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Nonlinear Lifshitz photon theory in condensed matter systems
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We present an interacting theory of a U(1) gauge boson with a quadratic dispersion relation, which we call the
“nonlinear Lifshitz photon theory.” The Lifshitz photon is a three-dimensional generalization of the Tkachenko
mode in rotating superfluids. Starting from the Wigner crystal of charged particles coupled to a dynamical U(1)
gauge field, after integrating out gapped degrees of freedom, we arrive at the Lagrangian for the nonlinear
Lifshitz photon. The symmetries of the theory include a global U(1) 1-form symmetry and nonlinearly realized
“magnetic” translation and rotation symmetries. The interaction terms in the theory lead to the decay of the
Lifshitz photon, the rate of which we estimate. We show that the Wilson loop, which plays the role of the
order parameter of the spontaneous breaking of the 1-form global symmetry, deviates from the perimeter law
by an additional logarithmic factor. We explore potential connections to other condensed matter systems, with a
particular focus on quantum spin ice and ferromagnets. Finally, we generalize our theory to higher dimensions.
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I. INTRODUCTION

Recent years have seen a significant surge of interest in
exotic quantum field theories [1–8]. These field theories fre-
quently have unusual symmetries that are not possible in
ordinary Lorentz-invariant theories. One example that ex-
hibits many features typical of these theories is the so-called
“Lifshitz scalar” theory, whose Lagrangian contains a term
involving four spatial derivatives of the field, while the usual
term with two spatial derivatives is absent. These theories
manifest exotic symmetries that limit the mobility of a single
charge (the “dipole symmetry” or, in some cases, its gener-
alization called “higher-multipole symmetries”). Recently, a
nonlinear Lifshitz scalar theory, characterized by nonlinear
dipole and multipole symmetries, has been found to describe
the Tkachenko mode of a rotating two-dimensional superfluid
[9]. In this system, the dipole symmetry is simply the sym-
metry of magnetic translations, while the higher-multipole
symmetry is that of the magnetic rotation. Since these are
exact symmetries of the system at the microscopic level,
the nonlinear quantum Lifshitz theory of the Tkachenko
mode does not require fine tuning [10]. The theory of the
Tkachenko mode allows a convenient formulation as a non-
commutative field theory [11–13]. The form of the cubic
self-interaction of the Tkachenko scalar is fixed by the sym-
metries and determines the decay rate of the Tkachenko
mode.

In this paper, we consider three-dimensional analogs of the
Tkachenko mode in two dimensions. We show that such an ex-
tension is indeed possible, and the resulting theory describes
a U(1) gauge boson with a quadratic dispersion relation:
the “Lifshitz photon.” This photon can be interpreted as the
Nambu-Goldstone boson of the spontaneously broken 1-form
symmetry.

The paper is organized as follows. We first analyze in detail
in Sec. II a prototypical example: a Wigner crystal of charged
particles, immersed in a fixed uniformed compensating back-
ground, interacting with a dynamical U(1) gauge field. We
show that the low-energy mode in this model is a Lifshitz
photon. We then (in Sec. III) show that the model exhibits a
nonlinear version of the dipole symmetry, which can be used
to constrain the form of the self-interaction of the Lifshitz
photon, and which allows us to determine the decay rate of the
latter. In Sec. IV we comment on one peculiar feature of the
higher-form symmetry in our system: a logarithmic correction
to the perimeter law for the ’t Hooft loop. In Sec. V we discuss
some spin systems where the Lifshitz photon may be realized,
and in Sec. VI we speculate on a possible deconfined phase
of ferromagnetism in which the symmetries of the ferromag-
netic nonlinear sigma model are realized through the Lifshitz
photon.

II. PROTOTYPE: WIGNER CRYSTAL COUPLED
TO DYNAMICAL U(1) GAUGE FIELD

The prototypical system that we will consider is the system
of charged particles (“ions”) forming a lattice, interacting with
a U gauge field Aμ. At this moment we do not specify the
nature of Aμ; it can be the physical electromagnetic field or an
emergent U(1) gauge field of, e.g., a three-dimensional spin
liquid. We assume that there is a neutralizing background with
charge of the opposite sign, and that this background has no
dynamics of its own.

