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Non-Hermitian skin effect enforced by nonsymmorphic symmetries
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Crystal symmetries play an essential role in band structures of non-Hermitian Hamiltonians. In this paper,
we propose a non-Hermitian skin effect (NHSE) enforced by nonsymmorphic symmetries. We show that the
NHSE inevitably occurs if a two-dimensional non-Hermitian system satisfies conditions derived from the
nonsymmorphic symmetry of the doubled Hermitian Hamiltonian. This NHSE occurs in symmetry classes
with and without time-reversal symmetry. The NHSE enforced by nonsymmorphic symmetries always occurs
simultaneously with the closing of the point gap at zero energy. We also show that such a NHSE can occur in
specific three-dimensional space groups with nonsymmorphic symmetries.
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I. INTRODUCTION

Non-Hermiticity is universal in physics because open
quantum and classical systems are effectively described by
non-Hermitian matrices [1–12]. With recent experimental ad-
vances, non-Hermitian band structures have been intensively
investigated. Intriguingly, non-Hermiticity allows unique non-
Hermitian band topology without Hermitian counterparts
[13,14], e.g., the non-Hermitian skin effect (NHSE) [15–46].
The NHSE is a drastic difference in energy spectrum between
a periodic boundary condition (PBC) and an open boundary
condition (OBC) [13,14]. In particular, owing to the NHSEs,
a systematic understanding of non-Hermitian band topology
is still elusive in high-dimensional systems.

To understand the band structures, the concept of topo-
logical phases protected by crystal symmetries [47–68] has
been applied to non-Hermitian systems. Previous works have
revealed a relationship between non-Hermitian energy spectra
and band topology through symmorphic symmetries, includ-
ing inversion [69–74], mirror [73,75], and rotation [73,76–
78]. In contrast, little has been done to examine the effects
of nonsymmorphic symmetries (e.g., screw rotation and glide
mirror) on non-Hermitian Hamiltonians although they add
strong constraints to band structures in Hermitian systems,
such as symmetry-enforced gaplessness [79–85].

In this paper, we propose a class of NHSEs enforced by
nonsymmorphic symmetries. This NHSE necessarily occurs
if a non-Hermitian Hamiltonian satisfies certain conditions
of symmetry and matrix size. We also clarify how the con-
ditions depend on the presence of time-reversal symmetry.
We show that when the nonsymmorphic-symmetry-enforced
NHSE occurs, the point gap always closes at E = 0 under the
full PBC. The gap closing is a non-Hermitian counterpart of
symmetry-enforced gaplessness in Hermitian systems. This
NHSE can occur in two-dimensional (2D) systems with and
without time-reversal symmetry.

II. NONSYMMORPHIC-SYMMETRY-ENFORCED NHSE

To begin with, we explain the point-gap topology for
NHSEs [17,21,23,30]. A point gap at a wave vector k is open
at a reference energy E if the Hamiltonian H (k) satisfies
det[H (k) − E ] �= 0. When the point gap is open at E = 0
on a line along the ki (i = x, y, z) direction, we can define a
winding number along the ki direction as

Wi(k⊥) =
∫ 2π

0

dki

2π i

∂

∂ki
log det H (k), (1)

where k⊥ is the wave vector perpendicular to ki. If Wi(k⊥) is
nonzero, the NHSE occurs under the OBC in the i direction
[17,21,30,43]. Throughout this paper, we focus on the refer-
ence energy E = 0.

The winding number is related to Hermitian band topol-
ogy. To see a relationship, we introduce a doubled Hermitian
Hamiltonian

H̃ (k) =
(

0 H (k)
H†(k) 0

)
. (2)

The point-gap topology of a non-Hermitian Hamiltonian H (k)
corresponds to the band topology of the doubled Hermitian
Hamiltonian H̃ (k), which has chiral symmetry [17,21,86,87].
The chiral symmetry is described as �H̃ (k)�−1 = −H̃ (k)
with � = diag(1N ,−1N ), where 1N is the identity matrix that
has the same matrix size as H (k). Doubled Hermitian Hamil-
tonians are also characterized by a winding number equivalent
to Eq. (1). Therefore, we can diagnose whether the winding
number Wi(k⊥) is nonzero from information on the topology
of the doubled Hermitian Hamiltonian [see Appendix A for
details of the connection between the topology of H̃ (k) and
Wi(k⊥)].

