
PHYSICAL REVIEW B 109, 035134 (2024)

Quantum geometry and Landau levels of quadratic band crossings
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We study the relation between the quantum geometry of wave functions and the Landau level (LL) spectrum
of two-band Hamiltonians with a quadratic band crossing point (QBCP) in two-dimensions. By investigating the
influence of interband coupling parameters on the wave function geometry of general QBCPs, we demonstrate
that the interband coupling parameters can be entirely determined by the projected elliptic image of the wave
functions on the Bloch sphere, which can be characterized by three parameters, i.e., the major d1 and minor d2

diameters of the ellipse, and one angular parameter φ describing the orientation of the ellipse. These parameters
govern the geometric properties of the system such as the Berry phase and modified LL spectra. Explicitly,
by comparing the LL spectra of two quadratic band models with and without interband couplings, we show
that the product of d1 and d2 determines the constant shift in LL energy while their ratio governs the initial LL
energies near a QBCP. Also, by examining the influence of the rotation and time-reversal symmetries on the wave
function geometry, we construct a minimal continuum model, which exhibits various wave function geometries.
We calculate the LL spectra of this model and discuss how interband couplings give LL structure for dispersive
bands as well as nearly flat bands.
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I. INTRODUCTION

The quantum geometry of wave functions governs var-
ious fundamental physical phenomena ranging from the
Aharonov-Bohm effect to the topological phases of matter
[1–7]. For instance, it is well-established that the Berry phase
[3,8–10] and related higher-order geometric quantities play
a critical role in describing the Landau level (LL) spectrum
of metals, which is compactly formulated in the form of
Onsager’s semiclassical quantization condition and its gener-
alization [11–16].

Recent studies of two-dimensional systems with band
crossing points [17,20–23] have shown that the quantum ge-
ometric tensor or related geometric quantities possess more
detailed information about the geometric properties of band
crossing points than just the Berry phase itself. For instance,
it was shown that the Berry phase associated with the band
crossing point is given by the maximum value of the quantum
distance [21]. Moreover, in systems where a flat band is touch-
ing with a parabolic band quadratically, the flat band exhibits
anomalous LL spreading [17,20], which cannot be explained
by a simple extension of the Onsager’s semiclassical quanti-
zation rule. It was shown that the maximum quantum distance
around the band crossing point determines the total spreading
of the flat band LLs, which in turn induces logarithmic mag-
netic field dependence of orbital magnetic susceptibility [20].

In this work, we study the quantum geometry of general
two-band Hamiltonians with a quadratic band crossing point
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(QBCP) [24–27] in two-dimensions and its influence on the
LL spectrum, generalizing the previous study of the singular
flat band in which the flat band has a quadratic band crossing
with another dispersive band [17,20]. In particular, we aim at
revealing the explicit mapping between the interband coupling
terms in generic two-band Hamiltonian with QBCPs and the
related wave function geometry. Contrary to the singular flat
band systems whose interband coupling is completely de-
scribed by the maximal quantum distance [18–21], the wave
function geometry of generic quadratic band crossing Hamil-
tonian is more complicated, and their geometric structure has
yet to be studied.

We show that among the nine parameters in a general two-
band continuum Hamiltonian describing a QBCP [28,29], six
correspond to the mass tensors of the two dispersive quadratic
bands, while the other three describe the interband coupling.
In particular, we find that the wave function geometry of
the system in momentum space appears in the form of an
elliptic shape on the Bloch sphere, and the three interband
coupling parameters determine the major d1 and minor d2

diameters of the elliptic curve and the orientation of the
ellipse represented by an angular variable φ. Moreover, we
show that the flat band condition is nothing but the condi-
tion that the energy eigenvalues of the two-band Hamiltonian
have a quadratic analytic form. Under such quadratic form
condition, the generic two-band Hamiltonian has only one
interband coupling parameter, which is equivalent to the max-
imum quantum distance, and the corresponding wave function
trajectory on the Bloch sphere is a circle whose diameter
is equal to the maximum quantum distance, consistent with
Refs. [20,21].
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Next, we analyze the LL problem of two-band quadratic
Hamiltonians with QBCPs and reveal the role of the interband
coupling in the LL spectrum. In particular, we compare two
quadratic bands with identical mass tensors but different inter-
band couplings to demonstrate how the geometric parameters
affect the LL structure. Explicitly, we show that the product
of two distance parameters, d1 and d2, affects the constant en-
ergy shift of LLs, while their ratio controls the energy levels of
the initial LLs near the QBCPs. Furthermore, we analyze the
quantum geometric tensor of the relevant LL wave functions
and show how the interband coupling affects the quantum
metric distribution of the LL wave functions.

Finally, by examining the influence of rotation and time-
reversal symmetries on the wave function geometry of QBCP
Hamiltonians, we propose a minimal continuum model which
exhibits various quantum geometry of wave functions. We
calculate the LL spectra for this model and observe how
varying parameters of this model change the mass tensors
and anisotropy ratio d1/d2, resulting in different LL energy
spacings and the relative positions of the LLs.

The rest of the paper is organized as follows. In Sec. II,
we describe the general form of two-band continuum Hamil-
tonians with QBCPs and explain their geometric properties.
In Sec. III, we show how the flat band condition reduces the
geometric parameters using the property of quadratic forms.
In Sec. IV, we discuss how the geometric parameters affect
the LL energies and their wave functions. In Sec. V, we review
how lattice symmetries affect the wave function’s geometry.
We analyze the results by focusing on n-fold rotation Cn sym-
metry and time-reversal symmetry, and construct a minimal
model demonstrating various wave function geometry. De-
tailed calculations and derivations are presented in Ref. [30].

II. CONTINUUM MODEL OF QBCPS AND ITS
GEOMETRIC PROPERTIES

In this section, we discuss the set of independent parame-
ters characterizing a generic QBCP. After deleting redundant
variables by appropriate unitary transformations, we will see
that nine independent parameters determine the continuum
Hamiltonian describing a QBCP. We aim to introduce all
of the defining parameters of the QBCP Hamiltonians and
organize them into (i) the mass tensors, which describe the
local energy dispersion near the BCP and (ii) the quantum
geometric distance and angle parameters, which characterize
the interband coupling of the two bands. A schematic fig-
ure summarizing the physical meaning of the parameters in
the Hamiltonian is shown in Fig. 1.

Before explaining the details of QBCPs, we review a sin-
gle band model in two dimensions. A general single band
model with quadratic dispersion can be written as H (k) =
t1k2

x + 2t2kxky + t3k2
y , where (kx, ky ) are the momenta and

t1, t2, and t3 are constant parameters. For a single band
model, H (k) corresponds to the energy dispersion, E (k),
and t ′

i s naturally become the inverse of the mass tensors,
(2mxx )−1, (2mxy)−1, and (2myy)−1, respectively. Therefore
the three mass tensors are needed to characterize a general
one-band model fully.