In this section we will construct a linear theory of excita-
tions and show that the lowest mode is a “Lifshitz photon,”
i.e., a quasiparticle with two transverse polarizations and a
quadratic dispersion. One can describe the lattice of the ions
in terms of the displacement field of u(x). Let n0 be the
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equilibrium density of the ions, and M and e be the mass and
the charge of the ion. The Lagrangian of the system is

L = Mn0

2
u̇2 − μ

4

(
∂iu j + ∂ jui − 2

3
δi j∂kuk

)2

− K

2
(∂iui )

2 + en0u · E + E2

2
− B2

2
, (1)

where E = ∇A0 − ∂t A, B = ∇ × A, and μ and K are the
shear and bulk moduli of the lattice (for simplicity we as-
sume rotational invariance). We will find later that our mode
has quadratic dispersion ω ∼ q2 � q, so at low momenta
the terms u̇2 and E2 can be omitted since u̇2 � (∂u)2, and
E2 � B2. The Lagrangian now becomes

L = − μ

4

(
∂iu j + ∂ jui − 2

3
δi j∂kuk

)2

− K

2
(∂iui )

2 + en0u · E − B2

2
. (2)

Variation of the action with respect to A0 gives rise to
condition

∇ · u = 0, (3)

which means that the displacement is constrained to be trans-
verse. This condition can be solved:

u = 1

gn0
∇ × a, (4)

where for future convenience we have introduced a for now
unspecified constant g. We will now integrate out Ai. There
are two terms in the Lagrangian that contain Ai:

− e

g
(∇ × a) · ∂t A − B2

2

= e

g
∂t a · B − B2

2
+ total derivative. (5)

It is tempting to integrate over B here to obtain ȧ2, but that
would be incorrect: the three components of B are not inde-
pendent but satisfy the condition ∇ · B = 0. We introduce a
Lagrange multiplier enforcing this constraint:

e

g
∂t a · B − B2

2
+ e

g
a0(∇ · B). (6)

Now we can integrate over B. Setting B at the saddle point
located at

B = e

g
(∂t a − ∇a0) (7)

we get

e2

2g2
(∇a0 − ∂t a)2. (8)

Together with the elastic energy, the Lagrangian is

L = e2

2g2
eiei − μ

2g2n2
0

(∂ib j )
2, (9)

where ei = ∂ia0 − ∂t ai and bi = εi jk∂ jak . The theory now has
a U(1) gauge invariance under aμ → aμ + ∂μλ; the excitation

of the model is a “Lifshitz photon” with the quadratic disper-
sion relation

ω =
√

μ

n0
q2. (10)

That the dispersion relation is quadratic is due to the absence
of the usual term b2 from the Lagrangian, which can be
traced back to the translational invariance. Under translation
the lattice displacement is shifted by the constant vector:
u → u + c. Taking into account Eq. (4) this is implies a
shift symmetry acting on b, which forbids the term b2 in the
Lagrangian.

The photon here is a dual to the physical photon. That can
be seen from Eq. (7), which equates, up to a proportionality
coefficient, the Lifshitz electric field with the physical mag-
netic field. One can also see this duality by introducing an
external electric charge e located at x = 0 into the system.
This is done by adding to Eq. (2) a term eδ(x)A0(x). Then
variation over A0 gives rise to the equation

en0∇ · u = eδ(x) ⇒ ∇ · b = gδ(x), (11)

which means that electric charge is a magnetic monopole in
the dual theory, with the previously introduced parameter g
playing the role of the monopole charge.

Vice versa, if we have a magnetic monopole of charge g
then we have to modify the last term in Eq. (6) as

e

g
a0[∇ · B − gδ(x)]. (12)

That means introduction of a pointlike electric charge −e in
Lifshitz photon theory.

The Lifshitz photon can be interpreted as the result of a hy-
bridization between two vector modes: the transverse phonon,
carried by the transverse components of the displacement u,
and the photon Aμ. The mixing between the two modes is due
to the dipole coupling u · E.

Let us also note here that the situation described in our
model should occur exactly at the quantum critical point of
the ferroelectric phase transition [14]. Such a phase transition
can be described by the Lagrangian (1) where u is interpreted
as the electric polarization density of the material, with the
addition a potential energy term

Lpot = −Mn0

2
ω2

0u2 − O(u4). (13)

Here ω0 is the frequency of the transverse optical phonon (at
zero wave number). It is known that the dielectric constant
diverges as one approaches the critical point ω0 → 0, hence,
the velocity of light in the material goes to zero. Exactly at the
phase transition point ω0 = 0, the photon velocity vanishes,
and hence it is natural for the dispersion relation for the photon
to become quadratic.

Note that the quadratically dispersing photon can only be
seen very close to the ferroelectric phase transition, i.e., when
the photon velocity is smaller than the phonon velocity. This
requires the dielectric constant larger than 1010. To compare,
the largest value of the dielectric constant that has been re-
ported in isotope-substituted SrTiO3 is �2 × 105 [15].

