following process in
the third-order perturbation theory contributes to a nontrivial
t ′

j : Flip the spin at site j + 1, act Tj , and flip the spin at
site j back. We illustrated this virtual process in Fig. 7(a).
In particular, the process of flipping the spin at site j + 1
back and forth is crucial since Tj acts as zero on the starting
configuration—it only acts nontrivially after flipping the spin
at the site j. This contribution is encoded in the first term of
the last line of Eq. (15). The second term on the last line of
Eq. (15) is relevant when t j+1 �= 0, mj−1 = 1 and is simply
the mirror-inverted version of the case we have just discussed.

The situation is a little more complicated when mj−1 =
mj+1 = 0. In this case, as we illustrate in Fig. 7(b), both spins
at site j and j + 1 are locked by gold lines, and there is no
spin to flip and generate coupling between Majorana fermions
akin to the process described in the previous paragraph. To see
how our transformation rule bypasses this issue, we consider
a configuration in which two bonds with mi = 1 label are

(a)

(b)

FIG. 7. Decimation of a strong ferromagnetic bond leading to a
superspin inside the green box [cf. Fig. 6(c)] when one of the spins
is already antiferromagnetically locked with a neighbor (indicated
by gold line). (a) Illustration of a process that appears in the third
order in perturbation theory that renormalizes effective T ′

j . (b) The
“problematic configuration” in which a process illustrated in panel
(a) is not available.

surrounded by two bonds with mi = 0 label. Upon decimating
one of the bonds with mi = 1 label, we end up with the
“problematic configuration” we described in the beginning of
the paragraph. To resolve the problem, we generate a term siSi

when one of the two bonds with mi = 1 label is decimated.
Such a term first appears at the fourth order in perturbation
theory; we illustrate the process in Fig. 8. After generating
a nontrivial s jS j term whenever one ends up with a config-
uration mj−1 = mj+1 = 0 and mj = 1, s j directly enters into
t j when the bond j is decimated to form a configuration in
which mj = mj+1 = 0, as encoded in the very last term of
Eq. (15). The key feature here is that processes that generate
terms like s jS j appear in the higher-order perturbation theory
and usually are not incorporated in our transformation rules.
However, in the specific situation we illustrated here, s jS j en-
ter as the lowest-order couplings between Majorana fermions
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FIG. 8. RG step decimating strong ferromagnetic bond in the
same setting as in Fig. 7. Illustration of a process that appears in
the fourth order in perturbation theory and generates Sj .

at the later stage, and one may incorporate this higher-order
perturbation theory result only for this specific situation.

D. The model with mixed-sign Ising interactions:
Results and stability

Here, we quantitatively analyze the general consequence
of the successive transformations introduced in the previous
section.

In what follows we define a bond with index i as a bond
between sites i and i + 1. Consider then an antiferromag-
netic bond i1 in the original Hamiltonian, and the closest
antiferromagnetic bond i2 to the right of i1. Let us follow
the transformation rules in Eqs. (14) and (15) to understand
the coupling generated between Majorana fermions at i1 and
i2 at the end of the transformations. At the first step where
antiferromagnetic bonds are treated, the transformation gen-
erates ti1+1Ti1+1 with ti1+1 = h2

i1+1/8�A and ti2 Ti2 with ti2 =
h2

i2/8�A. After antiferromagnetic bond decimations, ferro-

magnetic bond decimations combine two sites into a single
supersite and renormalize ti1+1 and ti2 according to the rule
from the third-order perturbation theory we described ear-
lier. Ferromagnetic bond decimation continues until only two
bonds between i1 and i2, say i1,2,s and i1,2,ns, remain undec-
imated. (Superscripts s and ns stand for smallest and next
smallest, referring to the relative magnitude of ferromagnetic
Ising interaction for bonds between two antiferromagnetic
bonds i1 and i2; we assume Ji1,2,s < Ji1,2,ns .) When i1,2,ns is
decimated, it generates an Si term, and this term enters back
into Ti that mediates couplings between Majorana fermions at
i1 and i2 when i1,2,s is decimated. Tracking this procedure, the
coefficient ti1,i2 of the Ti term—which at the very end of the
transformation couples Majorana fermions at i1 and i2—takes
the following form:

ti1,i2 = α(Ji1+1, Ji1+2, . . . , Ji2−1)
J2

i1,2,s

∏i2
i=i1+1 h2

i

�2
AJi1,2,ns

∏i2−1
i=i1+1 J2

i

. (16)

Here α(Ji1+1, Ji1+2, . . . , Ji2−1) is a numerical constant that
depends on the number of bonds between i1 and i2 and the
order by which the bonds are decimated.

The right-hand side in Eq. (16) depends on the values of hi

between i1 and i2, the values of ferromagnetic Ising interac-
tions, the number of ferromagnetic bonds between i1 and i2,
and the relative ordering of ferromagnetic interaction in terms
of magnitude and spatial index. All of these dependencies are
random in our setup, and therefore the derived ti1,i2 is strongly
random. Similarly, for any two neighboring antiferromagnetic
bonds in and in+1, tin,in+1 is given by the same formula in
Eq. (16), with i1 and i2 replaced by in and in+1, and depends
on same types of random variables. Hence tin,in+1 is identi-
cal for any two neighboring antiferromagnetic bonds in and
in+1. In particular, there should be in general no dimerization
tendency in the derived nearest-neighbor coupling between
two Majorana fermions, and the low-energy physics should
be described by an infinite-randomness fixed point which is a
critical 1D phase.

It is instructive to apply the symmetry perspective similar
to the one we provided at the end of Sec. III A to under-
stand what symmetry protects the infinite-randomness fixed
point. An Ising spin at the very end of the transformations
contains a random number of the original “ultraviolet” (UV)
spins, as opposed to the situation encountered in Sec. III A
in which there is exactly one UV spin between two domain-
wall Majorana fermions. Nevertheless, there is an IR average
translation symmetry T x,IR which together with exact time-
reversal symmetry T protects the critical 1D phase. This IR
symmetry, albeit distinct from the UV average translation
symmetry T x,UV discussed in Sec. III A, emerges naturally
when the symmetry is present already in the UV (as is natural
for condensed-matter realizations of 2D topological supercon-
ductors).

Interestingly, due to the random nature of the signs of Ising
interactions, even if one breaks T x,UV by, for example, adding
dimerization patterns to hi, there is no straightforward way
for this dimerization tendency to show up in the IR and break
T x,IR. This observation leads us to conjecture that any spatial
modulation in the UV quantities will not translate to spatial
modulation in the IR description, and that T x,IR will emerge
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even when there is no T x,UV. However, since T x,UV is a natural
one to assume, to avoid any subtle issues that might invalidate
our conjecture, we assume T x,UV throughout this paper.

One can infer from the above argument that, although there
is no obvious way to break the average translation symmetry
T x in the IR, one may break time-reversal symmetry T to
drive domain-wall Majorana fermions away from criticality
and localize them. A straightforward way to break T is by
adding a uniform Zeeman field (which without loss of gener-
ality we assume energetically favors up spins). From a more
microscopic viewpoint, one can envision that a Zeeman field
yields the following two effects:

(1) It generally costs more energy to flip spins from up to
down than down to up when the Zeeman field is added. Ad-
ditionally, recall that couplings between Majorana fermions
are generated by processes of flipping spins back and forth.
With a uniform Zeeman field, it is therefore generally ex-
pected that Majorana fermions couple more weakly across the
up-spin domains than across down-spin domains—effectively
dimerizing the Majorana fermion couplings. This effect is
analogous to what we saw at the end of Sec. III A for the
special case where all Ising interactions are uniformly anti-
ferromagnetic.

(2) It is energetically favorable for some of the spins point-
ing down before adding the Zeeman field to reverse their
alignments, producing a small net magnetization. Cast in a
slightly different language, the up-spin domains are corre-
spondingly longer on average than the down-spin domains.
Notice that in Eq. (16), the couplings are on average weaker
when the domain length is longer. Hence, this mechanism
also makes couplings across the down-spin domains more
dominant. This effect originates from the random nature of
ferromagnetic couplings and does not have any analog in the
discussion from Sec. III A.

These two effects both favor the Majorana fermion cou-
plings across the down-spin domains, so we conclude that the
explicit time-reversal symmetry breaking through a uniform
Zeeman field destabilizes the infinite-randomness fixed point
and leads to a localized phase.

IV. STRONG-DISORDER RENORMALIZATION GROUP

In the previous section, we pinned the spin degrees of
freedom with random nearest-neighbor Ising interactions
and studied the effective Hamiltonian governing Majorana
fermions that live on the spin domain walls. We observed
that these Majorana fermions in general form an infinite-
randomness fixed point and a uniform Zeeman field that
explicitly breaks the time-reversal symmetry does localize
the Majorana fermions in our setup, reminiscent of gap-
ping out topological edge or surface states by breaking
symmetry.

These results suggest a tantalizing picture wherein the
infinite-randomness fixed point of Majorana fermions can ex-
ist as a stable phase on the edge of 2D time-reversal-invariant
topological superconductors as long as the time-reversal sym-
metry is preserved in the microscopic Hamiltonian but is
spontaneously broken in the phase. However, in the example
we considered in the previous section, we imposed a rather ar-
bitrary limit on how one chooses parameters, with the goal of

clarifying the physics of the infinite-randomness fixed point.
Here, we continue our journey of studying the Hamiltonian

H = −
∑

j

J jσ
z
j σ

z
j+1 −

∑
i

hiFi, (17)

now without assuming hi � Jj , by developing a strong-
disorder RG analysis. The strong-disorder RG is simple when
Jj is forbidden to be antiferromagnetic—in this case, the only
strong-disorder RG fixed points are associated with ferromag-
netic Griffiths phases. Strong-disorder RG with Jj allowed
negative is in general complicated, but we argue that one may
truncate some of the terms that complicate the analysis in the
limit in which a finite but small proportions of bonds have
antiferromagnetic Ising interactions. We provide theoretical
arguments and numerical implementations of the strong-
disorder RG to show that introducing dilute antiferromagnetic
bonds in the UV alters the IR physics completely; in this
case, the IR physics is governed by the infinite-randomness
fixed point of Majorana fermions. This result suggests that a
strongly disordered ferromagnet on the edge of topological
superconductor is unstable to introducing antiferromagnetic
bonds and that the infinite-randomness fixed point of Majo-
rana fermions appears as a stable, generic edge phase when
disorder is strong.

A. The case without the antiferromagnetic Ising interaction

We first take a look at the Hamiltonian Eq. (17) from the
strong-disorder RG viewpoint when all Jj � 0, i.e., nearest-
neighbor Ising interactions are forbidden to be antiferromag-
netic. To study this Hamiltonian from the strong-disorder
RG perspective, we envision the following set of transforma-
tions to the 1D chain, applicable when the parameters in the
Hamiltonian are strongly random: At each step the energy
scale is defined to be � = max{Ji, hi}. If � = Jj for some
j, then under the strong randomness assumption, couplings
around the bond j except for the strongest Ising interaction
−Jjσ

z
j σ

z
j+1 are expected to be weak. As an approximation

that captures the low-energy physics, one can implement the
ferromagnetic bond decimation transformation employed in
the previous section, wherein we combine two sites j and
j + 1 into a single supersite. Next one can employ degener-
ate second-order perturbation theory to derive new effective
couplings of the Hamiltonian after the transformation [we fix
pi in the definition of the flip term Eq. (5) to be pi = 2−1/4, as
explained in Sec. II B]:

J ′
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ji, i < j − 1

Jj−1 + (
√

2−1)h2
j

4
√

2Jj−1
, i = j − 1

Jj+1 + (
√

2−1)h2
j+1

4
√

2Jj−1
, i = j

Ji+1, i > j,
(18)

h′
i =

⎧⎪⎨
⎪⎩

hi, i < j
2−1/4h j h j+1

Jj
, i = j

hi+1, i > j.
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This transformation rule is very similar to that appearing in
Eq. (15) for hi and Ji; the only difference is the extra

(
√

2 − 1)h2
j

4
√

2Jj−1

and
(
√

2 − 1)h2
j+1

4
√

2Jj−1

contributions to the effective Ising interactions in the second
and the third lines. In the previous section, we dropped such
terms due to the assumption hi � Ji. We are not imposing this
limit here, however, so one must now include these terms to
capture the correct low-energy physics. We later see that these
contributions play a crucial role in determining the IR physics.

If � = h j , one may similarly invoke the strong-
randomness assumption and project the system into eigen-
states with the two lowest eigenvalues of −h jFj to capture
the low-energy physics. Both of these states contain an equal
superposition of σ z

j = ↑ and σ z
j = ↓, i.e., the corresponding

Ising spin is disordered. This projection can be understood
as effectively removing site j and hence is dubbed site dec-
imation. Zeroth and first-order perturbation theory yields the
following transformation rule:

J ′
i =

⎧⎪⎨
⎪⎩

Ji, i < j − 1
(1−2−1/4 )h j

2 , i = j − 1
Ji+1, i > j − 1,

(19)

h′
i =

⎧⎪⎪⎨
⎪⎪⎩

hi, i < j − 1
1+2−1/4

2 h j−1, i = j − 1
1+2−1/4

2 h j+1, i = j
hi+1, i > j.

The J ′
j−1 = [(1 − 2−1/4)h j]/2 piece reflects the zeroth-order

term, i.e., the difference between the two lowest eigenvalues
of −hiFi. The transformation rule for hi corresponds to the
first-order correction.