Now, we move to define the parameters of two-band
models. A generic two-band Hamiltonian with a QBCP at

FIG. 1. Schematic figures explaning the physical meaning of the
nine parameters of a general two-band Hamiltonian with a QBCP.
Among these, six are related to the mass tensors of the energy
dispersion E1, E2. The rest describe the shape of the wave functions
projected to the Bloch sphere, which generally takes the form of an
elliptic curve on the Bloch sphere. d1 and d2 represent the diameter
of the two axes of the elliptic curve while φ indicates how much the
axis of the ellipse deviates from the f2 axis.

k = (0, 0) in 2D is written in the following form:

H (0)
Q (k) =

2∑
a=0

3∑
i=0

va,mkm
x k2−m

y σa, (1)

where the Pauli matrices σx,y,z describe the two bands and va,m

are constant parameters. Compared to the three mass tensors
of the single-band model, twelve parameters, va,m, define the
two-band model. However, it is possible to reduce the number
of parameters using unitary transformations. Two Hamilto-
nians, connected by unitary transformation, are considered
equivalent Hamiltonians since they have the same energy dis-
persion and unitarily identical wave functions. Therefore we
apply consecutive unitary transformation to Eq. (1) to make
the Hamiltonian more concise as in Ref. [21]. After the unitary
transformation, the Hamiltonian becomes

HQ(k) = [
q1

(
k2

x + k2
y

) + q2
(
k2

x − k2
y

) + q3(2kxky)
]
σ0

+ [
b2

(
k2

x − k2
y

) + b3(2kxky)
]
σ1 + [c3(2kxky)]σ2

+ [
a1

(
k2

x + k2
y

) + a2
(
k2

x − k2
y

) + a3(2kxky)
]
σ3. (2)

We note that using three rotation axes of unitary transforma-
tions, we reduce three parameters out of the original twelve
parameters. As a result, a general two-band continuum model
with a QBCP has nine parameters, q1,2,3, a1,2,3, b2,3, and c3,
which fully define the system.

Relating it to the one-band model, we assign three mass
tensors to each band. Since the coefficients of the Pauli ma-
trices of the Hamiltonian is a quadratic function of momenta,
the energy dispersion also scales quadratically. Therefore we
define mass tensors for each band (i = 1, 2), mxx

i , mxy
i , myy

i ,
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which describe the energy dispersion. The difference between
a one-band model and a two-band model is that there are
additional three parameters which do not describe the energy
dispersion of the bands. These three parameters will be named
interband coupling parameters because they arise due to the
coupling of two bands. These coupling parameters depend on
the wave function’s singularity around the band crossing point
which can be captured by using the notion of the quantum
geometry.

A. Mass tensors of the QBCP Hamiltonian

We first introduce a method of extracting mass tensors of
the two-band Hamiltonian. To see this, let us rewrite Eq. (2)
in a compact form

HQ(k) = Q0(kx, ky)σ0 + Q1(kx, ky)σ1

+ Q2(kx, ky)σ2 + Q3(kx, ky)σ3, (3)

where Qi(kx, ky ) (i = 0, 1, 2, 3) are quadratic functions of
(kx, ky). The energy dispersion of the Hamiltonian in Eq. (3)
is given by

E1,2 = Q0 ±
√

Q2
1 + Q2

2 + Q2
3. (4)

Rather than acquiring mass tensors from the energy dispersion
of each band E1,2, we define E+,− = 1

2 (E1 ± E2), where index
1(2) indicates the energy of the upper (lower) band. This di-
vides E1,2 into a smooth function, where elementary definition
immediately gives mass tensor, and a nonanalytic function,
for which we are now going to introduce mass tensor-like
quantities. The final mass tensors of E1,2 will be a linear
combination of the tensors assigned to E+,−.

For E+, it is straightforward to calculate the mass tensors.
Since E+ is a quadratic expression, the coefficients of each
quadratic term become the mass tensor as follows

E+ = Q0(kx, ky)

= (q1 + q2)k2
x + 2q3kxky + (q1 − q2)k2

y

= 1

2mxx+
k2

x + 1

mxy
+

kxky + 1

2myy
+

k2
y . (5)

In contrast, E− is not a quadratic form in general. E− has
the form of

E− =
√

Q2
1 + Q2

2 + Q2
3

=
√

α1k4
x + α2k3

x ky + α3k2
x k2

y + α4kxk3
y + α5k4

y , (6)

where αi (i = 1, . . . , 5) are intricate polynomials of the nine
parameters in Eq. (2). E− may reduce to a quadratic expres-
sion only when the parameters are fine-tuned. This fine-tuning
condition, which we will call the quadratic form condition,
reduces the number of parameters of the Hamiltonian and
affects the geometry of the band crossing points. However,
this fine tuning condition is generally not satisfied and E1

is not expressed as a quadratic form. Therefore we need to
approximate E− with a quadratic expression Ẽ− to calculate
the mass tensors of E−.

Since E− is not differentiable at the origin, naively dif-
ferentiating twice does not define the mass tensor. Thus

FIG. 2. Figures illustrating how Ẽ− approximates the initial en-
ergy E−. (a) A graph of the energy divided by k2 as a function of θ for
E− and Ẽ−. (b) The momentum dependence of the energy dispersion.
E− is given by Eq. (6) with coefficients α1 = 1, α2 = 0.3, α3 =
0.5, α4 = 0.4, and α5 = 0.2. Ẽ− is given as Eq. (7) with coefficients
α = 0.956, β = 0.129, and γ = 0.248.

we introduce an approximation via Fourier transform. A
quadratic equation Ẽ− can be expressed in the following way,

Ẽ1 = α
(
k2

x + k2
y

) + β
(
k2

x − k2
y

) + γ (2kxky),

= k2(α + β cos 2θ + γ sin 2θ ),

k =
√

k2
x + k2

y , (7)

where θ = arctan (ky/kx ). E− in Eq. (6) can also be expressed
in the form of k2√ f (θ ), where

√
f (θ ) is a periodic function

of θ with period π . Therefore the best way to approximate
E− using Ẽ− is to define α, β, γ as the Fourier coefficients
of 1, cos 2θ, sin 2θ for E−. Fig. 2 illustrates an example of
extracting mass coefficients of the general quadratic dis-
persion given by Eq. (6). After acquiring α, β, γ from the
Fourier transform, we define m−,xx = (2α + 2β )−1, m−,xy =
(2γ )−1, m−,yy = (2α − 2β )−1, as the mass tensors of E−.
Combining them with the mass tensors of E+, we obtain the
six mass tensors corresponding to the energy dispersion in
Eq. (4) as follows,

mxx
1,2 = ((mxx

+ )−1 ± (mxx
− )−1)−1,

mxy
1,2 = ((mxy

+ )−1 ± (mxy
− )−1)−1,

myy
1,2 = ((myy

+ )−1 ± (myy
− )−1)−1. (8)

Thus we obtained all six parameters of the Hamiltonian asso-
ciated with the energy dispersion of the two bands.

The mass tensors as defined above do not allow simple
analytic expressions in general, since the recipe includes the
Fourier transformation of E−. This keeps one from making
a clear connection between the quantum geometry of QBCP
and its physical properties. However, when the Hamiltonian
is nearly isotropic, i.e., a1 is significantly larger than other
coefficients ai>1, bi, ci in Eq. (2), the calculations are sim-
plified. Since the Landau level problem is exactly solved for
an isotropic Hamiltonian, we can apply perturbation method
to the Landau level problem for the nearly isotropic regime.
Furthermore, in this limit, the Fourier coefficients α, β, γ of
Eq. (7) take a simple form. To see that large a1 limit is equiv-
alent to the isotropic limit, note that the term a1(k2

x + k2
y )σ3 of

Eq. (2) is the only isotropic contribution to the energy level
difference.
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In this large a1 limit, E− is approximated as a quadratic
expression Ẽ−, namely,

Ẽ− = a1k2

(
1 + 	

4a2
1

+ a2

a1
cos 2θ + a3

a1
sin 2θ

)
, (9)

where 	 = b2
2 + b2

3 + c2
3 and the Fourier coefficients of

Eq. (7) are α = a1 + 	
4a1

, β = a2, γ = a3. This expression is
expanded up to O(δ2), where δ expresses a ratio between a1

and other coefficients, such as δ = a2/a1. We observe that the
coefficients a2 and a3 which contribute linearly are diagonal
terms of the Eq. (2), while the terms b2, b3, and c3 which con-
tribute quadratically to the energy are the off-diagonal terms
of the Hamiltonian. Thus we show that the diagonal compo-
nents contribute mainly to the energy related parameters than
the off-diagonal terms. This relation will be reversed for the
geometry related parameters, which we will show in the next
section. The detailed derivation is provided in Ref. [30].