035135-2



NONLINEAR LIFSHITZ PHOTON THEORY IN CONDENSED … PHYSICAL REVIEW B 109, 035135 (2024)

III. NONLINEAR LIFSHITZ PHOTON THEORY

In the previous section, we have presented a model in
three spatial dimensions that reduces to the Lifshitz photon
theory at low energy in Eq. (9). The model is a Wigner crystal
coupled to a dynamical U(1) gauge field. We now investigate
this model at the nonlinear level. We will find that the model
possesses a nonlinear version of the dipole symmetry as well
as a nonlinear multipole symmetry. Our construction can be
considered as a three-dimensional generalization of the theory
of the Tkachenko mode constructed in Ref. [9].

A state of a solid can be described by a map between the
external coordinate xa and the coordinate frozen into the solid
X a(t, xi ), where a = 1, 2, 3 in three spatial dimensions. The
lattice displacement is ua = δa

i xi − X a. The particle-number
current is a topological current

Jμ = n0

6
εμνλρεabc∂νX a∂λX b∂ρX c, (14)

where n0 is the unperturbed density. In particular, the particle-
number density [16]

J0 = n0 det |∂iX
a| = n0

6
εi jkεabc∂iX

a∂ jX
b∂kX c (15)

is proportional to the Jacobian of the transformation from the
external spatial coordinate xa to the coordinates frozen within
the solid X a.

The particle-number current is coupled to the U(1) gauge
field Aμ through a term AμJμ. To introduce a nondynamical
neutralizing background with the background charge density
−n0, we will turn on a background Kalb-Ramond gauge field
Bμν = −Bνμ with a nonzero field strength

Hi jk = ∂iB jk + ∂ jBki + ∂kBi j = 	−3εi jk, (16)

with the “magnetic length” 	 related to n0 by n0 = 1
2π

	−3 and
couple it to the electromagnetic field Aμ through a “BF” term
− 1

2π
εμνλσ Bμν∂λAσ . The Lagrangian for our model can then

be written as follows:

L = 1

6π	3
Aμεμνλρεabc∂νX a∂λX b∂ρX c

− BiBi

2e2
− ε(Oab) − 1

2π
εμνλσ Bμν∂λAσ , (17)

where Oab = ∂iX a∂iX b, Bi = εi jk∂iAk (and should be distin-
guished from the components of the Kalb-Ramond two-index
tensor Bμν), and ε(Oab) is the elastic energy of the lattice.
Note that terms involving the time derivatives of X a or Ai are
dropped because we expect the low-energy modes will have
quadratic dispersion ω ∼ q2.

Introducing the compensating background through the
Kalb-Ramond field allows the background to carry a nonzero
divergenceless electric current, parametrized through the B0i

components. Indeed, the BF term in the action can be ex-
panded as

− 1

2π
εμνλσ Bμν∂λAσ = − 1

π
B0iB

i − A0

2π	3
. (18)

The first term, up to a total derivative, can be written as Ji
extAi

where the external current Ji
ext = − 1

π
εi jk∂ jB0k . This current

is divergenceless, consistent with the constant density of the
neutralizing background.

Upon varying the Lagrangian with respect to A0, we obtain
a constraint

1
6εi jkεabc∂iX

a∂ jX
b∂kX c = 1, (19)

which means that the transformation from xi to X a is vol-
ume preserving. To the linear order of displacement u, it
follows from Eq. (19) that ∇ · u = 0, indicating that the dis-
placement is divergence free. Here we would like to address
the constraint (19) at the nonlinear level. One knows that a
volume-preserving diffeomorphism (VPD) can be obtained
by exponentiating an infinitesimal VPD [17], the latter being
given by a differential operator −ξ i∂i where ξ i is a divergence-
free vector field ∂iξ

i = 0. We can solve the constraint on ξ i

by introducing a gauge potential ai: ξ i = 	3εi jk∂ jak ≡ 	3bi.
Thus, we have

X a = e−ξ i∂i xa

= xa − ξ a + 1

2
ξ k∂kξ

a − 1

6
ξ l∂l (ξ

k∂kξ
a) + · · ·

= xa − 	3ba + 	6

2
bk∂kba + · · · . (20)

In order to explore the linear regime and find the quadratic
Lagrangian, we initiate our analysis by Eq. (20). One can
then expand the Lagrangian and reach the linearized Lifshitz
photon theory in Eq. (9). This corresponds to a quadratic dis-
persion relation ω ∼ q2 which is protected by the “magnetic”
translation symmetry, as described in the subsequent section.

A. Nonlinear multipole symmetries in 3+1 dimensions

In this section, our focus is directed toward the exploration
of nonlinear dipole and higher multiple symmetries in 3+1
dimensions.