Successive transformations in which one finds the dom-
inant local terms and performs site decimations or bond
decimations define a real-space RG procedure where the
energy scale � monotonically decreases. Studying how the
energy scale, Hamiltonian, and distribution of couplings in
the Hamiltonian evolve under the RG flow reveals the fate of
the system in the IR. The RG transformations we introduce
here are very similar to those used to study the 1D random
transverse-field Ising model; in particular, the flip terms in
our model play a similar role as transverse-field terms in the
random transverse-field Ising model in the sense that both in-
duce a transformation which removes a site from the 1D chain.
However, the nature of couplings generated or renormalized
from our RG rules differs from the random-transverse-field
Ising model, and therefore the IR physics differs as well.

Let us heuristically see what happens under this RG trans-
formation when hi and Ji are strongly random. Decimation
of a site with hi creates a ferromagnetic bond J ′

i−1 = 1−2−1/4

2 hi,
which is still O(hi ), and under the standard strong randomness
assumption, is likely to be a strong coupling as well. Hence,
any site decimation is likely to be followed by another bond
decimation, and it suffices to see what happens for the bond
decimation. In our case, the bond decimation not only gener-
ates a supersite flip term of O(hihi+1/Ji ), but also generates
extra ferromagnetic Ising interactions of order O(h2

i /Ji ) and

O(h2
i+1/Ji ). Strong randomness implies significant likelihood

that either hi � hi+1 or hi+1 � hi, i.e., coefficients of the two
neighboring flip terms are likely very different. One of the
generated ferromagnetic Ising interactions is therefore likely
much stronger than the supersite flip term, so that this su-
persite Ising spin is likely to be flanked by a strong Ising
interaction bond. This process continues, and deep in the RG
flow, one will always find some neighboring Ising interactions
that dominate the flip terms. The decimation procedure will
thus be eventually dominated by ferromagnetic bond decima-
tions, even if the UV Hamiltonian has ln hi � ln Jj . Thus,
when couplings are strongly random and all Ising interac-
tions are ferromagnetic, regardless of the initial conditions,
the system is expected to flow to the ferromagnetic Griffiths
phase, with the locally disordered spins giving rise to Griffiths
effects. In sharp contrast, the random transverse field Ising
model additionally supports a disordered phase in which spin-
flip terms, or equivalently transverse-field terms, dominate.

We numerically implemented this RG procedure to con-
firm the above picture. In our implementation, we chose the
couplings hi and Ji from the power-law distributions

P(h) = rhh−1+rh , P(J ) = rJJ−1+rJ , (20)

with 0 < rh, rJ < 1 and rh, rJ ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.
We started with system size L = 5 × 105 and performed the
RG transformation until L = 100. In the Griffiths phase of
our interest, the distribution of the log couplings is expected to
follow (η = ln �/h and θ = ln �/J are log values of coupling
parameters):

P(η) = αe−αη, P(θ ) = βe−βθ

α → 0, β → 1

z
as � → 0, (21)

where z is a nonuniversal dynamical exponent. The limiting
behavior of α and β can be probed by

δh = η2
i − ηi

2

ηi
, δJ = θ2

i − θi
2

θi
, (22)

which can be directly equated to 1/α and 1/β assuming that
ηi and θi follow the exponential distributions of Eq. (21).
Additionally, the number of remaining sites L� and the energy
scale � at a given RG step are expected to follow the scaling
relation

L� ∼ �1/z (23)

in the IR.
Figure 9(a) plots the number of the remaining sites versus

ln(1/�) for the selected initial distributions of hi and Ji. Dot-
ted lines are obtained by performing the least linear squares
fit on ln L� and ln(1/�) for the last 1000 data points. One can
clearly see that the scaling L� ∼ �1/z indeed emerges in the
low-energy limit.

Meanwhile, Fig. 9(b) shows the evolution of δh and δJ

versus ln(1/�) for (rh, rJ ) = (0.15, 0.15). Recall that δh and
δJ are proportional to 1/α and 1/β in Eq. (21), and, as
the RG proceeds, α monotonically decreases to zero while
β saturates to some constant. One can see that δJ retains
relatively constant values, but δh rapidly increases, confirm-
ing the aforementioned expectations. We checked that these
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FIG. 9. (a) Number of remaining sites versus ln(1/�) for three
different initial conditions. (b) Evolution of δh and δJ for the initial
condition (rh, rJ ) = (0.15, 0.15)

behaviors emerge in other initial conditions and in different
realizations of disorder as well. Our numerical simulations
thus strongly support our prediction that the ferromagnetic
Griffiths phase always emerges in the strong-disorder limit of
the Hamiltonian in Eq. (17) without antiferromagnetic Ising
interactions, even when the ferromagnetic interactions are
very weak in the UV. The physics is that such ferromagnetic
interactions are always generated when decimating the flip
terms and never renormalize down under subsequent RG steps
and eventually become the dominant terms.

B. Strong-disorder renormalization group involving the
antiferromagnetic Ising interaction: Overview

Building on the above result, we next explore the effect
of introducing antiferromagnetic bonds into the model, be-
ginning with some general features of the strong-disorder
RG when one incorporates antiferromagnetic Ising interac-
tions into the strong-disorder RG procedure. We can similarly
define the strong-disorder RG procedure on the Hamilto-
nian by first setting the energy scale at each step to be

� = max{hi, |Ji|} (the absolute value is inserted because Ji

can take either sign). Let us see what kind of transforma-
tions one should invoke when the energy scale is set by the
antiferromagnetic Ising interaction, i.e., � = |Ji| with Ji <

0. We proceed with the standard strong-disorder assump-
tion and assume that one may project the system into the
lowest-eigenvalue configurations of +Jiσ

z
i σ z

i+1. In our case,
the two Ising spins at site i and i + 1 are anti-aligned to
each other always. Then, there is always one free Majorana
fermion that lives on a bond between site i and i + 1, so in
general, one is not allowed to do any operations that com-
bine a site i and i + 1 into a single site as one can do for
ferromagnetic bond decimations. Instead, one can follow a
similar procedure employed in Sec. III C to treat strong an-
tiferromagnetic bonds: Introduce a binary label mi = 0, 1 to
each bond. If mi = 0 on a bond i, the spins at site i and
i + 1 neighboring the bond i are hard-constrained to be anti-
aligned to each other. At the start of the RG, mi = 1 for all
bonds, and all spins are “free.” However, as one encounters
strong antiferromagnetic bonds in the RG steps, some of the
bonds will be transformed to carry a label mi = 0. This trans-
formation associated with antiferromagnetic bonds does not
reduce the system length but reduces the degrees of freedom
in the system and fits into a standard paradigm of the RG
transformation.

After performing the transformation, one may incorporate
couplings generated from the second-order degenerate per-
turbation theory to the Hamiltonian. First, assuming that all
bonds near the antiferromagnetic bond i on which we apply
the transformation have label mj = 1, the second-order de-
generate perturbation theory generates the following terms:

(1) The process that flips the spin at site i back and
forth generates nearest-neighbor ferromagnetic Ising interac-
tion −J̃i−1σ

z
i−1σ

z
i . A similar process involving the spin i + 1

generates −J̃iσ
z
i σ z

i+1.
(2) The same process as the above also generates −t̃iTi

and −t̃i+1Ti+1. This term represents a coupling between a
Majorana fermion trapped by the bond with mi = 0 and the
rest of the system.

(3) The process that flips the spin at site i and then the
spin at site i + 1 (or vice versa) generates a term that flips two
spins at site i and i + 1 simultaneously. This “double-spin flip
term,” in contrast with the term that flips the spin at site i or
i + 1 individually, does not violate the constraint imposed by
mi = 0 and is a legal term to add to the Hamiltonian after the
transformation.

The nearest-neighbor Ising interactions are already in the
Hamiltonian Eq. (17); the two other terms generated are not,
however. Hence, one generally has to incorporate new types
of couplings that are not present in the original Hamiltonian
to capture the correct low-energy physics using the strong-
disorder RG procedure.

The terms described in the second point are relatively easy
to incorporate into the RG but will be crucial in recovering the
correct IR physics. On the other hand, the terms in the third
point hint at the difficulty of studying this RG procedure in full
generality. In the putative strong-disorder RG procedure one
might potentially develop, one would “integrate out” strong
antiferromagnetic bonds at site j by changing the label mj

from one to zero, and in a later RG step generate a cluster
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consisting of multiple antiferromagnetically aligned spins—
each bond linking two neighboring spins in this cluster
carrying the label mi = 0. Upon keeping all the second-order
degenerate perturbation theory results at each step of the trans-
formation, one then encounters a highly nonlocal term that
flips the whole cluster of spins at once, the natural multisite
generalizations of the double-spin flip terms in the third point.
Additionally, imagine, for example, that the current energy
scale in the RG procedure is set by a strong ferromagnetic
bond neighboring the cluster of spins we just mentioned be-
fore. Upon performing the ferromagnetic bond decimation
and including terms generated from the second-order degener-
ate perturbation theory, one includes a term generated from a
process where one flips the whole cluster of spins back and
forth. This process generates nonlocal interactions between
Majorana fermions that live on the domain walls of the mul-
tispin clusters. Hence, if one implements the strong-disorder
RG through the naive generalization of keeping all the terms
generated from the second-order perturbation theory, one has
to keep track of an infinite number of nonlocal couplings, and
the RG flow is intractable.

While the naive RG procedure generates nonlocal cou-
plings, it is conceivable that, in some parameter regime, such
nonlocal couplings are suppressed, and one may capture the
correct physics by only keeping track of a limited set of local
couplings. In the rest of this section, we explore the limit
where antiferromagnetic bonds in the Hamiltonian Eq. (17)
exist in a finite proportion but are still rare in the UV. Physi-
cally, this limit represents a scenario where we deform a dirty
ferromagnet on the edge of the topological superconductor,
whose physics from the strong-disorder RG is covered in the
previous section, by introducing a small amount of antifer-
romagnetic bonds. We further argue that one may capture
low-energy physics without keeping track of the aforemen-
tioned nonlocal couplings in Appendix D.

Thus we keep track of a finite number of local couplings to
capture the low-energy physics in our RG procedure. Now the
question is what is the low-energy fate of the putative strong-
disorder RG procedure. Two natural scenarios arise:

(1) As we see in the next section, some of the decimation
procedures that we introduce due to presence of additional
types of local terms can remove bonds with the label 0. Hence,
one can envision a scenario in which even though bonds with
the labels mi = 0 are generated at some points in the strong-
disorder RG, such bonds may get “screened,” and in later
steps of RG, the proportion of bonds with mi = 0 becomes
vanishingly small. In this scenario we expect that the physics
is governed by fixed points identical to the case where there
are no antiferromagnetic bonds, i.e., ferromagnetic Griffiths
fixed points.

(2) The bonds with mi = 0 labels survive down to low
energies, and in the later steps of RG, the system is filled
with mi = 0 bonds. This scenario represents a case in which
spin degrees of freedom are frozen by Ising interactions with
random signs, and the low-energy physics is governed by
Majorana fermions living on the domain walls.

In the next section, we develop the strong-disorder RG in
more detail and also present our numerical implementation.
There we see that scenario 2 prevails. In particular, recall that
even if the system is completely filled with mi = 0 bonds

at a later step of the strong-disorder RG, each spin actually
represents a random number of spins linked by strong ferro-
magnetic bonds. Hence, the symmetry argument at the end
of Sec. III D tells us that effective couplings between Majo-
rana fermions have emergent average translation symmetry;
correspondingly, whenever scenario 2 prevails, the Majorana
fermions form an infinite-randomness fixed point.

C. The renormalization-group procedure

In the last section, we focused on a heuristic picture of
how our strong-disorder RG works upon incorporating the
effect of antiferromagnetic bonds and highlighted the physics
that emerges. Here, we provide more precise prescriptions
for the strong-disorder RG procedure. At each step, we keep
track of {mi}, the binary labels on bonds mentioned earlier,
and the couplings {hi, Ji, ti, si} that together parametrize the
Hamiltonian according to

H ({mi, hi, Ji, ti, si}) = −
∑

i

himi−1miFi

−
∑

i

hihi+1

|Ji| (1 − mi )mi−1mi+1

× FiFi+1 + Fi+1Fi

2

−
(∑

i

Jiσ
z
i σ z

i+1 + 2tiTi + 2siSi

)
.

(24)

The first line represents the usual single-site flip terms, which
are nonzero only when mi−1 = mi = 1; recall that if mi−1 or
mi is zero, site i is hard-constrained to be anti-aligned with
another neighboring spin, and a flip term that flips a single
spin at site i is not allowed. The second line is a double-site
flip term that appears when mi = 0 but mi−1 = mi+1 = 1. This
pattern of m represents a situation in which two spins at
site i and i + 1 are hard-constrained to be anti-aligned, but
are not further constrained. Hence, we allow a term that flip
two spins simultaneously. As we mentioned in the previous
section, we omit terms that flip three or more spins simulta-
neously. The remaining three terms in the Hamiltonian were
already introduced and encode nearest-neighbor Ising interac-
tion as well as first- and second-neighbor Majorana fermion
hopping. We choose ti �= 0 only when mi−1 = 0 or mi = 0;
also, as in Sec. III C si �= 0 only for the specific configuration
mi = 1 and mi−1 = mi+1 = 0. The precise reasoning behind
this choice can be found in the points in the first part of
Appendix B. Note that at the initial stage, mi = 1 for all bonds,
so the Hamiltonian only contains single-site flip terms and
nearest-neighbor Ising interactions—consistent with the UV
Hamiltonian given in Eq. (17). However, the three other terms
in the above Hamiltonians are naturally generated under the
RG when there are strong antiferromagnetic bonds.