B. Interband coupling parameters of QBCP Hamiltonians

In the previous section, we defined the six mass tensors out
of nine parameters in Eq. (2), leaving us with three additional
parameters. Since the mass tensors describe the band disper-
sion, it is reasonable to expect that the remaining degrees
of freedom describe the behavior of wave functions near the
BCP. We organize these free parameters into three geometric
measures, namely, the major and minor axis diameters and
a rotation angle of an elliptical shape representing the in-
terband coupling of the wave function. These quantities are
purely two-band properties that are absent in the single-band
Hamiltonian because they are defined based on the nontriv-
ial interband nature of the wave functions. The conventional
interband parameters are the off-diagonal terms of the Hamil-
tonian in Eq. (2) involving b2, b3, and c3. However, our paper
introduces coupling parameters based on analyzing the ge-
ometry of the wave functions near the BCP. We quantify the
interband coupling by using the wave functions and provide
a relationship between our interband parameters and the con-
ventional ones.

When defining the interband coupling, we focus on the
discontinuity of wave functions around the BCP [17,20]. This
discontinuity is a crucial feature specific to two-band models.
For an isolated band, it is possible to define a gauge such that
the wave functions are continuous near each momentum point
locally. However, when a BCP exists between two bands,
defining a gauge that guarantees continuous wave functions
for both bands near the BCP is generally impossible.

The discontinuity of wave functions can be effectively
captured by the Berry phase [21]. Since the Berry phase is
gauge-invariant, if there exists a continuous gauge of wave
functions in a local region containing the BCP, the Berry phase
assigned to a loop around the BCP converges to zero as the
loop can be adiabatically deformed to a point at the BCP.
Conversely, if a nonzero Berry phase persists around the BCP,
it indicates that wave functions must exhibit discontinuity
around the BCP. While the Berry phase serves as a useful
metric for detecting singularity in wave functions, further
descriptors are required to characterize the entire geometry
of the wave functions completely. We aim to define a set

of geometric parameters with two distance parameters and
one angle parameter, capturing the full features of the wave
functions around the BCP.

To characterize the singularity of the wave functions more
faithfully, we project the wave functions onto the Bloch
sphere. The Bloch sphere is a well-known tool which maps
a two-band wave functions to a sphere [31–33]. We briefly
review the concept of Bloch sphere and quantum distance,
which is also presented in Ref. [21]. When a two-band Hamil-
tonian is given as

H (k) = f0(k)σ0 − f (k) · σ, (10)

the ground state of H (k), maps into a point, ň(k), on a 2-
sphere defined by

ň(k) = 1

2

f (k)

| f (k)| ∈ S2
BS, (11)

where S2
BS is a sphere with radius, r = 1/2. We note that the

ground state of the Hamiltonian does not change when k is
multiplied by a constant c. Since all terms in the Hamiltonian
have quadratic order of momentum, H (ck) becomes c2H (k),
resulting in |ψ (ck)〉 = |ψ (k)〉. Therefore the map, ň(k), also
is invariant under k → ck and ň(k) is only parametrized by
θ , which is the direction of the momentum, θ = arctan ky/kx.
Thus the collection of wave functions defined over a finite
region in momentum space projected onto the Bloch sphere
becomes a loop parameterized as ň(θ ), which we call CBS.

The advantage of using the Bloch sphere is that the
quantum distance between the wave functions is equal to
the geometric distance of the points on the Bloch sphere
representing the wave functions. This enables one to relate
the geometric objects on Bloch sphere to the properties of
the ground state wave function. To be precise, the Hilbert-
Schmidt quantum distance measures the distance between two
states [34–39] |ψ (k)〉, |ψ (k′)〉 and is given by

d2(k, k′) = 1 − |〈ψ (k)|ψ (k′)〉|2, (12)

giving a value between zero and one depending on their
overlap. This distance is equal to the Euclidean distance
|ň(k) − ň(k′)| of the two points on the Bloch sphere, each
representing the two quantum states |ψ (k)〉, |ψ (k′)〉. There-
fore the geometric property of the projected image CBS of the
wave functions on Bloch sphere, such as the shape and size of
CBS, is crucial for understanding the ground state properties
relevant to the Hilbert-Schmidt quantum distance.

The presence of wave function discontinuity at the BCP
can be identified by using the corresponding CBS on the Bloch
sphere, which represents the wave functions around the BCP
along a loop encircling the BCP in momentum space. If the
wave functions are continuous near the BCP, then as we shrink
the loop in momentum space, the wave functions become
identical, making CBS as a point. Conversely, when a singular-
ity exists at the BCP, the wave functions along a momentum
space loop do not converge to a point, causing CBS to be a
curve on the Bloch sphere.

For QBCPs, CBS is a curve formed by the intersection
of an elliptic cone and the Bloch sphere, which is illus-
trated in Fig. 3. The elliptic cone can be obtained from the
quadratic equation

∑
i, j fiMi j f j = 0 between the three coeffi-

cients f1, f2, f3 of the Pauli matrices in Eq. (10). The exact
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FIG. 3. (a) A schematic figure showing how CBS is given by the
intersection of equation fiMi j f j = 0 and the Bloch sphere, where Mi j

is provided in Eq. (S3). The curve formed by the intersection be-
comes an elliptic shape which can be described by three parameters:
d1, d2, φ. (b) Definition of the three geometric parameters; d1, d2 are
the major and minor diameters of the elliptic curve and φ is the angle
representing how much major axis, represented as �d1, deviates from
the f2 axis.

form of Mi j and its derivation are in S2. Since CBS is an
elliptical curve, it is entirely determined by three parameters
d1, d2, and φ, where d1 and d2 are the major and minor
diameters and φ is the rotation angle of the major diameter
d1 with respect to f2 axis when projected to f2 f3-plane. The
geometric parameters are illustrated in Fig. 3. We define these
geometric parameters to be interband coupling parameters of
two bands which captures the essential information governing
the quantum geometric properties of the QBCPs.

We calculate the geometric parameters d1, d2, and φ of the
Hamiltonian in Eq. (2) in the large a1 limit, which corresponds
to small d1, d2 limit. The results are given by

d2
1 =

	 +
√

	2 − 4b2
2c2

3

2a2
1

,

d2
2 =

	 −
√

	2 − 4b2
2c2

3

2a2
1

,

φ = arctan
c2

3 − 	
2 +

√
	2−4b2

2c2
3

2

b3c3
mod π, (13)

where 	 = b2
2 + b2

3 + c2
3 and b2 > c3. When a1 and b2c3 are

fixed parameters, the ratio d1/d2 is monotonically increasing
function of 	. Thus the anisotropy of d1, d2 has one-to-one
correspondence with 	. The detailed calculation is provided
in the S2.

We note that the coupling parameters, d1, d2, and φ, are
primarily determined by the coefficients b2, b3, and c3, as op-
posed to the mass tensors which exhibit a greater dependence
on a2 and a3, as evident from Eq. (9). This distinction arises
from the Hamiltonian H (k), where the mass tensors are domi-
nantly influenced by the diagonal terms up to the first order. In
comparison, the interband coupling parameters are governed
by the off-diagonal terms which correspond to the coefficients
of σ1 and σ2. Therefore the geometrical parameters are mostly
expressed in the conventional interband coupling parameters,
b2, b3, and c3, and are independent of the mass tensors.