We first consider translation. The operation of translation
of the whole lattice by a spatial vector ci is given by [18]

X a → X a(�x − �c) = e−ci∂i X a. (21)

But since X a is related to ai by Eq. (20), one reaches

e−	3(∇×a)i∂i → e−ci∂i e−	3(∇×a)i∂i . (22)

From this we derive the action of translation on the Lifshitz
photon ai, it can be expressed as

ai → ai + 1

	3
εi jkc jxk − 1

2
εi jkc j (∇ × a)k + · · · . (23)

This nontrivial form of the transformation law has the conse-
quence that two translations do not commute:

[Pi, Pj] = i	−3εi jkQk, (24)

where under Qk the Lifshitz photon transforms as ak → ak +
ck . Thus, Qk can be identified with a conserved charge of
a U(1)(1) 1-form symmetry, which is spontaneously broken,
giving rise the Lifshitz photon is a Nambu-Goldstone boson
(NGB).

Equation (24) should remind one of algebra of the trans-
lations on a two-dimensional plane in the presence of a
magnetic field: the “magnetic translations.” There the com-
mutator of the two magnetic translations is proportional to
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the U charge, with the coefficient of proportionality being the
magnetic field.

Thus, the Lifshitz photon is a three-dimensional gener-
alization of the Tkachenko mode propagating on a vortex
lattice of a rotating two-dimensional superfluid. As in the
latter case, the quadratic dispersion relation is a consequence
of the symmetry. The Lifshitz photon here is also a NGB
“shared” between the spontaneously broken U and transla-
tional symmetries, with the consequence that the number of
broken generators is not equal to the number of NGBs, which
is two in the case of the Lifshitz photon [19–22].

In the Appendix we generalize the Lifshitz photon theory
to d spatial dimensions. The algebraic formulation presented
in Eq. (24) becomes associated with a (d − 2)-form charge
Q(d−2).

The system also realizes rotations as nonlinear higher-
multipole symmetry, in analogy with the magnetic rotation in
the theory of the Tkachenko mode. From

e−	3(∇×a)i∂i → eεi jkωix j∂k e−	3(∇×a)i∂i , (25)

we find that rotation is realized as a higher-multipole
symmetry

ai → ai + 1

	3
ωix

2 + · · · . (26)

B. Interaction and decay rate of the Lifshitz photon

The nonlinear nature of the parametrization (20) and the
dipole symmetry (23) imply that the effective Lagrangian of
the Lifshitz photon must contain nonlinear terms describing
its self-interaction.

We will limit ourselves to finding the cubic vertices of
interaction. We first compute the current Ji in Eq. (14) by
substituting Eq. (20),

Ji = ḃi + 	3

2
(ḃk∂kbi − bk∂kḃi ) + O(a3). (27)

Since ∂iJi = 0, one expects that one can write Ji = εi jk∂ j�k .
From Eq. (27) one obtains

�i = ȧi + 	3

2
εi jk ḃ jbk + O(a3). (28)

This allows us to rewrite

JiAi − B2

2e2
= Bi�i − B2

2e2
+ total derivative. (29)

Integrating over Bi after introducing a Lagrange multiplier
enforcing the constraint ∂iBi = 0, one then obtains in the
action the term

2πα

(
ei − 	3

2
εi jk ḃ jbk

)2

, (30)

where α = e2/(4π ). The cubic interaction that emerges from
this term, after integration by parts, can be written as

2πα	3eie j∂ib j . (31)

Another source of interaction is in the elastic energy. This
includes the quadratic term in the elastic energy, expanded to
cubic order in b according to the third equation in Ref. [17],

as well as in the cubic term of the elastic energy. The terms
that one obtains are (suppressing spatial indices)

(∂b)3, bdb∂2b. (32)

Using the power-counting scheme appropriate for the Lif-
shitz photon theory (in which momentum has dimension 1 and
energy has dimension 2), one finds that the coupling constants
in front of the terms (31) and (32) have dimension − 5

2 . Since
the decay rate is proportional to the square of the coupling
constants, the energy dependence of the decay width of the
Lifshitz photon is

�(E ) ∼ E
7
2 . (33)

Compared with the Tkachenko mode in two dimensions, the
decay width of the Lifshitz photon tends to zero at a faster
rate.