The energy scale at each RG step is given by

� = max {mi|Ji|} ∪ {ti} ∪ {si} ∪ {mimi−1hi}

× ∪
{

di = mi−1(1 − mi )mi+1

√
2 + 1

2
√

2

hi−1hi

|Ji|

}
, (25)
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i.e., it is the largest coefficient for local terms among Ising
interactions for mi = 1 bonds, −tiTi, siSi, and single- or
double-site flip terms. The numerical constant in the definition
of di is added so that each candidate energy scale is set by half
of the difference between the lowest-energy eigenvalue and
the highest-energy eigenvalue of each local term. Similar to
the procedure detailed in Sec. IV A, between each RG step,
we project our system into the lowest-energy eigenstate of
the local term that sets the energy scale � and sequentially
eliminate degrees of freedom. Perturbation theory then dic-
tates how the couplings in the system renormalize after the
transformation. The key difference from the earlier consider-
ation in Sec. IV A is that we have more types of local terms
and correspondingly a broader set of RG transformations to
invoke depending on the dominant term.

When the energy scale is set by antiferromagnetic Ising
interaction, i.e., � = |Ji| with Ji < 0, we change the bond
label mi from 1 to 0, marking that now the Ising spins at
site i and i + 1 are antiferromagnetically linked, as described
earlier. If � = di, we perform a similar projection to the case
with � = hi, projecting out all states but those with the two
lowest eigenvalues of the double-site flip term associated with
di. In these eigenstates, the antiferromagnetically linked Ising
spins at i and i + 1 remain disordered, so the projection may
be equivalently thought as removing the two sites i and i + 1
and hence will be called a double-site decimation.

For � = ti or � = si, we project onto the states with the
lowest eigenvalues of −tiTi or −siSi, respectively. In the case
of −tiTi, these lowest-eigenvalue states have σ z

i−1 = σ z
i+1 = ↑

and σ z
i = ↓, or σ z

i−1 = σ z
i+1 = ↓ and σ z

i = ↑; we group the
three sites i − 1, i, and i + 1 into a single site whose Ising
spin is given by σ z

i−1 = σ z
i+1. Figure 10 illustrates this trans-

formation. Similarly, in the −siSi case, we group four sites
involved in Si into a single site, whose Ising spin is given by
σ z

i−1 = σ z
i+2. These transformations may be viewed as remov-

ing two bonds (when � = ti) or three bonds (when � = si)
and grouping the surrounding sites into a single site. Hence,
we respectively refer to these transformations as double- and
triple-bond decimations.

In the main text, we skip how the parameters in the Hamil-
tonian are transformed after each RG step, instead relegating
the full transformation rule and its derivation to Appendix B.
Here we simply point out key features of the transformation
rules that give insight into the numerical result of our strong-
disorder RG procedure presented in the next section.

First, in keeping track of hi and Ji, going to first or-
der (if � = si, � = hi, � = di, or � = ti with mi−1 = mi =
0) or second order in perturbation theory (if � = |Ji| or
� = ti with mi−1mi = 0) suffices. However, to keep track
of si and ti, one often needs to go to higher-order in per-
turbation theory. While keeping track of si and ti involves
higher-order corrections, they still provide the lowest-order
route to the nearest-neighbor Majorana couplings within the
spin cluster linked by mi = 0 bonds. Upon following the
argument presented in Appendix D, these nearest-neighbor
couplings, although from higher-order corrections, dominate
over nonlocal couplings generated from second-order pertur-
bation theory involving multisite flip terms in the limit we
are considering in which antiferromagnetic bonds in the UV
Hamiltonian are rare.

FIG. 10. Graphical illustration of the transformation we imple-
ment when � = ti. The three sites squared in green in the upper row,
on which Ti acts, are grouped into a single site after the transforma-
tion. Black lines denote specific Majorana fermion states one projects
into upon performing the decimation.

Also, the fact that ti and si come from higher-order pertur-
bation theory has an interesting implication on the expected
RG flow. First, we observe that the double- and triple-
bond decimation induced when � = ti or si removes some
bonds with the label 0 and potentially screen strongly anti-
ferromagnetic bonds. In contrast, single-site and single-bond
decimations do not contribute to such screenings and in fact
increase the proportion of bonds with 0 label in the system.
Meanwhile, the perturbatively generated couplings hi and Ji

will be much larger than si and ti due to the fact that they
originate from lower-order processes. The RG procedure is
therefore dominated by single-site and single-bond decima-
tions initially, and on the way, the proportion of bonds with
label 0 increases. Scenario 2 mentioned at the end of Sec. IV B
prevails via this mechanism.

Second, our RG transformation rule does not guarantee
that the RG energy scale decreases monotonically, due to the
following two processes:

(1) When decimating a single site, there is a chance that
the generated si is larger than the energy scale �—see the
second line of Eq. (B16).

(2) Assume that mj−2 = mj+1 = 1 and mj−1 = mj = 0,
so that sites j − 1, j, and j + 1 are linked by mi = 0 bonds.
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Here there is a three-site flip term associated with this cluster
of sites. While we do not choose to include this three-site flip
term as a candidate for the RG energy scale, there can be
occurrences where it exceeds �. If this is the case, there is
a possibility that after double-bond decimations involving the
sites j − 1 and j, or sites j − 2 and j − 1, this three-site flip
term becomes a single-site or double-site flip term that enters
the energy scale and is larger than the previous energy scale.
One can envision a similar scenario involving four-site instead
of three-site flip terms.

For the first case, the generation of couplings larger than
the original energy scale � does occur in different contexts
(most notably, strong-disorder RG schemes for antiferromag-
netic 1D spin chains with S � 1 [43–46]), but in theses cases,
it is understood that such events are suppressed near the
strong-disorder fixed points. We see that, in our case as well,
these events are very rare, and that our RG scheme also cor-
rectly captures the low-energy physics.

As for the second case, this possibility is associated with
our choice to only keep track of single-site flip terms and
double-site flip terms. Had we chosen to keep track of all
possible flip terms that flip any number of spins linked by
mi = 0 bonds, the second possibility would not appear. One
interesting observation is that, if our approximation that as-
sumes irrelevance of multisite flip terms is valid, violation
in the RG scale monotonicity due to the multisite flip term
contribution should be suppressed. Hence, whether the RG
scale monotonically decreases or not also serves as an indi-
rect test of the validity of our approximation. We see from
numerical implementations in the next section that the RG
scale behaves more monotonically upon decreasing the pro-
portion of antiferromagnetic bonds in the initial Hamiltonian,
supporting our claim that our RG procedure is justified when
antiferromagnetic bonds in the initial Hamiltonian are rare.

D. Numerical renormalization-group results

We turn now to numerical implementation of the strong-
disorder RG procedure described in the previous two sections.
In our simulations, we choose the flip term parameter hi in the
Hamiltonian Eq. (17) randomly from the power-law distribu-
tion

Ph(hi ) =
{

rhh−1+rh
i , 0 < hi < 1

0, otherwise,
(26)

as done earlier in Sec. IV A. For the Ising interaction coeffi-
cients, with probability pAF we set Ji to be antiferromagnetic
(Ji < 0), and choose its magnitude randomly from either the
uniform distribution (0,1) or from the same distribution as
for the flip-term parameter hi with rJ = rh for simplicity.
With probability (1 − pAF), we simply set Ji = 0. That is,
in our numerical implementation, there are no ferromagnetic
Ising interactions in the initial Hamiltonian: all ferromagnetic
Ising interactions that appear in the middle of the RG pro-
cedure are dynamically generated. Recall also that our RG
procedure is valid in the limit pAF � 1. We benchmarked the
RG procedure with the initial system size of L = 2 × 106,
rh ∈ {0.15, 0.2, 0.25}, and pAF ∈ {0.01, 0.025, 0.05, 0.1}. In
this section, we primarily present results for the case rh = 0.2,
pAF = 0.05, with the magnitudes of the antiferromagnetic

Ising interactions chosen from the uniform distribution over
segment (0,1); however, we also clarify the similarity and
difference in the numerical data relative to other parameter
choices. Also, the data shown or mentioned, unless stated
otherwise, are not averaged over different initial couplings
drawn from the same distribution, but we explicitly checked
that different initial disorder realizations produce very similar
cumulative measures of the RG flow described here.

We first see how the energy scale and remaining degrees of
freedom ND in the system at each RG step evolve. We define
the number of remaining degrees of freedom (effective qubits)
as

ND = (L� − Nmi=0) ln (1 +
√

2) + Nmi=0 ln
√

2, (27)

where Nmi=0 is number of bonds in the system with mi = 0,
and L� is the number of remaining sites at the current RG
stage. Equation (27) corresponds to the logarithm of the total
Hilbert-space dimensions at a given RG step, which can be
seen as follows: A bond i with the label mi = 1 has quantum
dimension 1 + √

2, the 1 coming from the spin configuration
with no domain wall at bond i and the

√
2 coming from the

spin configuration with a domain wall at i, which hosts a
Majorana fermion that contributes the

√
2 part. Meanwhile,

a bond i with the label mi = 0 only contributes a quantum
dimension

√
2 since the spin configuration always exhibits a

domain wall at that bond.
Figure 11(a) plots ND versus the log of the RG energy

scale ln(1/�). One can clearly see that there are two regions
where ND decreases monotonically with the energy scale; in
between, there is a transient region where the slope becomes
fairly flat. Comparing Fig. 11(a) with Fig. 11(b) provides a
clearer picture behind this behavior. In Fig. 11(b), the blue
line shows fmi=0 = Nmi=0/L� versus the RG energy scale and
tracks down the portion of bonds with the label mi = 0, while
the orange line plots the proportion of ferromagnetic bond
decimations in the preceding 100 decimations prior to a given
RG step, defined as fferro-dec. Once past the very early stage in
which the orange line is completely flat at zero due to the fact
that dynamically generated ferromagnetic Ising interactions
are too small to enter as the dominant RG energy scale, the
orange line quickly increases to be near 1, and while this
increase transpires, fmi=0 also quickly rises. This behavior
indicates that dynamically generated ferromagnetic Ising in-
teractions dominate this stage of the strong-disorder RG and
lock the spin degrees of freedom in the system. This trend
continues until the blue line saturates near 1; when fmi=0 ≈ 1,
most of the spin degrees of freedom are locked up, and the RG
enters the regime where the low-energy physics is primarily
controlled by Majorana fermions that live on mi = 0 bonds.

Thus the two regions in Fig. 11(a) correspond first to a
regime in which ferromagnetic Ising interactions dominate
followed by a second regime in which the Majorana fermions
govern the IR physics; the location of the intermediate tran-
sient region in Fig. 11(a) matches the energy scale in which
the blue line in Fig. 11(b) saturates near one. We observed
similar behavior in all other initial conditions used in the
RG procedure, indicating that the two-regime structure in
Fig. 11 is a generic feature of the RG for some extended
range of initial conditions. Also, this behavior is consistent
with the physical picture of the edge state we sketched in the
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FIG. 11. (a) ND versus ln(1/�) graph, shown on log-log scale.
(b) fmi=0 = Nmi=0/L� (blue line) and fferro-dec (orange line), defined
as proportion of ferromagnetic bond decimations in the preceding
100 decimations prior to a given RG step, versus ln(1/�).

introduction and Sec. IV B—spin degrees of freedom are
locked by Ising interactions, but due to the presence of
the “unscreened” antiferromagnetic interaction, the true IR
physics is governed by domain-wall Majorana fermions.

As a final remark on Figs. 11(a) and 11(b), we comment
on the horizontal spikes in these plots. While blue lines in
Figs. 11(a) and 11(b) mostly show monotonic behavior, we
see some horizontal spikes, primarily in the region where
ln(1/�) < 10. These horizontal spikes represent RG steps at
which the RG energy scale fails to decrease monotonically.
As commented earlier, large number of these spikes would
signal the breakdown of our strong-disorder RG. We point
out the following: First, such points in Figs. 11(a) and 11(b)
are concentrated near small ln(1/�). Hence, despite their
appearance, the dangerous RG steps in which the RG energy
scale does not decrease actually represent a very small portion
of the decimation procedure. In the worst case among the pa-
rameters we studied in which rh = 0.25 and pAF = 0.1, there
are ≈100 such RG steps in our numerical implementations out
of a far larger total of O(L) ≈ 106 steps. These dangerous RG
steps are further suppressed as one increases randomness in
the initial couplings by choosing a smaller rh and a smaller
pAF; at pAF = 0.01 and rh = 0.15, these events occur fewer

102 103

ln 1

102

103

104

N
D

(a)

0 10 20 30 40 50 60
ln 1

104

105

106

N
D

(b)

FIG. 12. The ND versus ln(1/�) plot, divided into the two re-
gions (a) fmi=0 < 1, using linear-log scale; and (b) fmi=0 ≈ 1, using
log-log scale. The red dotted line in panel (a) is generated from the
linear least-square fitting on the data in the region 5 < ln(1/�) < 8,
while the red dotted line in panel (b) is generated from the linear
least-square fitting on the points from the last 200 RG steps.

than 10 times. This trend supports the expectation that the
strong-disorder RG procedure works better when pAF is small
and the randomness in couplings is large.