Using the quantities d1 and d2, we detect the singularity
of the BCP as follows. If CBS turns out to be a point on the

Bloch sphere, it implies that the wave functions are identical
for every direction of θ (= arctan ky/kx ). Therefore the wave
functions must be continuous around the BCP, and we define
these BCPs to be nonsingular BCP precisely when d1 = d2 =
0. In contrast, the wave functions are discontinuous at the BCP
if and only if CBS fails to converge to a point and becomes
an elliptic loop with d1 > 0. These BCPs are called singular
[17,20]. A BCP with d1 > 0, d2 = 0 cannot be detected by
the Berry phase since the Berry phase is zero yet the wave
function remain discontinuous around the BCP. Therefore our
set of parameters provides a more complete picture about the
quantum geometry of the BCP, than the Berry phase itself.

d1, d2, and φ, as a whole, fully characterize the geometry
of the QBCP so that all other quantities of geometric nature
are functions of these parameters. For instance, it was shown
in Ref. [21] that the Berry phase can be determined by inter-
band coupling parameters when d1 = d2. This can be further
generalized as follows. Since the Berry phase equals to, up to
sign, one half of the solid angle subtended by CBS, it suffices
to give a formula for the solid angle in terms of d1, d2, and φ,
which is given by

�B(CBS) =
∫ 2π

0
s

√
1 − d2

1 d2
2

d2
1 sin2 θ + d2

2 cos2 θ
dθ mod 2π.

(14)

Two comments on the derivation of Eq. (14) are in order.
First, as k runs over a loop enclosing the BCP in the momen-
tum space, its image on the Bloch sphere traces the curve
CBS twice because of the quadratic dispersion, canceling the
aforementioned factor of 1

2 . We check this by observing the
invariance of f1, f2, f3 under the inversion k → −k. Second,
depending on the orientation of the curve, the equation’s sign
changes. If the curve rotates clockwise with respect to the
normal vector pointing outward to the surface of the sphere,
then the solid angle becomes negative, changing the sign of
the Berry phase. Therefore an additional factor s is added,
where s = ±1 depending on the curve’s orientation.

III. FLAT BAND CONDITION

In Ref. [21], it was shown that the flat band condition
reduces the number of parameters in the Hamiltonian and
restricts CBS to be a circle. In this section, we introduce a
‘quadratic form condition’, which provide a more general
view toward the geometric meaning of the flat band condition
in a general setting. Also, we provide an alternate argument
on why the flat band condition implies a circular CBS.

First, we discuss the properties of quadratic forms in two
dimensions, and relate them to QBCP Hamiltonians. Recall
that a quadratic form in two variables (kx, ky) is a function of
the form

Q(kx, ky) = ak2
x + bkxky + ck2

y (a, b, c ∈ R), (15)

where a, b, and c are real numbers. Quadratic forms can be
added together or multiplied by a scalar, forming a vector
space which we denote by V . As can be seen in Eq. (15),
we need three scalars to specify a quadratic form, which
implies dim V = 3. Therefore a generic collection of three
quadratic forms, {Q1, Q2, Q3}, constitutes a basis of V , which
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means that an arbitrary quadratic form Q can be expressed
uniquely as Q = p1Q1 + p2Q2 + p3Q3 for some numbers
p1, p2, and p3.

Let us turn to the QBCP Hamiltonian, which has the gen-
eral form

HQ(k) = Q0(kx, ky)σ0 +
3∑

i=1

Qi(kx, ky)σi, (16)

where the coefficients Qi (i = 0, 1, 2, 3) of the Pauli matrices
are quadratic forms in kx and ky. The two energy levels are
given by

E± = Q0 ±
√

Q2
1 + Q2

2 + Q2
3. (17)

Note that E± is not a quadratic form in general, but contains
the square root of a quartic function. However, if E− is flat,
i.e.,

E− = Q0 −
√

Q2
1 + Q2

2 + Q2
3 = 0, (18)

the square root of the quartic Q2
1 + Q2

2 + Q2
3 is identical to a

quadratic form, Q0. We isolate this observation as a separate
condition on the QBCP Hamiltonian: we say that H (k) satis-
fies the quadratic form condition if, in Eq. (17),

Q ≡
√

Q2
1 + Q2

2 + Q2
3 is a quadratic form. (19)

Note that the quadratic form condition is slightly weaker than
flatness condition: A Hamiltonian satisfying Eq. (19) may not
have a flat band. In that case, however, one can tune one of
the bands to be exactly flat by adding an appropriate quadratic
form to Q0, without altering the quantum geometry of H (k).

Now, we prove that quadratic form condition in Eq. (19)
is equivalent to the condition that CBS is a circle (or a single
point). First, we show that quadratic form condition gives
circular CBS. Suppose Q defined in Eq. (19) is quadratic. Then,
since {Q1, Q2, Q3} span the vector space V , there exist three
real numbers p1, p2, p3 such that

Q = p1Q1 + p2Q2 + p3Q3. (20)

Dividing both sides of Eq. (20) by Q, we have

1 = p1
Q1

Q
+ p2

Q2

Q
+ p3

Q3

Q
= 2p · ň(k), (21)

ň = 1

2Q
(Q1, Q2, Q3), (22)

where ň(k) is the point on the Bloch sphere with radius 1/2
representing the occupied state at k = (kx, ky).

Since Eq. (21) is an equation of the plane with normal
vector p and the distance from the origin 1/(2|p|), the image
CBS of ň entirely resides in the intersection of the Bloch sphere
and a plane, which is either empty or a point or a circle. Since
CBS is nonempty, we see that the projected image of wave
function on the Bloch sphere must be a circle or a point (circle
with zero radius) under the flat band condition.

Conversely, if CBS is either a circle or a point, let v be its
center. Define the vector p by p = v/(2|v|2). Then Eq. (21)
describes the plane normal to v with distance from the ori-
gin 1/(2|p|) = |v|, so that CBS lies in this plane. Now, the
quadratic form Q1, Q2, Q3 in the Hamiltonian clearly satisfy
Eq. (20), showing that Q is a quadratic form.

We also show that these two conditions are identical in
the large a1 limit. In order for CBS to be a circle, the ma-
jor diameter and the minor diameter need to be equivalent.
From Eq. (13), the condition where d1 = d2 is equivalent
to 	2 − 4b2

2c2
3 = 0, where 	 = b2

2 + b2
3 + c2

3. Then we see,
b2 = c3 and b3 = 0 give a circular trajectory.

On the other hand, the quadratic form condition in the large
a1 limit amounts to Ẽ1 = E1 up to the second order, O(δ2).
Since Ẽ matches E1 in the terms k2, k2 sin 2θ, k2 cos 2θ , the
other terms in E1 such as k2 sin 4θ, k2 cos 4θ need to vanish
in order that Ẽ1 = E1. According to Ref. [30], this gives two
equations b2

2 − b2
3 − c2

3 = 0, b2b3 = 0, which are equivalent
to b2 = c3 and b3 = 0. Thus the equivalence between the flat
band condition and the circular locus condition for the large
a1 limit is shown.

IV. LANDAU LEVEL AND GEOMETRIC PARAMETERS

Thus far, we have presented the definitions of the geometric
parameters and a continuum model illustrating the quantum
geometry of the wave function in two-band systems with a
QBCP. Subsequently, we discuss the physical phenomenon
governed by these parameters: the Landau Level problem.
Geometric quantities such as the Berry phase are well known
to determine the LL, but an extensive relationship between
the wave function geometry of a general QBCP Hamiltonian
and LL spectra has yet shown. We extend the analysis to
the geometric parameters we defined by discussing how the
geometric parameters impact the LL spectrum. In particular,
we show how the distance parameters, d1, d2 affect the LL
energies. We also analyze how the LL wave function and its
quantum geometry change depending on the initial geometry
of the QBCP.