IV. PROSPECTS OF HIGHER FORM SYMMETRY

As we mentioned before, the gauge field a is the dual gauge
field of the physical electromagnetic (EM) field A. The Wilson
loop of a, i.e., Wa = exp(i

∮
C dl · a) is the order parameter of

the magnetic 1-form symmetry U(1)(1) of the physical EM
field, where C is a closed loop in space. And Wa is also the ’t
Hooft loop of the EM field. Based on the Lagrangian (1), the
scaling dimension of a is [a] = 1

2 , this leads to the observation
that the Wilson loop of a scales as

〈Wa〉 ∼ exp(−cL log L), (34)

where L is the perimeter of C. This is a qualitatively different
scaling from that of the ’t Hooft loop of an ordinary EM field
in the vacuum, which should decay with a perimeter law. A
suppressed scaling of the ’t Hooft loop of the EM field can
usually be attributed to the screening from the electric charges.
The strongest screening of the EM field is the condensation of
the electric charges, which drives the EM field into a Higgs
phase and render the ’t Hooft loop decay with an area law. In
our case, the EM field is screened by the fluctuation u of the
Wigner crystal of the electric charges, which is a much weaker
screening compared with the Higgs mechanism, but still leads
to a different scaling of the ’t Hooft loop. Simple power
counting suggests that, in higher-dimensional generalizations
of the theory where a becomes a (d − 2)-form gauge field (d
is the spatial dimension rather than space-time dimension), the
“Wilson membrane” of a should always violate the perimeter
law with an extra logarithmic factor.

The logarithmic correction to the ’t Hooft loop also oc-
curs in another more familiar system: the (3 + 1)-dimensional
QED with massless Dirac fermions. First of all, let us assume
that there are no Dirac monopoles in the QED, hence there
is a strict magnetic U(1)(1) 1-form symmetry. With massive
matter fields, the ’t Hooft loop should decay with a perimeter
law, and the coefficient of the perimeter law is proportional to
1/α, where α is the fine-structure constant:

log〈Wa〉 ∼ − 1

α
L. (35)

However, when the EM field Aμ is coupled to the massless
Dirac fermions, α will be marginally irrelevant in the infrared
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due to screening from the massless fermions, hence, we expect
the ’t Hooft loop to receive an extra factor of log L for large L:

log〈Wa〉 ∼ − 1

α0
L log L. (36)

This is because the fine-structure constant α(μ) at energy
scale μ is α(μ) ∼ α0/ log(1/μ), and μ ∼ 1/L.

V. POTENTIAL CONNECTION TO OTHER LATTICE
GAUGE SYSTEMS

In this section we explore a potential realization of the
physics discussed in the previous sections in the context of
other systems with a description of lattice gauge theories. One
class of such systems is the well-known quantum spin ice [23].
The quantum spin-ice materials usually have quantum Ising
spins from the rare-earth elements that live on the pyrochlore
lattice, which is dual to the diamond lattice in the sense that
the sites of the pyrochlore lattice are the links of the diamond
lattice. The largest term of the Hamiltonian is the following:

H0 =
∑

t

Jz

(
4∑

i=1

Sz
t,i

)2

. (37)

The subscript “t” labels each tetrahedron of the pyrochlore
lattice, and Sz

t,i labels the ith spin- 1
2 degree of freedom (the

z component only) on the tetrahedron. Notice that H0 is
simply a nearest-neighbor antiferromagnetic interaction on
the pyrochlore lattice. The ground states of H0 consist of
all configurations of Sz

t,i which satisfy
∑

i Sz
t,i = 0 for each

tetrahedron t , i.e., each tetrahedron has two up spins and two
down spins.

Sz is mapped to the (discrete) electric field, and the
condition

∑
i Sz

t,i = 0 is mapped to the Gauss law con-
straint ∇ · E = 0. Now suppose we turn on spin exchange∑

〈i, j〉 J⊥(Sx
i Sx

j + Sy
i Sy

j ), at the third-order perturbation of
J⊥/U , we are going to generate a ring-exchange term

Hr ∼
∑
�

JrS+
1 S−

2 S+
3 S−

4 S+
5 S−

6 . (38)

This term will map to the term Hr ∼ Jr cos(∇ × A), where
Jr ∼ J3

⊥/J2
z .

Now we organize the entire low-energy effective Hamilto-
nian as

H = U

2
E2 − Jr cos(∇ × A). (39)

Notice that now we allow E to take all half-integer values, and
the first U term will constrain the low-energy Hilbert space to
E = ± 1

2 .
We can now consider polarizing a fraction of the Ising spin

Sz. If one Sz is flipped from Sz = − 1
2 to Sz = + 1

2 , it amounts
to create an electric field on a site of the pyrochlore lattice (or
the link of the diamond lattice), which violates the constraint
∇ · E = 0 on a pair of nearest-neighbor sites of the diamond
lattice, i.e., this is equivalent to creating a dipole of gauge
charges. More precisely it creates a positive gauge charge on
the sub-lattice A of the diamond lattice, and a negative gauge
charge on the sublattice B of the diamond lattice (Fig. 1). In