Next we quantify the scaling laws governing the two
regimes in Fig. 11(a). For clarity, Fig. 12 presents subsets
of the data from Fig. 11(a) corresponding to regimes with
fmi=0 < 1 [Fig. 12(a)] and fmi=0 ≈ 1 [Fig. 12(b]. We first
discuss Fig. 12(a). As argued in Sec. IV B, at the early stage of
the RG where two antiferromagnetic bonds are far from each
other, the RG is “unaware” of the antiferromagnetic bonds,
and the underlying scaling law will be that of the ferromag-
netic Griffiths phase. In the ferromagnetic Griffiths phase, ND

and the energy scale � are linked via the scaling relation

ND ∼ �1/z, (28)

with nonuniversal exponent z. In the log-linear plot of
Fig. 12(a), the above scaling law appear as a straight line.
At the early stage of the RG, indeed the red dotted line
(obtained from least-square fitting) appropriately describes
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how ND scales with �, as expected. At later stages, how-
ever, significant deviations from the scaling law in Eq. (28)
appear—indicating that antiferromagnetic bonds on average
become close enough to modify the scaling behavior in such a
way that ln ND decreases much more slowly than in the ferro-
magnetic Griffiths phase. Both the early RG steps governed by
the scaling law from the Griffiths phase and the deviation from
the Griffiths scaling at later steps are observed with different
choices of initial conditions.

We reserve the precise nature of the slowdown in the
evolution of ND to future work. However, we would like to
point out one tantalizing possibility: Reexamining Fig. 11(a),
and focusing on the first region dominated by ferromagnetic
Ising interaction, the line is almost linear on a log-log plot at
the later steps of that regime. This behavior suggests that ND

might scale with some power of ln �, rather than of �. Such
activated scaling is unnatural in clean systems but commonly
emerges in infinite-randomness fixed points [25–27,31,44,46].
In our problem, activated scaling could potentially originate
from the existence of another strong-disorder fixed point
which is not a true IR fixed point of the system but never-
theless controls the physics over some intermediate energy
scales. The scaling laws governing this putative strong-
disorder fixed point may control the intermediate-temperature
crossover behaviors of various observables in the physical
system.

Figure 12(b) represents the IR regime where the physics is
governed by Majorana fermions living on the domain walls.
Here, we expect an infinite randomness fixed point to arise,
at which the following scaling between RG energy and ND

holds:

ND ∼
(

ln
1

�

)−α

. (29)

More precisely, we anticipate an infinite-randomness fixed
point akin to that of the random transverse-field Ising model,
for which α = 2. To check whether our numerical results
exhibit this behavior, we performed a least-square fitting of
ln ND versus ln ln(1/�) on the data from the last 200 RG
steps; the slope estimated in this way corresponds to the
exponent −α in the above scaling law. The red dotted line in
Fig. 12(b) shows the result of this linear fitting, which appro-
priately capture how ND and ln(1/�) scale at the later steps.
Moreover, the fit yields αest ≈ 1.9, reasonably close to the
expected value 2. These features are consistent with infinite-
randomness fixed point behavior. However, we would like to
mention that αest varies quite a bit in different disorder realiza-
tions in our numerics, presumably due to finite-size effects.
For the case we are presenting at rh = 0.2 and pAF = 0.05,
we observe αest ranging from 1.64 to 2.05, and averaging αest

over ten different disorder realizations gives αest,avg ≈ 1.84.
We recover a number closer to the expected value of 2 when
pAF = 0.1, where αest,avg ≈ 1.95, but a number farther from
2 when pAF = 0.01, where αest,avg ≈ 1.64, both of αest,avg ≈
1.95 obtained by also averaging for ten different disorder
realizations. We also find that αest deviates a bit further from
two when the antiferromagnetic Ising interaction coefficients
are chosen from the same power law as in the flip term instead
of a uniform distribution.

The above result indicates that, within the system size
we use for our numerical implementations, the scaling law
(29) with α = 2 is not manifest in all choices of parameters
but matches our simulation results increasingly well at larger
values of pAF. At larger values of pAF, due to closer distance
between antiferromagnetic bonds, fewer RG steps are needed
to reach the IR regime governed by domain-wall Majorana
fermions. Hence, assuming that the RG flows to the same
IR infinite-randomness fixed point for different choices of
pAF, choosing larger pAF gives more room for our system to
flow close enough to IR fixed points to see the asymptotic
scaling behavior. Hence, we believe that seeing αest closer
to two as one chooses larger pAF constitutes a meaningful
consistency check that the strong-disorder RG we presented
eventually flows to the infinite-randomness fixed point with
α = 2. We expect that numerical implementations with larger
system sizes will make the IR scaling more manifest as well.

To summarize this section, we numerically implemented
the strong-disorder RG procedure we developed and clearly
resolved two energy regimes: the higher-energy regime in
which dynamically generated ferromagnetic Ising interactions
freeze spin degrees of freedom, and the IR regime in which
the physics is governed by an infinite-randomness fixed point
of the Majorana fermions residing on domain walls that ex-
ist in the magnetically ordered state due to the presence of
antiferromagnetic interactions. A more quantitative analysis
reveals a regime at the early stage of the RG there wherein the
system scales as in the ferromagnetic Griffiths phase, followed
by a regime in which ferromagnetic Ising interactions still
dominate but ND decrease much slower than one would expect
in the ferromagnetic Griffiths phase due to the presence of
antiferromagnetic interactions. We also investigated how ND

scales in the IR regime and found evidences that the scaling is
consistent with the expected infinite-randomness fixed point
in the random transverse-field Ising model at criticality.

V. CONCLUSION

In this paper, we studied the edge state of 2D time-reversal
topological superconductor when both strong interaction and
disorder are present. Instead of starting from the continuum
field theory as in most studies of the edge or surface states
of topological phases of matter, we exploited the recently
derived 1D lattice model that mimics the helical edge states
of a 2D topological superconductor. Our strategy was to write
down model Hamiltonians within the framework of the 1D
lattice model, consisting of nearest-neighbor Ising interaction,
and “flip terms” that do not commute with the Ising interac-
tions and thus provide nontrivial quantum dynamics. This 1D
Hamiltonian allowed us to understand the edge physics from
the standpoint of strong-disorder RG—which is more natu-
rally understood in terms of lattice models than continuum
field theories.

In Sec. III, we explored through an exactly solvable limit
of the 1D lattice model how spin degrees of freedom frozen
by Ising interactions, random in both sign and magnitude,
give rise to a novel edge state in which time-reversal sym-
metry is spontaneously broken but Majorana fermions on
spin domain walls form a critical infinite-randomness fixed
point. In Sec. IV, we extended the analysis of Sec. III to the
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FIG. 13. Heuristic phase diagram as a function of pAF and overall
rh, rJ that parametrizes randomness of h and J defined in Eq. (20);
recall that small rh and rJ corresponds to the strong randomness. Our
strong-disorder RG analysis is valid in the red region, and we show
the physics there is governed by infinite-randomness fixed points
(IRFP). In other regions, the approach breaks down.

full-fledged strong-disorder RG on the 1D lattice model to
see how this edge state with infinite-randomness-fixed-point
physics can arise generally when randomness in the couplings
is strong, leading to the phase diagram in Fig. 13 in which
we establish infinite-randomness fixed point at the corner
of the phase diagram. Due to the limitation of the strong-
disorder RG method and approximations we made, we will
not claim that our strong-disorder RG analysis definitively
addresses the ultimate low-energy physics. Nonetheless, our
analysis strongly suggests that the edge state featuring ran-
domly oriented local ferromagnetic domains (frozen by the
spontaneous time-reversal symmetry breaking) and infinite-
randomness fixed point of domain-wall Majorana fermions
can arise generally when both strong interaction and disorder
are present.

We close this paper with some comments on future direc-
tions that our work illuminates:

(1) The numerical implementation of the strong-disorder
RG scheme utilized in Sec. IV seems to capture an extended
phase that corresponds to the edge state with infinite-
randomness fixed-point physics. Can this strong-disorder RG
capture different edge phases as well? Our RG scheme breaks
down when the concentration of antiferromagnetic bonds in
the UV Hamiltonian is too large, as then nonlocal terms we
chose to truncate become important. Turning this logic in re-
verse, extending our RG scheme to incorporate these nonlocal
terms properly opens up the possibility to capture different
edge phases and the transitions between them. This may allow
us to determine the part of the phase diagram which is marked
as the question marks in Fig. 13.

(2) What are experimental signatures of the edge state
with domain-wall Majorana fermions forming an infinite
randomness fixed point? Apart from SQUID or scanning
tunneling microscopy to detect local ferromagnetic domain
formations and scaling of thermal conductance with respect
to the system length discussed in Chou and Nandkishore [23],
our RG scheme provides a systematic way to think about how
these 1D edge states contribute to thermodynamic quantities
such as spin susceptibility χ (T ) and heat capacity C(T ) as
a function of temperature T . It is known, for instance, that
the infinite-randomness fixed point that governs low-energy
physics of our edge state contributes to the heat capacity via
the scaling C(T ) ∼ (ln 1

T )−3 [26,27]; as T approaches zero,

this 1D contribution decreases much slower than 2D bulk
contributions that follow power laws, e.g., due to phonons.
However, such a 1D contribution scales as linearly with re-
spect to system size L, while 2D bulk contributions scale as
L2. Hence, it is not entirely clear whether there is a measurable
window in which one may see the characteristic scaling from
the 1D infinite-randomness fixed point. One may similarly
infer χ (T ) and the typical conductance through keeping track
of the total moment of each unit cell in the middle of the
RG and how the system length (as opposed to total degrees
of freedom) scales with the RG energy scale.

(3) It is interesting to compare the edge state we proposed
to arise generally in this paper to the localized edge state of
quantum spin Hall insulators in Ref. [19,20]. In such edge
of quantum spin Hall insulators, Ising spins are similarly
frozen with random orientations. The key difference is that the
domain-wall degrees of freedom, now full electrons instead of
Majorana fermions, belong to class A and generally undergo
localization—in sharp contrast with the 2D topological super-
conductor situation, for which domain-wall modes belong to
class D, and critical infinite-randomness fixed point behavior
appears inevitable. It would be interesting to develop a deeper
theoretical understanding of this difference. This understand-
ing may lead to a generalization of novel edge states enabled
by disorder and interaction to dirty surface states of higher-
dimensional symmetry-protected topological phases.

What we believe to lie at the heart of this question is
that the group-cohomological classification of symmetry-
protected topological phases can be obtained by assuming
that local unitary transformations which are non-on-site in
the case of nontrivial symmetry-protected topological phases
implement symmetry actions on the edge or surface [47]. It
is also known that 2D time-reversal invariant topological su-
perconductors are beyond-cohomology symmetry-protected
topological phases; the nonlocal time-reversal symmetry ac-
tion of the 1D model we saw in Sec. II can be regarded as a
manifestation of its beyond-cohomology nature. Meanwhile,
the lattice 1D model that mimics the edge of quantum spin
Hall insulators do have local unitary symmetry actions con-
sidered in Ref. [47], and quantum spin Hall insulators may be
regarded as “cohomological” symmetry-protected topological
phases [42]. We speculate that the localization property of the
edge or surface states when subjected to strong disorder and
interaction is related to whether the bulk of the topological
phase is cohomological.
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APPENDIX A: MORE ON THE JUSTIFICATION OF THE
DECIMATION RULE

Here, we give technical details on how to derive the
decimation rules described in Sec. III C for integrating out
ferromagnetic and antiferromagnetic bonds.

Let us first introduce some notation. We define the follow-
ing binary operation between flip terms:

Fi1 � Fi2 = Fi1 Fi2 + Fi2 Fi1

2
. (A1)

One may understand � as a symmetrized product of two
operators. Using this symbol, one may also define:

n⊙
i=1

Fi = (· · · ((F1 � F2) � F3) · · · � Fn). (A2)

At the each step of the transformation, the Hamiltonian is
written as

H ({mi, hi, Ji, ti, si}) = −
∑
{ĩa}

cĩaCĩa

−
(∑

i

J jσ
z
j σ

z
j+1 + 2tiTi + 2siSi

)
,

Cĩa =
ĩa+1⊙

i=ĩa+1

Fi, cĩa = 1

�
ĩa+1−ĩa−1
a

ĩa+1∏
i=ĩa+1

hi.

(A3)

In the above notation, {ĩa} is defined to be a set of all indices
with mĩa = 1, integer subscripts a assigned with ascending
order, i.e., ĩ1 < ĩ2 < ĩ3 < · · · . The basic intuition behind Cĩa
is that this term simultaneously flips all Ising spins in a cluster
linked by bonds with mi = 0.

Compared with the Hamiltonian given in Eq. (13) of the
main text, Eq. (A3) is almost identical except that the flip
terms −himi−1miFi are superseded by the terms cĩaCĩa , which
generalize single-site flip terms in Eq. (13) in the sense
that they now allow spins linked by mi = 0 bonds to be si-
multaneously flipped as well. We see in this Appendix that
the multisite flip terms encoded by cĩaCĩa do not play an
important role in determining IR physics and hence are
dropped in the main text. However, we include them here for
completeness.