A. Landau levels

To observe the effect of geometrical parameters on the
LL, we turn on a magnetic field in the continuum Hamil-
tonian in Eq. (2). For simplicity, we set q′

is to be zero and
assume the energy eigenvalues of the two bands are opposite
in sign. To construct the LL Hamiltonian, HLL, we substitute
the ladder operators in the place of momentum as kx → (a +
a†)/(

√
2lB), ky → i(a − a†)/(

√
2lB), where lB is a magnetic

length, lB = √
h̄/eB, and a, a† are annihilation and creation

operators, which gives

HLL = 1

l2
B

(2a1a†a + (a2 + ia3)a2 + (a2 − ia3)(a†)2 + a1)σ3

+ 1

l2
B

((b2 + ib3)a2 + (b2 − ib3)(a†)2)σ1

+ 1

l2
B

(ic3a2 − ic3(a†)2)σ2. (23)
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We determine the LL spectrum of the continuum model,
specifically in the large a1 limit. When all parameters ex-
cept a1 are zero, the continuum Hamiltonian of Eq. (2)
becomes a fully decoupled two-band isotropic Hamiltonian,
H (k) = a1(k2

x + k2
y )σz and the corresponding LL Hamiltonian

is HLL = 2a1

l2
B

a†aσ3. The LL of this continuum Hamiltonian
consists of two distinct Landau levels, denoted by En,+ and
En,−, where En,± represents the LL energy of the positive
and negative energy bands, respectively. The energy separa-
tion between consecutive Landau levels is uniform, and is
controlled by the cyclotron frequency ωc, which is propor-
tional to a1. However, when other parameters besides a1 are
present, the LL energy undergoes a shift, which we discuss
below.

We evaluate how the geometric parameters affect the LL
energies. To solely account for the geometric parameters’ role,
we compare the LL energy of the two-band model with that
of a single-band model in a way that the mass tensors of the
single band are identical to those of the upper band of the
two-band model. Since the single band and the upper band
of the two-band model have the same energy dispersion, only
the geometric parameters or the interband coupling parame-
ters can cause the difference in their LL spectra. We assume
that the two-band Hamiltonian is in the large a1 limit and
use Eq. (7) as a single-band Hamiltonian which quadratically
approximates the energy dispersion of the upper band of the
two-band model. We calculate the Landau level of this single-
band model, which is given as

Eone-band
n = h̄ωc

(
n + 1

2

)
, (24)

where the cyclotron frequency is

2l2
Bh̄ωc = 4a1 − 2

a1

(
a2

2 + a2
3

) + 	

a1

= 4α − 2

α
(β2 + γ 2), (25)

where α, β, and γ are the coefficients in Eq. (7) and 	 =
b2

2 + b2
3 + c2

3. We note that a2, a3, and the rest, b2, b3, and c3,
both give the quadratic order correction to the cyclotron fre-
quency, contrary to the order difference in their contribution
to the energy dispersion in Eq. (9). The correction from the
anisotropic energy dispersion arising from a2, a3 gives a neg-
ative quadratic term, reducing the LL energy spacing. The
details are provided in the S4.

Now, we compare E two-band
n,+ and Eone-band

n . The LLs of the
one-band model Eone-band

n is well known to take the form of
Eq. (24), where the spacings between consecutive LLs are
identical. However, the spacings between LLs of two-band
model, E two-band

n , are generally not uniform as the LL index n
varies. Nevertheless, as n approaches infinity, we will see that
the spacings become uniform and converge to h̄ωc of Eq. (25).
This shows that mass tensors govern the spacings of the LLs.
While the effective masses determine the overall spacings of
the LLs, interband coupling parameters determine the rela-
tive position of the LLs. To show this, we calculate 	En =
E two-band

n,+ − Eone-band
n and observe how this energy difference

is expressed in terms of interband coupling parameters. The

results are

	E0 = 1

2l2
B

(
	

6a1
+ 4b2c3

3a1

)
,

	E1 = 1

2l2
B

(
− 3	

10a1
+ 12b2c3

5a1

)
,

	En = b2c3

a1l2
B︸︷︷︸

O(n0 )

− 1

2nl2
B

(
	

4a1

)
︸ ︷︷ ︸

O(n−1 )

+O(n−2), (n � 2), (26)

where the large n expansion was performed for 	En. We
note that there is no O(n) term in 	En, confirming that both
models’ energy spacings are identical. 	En is composed of
two terms. The first term in 	En can be rewritten in terms of
the geometric parameters d1 and d2 as

b2c3

a1l2
B

= a1d1d2

l2
B

= −a1�B(CBS)

π l2
B

, (27)

which is proportional to the product of d1 and d2 that is equal
to the Berry phase of the BCP when d1, d2 
 1.

Let us compare this result with the semiclassical theory
based on Onsager’s rule. Onsager’s rule calculates LLs of
dispersive bands by using the formula [13–15]

S0(En) = 2πeB

h̄

(
n + 1

2
− γ

2π

)
, (28)

where S0(En) is the momentum area of the closed curve of
energy En, e is the electron charge, B is the magnetic field,
2π h̄ is a Planck constant, n is the LL index, and γ is the
quantum correction including the Berry phase and higher-
order responses. The most significant contribution to γ comes
from the Berry phase of a BCP, giving a constant energy
shift to each LL. Our calculation agrees with Onsager’s rule,
which is confirmed by rewriting the Berry phase in terms of
the geometric parameters d1, d2 as shown in Eq. (27). The
calculation details are provided in S5.

While the product of two distance parameters, d1d2, affects
the constant energy shift, the higher-order correction of γ in
Eq. (28) or the O(n−1) term in Eq. (26) depends on the ratio of
diameters d1/d2. Namely, our theoretical approach expresses
the higher-order correction terms by using the geometric pa-
rameters. Explicitly, in Eq. (13), we showed that 	 has a
one-to-one correspondence with d1/d2 when b2c3 is constant.
We illustrate this correspondence in Fig. 4(b). After fixing a1

and d1d2, we plot d1/d2 with respect to 	. When 	 is large
compared to b2c3, 	 is equal to d2

1 /a2
1. Thus 	 and d1/d2

are proportional to each other because a2
1	/(d1d2) = d1/d2.

Since the magnitude of the O(n−1) term is proportional to 	,
we observe that the O(n−1) term becomes significant when
the ratio d1/d2 is large.

The effect of the O(n−1) term is maximized when in-
specting the energy levels of initial LLs labeled by small n.
When the O(n0) term is the dominant contribution to 	En, the
difference 	En is always greater than zero when b2c3 � 0. On
the other hand, when the O(n−1) term is not small, we observe
in Eq. (26) that 	En can be negative for LL states which
satisfy 1 � n � 	

8b2c3
, or equivalently 1 � n � d1

8d2
Thus the

anisotropy ratio d1
d2

needs to be greater than 8 in order for 	E1

and other 	En to have negative values. This is illustrated in
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FIG. 4. (a) Comparison of LL spectra between two-band models (left and right) and a one-band model (middle) in all of which the band
with positive curvature has the same mass tensors. When all parameters a1,2,3, b2,3, c3 are positive, 	En = E two-band

n − E one-band
n � 0 when the

LL index n is zero or sufficiently large. However, 	En with small n can be negative if the anisotropy ratio d1/d2 is large enough. We note that
the Landau levels of the upper band and the lower band exhibit asymmetry. The Landau levels of the lower band of the two-band model can be
obtained by using (26) after an unitary transformation that changes (a1, a2, a3, b2, b3, c3) to (−a1, −a2, −a3, b2, b3,−c3). (b) The plot of d1/d2

as a function of 	 = b2
2 + b2

3 + c2
3. Here, a1 is fixed to 1, and d1d2 is set to 0.1, 0.2, 0.3. 	 needs to be greater than 4b2c3 since d1 and d2 need

to be real numbers in Eq. (13). When 	 is large, d1/d2 linearly increases with 	, where the proportionality constant is (d1d2)−1. (c) 	En with
respect to the LL index, n. Three models have different anisotropy factors d1/d2, but the product of the diameters d1d2 for all models are fixed
to 7.0 × 10−4. The black solid line indicates the energy shift corresponding to the O(n0 ) term times 2l2

B, which is 2b2c3/a1 = 1.4 × 10−3. As
the anisotropy factor increases, the energy difference 	En becomes more negative for initial LLs except for 	E0 because of the contribution
from the O(n−1) term. As n increases, 	En converges to the same value for all models.