FIG. 1. (a) Shows the basic structure of the pyrochlore lattice,
which is built with corner-sharing tetrahedrons (red); the sites of
the tetrahedrons are the links of a dual diamond lattice; the two
sublattices of the diamond lattice are labeled A and B. The purpose of
(b) is to show that the dynamics of defects (gauge charges) on A and
B sublattices can be very different, as long as there is no symmetry
that connects A and B sublattices. The dynamics of gauge charges on
sublattice A is controlled by spin exchange J ′ in the sketch, while the
dynamics of gauge charges on B is controlled by spin exchange J .

general we have the following relation:∮
A

E · ds = nA − nB,

M ∼
∑

nA + nB. (40)

Here nA and nB count the number of “defects” that violate
the original constraint

∑
i Sz

t,i = 0 on sublattice A and B of
the diamond lattice, respectively, and their total number can
be controlled by the magnetization M of the system. These
defects become mobile with the J⊥ spin-exchange term, but
J⊥ always hops defects within the same sublattice. Defects on
sublattices A and B should have the same total number, but
they do not necessarily have the same dynamics unless there
is a symmetry that connects these two sublattices. Hence, it is
conceivable that the defects on sublattice A form a Wigner
crystal (WC) that is incommensurate with the lattice and
hence lead to gapless excitations that correspond to u, while
the defects on sublattice B are pinned by the lattice or disorder.
Then the WC of defects on sublattice A will lead to physics
discussed in this paper. We leave more detailed construction
in the context of quantum spin ice to future study.

VI. AN ALTERNATIVE CANDIDATE: FERROMAGNETS

In this section, we speculate on another possible can-
didate for a physical system featuring Lifshitz photons: a
“deconfined” ferromagnet. First we recall some facts about
the nonlinear sigma model of ferromagnets. The action of the
sigma model is [24,25]

S = S0

∫ 1

0
dσ

∫
dt dx εabcna∂t n

b∂σ nc

− J

2

∫
dt dx δi j∂in

a∂ jn
a, (41)
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where S0 is a parameter related to the volume density of spin.
The model has a 2-form current

Jμν = 1

8π
εμνλρεabcna∂λnb∂ρnc, (42)

which is by construction conserved, ∂μJμν = 0. The location
where the 2-form density J0i is nonzero can be identified with
the skyrmions, which are one-dimensional lines (or loops) in
three-dimensional space.

There is an alternative description of the CP 1 parametriza-
tion of the spin vector: na = z†σ az, where

z =
(

z1

z2

)
, z†z = 1. (43)

The phase of z is redundant, giving rise to an emergent gauge
field αμ. The effective action for the ferromagnet can be
written as

L = 2iS0z†∂t z − 2JDiz
†Diz + λ(|z|2 − 1), (44)

where Dμ is the covariant derivative, Dμz = (∂μ − iαμ)z, and
λ is a Lagrange multiplier enforcing the condition |z|2 = 1.
The equation of motion for aμ can be solved to yield

αμ = − i

2
[z†(∂μz) − (∂μz†)z]. (45)

The 2-form current (42) can be expressed in terms of the
photon as

Jμν = 1

2π
εμνρλ∂ραλ. (46)

For example, the skyrmion density vector is

Ji ≡ J0i = 1

8π
εi jkεabcna∂ jn

b∂knc = 1

2π
εi jk∂ jαk, (47)

hence, a skyrmion loop is the magnetic flux loop of αμ.
It is also known [26] that the ferromagnetic nonlinear

sigma model possesses nontrivial conservation laws: in addi-
tion to the conservation of the 1-form charge

Qi =
∫

dx Ji, (48)

all the first moments

Ii j =
∫

dx xiJj (49)

are also conserved. In addition, one higher moment, the angu-
lar momentum, expressed by

li = 1

2

∫
dx x2Ji, (50)

is also conserved. The quantities

pi =
∫

dx εi jkx jJk, li = 1

2

∫
dx x2Ji (51)

are similar to the conservation laws that follow from the dipole
and the higher-multipole symmetries of the nonlinear Lifshitz
photon theory. In particular, there is a nontrivial commutation
relation [26]

[px, py] ∼ iQz. (52)

We now speculate that there is a phase where skyrmions
proliferate and condense, destroying the ferromagnetic order.

FIG. 2. We speculate that starting with a ferromagnet order, one
can enter a Lifshitz photon phase by proliferating the skyrmion loops
of the FM order �n. By condensing the hedgehog monopole of the
FM order �n one drives the system into a trivial disordered phase. A
hedgehog monopole is the Dirac monopole of gauge field αμ, and the
charge of the Lifshitz photon gauge field aμ.