1. Integrating out antiferromagnetic bonds

To keep track of how parameters of the Hamiltonian should
transform when an antiferromagnetic bond is integrated out,
we can use the second-order degenerate perturbation the-
ory on the local Hamiltonian around the antiferromagnetic
bonds:

Hloc = H0 + Hp,
(A4)

H0 = �Aσ z
j σ

z
j+1, Hp = −h jFj − h j+1Fj+1,

treating Hp as a perturbation. The organizing principle be-
hind the perturbation theory is almost identical to the one in
Sec. III A: On any state with σ z

j = −σ z
j+1, either Fj or Fj+1

flips one Ising spin and brings that state to an excited state

with σ z
j = σ z

j+1. Acting Fj or Fj+1 once more sends the excited
state back to the original state. Hence, all terms generated
from the second-order perturbation theory involve flipping
Ising spins twice, either by Fj or Fj+1, and are given by

H (2) = − h2
j

2�A
F 2

j − h2
j+1

2�A
F 2

j+1 − h jh j+1

�A
(Fj � Fj+1). (A5)

One can show that the term
h2

j

2�A
F 2

j , in our context, can be
rewritten as

h2
j

2�A
F 2

j ≡ h2
j

4�A
Tj + (

√
2 − 1)h2

j

8�A
σ z

j−1σ
z
j + (const), (A6)

i.e., the second-order perturbation theory generates Tj and
Ising interactions. However, due to our assumption that
�A � Ji � h j , the generated Ising interaction is always much
smaller than the Ising interaction already present in the Hamil-
tonian, and hence we only keep track of Tj , included in the
second line of Eq. (14). Similarly, one can show that the

term Tj+1 is generated from
h2

j+1

2�A
F 2

j+1; this term corresponds

to the third line in Eq. (14). As for h j h j+1

�A
(Fj � Fj+1), this term

precisely corresponds to the multisite flip term Cĩa introduced
in the first line of Eq. (A3) after the transformation.

2. Integrating out ferromagnetic bonds

Now we derive the rule in Eq. (15). First, we take a look
at terms generated from the first-order and the second-order
perturbation theory result. As it turns out, one needs to incor-
porate higher-order perturbation theory results to keep track of
ti and si, the coefficients for Majorana-fermion hopping terms.
We explore what types of higher-order terms contribute to si

and ti as well.
Regarding ti and si at each step in the middle of trans-

formations according to the rule (14) and (15), the following
fact about these numbers will be useful in determining which
terms to keep track of: When t j and s j are expressed in terms
of the coefficients of the local terms in the original Hamilto-
nian [i.e., the Hamiltonian before any of the transformations
given by the rules Eq. (14) and (15)], it has the following
dependence on the strength of the Ising antiferromagnetic
interaction �A:

t j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, mj−1 = mj = 1

O
(

1
�A

)
, (mj−1, mj ) = (0, 1) or (1, 0)(

1
�2

A

)
, (mj−1, mj ) = (0, 0),

(A7)

s j = O

(
1

�2
A

)
,

where dependence on all other coefficients is absorbed into the
big-O notation. On the other hand, in our assumption, we set
�A to be the largest energy scale in the original Hamiltonian.
Hence, terms whose denominators have higher powers of �A

may be dropped in our limit.
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a. First- and second-order contributions

The setup for the perturbation theory is similar to Eq. (A4).
We work with the following, treating Hp as a perturbation:

H = H0 + Hp,

H0 = −Jjσ
z
j σ

z
j+1,

Hp = −cl jCl j − cr jCrj − 2t jTj − 2t j+1Tj+1 − 2s jS j + · · · .

(A8)

In Hp, cl jCl j and cr jCrj correspond to the multisite flip terms
involving sites j and j + 1, respectively, with the symbols l j

and r j denoting the bonds to the left and to the right of j.
The only terms that contribute at first order in Hp are

−2s jS j , which enters as t ′
j after the transformation. The first-

order contribution from the −2s jS j term is one of the three
terms in Eq. (15) on the expressions for t ′

j as well.
The only two terms that contribute to the second-order

perturbation theory are the Ising spin-flip terms. The organi-
zation principle is almost identical to the one we saw in the
antiferromagnetic bond decimation, and the terms generated
at second order are the following:

H (2) = −
c2

l j

2Jj
C2

l j
−

c2
r j

2Jj
C2

r j
− cl j cr j

Jj
Cl j � Crj . (A9)

Compared with the second-order correction from the antifer-
romagnetic bond decimation given in Eq. (A5), the above
equation can be simply obtained by substituting single-site
flip terms Fj in Eq. (A5) with the corresponding multisite flip
terms.

Let us see how the term Clj � Crj becomes the transforma-
tion rule for hi. We start by pointing out an important property
of the symmetrized product we introduced in Eq. (A1) and
(A2). One can easily show that this product is commutative
and associative. Hence, in the formula where multiple � are
involved, the result is identical regardless of how you put
parentheses on the formula or change the order of the product.

Since Clj and Crj are multisite flip terms involving sites j
and j + 1, respectively, one can, without loss of generality,
write

Clj = Clj � Fj,

Crj = Fj+1 � Crj ,
(A10)

cl j = cl j h j,

cr j = cr j h j+1.

Using the above, one may write

cl j cr j

2Jj
Cl j � Crj = cl j cr j

h jh j+1

Jj
Cl j � (Fj � Fj+1) � Crj .

(A11)

Now one can recast h j h j+1

2Jj
Fj � Fj+1 into a supersite flip term

using

h jh j+1

Jj
Fj � Fj+1 ≡ 2−1/4h jh j+1

Jj
F ′

j = h′
jF

′
j , (A12)

with F ′
j denoting a normalized supersite flip term of amplitude

h′
j , the prime added to emphasize that it is a flip term after

the transformation. Note that the value of h′
j above precisely

matches that in Eq. (15). One can plug the above redefinition
into Eq. (A11) to show that it gives the correct form of the
flip term in Eq. (A3) after the transformation as well. The
key takeaway is that due to associativity and commutativity
of the symmetrized product � we defined, in decimating the
ferromagnetic Ising bonds, one can renormalize the flip terms,
even if they are multisite, as if the flip terms at site j and
j + 1 are single-site flip terms. We use this idea in subsequent
derivations as well.

Now we analyze how − c2
l j

2Jj
C2

r j
and − c2

l j

2Jj
C2

r j
in Eq. (A11)

contribute to the transformation rule. When mj−1 = 1, Clj is
simply a single-site flip term Fj , and cl j = h j . Then, one can
show within the context of perturbation theory that

c2
l j

2Jj
C2

l j
= h2

j

2Jj
F 2

j ≡
√

2 − 1

4
√

2

h2
j

J j
σ z

j−1σ
z
j , (A13)

i.e., it only contributes an Ising interaction. This Ising interac-
tion is again much smaller than the one already present in the
Hamiltonian due to our assumption that h j is much smaller
than any other Ising interactions, and hence can be dropped
for the purpose of Sec. III. If Clj is a double-site flip term
Fj−1 � Fj , one can show that

c2
l j

2Jj
C2

l j
= h2

j−1h2
j

2�2
AJj

(Fj−1 � Fj )
2

≡ h2
j−1h2

j

16
√

2�2
AJj

σ z
j−1σ

z
j + (1 + √

2)h2
j−1h2

j

16�2
AJj

Tj−1.

(A14)

Due to similar logic we invoked before, we may drop the
generated Ising interaction. For the Tj−1 term, we observe the
following two facts: First, since we have a double-site flip
term, mj−2 = 1, while mj−1 = 0 in this case. Second, at the
beginning of the section—see also Eq. (A7)—we saw that the
transformation rule in the main text gives t j−1 = O(1/�A).
However, the coefficient generated from the double-site flip
terms is O(1/�2

A) and constitutes only subleading corrections
one may drop in our limit.

Finally, when the number of sites involved in Clj is more
than two, cl j contains two or higher power of �A in the
denominator. Because of this property, any generated terms

from − c2
l j

2Jj
C2

l j
have �4

A or higher power in the denominator.
Meanwhile, all the terms generated in the transformation rule
in the main text have at most �2

A in the denominator. Hence,
when �A is very large, terms generated through the multisite
flip terms are also much smaller than those we retain in the
main text, and we drop them in the transformation rule.

b. Higher-order contributions

To capture the leading contribution to the nearest-neighbor
coupling between Majorana fermions represented by −t jTj

terms, it is necessary to go to higher order in perturba-
tion theory. Recall that within the context of degenerate
perturbation theory, matrix elements corresponding to the
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third-order correction and the fourth-order correction are
given by

E (3)
ab =

∑
k1,k2

Ek1 ,Ek2 �=E0

〈a|Hp|k1〉〈k1|Hp|k2〉〈k2|Hp|b〉
(E0 − Ek1 )(E0 − Ek2 )

, (A15)

E (4)
ab =

∑
k1,k2,k3

Ek1 ,Ek2 ,Ek3 �=E0

〈a|Hp|k1〉〈k1|Hp|k2〉〈k2|Hp|k3〉〈k3|Hp|b〉
(E0 − Ek1 )(E0 − Ek2 )(E0 − Ek3 )

,

(A16)

where H0 and Hp are given in Eq. (A8); |a〉 and |b〉 are degen-
erate eigenstates of H0 with eigenvalue E0. Here, we simply
state which terms in the higher-order perturbation theory are
responsible for the transformation rule in the main text. One
may show that the remaining terms only generate interactions
already accounted for in the lower-order perturbation theory,
albeit with much smaller coefficients due to the fact that they
appears at higher-order, and hence can be dropped.

In the case with mj−1 = 1 and mj+1 = 0, observe that in
Eq. (A8), cl jCl j is just a single-site flip term h jFj . The terms
corresponding to choosing the first and the third Hp in the
numerator to be −h jFj and the second Hp to be −2t j+1Tj+1

decimation in Eq. (A15) generate the effective t ′
j given by

t ′
j = t j+1h2

j

4
√

2J2
j

. (A17)

Similarly, one can show that, if mj−1 = 0 and mj+1 = 1, there
is a term in the third-order perturbation theory that generates

t ′
j = t jh2

j+1

4
√

2J2
j

. (A18)

The preceding two terms precisely correspond to the first two
terms for t ′

j in the last line of Eq. (15). These contributions
do not add extra powers of �A to the coefficient owing to the
fact that they involve single-site flip terms, and in the limit
in the main text where �A is the largest energy scale, such
contributions are the leading ones.

The situation with mj−1 = mj+1 = 0 is more complicated.
In this case, both Ising spin flip terms covering sites j and
j + 1 are multisite flip terms, and analogs of the third-order
terms introduced in the previous paragraph for the case we
are considering will generally contain extra powers of �A in
the denominator. In particular, since these third-order terms
are linked to the physical processes of flipping spins back and
forth, one should apply multisite flip terms twice, resulting
in introducing �2

A or higher powers to the denominators for
Majorana fermion hopping terms. Also accounting for the �A

in the denominator for the original t j and t j+1 couplings, Ma-
jorana fermion hopping terms generated from the third-order
perturbation theory are O(1/�3

A) in this case. This term is
clearly much smaller than contributions given in the main text.

It turns out that sticking to employing single-site flip terms
only and keeping track of s j through employing the fourth-
order perturbation theory in certain situations gives Majorana
fermion hopping terms of O(1/�2

A), which is the order being
kept track of in the transformation rule of the main text.
This s j directly enters as t j at first-order when decimating a
ferromagnetic bond j and constitutes the leading contributions

over the terms involving multisite flip terms discussed in the
previous paragraph.

To keep track of s j for our consideration, whenever we
integrate out a ferromagnetic bond at j and mj−1 = mj+2 = 0,
mj+1 = 1 or mj−2 = mj+1 = 0, mj−1 = 1, we use the fourth-
order perturbation theory to generate nonzero s′

i. In both
situations, in between two bonds with the label mi = 0, there
are two bonds with mi = 1—one of which we are decimating.
We first take a look at the case mj−1 = mj+2 = 0, mj+1 = 1.
In this case, both bonds neighboring site j + 1 have mi = 1.
The terms that contributes to −2s′

jS j after the transformation
correspond to choosing the first and the fourth Hp in Eq. (A16)
to be −h j+1Fj+1, and the second and the third Hp to be −2t jTj

and −2t j+2Tj+2 or −2t j+2Tj+2 and −2t jTj . In this way one
generates

s′
j = t jt j+2h2

j+1

2J3
j

. (A19)

This term precisely corresponds to the third line of the s′
i value

in Eq. (15). Similarly, one can show that there are fourth-order
terms when mj−2 = mj+1 = 0, mj−1 = 1 that contribute to
the second line of the s′

i value in Eq. (15). Note that the
above term only has dependence on �A from t j and t j+2, so
s′

j = O(1/�2
A) as we saw before.

Hereby we fully explained rationales on how each compo-
nent of Eq. (15) is derived.

APPENDIX B: THE FULL DECIMATION RULE

This Appendix presents the transformation rule for the
full strong-disorder RG and its derivation. First, we briefly
review the RG procedure and the protocol for deriving the
decimation rules given in full form below. At each RG step,
the Hamiltonian reads

H ({mi, hi, Ji, ti, si}) = −
∑
{ĩa}

cĩaCĩa

−
(∑

i

J jσ
z
j σ

z
j+1 + 2tiTi + 2siSi

)
,

Cĩa =
ĩa+1⊙

i=ĩa+1

Fi, cĩa = hĩa+1

ĩa+1−1∏
i=ĩa+1

hi

|Ji| .