Fig. 4(c), where the values of 	En are calculated for several
models with different anisotropy factors. The product of d1

and d2 is the same for all models, but their ratios differ,
resulting in a difference in initial LL energies. The model
with largest anisotropy in Fig. 4(c) has the anisotropy ratio
of d1/d2 = 10, causing 	E1 < 0.

B. Quantum geometric tensors of the LLs

We also calculate the quantum geometric tensor of the
LL wave functions for the two band model. The quantum
geometric tensor, Gi j , is a tensor representing the geometric
structure of Bloch wave functions. The quantum geometric
tensor for one band is defined as,

Gi j (k) = 〈∂iψ (k)|∂ jψ (k)〉 − Ai(k)Aj (k), (29)

where Ai(k) = i〈ψ (k)|∂iψ (k)〉 is the Berry connection. The
real part of the quantum geometric tensor yields the quantum
metric, �[Gi j] = gi j , which provides the information about
the infinitesimal distance of quantum states. The imaginary
part gives the Berry curvature, −2�[Gi j] = Fi j . Because the
LL Hamiltonian has a magnetic translation symmetry, we can
define a Bloch function in the magnetic unit cell that satisfies
|B|axay = 2π . Thus we can calculate the quantum geometric
tensor for the Bloch function. The quantum geometric tensor

for the isotropic LL problem has been calculated [40] and
we generalize this result to a two-band model with interband
coupling, which can be summarized as

gn,xx(k) = gn,yy(k) =
(

n + 1

2
+ b2c3

2a2
1

+ O(n−1)

)
l2
B,

gn,xy(k) = 0, Fn,xy(k) = −l2
B.(n � 2) (30)

We observe that Gi j (k) is independent of k. For the entire
Landau bands, the Berry curvature is fixed to −l2

B, resulting in
a Chern number of −1 for each band. Only the diagonal com-
ponents of the quantum metric change depending on the LL
index and the parameter b2, c3. An additional factor b2c3/2a2

1
appearing in the metric is equal to the product d1d2 in the large
a1 limit, which is proportional to the Berry phase.

V. ROLE OF SYMMETRIES ON QUANTUM GEOMETRY
AND MINIMAL CONTINUUM MODEL

As shown above, the wave function geometry of the two-
band Hamiltonian with a QBCP generally appears in the
form of an elliptic curve on the Bloch sphere whose precise
form is constrained by the symmetry of the system. In the
following section, we discuss the role of symmetries on the
wave function geometry and construct a continuum model that
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exhibits various quantum geometries of QBCPs. Specifically,
we review and further extend the results of the previous works
[21,25], which discuss the form of QBCPs in the presence of
symmetries, and show how the wave function geometry of the
QBCP Hamiltonian changes under rotation and time-reversal
symmetries. Based on this, we construct a QBCP model with
C4 symmetry and calculate the Landau levels for different
parameters.

First, we consider the rotation symmetry for spinless sys-
tems. For the n-fold rotation Cn symmetry, the eigenvalues for
two bands can be represented by λ1, λ2 = ei 2πa

n , ei 2πb
n , respec-

tively, where a and b ∈ [0, n − 1] are integers. The symmetry
representation can be connected by unitary transformations
or a U (1) phase unless |a − b| is different. Therefore we can
classify Cn symmetries depending on the values of |a − b|.

Let us rewrite the Hamiltonian in the Cn eigenbasis, in or-
der to observe how the rotation symmetry enforces the form of
the Hamiltonian. We rewrite the Hamiltonian in the following
form:

H (k) =
∑

a=0,3,±
ha(k)σa, (31)

where σ± = 1
2 (σ1 ± iσ2) and k± = kx ± iky. To have the

Cn symmetry, the Hamiltonian should satisfy CnH (k)C−1
n =

H (Cnk). For convenience, ha(k) can be expanded in terms of
k+, k−, such that

h0(k) =
∑

Ai jk
i
+k j

−, h3(k) =
∑

Bi jk
i
+k j

−,

h+(k) =
∑

Ci jk
i
+k j

−, (32)

and h−(k) is given as complex conjugate of h+(k). If the rota-
tion symmetry exists, only few terms survive. After expanding
in terms of k+, k−, we write the coefficients that could be
nonzero in the presence of Cn symmetry as follows:

h0(k) = A00 + A11k2, h3(k) = B00 + B11k2,

h+(k) =
∑

i− j−a+b∈Z
Ci jk

i
+k j

−. (33)

We summarize the result in the Table I. For the case where
A00 = B00 = 0, where the band gap is zero, the geometry of
CBS can either be a point or an elliptic curve or a circle or an
arc. If the wave functions of the BCP become a point on the
Bloch sphere, as we mentioned, the wave functions around the
BCP converge to a single wave function, which implies that
the BCP is nonsingular (the band gap could be opened without
changing the local wave functions around the BCP by adding
a mass term). For other shapes, there is discontinuity at the
BCP, prohibiting the convergence of wave functions around
the BCP to a point. We illustrate the examples of singular
BCPs on the Table I, where C2 and C4 symmetry create an
elliptical curve on the Bloch sphere, whereas C6 symmetry
create a circular BCP, similar to the flat band condition.

If an additional time reversal symmetry is introduced, more
terms vanish, and the geometry is further simplified. For ex-
ample, in spinless systems, time-reversal symmetry satisfies
T 2 = 1, commuting with a rotation symmetry. Thus, in the
basis where the representation of Cn is diagonal, T is ex-
pressed as K or σ1K. When T = K, we observe a new kind

TABLE I. A table showing different shapes of the CBS depending
on the symmetry. h+ appearing in Eq. (31) is given as the most
general form of the Hamiltonian which satisfies the corresponding
rotational symmetry. For h+(k), the terms above cubic orders are re-
moved. - mark indicates the cases where the time reversal symmetry
of a specified form does not commute with the rotation symmetry
or BCPs which cannot be quadratic under given symmetry. Circle
(d = 1) indicates that the CBS becomes a great circle on the Bloch
sphere, where the diameter is 1. CBS can become an elliptical shape
only without time-reversal symmetry.