The magnetic flux loop of αμ is dual to the electric flux loop
of aμ, and in this phase the gauge field aμ becomes the gapless
Nambu-Goldstone boson as a result of the condensation of the
1-form symmetry charge, i.e., the electric field flux. Based on
the similarity between the symmetries of the ferromagnetic
nonlinear sigma model and that of the nonlinear Lifshitz the-
ory, one can expect that the low-energy degree of freedom
of such a “deconfined” ferromagnet is a Lifshitz photon. The
gauge field describing this Lifshitz photon should be the elec-
tromagnetic dual of the gauge field in the CP 1 formulation of
the sigma model; its Lagrangian

L = c1eiei − c2(∂ib j + ∂ jbi )
2

+ g1eie j (∂ib j + ∂ jbi ) + · · · (53)

should have the nonlinear dipole and higher-multipole sym-
metries. One notices the noncommutative momentum algebra
in Eq. (52) results in the nonlinear version of the Lifshitz
photon theory. (Note that if one takes into account the the
Dzyaloshinskii-Morya interaction [27], then 1

2

∫
dx x2Ji is not

conserved, which means that the higher-multipole symmetry
is absent.)

The Lifshitz photon phase is one type of “exotic” quantum
disordered state of the magnetic system. Of course, there
could be another completely trivial disordered phase with
fully gapped spectrum and no spontaneous symmetry break-
ing. This trivial disordered phase is allowed in a quantum
spin system unless there is a Lieb-Shultz-Matthis theorem that
excludes it. The Lifshitz photon phase is actually an interme-
diate disordered phase sandwiched between the ferromagnetic
(FM) order and the trivial disordered phase, and both these
disordered phases can be constructed using ingredients of the
FM order. The Lifshitz photon phase is driven by proliferat-
ing the skyrmion loops of the FM order �n, while the trivial
disordered phase is driven by the condensation of the hedge-
hog monopole of �n. The hedgehog monopole of �n is nothing
but the Dirac monopole of αμ, hence, in a phase where the
skyrmion loops proliferate while the hedgehog monopoles do
not condense, the gauge field αμ is in its deconfined Lifshitz
photon phase. If we further condense the Dirac monopole of
αμ, the system enters a trivial disordered phase. Notice that
αμ is the dual gauge field of aμ, hence, the condensation of
the Dirac monopole is a Higgs transition of the Lifshitz gauge
field aμ (Fig. 2).
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VII. CONCLUSION

In this work, we present a nonlinear version of the Lifshitz
photon theory applied to diverse condensed matter systems in
3+1 dimensions. The Lifshitz photon, which is dual to the
physical photon, emerges as a quasiparticle with two trans-
verse polarizations and a quadratic dispersion relation. Our
primary focus lies on the Wigner crystal of charged particles
coupled to a dynamical U(1) gauge field, which serves as
a prototypical model for our study. We formulate the La-
grangian for the nonlinear Lifshitz photon theory, which is
consistent with a global U(1) 1-form symmetry and nonlin-
early realized “magnetic” translation and rotation symmetries.
Moreover, our analysis reveals the energy-dependent decay
rate of the Lifshitz photon through the nonlinear theory.
Additionally, we explore the generalization of the nonlinear
Lifshitz theory to higher dimensions.

In 3+1 dimensions, we uncover the presence of a 1-form
global symmetry. From the dual of the Lifshitz photon, we
know that the Wilson loop of a serves as the order parameter
of the magnetic 1-form symmetry U(1)(1) of the electromag-
netic field A. Notably, the scaling of the Wilson loop of a is
determined as exp(−cL log L). We know the electromagnetic
field is screened due to the fluctuation u of the Wigner crystal
of the electric charges. This screening effect, although weaker
than the Higgs mechanism, induces a distinct scaling for the ’t
Hooft loop. Additionally, when extending the theory to higher
dimensions, we observe a deviation of the “Wilson mem-
brane” associated with a from the perimeter law, featuring an
additional logarithmic factor.

We investigate the potential realization of other lattice
gauge systems. Specifically, we focus on quantum spin ice,
where quantum Ising spins live on the pyrochlore lattice,
which is dual to the diamond lattice. By considering two
sublattices of the diamond lattice, with defects either pinned
by the lattice or subjected to disorder on one of the sub-
lattices. We observe the emergence of intriguing physics
discussed in this paper by the Wigner crystal of defects
on another sublattice. We defer a more comprehensive con-
struction within the context of quantum spin ice to future
investigations.