(B1)

The difference from the Hamiltonian given in the main text
Eq. (24) is that we included multisite flip terms linked by
mi = 0 bonds here, similar to how we added multisite flip
terms to the analysis in Appendix A. It is also very similar
to the Hamiltonian we encountered in Eq. (A3)—the only
difference is that now nearest-neighbor antiferromagnetic in-
teraction can have different strength. Hence, the strength of
antiferromagnetic bonds that appears in cĩa , the coefficient for
multisite flip terms, have individual bond strengths |Ji| instead
of the uniform value |�A| as in Eq. (A3). Although we mostly
ignore contributions from multisite flip terms, one may use
values of these coefficients to track down how multisite flip
terms are renormalized to a very small magnitude.
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Recall that at each step of the RG, we select a local term
with the largest coefficient, reduce number of degrees of free-
dom by projecting the system onto the low-energy subspace of
the local term, and derive the couplings in the effective Hamil-
tonian using perturbation theory. We identified six different
types of decimations depending on which local term is chosen
for the RG transformation in the main text: Ferromagnetic
or antiferromagnetic bond decimations, single or double-site
decimations, and double or triple bond decimations. In the
main text, we did not give full details of how the couplings
in the effective Hamiltonian change after each RG step.

Here we explicitly write down and derive how the pa-
rameters {m′

i, h′
i, J ′

i , t ′
i , s′

i} that determine effective couplings
of the Hamiltonian after each RG step are given in terms
of the parameters {mi, hi, Ji, ti, si} before the RG step of our
interest. In each of the six sections, we specify and justify
the transformation rules for six different types of decimations.
These rules allow one to implement the strong-disorder RG
iteratively on a computer and obtain the results presented in
the main text.

Before diving into details, we sketch here the general pro-
tocol for determining effective couplings of the Hamiltonian
after a given transformation:

(1) We incorporate all terms generated under first- and
second-order degenerate perturbation theory (for all bond
decimations except for the case covered in Sec. B 5 a) and
first-order perturbation theory (for site decimations and the
bond decimations for the case in Sec. B 5 a). Incorporating
these results suffices to provide leading-order contributions on
how hi and Ji transform, and in some cases ti as well.

(2) To track couplings between Majorana fermions with
coefficients ti and si, we incorporate some higher-order per-
turbation theory results compared with those specified in the
previous point.

The coupling ti is set to zero when mi−1 = mi = 1: In
this case, none of the two bonds involved in the −tiTi term
is strongly antiferromagnetic. One expects that because ti is
generated from higher-order perturbation theory, it will be
much smaller than the Ising couplings Ji and flip terms hi

generated from the second-order perturbation theory, and that
its effect is presumably negligible. However, within a spin
cluster linked by strongly antiferromagnetic mi = 0 bonds, ti
mediates nearest-neighbor Majorana fermion hoppings, and to
capture the physics correctly within such a cluster, ti should be
kept track of whenever mi−1 or mi is zero.

Similarly, si is only nonzero when mi−1 = mi+1 = 0 and
mi = 1 because, as we saw in Sec. III C and Appendix A,
this term only plays a role of keeping track of the nearest-
neighbor Majorana fermion hopping upon encountering this
specific configuration of m mid-RG. It involves incorporating
higher-order perturbation results than keeping track of any
other couplings, and consequently its effect should be neg-
ligible except for the specific case in which we set si to be
nonzero.

(3) We drop any contributions from multisite flip terms
involving three or more sites. We incorporate contributions
from double-site flip terms when there is no bond with mi = 0
within the second nearest-neighbor of the double-site flip term
of our interest, on the grounds that when two antiferromag-
netic bonds are close to each other, the flip terms are already

renormalized to a very small magnitude. (See Appendix D for
a more detailed argument.)

While the RG rules are admittedly complicated, having
this protocol in mind helps one to understand the underlying
organizing principles and its derivation.

Finally, we introduce the following notation that will be
useful for writing down the RG rules:

amax(a, b) =
{

a |a| > |b|
b |b| > |a|, (B2)

i.e., the function above outputs the number with largest ab-
solute value. We use this notation to implement the “max”
rule for the RG transformation in which, for example, a term
with coefficient a + b + c after the transformation receives a
modified coefficient amax(a, b, c), owing to the fact that with
the strong-disorder assumption, the coefficients a, b, and c are
likely to have wildly different magnitudes.

1. Decimating an antiferromagnetic bond at j

The transformation rule in this case reads

mj = 1 → mj = 0, (B3)

Jj−1 → amax

(
Jj−1, mj−1

(√
2 − 1

)
h2

j

8|Jj |

)
,

(B4)

Jj+1 → amax

(
Jj+1, mj+1

(√
2 − 1

)
h2

j+1

8|Jj |

)
,

t j → max

(
t j, mj−1

h2
j

8|Jj |

)
,

(B5)

t j+1 → max

(
t j+1, mj+1

h2
j+1

8|Jj |

)
,

s j → 0,

s j−1 → mj−1
1

4
√

2

t j−2h2
j

|Jj |2 , (B6)

s j+1 → mj+1
1

4
√

2

t j+1h2
j+1

|Jj |2 .

For this case only, the system length does not change, and
the Hamiltonian is determined by the same set of parameters
before or after the transformation. Hence, for brevity, above
we simply list parameters that undergo nontrivial transforma-
tions; we adopt different notation for the transformation rules
in other cases. The transformation rule for Ji and ti is captured
by the second-order perturbation theory mostly identical to the
one we saw in Eqs. (A4), (A5) and (A6). Key differences are

(1) In the fully general strong disorder renormalization
group (RG) treatment we consider here, antiferromagnetic
Ising interactions are also random. So �A in those equa-
tions should be |Jj | for application to this case.

(2) In Eq. (A6), we dropped the contributions to the
Ising interaction due to the special assumption on the energy
scales of each term made for the setup in Appendix A. Here,
however, one has to incorporate this nearest-neighbor Ising
interaction as one can see in Eq. (B4).
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(3) h j , Fj , h j+1, and Fj+1 can be a part of multisite flip
terms and corresponding coefficients; meanwhile, in the setup
of Sec. III and Appendix A, by assuming that antiferromag-
netic Ising interactions dominate and that antiferromagnetic
bonds do not appear in the close neighborhood of each other,
we avoided this situation. As explained in the main text and
the beginning of this Appendix, we mostly ignore terms gen-
erated from multisite flip terms. Note that most coefficients
generated in the above equations have mj−1 or mj+1 in the
coefficients, denoting that if (hj , Fj) or (h j+1, Fj+1) is a part
of a multisite flip term, the corresponding coefficients vanish.

Also, we remark that the transformation rule mj = 1 →
mj = 0 suffices to keep track of the multisite flip term
generated from decimating an antiferromagnetic bond at
j—which can be shown by employing associativity and
commutativity of the � operation introduced in Eqs. (A1)
and (A2).

The transformation rule for si in Eq. (B6) is a new fea-
ture and is derived as follows: By marking mj = 0, the term
−2s jS j cannot act nontrivially anymore because Sj is only
nonzero when σ z

j = σ z
j+1; yet by decimating the antiferro-

magnetic bond j, we are assuming σ z
j = −σ z

j+1 to be a hard
constraint. Hence, we just set s j to be zero when decimating

the strong antiferromagnetic bond j. Meanwhile, if mj−2 = 0
and mj−1 = 1, decimating the antiferromagnetic bond at site j
creates a configuration where we should assign nonzero s j−1

values. We generate s j−1 from the third-order perturbation
theory. Observe that since mj−1 = 1, the site j has a single-
site flip term before decimation. In the third-order formula
in Eq. (A15), one can show that selecting the first and the
third Hp to be −h jFj and the second Hp to be −2t j−2Tj−2

generates the term we desire, corresponding to the second line
in Eq. (B6). One can similarly show that there is a third-order
perturbation theory term that generates s j+1 in the third line
of Eq. (B6).

2. Decimating a ferromagnetic bond at j

In this case, the parameters {m′
i, h′

i, J ′
i , t ′

i , s′
i} after the deci-

mation, in terms of the parameters {mi, hi, Ji, ti, si} before the
decimation, are given by

m′
i =

{
mi, i < j
mi+1, i � j,

(B7)

h′
i =

⎧⎪⎨
⎪⎩

hi, i < j
2−1/4h j h j+1

Jj
, i = j

hi+1, i > j,

(B8)

J ′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ji, i < j − 2

amax

(
Jj−2, mj−2

(
1 − mj−1

) h2
j−1h2

j

16
√

2Jj J2
j−1

)
, i = j − 2

amax

(
Jj−1, mj−1

(
√

2−1)h2
j

4
√

2Jj

)
, i = j − 1

amax

(
Jj+1, mj+1

(
√

2−1)h2
j+1

4
√

2Jj

)
, i = j

amax

(
Jj+2, mj+2

(
1 − mj+1

) h2
j+1h2

j+2

16
√

2Jj J2
j+1

)
, i = j + 1

Jj+1, j > i + 1,

(B9)

t ′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti, i < j − 1

max

(
t j−1, mj−2

(
1 − mj−1

) (1+√
2)h2

j−1h2
j

32Jj J2
j−1

)
, i = j − 1

max
(

mj+1
1

4
√

2

t j h2
j+1

J2
j

, mj−1
1

4
√

2

t j+1h2
j

J2
j

, s j

)
, i = j

max

(
t j+2, mj+2

(
1 − mj+1

) (1+√
2)h2

j+1h2
j+2

32Jj J2
j+1

)
, i = j + 1

ti+1, i > j + 1,

(B10)

s′
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si, j < i − 1

mj−1
t j−1t j+1h2

j

2J3
j

, i = j − 1

mj+1
t j t j+2h2

j+1

2J3
j

, i = j

si+1, j > i.

(B11)

Notice that most of the coefficients are simply identical to
those before the transformations—only coefficients corre-
sponding to the terms around the bond j are nontrivially
modified. Hereafter, for other types of decimation rules as
well, we simply focus on how the nontrivial transformation
rules around the site/bond of interest are obtained.

Appendix A 2 already covered the essential details regard-
ing the derivation of the above rule, so here we only highlight
the key differences:

(1) The �A in Appendix A 2 should be substituted for the
Ising interaction coefficients |Ji| for the corresponding bonds.

(2) In Appendix A 2, we ignored all contributions from

−
c2

l j

2Jj
C2

l j
and −

c2
r j

2Jj
C2

r j+1

in Eq. (A9). However, in the full strong-disorder RG, if these
flip terms involve a single site or double site, we include these
contributions in the decimation rule. Contributions from these
terms are computed in Eqs. (A13) and (A14). We drop these
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contributions if flip terms involve three or more sites; in this
case, these contributions may lead to non-nearest-neighbor
Majorana fermion interactions. As mentioned in deriving the
rule for the antiferromagnetic bond decimation, we argue in
Appendix D that these terms are much smaller than −2tiTi

and may be dropped.

3. Single-site decimation at site j

For this decimation, we project onto eigenstates of h jFj

with the two lowest eigenvalues. These eigenstates exhibit
a disordered Ising spin at j, i.e., 〈σ z

j 〉 = 0, and the states
with two different eigenvalues are distinguished by whether
two Ising spins at j − 1 and j + 1 are aligned (σ z

j−1 = σ z
j+1)

or anti-aligned (σ z
j−1 = −σ z

j+1). One may treat this “pro-
jection” as removing the disordered Ising spin σ z

j from the
system—effectively decreasing the system size by one. The
new parameters are given as follows, incorporating first-order
as well as some second-order corrections:

m′
i =

⎧⎨
⎩

mi, i < j
0, i = j
mi+1, i > j,

(B12)

h′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hi, i < j − 1
(1+2−1/4 )h j−1

2 , i = j − 1
(1+2−1/4 )h j+1

2 , i = j
hi+1, i > j,

(B13)

J ′
i =

⎧⎪⎨
⎪⎩

Ji, i < j − 1
(1−2−1/4 )

2 h j, i = j − 1
Ji+1, i > j − 1,

(B14)

t ′
i =

⎧⎪⎪⎨
⎪⎪⎩

ti, i < j − 1
t j−1

2 , i = j − 1
t j+1

2 , i = j
ti+1, i > j,

(B15)

s′
i =

⎧⎪⎨
⎪⎩

si, i < j − 1
2t j−1t j+1

h j
, i = j − 1

si+1, i > j − 1.

(B16)

We set up the perturbation theory leading to this transfor-
mation by writing the Hamiltonian as

H = H0 + Hp,

H0 = −h jFj,

Hp = −c j−1Cj−1−c j+1Cj+1−2t j−1Tj−1 − 2t j+1Tj+1 + · · · .

(B17)

Here −c j−1Cj−1 and −c j+1Cj+1 are multisite flip terms as-
sociated with sites j − 1 and j + 1, respectively; terms that
commute with −hjFj and hence do not provide perturbative
corrections are contained in the ellipsis. All the results except
for Eq. (B16) are derived from the first-order perturbation the-
ory, i.e., by projecting the existing terms onto the low-energy
eigenstates we specified. Equation (B12) simply reflects the
fact that after removing site j, the bond connecting what was
originally site j − 1 and site j + 1 should carry a label 0.
Equation (B14) comes from the difference in the energy be-
tween states with σ z

j−1 = σ z
j+1 and states with σ z

j−1 = −σ z
j+1.

Equations (B13) and (B15) are simply obtained by projecting
the terms in Hp of Eq. (B17).