Rot Sym. |a − b| h+(k) Geometry T = K T = σ1K

C2 0 C00 + C20k2+ + C02k2− Elliptical Arc Circle (d = 1)
1 C10k+ + C01k− − − −

C3 0 C00 + C30k3+ + C03k3− Point Point −
1 C10k+ + C02k2+ Circle − Circle (d = 1)

C4 0 C00 Point Point −
1 C10k+ − − −
2 C20k2+ + C02k2− Elliptical Arc Circle (d = 1)

C6 0 C00 Point Point −
1 C10k+ − − −
2 C20k2+ Circle − Circle (d = 1)
3 C30k3+ + C03k3− − − −

of geometric structure where CBS becomes an arc. This is an
extreme case, where the major diameter d1, is nonzero, but
the minor diameter d2 is zero, creating a zero Berry phase
around the BCP. The origin of this phenomenon lies on the
T symmetry, where T = K enforces σ2 coefficients to remain
zero, fixing the CBS on the xz-plane. In addition to this con-
dition, since h3(k) � 0, CBS remains only on the z > 0 sector,
becoming a semicircle. Therefore CBS becomes an arc with the
combination of C2 and T symmetry.

For T = σ1K, the geometry always becomes the great
circle with a diameter d1 = d2 = 1. In the presence of this
symmetry, h3(k) = 0 and CBS lies on the xy-plane with no
restriction on h+(k). Therefore h+(k) fills all the points on
the x2 + y2 = 1

4 , z = 0 curve giving a great circle. As shown
in the Table I, various geometric shapes can be observed for
the case of C4 symmetry with |a − b| = 2.

A. Minimal continuum model

We construct a continuum model with minimal parameters
which demonstrate various wave function geometry around
the band crossing point. To manipulate the shape of CBS, we
need at least two parameters to separately control d1 and
d2. For this continuum model, we design a simple model
with three parameters to showcase different possible shapes
of CBS. The third parameter is introduced to handily deal
with extreme limit, where d1 = 1. Since a system having C4

symmetry with |a − b| = 2 contains all possible shapes of
CBS, we obtain the Hamiltonian by setting the coefficients of
the C4 rotationally symmetric Hamiltonian as B11 = a,C20 =
1
2 (b − c),C02 = 1

2 (b + c) while others being zero. The corre-
sponding continuum Hamiltonian is given by

H (k) = a
(
k2

x + k2
y

)
σ3 + b

(
k2

x − k2
y

)
σ1 + c(2kxky)σ2,

≡ f3σ3 + f1σ1 + f2σ2, (34)

035134-9



JUNG, LIM, AND YANG PHYSICAL REVIEW B 109, 035134 (2024)

FIG. 5. Figures illustrating Landau levels of the upper band de-
scribed by the minimal continuum Hamiltonian in Eq. (34). c is
varied from 0 to 1.5 while the other parameters are fixed as a =
2, c = 1. (a) The change in the shape of CBS as a function of c.
Here, d1 is fixed to 1√

5
while d2 increases as c increases. (b) Energy

spacings of the LLs. The red line is the spacing calculated from
the inverse mass tensor α and the black line is the result from
numerical calculation. We use LL with the index n = 100 to describe
the case with sufficiently large n. (c) Interband coupling corrections
	En = En − E single

n of the LLs. The correction terms increase with c.

which has the same form as Eq. (2) with a1 = a, b2 = b, c3 =
c, while all the other parameters vanishing. The corresponding
projected trajectory on the Bloch sphere is described by the
equation

f 2
1

b2
+ f 2

2

c2
= f 2

3

a2
, (35)

where f1, f2, and f3 are the coefficients of the Pauli matri-
ces in Eq. (34) and the geometric parameters are given by
{d1, d2} = { b√

a2+b2 ,
c√

a2+c2 } and φ = 0 or π
2 depending on the

magnitude of b and c. We note that the curve becomes a circle
under the condition b = c at which the continuum Hamilto-
nian satisfies the quadratic form condition. Also, when a is
fixed at a nonzero value, we can obtain any values of 0 <

d1, d2 < 1 by modifying b, c but d1, d2 = 1 can be acheived
if and only if when a = 0.

We inspect the change of the LLs with respect to the
anisotropy strength by varying the model parameters. First,
we observe how the LLs of dispersive bands described by
Eq. (34) change upon varying a single parameter that controls
the shape of the elliptic trajectory. To this end, we fix a =
2, b = 1 and change c from 0 to 1.5. Since the energy of the
upper and the lower bands only differ by a sign, it is sufficient
to calculate only the LLs En of the upper band. By tuning c,
we change both the mass tensors and the interband coupling
parameters. Figure 5(a) illustrates how CBS is deformed due
to the change of c, running from an arc (c = 0) to a circle
(c = 1) via elliptic curves in-between (0 < c < 1), and then
to other elliptic curves elongated along different directions
(1 < c < 1.5).

In Sec. IV, we discussed the role of the effective masses
and the geometrical parameters in the LL problem. When
the LL index n is large, the spacing of the consecutive LLs
becomes uniform, and the spacing is solely expressed by

using the inverse mass tensors α, β, γ . On the other hand, the
interband coupling parameters can shift the relative position
of individual LLs, which can be observed by inspecting both
small and large n LLs. Thus, by calculating the spacing and
relative shift of LLs of a minimal model, we analyze the inter-
play of the mass tensors and interband coupling parameters.

Before taking the interband coupling into account, let us
numerically confirm that the spacings between LLs with large
LL indices converge to a constant value determined by the
mass tensors as anticipated in Sec. II. To this end, recall that
the mass tensors are determined by finding the quadratic form
α(k2

x + k2
y ) + β(k2

x − k2
y ) + γ (2kxky) that best approximates a

given energy dispersion. For the simple model in Eq. (34),
the coefficients β and γ of the quadratic form vanish. Thus
the energy dispersion is best approximated by the isotropic
dispersion α(k2

x + k2
y ), and the spacings between the consecu-

tive LLs are h̄ωc = 2α

l2
B

. In Figure 5(b), we plot the numerical
value of LL spacing (En+1 − En) of the upper band at n = 100
(black) as a function of c, and compare it with the theoretical
value 2α

l2
B

(red). We observe that the two curves match very

well. As the inverse effective mass α(= 2
mxx

= 2
myy

) increases,
the spacing becomes larger as well. Two curves match ex-
actly when the trajectory is circular at c = 1, that is, when
the energy dispersion is exactly quadratic. Note that in this
case, isotropic dispersion E = α(k2

x + k2
y ) is not merely an

approximation but an exact result.
Now we turn to the correction due to interband coupling.

We compute the difference of LLs between the minimal
2-band model and a single-band model. The LLs of a single-
band with isotropic quadratic dispersion is equal to E single

n =
h̄ωc(n + 1

2 ) as in Eq. (24). In contrast, the LL spectra of the
upper band of the 2-band model do not exactly follow this
form since the interband coupling modifies the relative posi-
tions of LLs. We calculate 	En = En − E single

n as a function of
the parameter c, setting the asymptotic spacing between LLs
of both models

lim
n→∞(En+1 − En) = lim

n→∞
(
E single

n+1 − E single
n

) = 2α

l2
B

(36)

to be identical so that the effect of the interband coupling
becomes vivid. In Fig. 5(c), we calculate 	En for various
LL indices n with different anisotropy (different c values).
First, we observe that 	E0,	E∞ � 0. The qualitative feature
of 	E∞, represented by the black line in Fig. 5(c), allows
simple explanation: it is proportional to the Berry phase [see
Eq. (26) and Eq. (27)]. When c = 0, CBS becomes an arc
whose enclosed area is zero. Hence, �B(CBS) grows from
zero to a positive value as c increases and CBS encloses
larger area.