Moreover, we explore the “deconfined” ferromagnet as an
alternative candidate for establishing connections to the Lif-
shitz photon theory, employing skyrmion condensation. The
Lifshitz photon phase represents one type of “exotic” quan-
tum disordered state of the magnetic system, serving as an
intermediate disordered phase situated between the FM order
and the trivial disordered phase. Our study highlights the in-
triguing possibility of exploring the interconnection between
the nonlinear Lifshitz theory [9] and systems of quantum Hall
ferromagnets [28–30] or twisted bilayer graphene. It is found
in the superconductivity mechanism of magic-angle twisted
bilayer graphene, while elementary skyrmions condensing
brings out a superconducting state, which breaks the U(1)
symmetry spontaneously [31]. Similar facts of the skyrmion
condensation happen in the antiferromagnet system; condens-
ing skyrmions restores the spin rotational symmetry through
a deconfined quantum critical point (DQCP) [32–36], the
Landau-forbidden quantum phase transitions. We defer these
questions to future research.
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APPENDIX: GENERALIZATIONS
TO HIGHER DIMENSIONS

Now, we aim to extend the nonlinear Lifshitz theory to
d + 1 dimensions with d (d > 2) as the spatial dimension.
To begin with, the generalized Lagrangian of the prototypical
system (2) is given by

L = − μ

4

(
∂iu j + ∂ jui − 2

d
δi j∂kuk

)2

− K

2
(∂iui )

2 + en0u · E − B2

2
. (A1)

We can then derive the generalization of the linearized Lif-
shitz theory. To obtain the generalized nonlinear Lifshitz
theory, let us introduce the neutralizing background with
background density n0 = 1

2π
	−d and include a (d − 1)-form

field Bμ1μ2...μd−1 with its field strength

Hμ1μ2...μd = ∂[μ1 Bμ2...μd ] = 	−dεμ1μ2...μd . (A2)

The gauge symmetry accompanied by a (d − 2)-form gauge
parameter �μ1...μd−2 :

δ�Bμ1μ2...μd−1 ≡ ∂[μ1�μ2...μd−1]. (A3)

It is straightforward to generalize the particle-number cur-
rent which is a topological current as

Jμ1 = n0

d!
εμ1...μd+1εi1...id ∂μ2 X i1 . . . ∂μd+1 X id . (A4)

Henceforth, we can establish the generalized Lagrangian in d
spatial dimensions as follows:

L = 1

d!π	d
Aμ1ε

μ1...μd+1εi1...id ∂μ2 X i1 . . . ∂μd+1 X id

− ε(B(d−2), Oab) − 1

2π
εμ1...μd+1 Bμ1...μd−1∂μd Aμd+1 .

(A5)

Following the same procedure upon varying the Lagrangian
with respect to A0, one finds the VPD constraint [37]

1

d!
εi1...id εa1...ad ∂i1 X a1 . . . ∂id X ad = 1. (A6)

We know the constraint can be obtained by exponentiating an
infinitesimal VPD transformation in Eq. (20) where ξ i is the
divergenceless vector field ξ i1 = 	dεi1·id ∂i2φi3···id .

a. Generalized multipole symmetries. One can find the
generalized “magnetic” translation and rotation symmetries
by Eq. (20). It is important to note that these symmetries
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are termed generalized “magnetic” translations and rotations
due to the presence of the d-form field strength Hμ1μ2...μd =
	−dεμ1μ2...μd .

The generalized “magnetic” translation is the generalized
dipole symmetry, and can be expressed by

φi1...id−2 → φi1...id−2 + 1

	d
εi1···id cid−1 xid

− 1

2
εi1...id cid−1εid ·i2d−1∂id+1φid+2...i2d−1 + · · · , (A7)

which satisfies the “magnetic” translations algebra:

[Pi1 , Pi2 ] = i	−dεi1...id Qi3...id , (A8)

with a (d − 2)-form charge Qi3...id of the U(1)(d−2) symmetry.
We find the generalized “magnetic” rotation is the generalized
higher-multipole symmetry, which is given by

φi1...id−2 → φi1...id−2 + 1

	d
ωi1...id−2 x2 + · · · . (A9)

b. Generalized Lifshitz theory. In the linear regime, one gets
the divergenceless condition ∇ · u = 0 and it can be solved by

ui1 = 	dεi1·id ∂i2φi3...id , (A10)

where φi3...id is the (d − 2) higher-form field. Thus, one gets
the linearized theory by adding the Lagrange multiplier

L = c1
(
φ̇i1...id−2 − ∂i1 . . . ∂id−2φ0

)2

− c2
(
εi1·id ∂ j∂i2φi3...id

)2
. (A11)

The general Lagrangian for the generalized nonlinear Lif-
shitz theory at higher dimensions that are consistent with
U(1)(d−2) symmetry and “magnetic” translations (A7), con-
tains the combination of the terms(

φ̇i1...id−2 − ∂i1 . . . ∂id−2φ0
)
,
(
εi1·id ∂ j∂i2φi3...id

)
. (A12)

Finally, the energy dependence of the decay rate is

�(E ) ∼ E
d+4

2 . (A13)
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