After showing that Eq. (B13) holds when Cj−1 and Cj+1

are single-site flip terms, one can show through the trick
employed in Eqs. (A10) and (A11) that this rule also correctly
describes how multisite flip terms evolve after the transfor-
mation. Generally, for any transformation rules for hi in other
types of decimations as well, using a similar trick shows that
the same transformation rule applies regardless of whether hi

are parts of multisite flip terms or single-site flip terms.
Equation (B16) requires going to second-order perturba-

tion theory. If mj−2 = mj+1 = 0, decimating site j produces
a configuration where m′

j−2 = m′
j = 0 and m′

j−1 = 1. Hence,
one must go beyond first-order perturbation theory employed
elsewhere in the rule to generate −2Sj−1. Recall that degener-
ate perturbation theory gives the following energy correction
at second order,

E (2)
ab =

∑
k,Ek �=E0

〈a|Hp|k〉〈k|Hp|b〉
E0 − Ek

. (B18)

Choosing the first and second Hp to be −2t j−1Tj−1 and
−2t j+1Tj+1, respectively, and vice versa, yields the nonzero
s′

j−1 in the second line of Eq. (B16).

4. Decimating a double site covering j and j + 1

This transformation rule is given by

m′
i =

⎧⎨
⎩

mi, i < j − 1
0, i = j − 1
mi+2, i > j − 1,

(B19)

h′
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hi, i < j − 1
2−1/4+

√
1+√

2
2
√

2

2 h j−1, i = j − 1
2−1/4+

√
1+√

2
2
√

2

2 h j+2, i = j
hi+2, i > j,

(B20)

J ′
i =

⎧⎪⎪⎨
⎪⎪⎩

Ji, j < i − 1
1
2

(
1 −

√
2√

1+√
2

)
d j, i = j − 1

Ji+2, j > i − 1,

(B21)

t ′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ti, i < j − 1
1

2
√

2
t j−1, i = j − 1

1
2
√

2
t j+2, i = j

ti+2, i > j,

(B22)

s′
i =

⎧⎨
⎩

si, i < j − 1
t j−1t j+2

d j
, i = j − 1

si+2, i > j − 1.

(B23)

The derivation is almost identical to that presented for the
single-site decimation case and is hence omitted.

5. Double-bond decimation associated with Tj

a. mj = mj−1 = 0

For this case the rule is

m′
i =

{
mi, i < j − 1
mi+2, i � j − 1,

(B24)
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h′
i =

⎧⎪⎨
⎪⎩

hi, i < j − 1
(1+21/2 )h j−1h j h j+1

4Jj Jj+1
, i = j − 1

hi+2, i > j − 1,

(B25)

J ′
i =

{
Ji, i � j − 2
Ji+2, i > j − 2,

(B26)

t ′
i =

⎧⎨
⎩

ti, j < i − 1(
1 − mj−2mj+1

) t j−1t j+1

t j
, i = j − 1

ti+2, i > j − 1,

(B27)

s′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si, i < j − 1(
1 − mj+1

) s j−2t j+1

t j
, i = j − 2(

1 − mj−2
) s j+1t j−1

t j
, i = j − 1

si+2, i > j − 1.

(B28)

To this end we project onto the lowest-energy state of H0 =
−2t jTj . The rule for mi and Ji corresponds to simply removing
the two bond terms at j − 1 and j, while the rule for hi follows
by projecting the multisite flip terms involving sites j − 1, j,
and j + 1 into the low-energy subspace, equivalent to apply-
ing the first-order perturbation theory. For the hi, one may
derive the rule when sites j − 1, j, and j + 1 are not linked
by any other mi = 0 bonds, i.e., when mj−2 = mj+2 = 0; the
usual trick can be employed to show that this rule applies in
more general cases where mj−2 �= 0 or mj+2 �= 0 as well.

To keep track of ti and si, we employ second-order pertur-
bation theory. From the second-order formula in Eq. (B18),
choosing two Hp to be −2t j−1Tj−1 and −2t j+1Tj+1 (in ei-
ther order) leads to the nontrivial rule for t ′

j in the second
line of Eq. (B32). Note that when mj−2 = mj+1 = 1, we
assume t ′

j−1 = 0 after the transformation—hence the factor
(1 − mj−2mj+1). Similarly, when mj−3 = 0, mj−2 = 1, and
mj+1 = 0, after the decimation we encounter the situation in
which m′

j−3 = m′
j−1 = 0 and m′

j−2 = 1. Hence, one should
keep track of s′

j−2. In this case, from Eq. (B18), choosing
two Hp to be −2s j−2S j−2 (convince yourself that this term
is nonzero in our case) and −2t j+1Tj+1 in either order leads
to the nontrivial renormalization of s′

j−2 in the second line of
Eq. (B28). Similar considerations for the case mj−1 = mj+2 =
0, mj+1 = 1 lead to the third line of Eq. (B28).

b. mj = 1 and mj−1 = 0

In this case, the rule is given by

m′
i =

{
mi, i < j − 1
mi+2, i � j − 1,

(B29)

h′
i =

⎧⎪⎨
⎪⎩

hi, i < j − 1
(1+21/2 )h j−1h j h j+1

4t j J j
, i = j − 1

hi+2, i > j − 1,

(B30)

J ′
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ji, i< j − 2

amax

(
Jj−1, mj−2

(
√

2+1)h2
j−1h2

j

32
√

2t j J2
j−1

,−mj−2
t2

j−1

2t j

)
, i= j − 2

amax

(
Jj+2, mj+1

(
√

2−1)h2
j+1

8t j

)
, i= j − 1

Ji+2, i> j − 1,

(B31)

t ′
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ti, i < j − 1
0, i = j − 1, mj−2mj+1 = 1
h2

j+1

4t2
j

t j−1, i = j − 1, mj−2 = 0, mj+1 = 1
t j−1t j+1

t j
, i = j − 1, all other cases

ti+2, i > j − 1,

(B32)

s′
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si, i < j − 1
(1 − mj+1) s j−2t j+1

t j
, i = j − 2

mj+1(1 − mj−2)
3t j−1t j+2h2

j+1

4
√

2t3
j

, i = j − 1

si+2, i > j − 1.

(B33)

We set up the degenerate perturbation leading to the above by
writing

H = H0 + Hp, H0 = −2t jTj,

Hp = − cl jCl j − cr jCrj

(B34)− 2s j−2S j−2 − 2s j+1S j+1

− 2t j−1Tj−1 − 2t j+1Tj+1 + · · · .

Here, −cl jCl j and −cr jCrj are multisite flip terms associated
with sites j − 1 (or equivalently j since mj−1 = 0) and j +
1 respectively. As before, the ellipsis encodes Hamiltonian
terms that commute with H0. We incorporate all the second-
order perturbation theory results and some terms generated
from higher order for the second line in Eq. (B32) and the third
line in Eq. (B33). For the second-order perturbation theory
formula in Eq. (B18), if we consider a term with one Hp

chosen to be a flip term −cl jCl j , the other Hp should be also be
a flip term (either −cr jCrj or −cl jCl j ) for the matrix elements
to be nonvanishing. Hence, one can separate purely flip-term
contributions, and non-flip-term contributions wherein none
of Hp is chosen to be flip term.

Consider the flip-term contribution when mj−2 = mj+1 =
1, where −cl jCl j is simply a double-site flip term and cr jCrj is
a single-site flip term. One can therefore write

cl jCl j = h j−1h j

|Jj−1|
(
Fj−1 � Fj

)
,

(B35)
cr jCrj = h j+1Fj+1.

Using similar logic as in deriving the decimation rule for the
ferromagnetic and antiferromagnetic bonds, one can show that
flip-term contributions to the second-order perturbation theory
are

H (2)
F = h j−1h jh j+1

|Jj−1|t j
PTj (Fj−1 � Fj � Fj+1)PTj

+ h2
j−1h2

j

2|Jj−1|2ti
PTj (Fj−1 � Fj )

2PTj + h2
j+1

2ti
PTj F

2
j+1PTj ,

(B36)

with PTj the projection operator to the lowest-energy eigen-
states of H0 = −2t jTj . The first term on the right side of
Eq. (B36) simultaneously flips spins at sites j − 1, j, and
j + 1, and after the projection and the decimation proce-
dure, it becomes a flip term for the supersite in which the
aforementioned three sites are combined. This contribution
is given in the second line of Eq. (B30), with the numerical
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factor (1 + 21/2)/4 coming from the projection PTj . Note that
while we derived the rules in Eq. (B30) for the special case
where mj−2 = mj+1 = 1, using a trick similar to that used for
Eqs. (A10) and (A11) shows that this rule applies to other
cases in which mj−2 or mj+1 is zero, and the supersite formed
after the decimation is still linked by some bond with mi = 0.
The remaining two terms in Eq. (B36) do not flip any spins;
rather, they can be shown to generate Ising interaction:

h2
j−1h2

j

2|Jj−1|2ti
PTj (Fj−1 � Fj )

2PTj ≡ (
√

2 + 1)h2
j−1h2

j

32
√

2t jJ2
j−1

σ z
j−2σ

z
j−1,

(B37)

h2
j+1

2ti
PTj F

2
j+1PTj ≡ (

√
2 − 1)h2

j+1

8ti
σ z

j+1σ
z
j+2. (B38)

We included these terms in the transformation rule for J ′
i . If

mj−2 = 0, the flip term containing sites j − 1 and j flips three
or more spins. We ignore this flip-term-squared contribution
as mentioned at the beginning of this Appendix. Similarly, if
mj+1 = 0, we ignore flip-term-squared contributions associ-
ated with site j + 1.

Finally, we discuss second-order perturbation theory for
non-flip-term contributions:

(1) Choosing both Hp in Eq. (B18) to be −2t j−1Tj−1 leads
to the Ising interaction

t2
i−1

2ti
σ z

j−2σ
z
j−1. (B39)

We included this contribution in the second line of Eq. (B31),
in the third argument of amax. We ignore this contribution
when mj−2 = 0; in this case, the bond at j − 2 is already
decimated, and |Jj−2| is likely much larger than this newly
generated Ising interaction. An analog of this term generated
upon choosing Hp to be −t j+1Tj+1 can be thrown out for
similar reasons: For t j+1 �= 0 in our scheme, mj+1 = 0 always.
The generated Ising interaction mediates coupling between
two spins joined by the bond j + 1, which already has been
decimated, and hence is likely to have a much larger energy
scale than the generated Ising interaction.

(2) Choosing one Hp to be −2t j−1Tj−1 and the other to be
−2t j+1Tj+1, in either order, yields the correction

t j−1t j+1

t j
T ′

j−1. (B40)

This contribution is reflected in the fourth line of Eq. (B32).
Note that if mj−2 = mj+1 = 1, this contribution vanishes be-
cause t j+1 = 0, as intended.

(3) Choosing one Hp to be −2t j+1Tj+1 and the other to
be −2s j−2S j−2 leads to the contribution in the second line of
Eq. (B33).

(4) We drop a term generated from choosing both Hp to
be s j−2S j−2. One can show that this term corresponds to an
interaction between spins at sites j − 3, j − 2, and j − 1. The
rationale is that S j is generated through employing higher-
order perturbation theory in other decimations, and although
it generate three-body Ising interactions, its contribution
is generally much smaller than two-body nearest-neighbor
Ising interactions generated through lower-order perturbation
theory.

We have now exhausted the possible terms that appear
in second-order perturbation theory, and explained which
terms should be retained versus dropped. Finally, we discuss
higher-order contributions. Recall that second-order perturba-
tion theory does not generate a nonzero t ′

j−1 when mj+1 = 1.
Similarly, second-order perturbation theory fails to generate
nonzero s′

j−1 when mj+1 = 1, mj+2 = 0, and mj−2 = 0. For
the first instance, we generate nontrivial t ′

j−1 at third-order in
perturbation theory by choosing the first and the third Hp in
Eq. (A15) to be −h j+1Fj+1 (due to the condition on the mi = 0
mark, the flip term associated with site j + 1 is a single-site
flip term), and the second Hp to be −2t j−1Tj−1. To generate
nontrivial s′

j−1, we go to fourth order. The following three
choices for Hp in Eq. (A16) are relevant:

(1) The first and third Hp are set as −h j+1Fj+1, the second
is chosen to be −2t j+2Tj+2, and the last one is −2t j−1Tj−1.

(2) The second and fourth Hp are set as −h j+1Fj+1, the
third is −2t j+2Tj+2, and the first is −2t j−1Tj−1.

(3) The first and fourth Hp are −h j+1Fj+1, while the sec-
ond and third are chosen to be −2t j+2Tj+2 and −2t j−1Tj−1, in
either order.

These contributions together generate the term in the third
line of Eq. (B33).

c. Other cases

The transformation rule when mj−1 = 1 and mj = 0 is sim-
ply a spatially inverted version of the rule for mj−1 = 0 and
mj = 1. Finally, if mj−1 = mj = 1, we assume that t j = 0,
and there is no decimation rule in this case.