In contrast, 	E1 is negative for models with a small c as
represented by the red line in Fig. 5(c). As c approaches 0, the
shape of CBS becomes more anisotropic and the magnitude of
	E1 grows in the negative direction. This characteristic was
also observed in the large a1 limit. As shown in Eq. (26), the
parameter 	 = b2

2 + b2
3 + c2

3, which increases as the CBS gets
more anisotropic, gives a negative contribution to 	En. This
observation remains valid even for this minimal model, which
lies outside of the large a1 limit. However, when c = 1.5, 	E1

takes positive value despite the presence of the anisotropic
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shape of the elliptic curve. This is due to the large positive
contribution to 	E1 from the Berry phase. In a general case,
the relative position of E1 is determined as a result of the
competition between these two contributions: 	E1 tends to be
negative as the Berry phase is small and the system exhibits a
large anisotropy. Since the Berry phase at c = 1.5 is relatively
large, 	En remains positive despite the presence of the large
anisotropy.

B. Nearly flat band

Next, we calculate the LL spectrum for a nearly flat band
coupled to a dispersive band. To construct a model, we use
the previous minimal continuum Hamiltonian with parameters
a = 2, b = 1 and varying c, but add a corresponding σ0 term
to Eq. (34) to flatten the lower band. As discussed in Sec. III,
when the parameters satisfy the quadratic form condition,
it is possible to find an appropriate inverse effective mass
α(a, b, c) as a function of other parameters, such that adding
α(k2

x + k2
y )σ0 to Eq. (34) creates an exactly flat lower band.

For the present continuum model, the quadratic form condi-
tion is satisfied when b = c and then adding α = √

a2 + b2

term creates an exactly flat band. If the quadratic form con-
dition is not satisfied, we can only create a nearly flat band
in a way that the quadratic dispersion from σx,y,z dependent
terms is canceled by σ0 dependent term, leading to higher
order dispersions and a saddle point at k = 0. By adding an
isotropic quadratic term that approximates the upper band’s
dispersion, we flatten the lower band and create a nearly flat
band.

For the exact flat band at c = 1, the characteristic LL spec-
trum is illustrated in Fig. 6(b). When the flat band condition is
satisfied, two LLs from the flat band are positioned above zero
energy while the others are below zero energy. The negative
LL states are distributed such that the levels are inversely
proportional to the Landau level index as shown in Ref. [20].
We note that the two positive energy LLs are not from the
upper band, but they arise mainly from the lower flat band.
This LL structure is a characteristic of a flat band coupled
to a dispersive band, which was discussed in the case when
d1 = d2 = 1 or d1 = d2 
 1 in Ref. [20].

The LL spectrum of the nearly flat band can be considered
as a superposition of two different types of LL spectra. One is
the characteristic LL spectrum that arises from the interband
coupling, and the other is the LL spectrum that comes from
the energy dispersion of the nearly flat band. Since the energy
dispersion of the lower band is not precisely flat when c �= 1,
the higher order terms create an equal energy contour which

FIG. 6. (a) LL spectra of the nearly flat bands. The parameters
are a = 2, b = 1, while c varies from 0.5 to 1.5 where the flat band
limit is satisfied at c = 1. On the right, we show a magnified figure of
the left, where c varies from 0.95 to 1.05. The numerical calcula-
tion of the LL spectra, represented by black circles, is composed
of the LLs created by the interband coupling and those from the
energy dispersion. The LLs from the interband coupling obtained by
Eq. (37) are displayed as red lines which match the numerical re-
sults well when c = 0.95 ∼ 1.05, and when b and c are similiar.
(b) LL spectra of the exact flat band when c = 1. The black dots
are the numerical results while the red lines are the analytic results in
Eq. (37). The first two En are positive, while the others are negative.
En shows a n−1 dependence on n when n � 2.

allows us to calculate LL states by using Onsager’s rule where
the specific levels depend on the energy dispersion over the
Brillouin zone [12,41].

Let us first calculate the LL spectra created by the interband
coupling for the nearly flat band. Previous studies only calcu-
lated the spectra for the exactly flat band when the interband
coupling parameters are either d1 = d2 = 1 or d1 = d2 
 1.
We extend this work and provide a general formula that holds
for exact flat bands with arbitrary interband coupling param-
eter d1 = d2 and nearly flat bands with d1 ∼ d2. When the
parameter |b − c| of the minimal model is small in magnitude
compared to a, b, and c, the leading terms of the LLs are
given

En =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
l2
B

(α − a), n = 0,

3
l2
B

(α − a), n = 1,

1
4l2

B
[{(8n − 4)α − 8a} −

√
{(8n − 4)α − 8a}2 + 48bc], n � 2,

(37)

where n = 0, 1 represent LLs of the nearly flat bands which
are located above the zero energy and n � 2 express LLs that
are below the zero energy. This equation holds when b and c

are similar or equivalently when d1 ∼ d2. Figure 6(a) shows
the numerical results of the LL spectra and the analytic results
in Eq. (37) for c ∈ [0.5, 1.5]. The two results match well when
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b and c are similar. We note that LLs created by the interband
coupling exist not only at exactly flat band limit (c = 1) but
also for nearly flat band limit. The spacings between these
levels increase with c, d1, and d2. To show the dependence
of the LLs on the interband coupling parameters d1, d2, we
expand Eq. (37) in the large n limit and express b and c in
terms of d1 and d2, which leads to

En = − 3a

4nl2
B

d1d2√
1 − d2

1
2 − d2

2
2

(n � 2), (38)

where En is inversely proportional to the LL index n. In
the nearly flat band, the LL spectra formed by the interband
coupling also show n−1 dependence on the LL index, which
generalizes the result of the flat band limit shown in Ref. [20].

In addition to the LLs created from the interband coupling,
we observe the LLs created from the energy dispersion of the
nearly flat bands, which scale linearly with |c − 1|. By ex-
panding the dispersion of the nearly flat band in O(c − 1), we

find that the leading term − (c−1)
4
√

5

k4
x +k4

y

k2
x +k2

y
has a linear dependence

on c − 1. Thus, when the band is nearly flat, or when b and
c are close in value, the energy dispersion is proportional to
c − 1.

VI. CONCLUSION

In this work, we have studied the interplay between
the interband coupling and the wave function geometry
in two-band Hamiltonians with QBCPs. Among the nine
parameters that exist in a generic two-band quadratic
Hamiltonian with a QBCP, six corresponds to the mass
tensors of the two bands, while the remaining three describe
the interband coupling. More explicitly, in terms of the elliptic
trajectory on the Bloch sphere corresponding to the collection
of the wave functions in momentum space, we found that the
three interband coupling parameters determine the major d1

and minor d2 diameters of the elliptic curve and the canting
angle φ of the ellipse with respect to the Bloch sphere.

Depending on the presence or absence of the singularity at the
QBCP, the elliptic trajectory takes different shapes, including
point, arc, circle, ellipse, etc. In particular, the quadratic form
condition (or flat band condition) simplifies the geometry
of the wave function and gives only a circular form of the
trajectory on the Bloch sphere.

In addition, we explored the influence of interband cou-
plings on the LL spectrum. By comparing two systems that
share the same mass tensors with distinct interband couplings,
we demonstrated that the interband couplings induce a con-
stant energy shift of LLs as well as the energy of initial
LLs near the QBCP. Moreover, we calculated the quantum
geometric tensors of the LL wave functions and examined the
role of the interband coupling.

We also extended our analysis to lattice models and exam-
ined the influence of rotation and time-reversal symmetries
on the wave function geometry. We designed a minimal con-
tinuum model with C4 rotation symmetry which showcases
various geometric structures of wave functions. We calculate
the LL spectra of the model and show how interband coupling
parameters modify the LLs for dispersive bands and create
unique LL structure for nearly flat bands.

Our work clearly demonstrates that the quantum geome-
try of the wave function contains the essential information
of the complicate interband coupling effect. Revealing the
novel physical responses, beyond the LL problem in QBCPs,
induced by nontrivial quantum geometry are definitely impor-
tant issues for further investigation, which we leave for future
studies.
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