6. Triple-bond decimation

The triple bond decimation induced by −s jS j brings the
following changes to the Hamiltonian parameters:

m′
i =

{
mi, i � j − 2
mi+3, i > j − 2,

(B41)

h′
i =

⎧⎪⎨
⎪⎩

hi, i < j − 1
2−1/4+21/4

4
h j−1h j h j+1h j+2

s j Jj−1Jj+1
, i = j − 1

hi+3, i > j − 1,

(B42)

J ′
i =

{
Ji, i � j − 2
Ji+3, i > j − 2,

(B43)

t ′
i =

⎧⎨
⎩

ti, i < j − 1
(1 − mj−2mj+1) t j−2t j+1

s j
, i = j − 1

ti+3, i > j − 1,

(B44)

s′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si, i < j − 2
mj+2

s j−2t j+1

s j
, i = j − 2

mj−2
s j+2t j−2

s j
, i = j − 1

si+3, i > j − 1.

(B45)

All these results are derived from second-order perturbation
theory. The procedure shares many details with the case cov-
ered in Appendix B 5 b. We start with the setup

H = H0 + Hp,

H0 = − 2s jS j,

Hp = − cl jCl j − cr jCrj − 2t j−1Tj−1 − 2t j+2Tj+2

− 2s j−2S j−2 − 2s j+1S j+1 + · · · . (B46)
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Similarly as before, −cl jCl j and −cr jCrj are multisite flip
terms that cover spins on the left and right of the bond j,
respectively. In our setup, if s j �= 0, then mj−1 = mj+1 = 0.
Hence, both flip terms are multisite flip terms that cover at
least two sites. As in Appendix B 5 b, one can divide terms
generated at second order into flip-term contributions and
non-flip-term contributions.

The flip-term contributions are given by

H (2)
F = cl j cr j

s j
PS j (Clj � Crj )PS j

+
c2

l j

2s j
PS jC

2
l j
PS j +

c2
r j

2s j
PS jC

2
r j
PS j , (B47)

where PS j is analogous to PTj but instead projects onto the
ground states of H0 = −2s jS j . One can show that when
mj−2 = mj+3 = 1, the first term is equivalent to a single-site
flip term after the decimation, whose coefficient appears in the
second line of Eq. (B42). While derived for a simple case of
mj−2 = mj+3 = 1, with the trick we employed, this rule works
even when either or both of mj−2 or mj+3 are zero. As for other
pieces, upon following the argument in Appendix D, one may
discard the flip-term-squared contributions in the second line.

For non-flip-term contributions, we have the option
to choose either −2t j−1Tj−1, −2t j+2Tj+2, −2s j−2S j−2 or
−2s j+1S j+1 for each Hp in Eq. (B18) to generate them. We
do the following:

(1) We drop any contributions that are generated from
choosing the same term for two Hp in Eq. (B18). Plugging
in −2t j−1Tj−1 in both Hp leads to a small antiferromag-
netic interaction we ignore; the same is true for plugging in
−2t j+2Tj+2 in both Hp. Similarly, choosing −2s j−2S j−2 or
−2s j+1S j+1 for both Hp lead to a non-nearest-neighbor term
we chose to ignore before as well.

(2) Choosing −2t j−1Tj−1 and −2t j+2Tj+2 for the two Hp

gives rise to the term −2t ′
j−1Tj−1 after decimation, as in the

second line of Eq. (B44). Note that we drop this term if
mj−2 = mj+2 = 0.

(3) Choosing −2s j−2S j−2 and −2t j+2Tj+2 leads to the
correction in the second line of Eq. (B45), while choosing
−2t j+2Tj+2 and −2s j+1S j+1 gives the correction in the third
line of Eq. (B45).

(4) We ignore the contribution from choosing −2s j−2S j−2

and −2s j+1S j+1 due to the similar reasoning presented in
Appendix. B 5 b.

APPENDIX C: THE FIXED-POINT VALUES OF pi

In the main text and in Appendixes A and B, we assumed
that p = 2−1/4. We here show that pi = ±2−1/4 are the only
stable fixed-point values of pi in the strong-disorder limit.
To this end, we let individual Fi have different pi values, as
opposed to one uniform value across the whole system. We
then explore how pi renormalize after each decimation.

Decimating the ferromagnetic bond at j transforms pi be-
fore the decimation to p′

i as follows:

p′
i =

⎧⎪⎨
⎪⎩

pi, i < j
2−1/2+p j p j+1

p j+1+p j
, i = j

pi+1, i > j.

(C1)

Assuming that pi and p′
i are all given by the same value p,

the only two consistent values of p are ±2−1/4. We investigate
the stability of this solution under the decimation procedure
by expanding pi = 2−1/4 + δi and p′

i = 2−1/4 + δ′
i , assuming

δi � 1. By Taylor expanding one can show that

δ′
j = O

(
δ2

j

) + O(δ jδ j+1) + O
(
δ2

j+1

)
. (C2)

That is, to lowest order, δ′
j is quadratic in δi. Hence, as-

suming that initially δ j and δ j+1 are sufficiently small, δ′
j is

much smaller than δ j or δ j+1! Hence, the fixed-point value
pi = p = 2−1/4 is stable to small perturbations. The solution
pi = p = −2−1/4 can be similarly shown to be stable under
ferromagnetic bond decimations.

Antiferromagnetic bond decimations mark the correspond-
ing bond j with mj = 0. In our schemes, mj labels direct
how to form multisite flip terms with individual Fi but do
not modify information about Fi. Hence, in our formulation,
antiferromagnetic bond decimations do not modify pi.

We conduct a similar exercise for double-bond and triple-
bond decimations. The decimations associated with Tj and S j

respectively transform pi as

p′
i =

⎧⎪⎨
⎪⎩

pi, i < j − 1
p j−1+p j+1+p∗

j (2−1/2+p j−1 p j+1 )
1+p∗

j (p j−1+p j+1 )+
√

2p j−1 p j+1
, i = j − 1

pi+2, i > j − 1,

(C3)

p′
i =

⎧⎪⎨
⎪⎩

pi, i < j − 1
p j−1+p j+2+p∗

j, j+1(2−1/2+p j−1 p j+2 )
1+p∗

j, j+1(p j−1+p j+2 )+
√

2p j−1 p j+2
, i = j − 1

pi+3, i > j − 1,

p j, j+1 = 2−1/2 + p j p j+1

p j+1 + p j
. (C4)

In both cases, one can expand pi = ±2−1/4 + δi, p′
j−1 =

±2−1/4 + δ′
j−1 to show that δ′

j−1 is, to lowest order, quadratic
in δi.

Finally, we comment on how a single-site and double-site
decimation modifies pi. There, as we saw in the previous Ap-
pendixes and the main text, pi = ±2−1/4 is a fixed point of the
transformation. One can perform the same exercise of expand-
ing pi = ±2−1/4 + δi and investigate how p′

i = ±2−1/4 + δ′
i

evolves. Unfortunately, in this case, the δ′
i that nontrivially

renormalize are, to the lowest order, linear in δi. However,
we also observed that site decimations generate a ferromag-
netic interaction of order �, and in the strong-disorder limit
site decimations are immediately followed by ferromagnetic
bond decimations. If one combines the effect of ferromagnetic
bond decimations, once more the nontrivially renormalized δ′

i
are quadratic in δi. Hence, in any strong-disorder fixed point
pi = ±2−1/4 persist as stable fixed-point values.

As a closing remark, there may be some strong-disorder
fixed points with pi themselves randomly distributed. We re-
serve exploring such strong-disorder fixed points for future
work.

APPENDIX D: MORE ON THE IRRELEVANCY OF THE
MULTISITE FLIP TERMS

Here, we lay out the rationale for dropping the contri-
butions from multisite flip terms in our strong-disorder RG
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scheme. We specifically argue that (i) multisite flip terms
are renormalized to a very small magnitude compared with
the RG energy scale at each step and (ii) nonlocal Majorana
fermion interactions generated from multisite flip terms are
much smaller than the nearest-neighbor Majorana fermion
hopping terms we keep track of in the −tiTi and −siSi terms
from Eq. (24) and can be ignored. Point (i) justifies ignoring
any possible decimation procedure coming from the multisite
flip terms, while (ii) justifies ignoring terms generated due to
multisite flip terms during the decimation procedure associ-
ated with local terms we do keep track of in our RG procedure.

The key observation behind the argument is that antifer-
romagnetic bonds are typically very far from each other in
the limit we are considering, and up to some energy scale
�FG (FG standing for ferromagnetic Griffiths), the RG flow is
“unaware” of the presence of antiferromagnetic bonds. Hence,
when the RG energy scale satisfies � > �FG, the ferromag-
netic Griffiths behavior characterized by the distribution of
couplings given in Eq. (21) governs the scaling behavior.
In Eq. (21), when � is small enough, we have α � β, and
ferromagnetic Ising interactions are on average much larger
than flip terms. Hence, when antiferromagnetic bonds ap-
pear rarely enough that �FG is sufficiently small, one can
generally expect flip terms to be renormalized to very small
values at � ∼ �FG, especially compared with ferromagnetic
interactions present or generated mid-RG. Meanwhile, up to
� > �FG, there is only a small number of clusters connected
by mi = 0 bonds whose sizes are larger than two; most sites
are not flanked by mi = 0 bonds at all, or are flanked by one
bond due to the presence of rare antiferromagnetic bonds.

Recall that in the RG flow we presented in the main
text, there is also an energy scale �MF below which spins
are mostly pinned by strongly antiferromagnetic bonds with
mi = 0 and the physics of the system is governed by domain-
wall Majorana fermions. When �MF < � < �FG, multisite
clusters form, and multisite flip terms potentially disrupt the
RG procedure we presented in the main text. The high-level
idea is that since flip terms are renormalized to a very small
magnitude at � ∼ �FG, their effect will be suppressed during
�MF < � < �FG as well; when � < �MF , all spins in the
system effectively form a single cluster, and the notion of in-
dividual flip terms, whether multisite or single-site, effectively
disappears.

Let us spell out more detailed arguments in favor of points
(i) and (ii) from the beginning of the Appendix. Even when
�MF < � < �FG, the majority of decimations at RG steps
are ferromagnetic bond decimations. Another key observa-
tion regarding the nearest-neighbor Ising interaction is that,
according to the rule we derived in Appendix B, when the
nearest-neighbor Ising interaction Ji obeys a nontrivial RG
transformation rule, the rule always involves the “amax” sym-
bol introduced at the beginning of Appendix B. The rule
essentially chooses the dynamically generated Ising interac-
tion only when it is larger than the Ising interaction Ji already
present. In other words, the magnitude of the nearest-neighbor
Ising interaction does not decrease under the RG transforma-
tion rule. Hence, the relevant RG energy scales in the regime
�MF < � < �FG are effectively lower-bounded by the fer-
romagnetic Ising interactions present or generated up to the
scale � ∼ �FG, and these ferromagnetic Ising interactions are

much larger than hi that parametrize the magnitude of spin-
flip terms. This conclusion implies that the possibility that
any flip terms—including multisite ones that start to appear
frequently in the regime �MF < � < �FG—enter as the RG
energy scale is greatly suppressed in the regime of our interest,
justifying (i).

To justify (ii), we observe that in our RG, hopping or
interaction between domain-wall Majorana fermions are es-
sentially generated by the physical processes of flipping spins
back and forth. Using this observation, one may estimate
and compare contributions to Majorana fermion hoppings
from single-site flip terms and multisite flip terms. To do so,
assume that at the middle of an RG step with RG energy
scale � ∼ �FG, there are two bonds at j and j + n which
become two neighboring bonds, say j′ and j′ + 1 with labels
mj′ = mj′+1 = 0 at a later RG step. Denote the amplitude for
Majorana fermion hopping between bond j and bond j + n at
the later RG step of the RG as t j, j+n. When only the single-site
flip terms are utilized, the simplest way to generate t j, j+n is
to flip spins between bond j and bond j + n back and forth.
Then, one may estimate t j, j+n to be

t j, j+n ∼
∏ j+n

i= j+1 h2
i∏2n−1

k=1 �k

. (D1)

The fact that one flips spins back and forth is reflected in
the h2

i in the numerator, while �k in the denominator is the
energy scale lying between �P and �FG and characterizes the
virtual spin-flip energy cost. Note that numerator is a product
of 2n energy scales, while the denominator is a product of
2n − 1 energy scales, so the expression on the right side has
the correct dimensions. Finally, invoking the same logic used
to justify (i), generally �k � hi for any k and i. Hence, when
n, the number of spins involved to generate t j, j+n, is larger, the
generated t j, j+n will be smaller.

Multisite flip term contributions for the same Majorana
fermion hoppings appear at a later step of the RG, when the
bond j and j + n becomes two neighboring bonds j′ and
j′ + 1, by flipping the cluster including the bonds j′ and j′ + 1
back and forth. From the perspective of the renormalized
system at the RG energy scale � ∼ �FG, spins comprising
the cluster at the later step are not only those between bond j
and j + n—a large number of spins to the left of the bond j
and to the right of the bond j + n are also involved. One may
write down a formula analogous to Eq. (D1) for the multisite
flip term contributions; however, it will involve a number
of hi much larger than 2n in the numerator and a number
of �k much larger than 2n − 1 in the denominators. Hence,
the generated Majorana fermion hoppings are expected to be
much smaller than the single-site contributions that involve
fewer spins. Furthermore, all multisite fermion terms are pre-
sumably irrelevant (as claimed in the original paper by Fisher
[26], supported by recent numerics in Ref. [48]; see also [49])
near the infinite randomness fixed point of our consideration.
Hence, as long as Majorana fermion hopping terms generated
from multisite flip terms are kept to be sufficiently small as
we suggested here, they cannot alter the IR physics. This
argument justifies cutting off terms generated from multisite
flip terms in our decimation procedure.
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