In this section, we first consider a 2D non-Hermitian
Hamiltonian in class AII† with time-reversal symmetry
T HT (k)T −1 = H (−k), where T is a unitary matrix satisfy-
ing T T ∗ = −1 [21]. We demonstrate the conditions under
which a NHSE unavoidably occurs in the presence of the time-
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reversal symmetry. Initially, we assume that the matrix size of
the Hamiltonian is N = 4M + 2 with a nonnegative integer
M. Additionally, we suppose that the Hamiltonian satisfies

U k
g H (k) = [

UC2xk
g H (C2xk)

]†
, (3)

where C2x represents the twofold rotation around the x axis,
i.e., C2xk = (kx,−ky ). Here, U k

g is a unitary matrix defined as

U k
g := cse

i kx
2 Ak

g, (4)

where cs = i(1) for C2
2x = −1(+1) in spinful (spinless) sys-

tems, and Ak
g is an arbitrary (4M + 2) × (4M + 2) unitary

matrix that is periodic in the Brillouin zone. In addition, in
the presence of time-reversal symmetry, U k

g needs to satisfy a
relationship with T

T
(
U k

g

)∗ = −(
U −C2xk

g

)†T . (5)

As we discuss below, Eq. (3) is associated with a screw ro-
tation g = {C2x|x̂/2} symmetry, which is a twofold rotation
C2x followed by translation by a half of a lattice vector x̂.
In this paper, we use Seitz notation g = {pg|tg} for a spatial
transformation g, which transform a point r as r → pgr + tg.
Here, pg is an element of the point group, and tg represents a
translation.

Because the screw symmetry enforces NHSEs owing to the
above condition, we refer to such NHSEs as nonsymmorphic-
symmetry-enforced NHSEs. At the same time, the condition
leads to the closing the point gap at E = 0 on both ky = 0 and
ky = π lines under the full PBC.

A. 2D tight-binding model in class AII†

For concreteness, we introduce a 2D two-band tight-
binding model with the two degrees of freedom A and B in
each unit cell on a square lattice [Fig. 1(a)] in class AII†:

H2D = Hα + Hβ + Hγ . (6)

Here, Hα and Hβ are the non-Hermitian parts written as

Hα = α
∑

R

∑
rx=0,ex

(−1)rx ·ex (|R + rx + ey, A〉 〈R, A|

+ |R − rx − ey, B〉 〈R, B|),
Hβ = iβ

∑
R

∑
rx=0,ex

(|R + rx − ey, A〉 〈R, A|

+ |R − rx + ey, B〉 〈R, B|), (7)

and Hγ is the Hermitian part written as

Hγ = γ
∑

R

∑
rx=0,ex

(− |R + ex, A〉 〈R, B|

+ |R − ex, A〉 〈R, B| + H.c.), (8)

where R = (x, y) is the position of the unit cell, and ex and ey

are the unit vectors in the x and y directions, respectively.
Let us introduce the Fourier transformations |k〉 =

1√
N ′

∑
R eik·R |R〉 , where N ′ is the number of unit cells. By

using the Fourier transformation under the PBC, we obtain

FIG. 1. Energy spectra of H2D(k) with the parameters α = β =
0.3 and γ = 0.2. We take the PBC in the y direction for all the
calculations. (a) Schematic diagram of our model in the real space.
The rounded rectangle indicates the unit cell. (b) The energy spectra
on the ky = 0.2π line under the PBC and the OBC in the x direction.
(c) The spatial distributions of the skin mode in the dotted circle in
(b). The inset shows the spatial distribution in log scale. The system
size in the x direction is 40. (d) The energy spectra in E -ky space
under the full PBC.

the Bloch Hamiltonian

H2D(k) =
(

d (k) 2iγ sin kx

−2iγ sin kx d (−k)

)
, (9)

where d (k) = α(1 − e−ikx )e−iky + iβ(1 + e−ikx )eiky .
The Hamiltonian has time-reversal symmetry:
σy[H2D(k)]T (k)σ−1

y = H2D(−k), where σy is the Pauli
matrix. The schematic diagram of this model in the real space
is shown in Fig. 1(a). The Hamiltonian H2D(k) satisfies the
condition in Eq. (3) with cs = i and Ak

g = diag(1,−e−ikx ).
Figure 1(b) shows energy spectra of H2D(k) on the ky = 0.2π

line both under the full PBC and under the OBC in the x
direction. The model has a nonzero winding number in Eq. (1)
under the full PBC. Figure 1(c) shows that the eigenstate on
the ky = 0.2π line is localized at the right edge. These results
indicate that a NHSE occurs in the model. Furthermore, the
point gap closes at E = 0 on the ky = 0 and ky = π lines
under the full PBC [Fig. 1(d)].

Here, we consider a doubled Hermitian Hamiltonian of
H2D(k) to find the band topology that leads to NHSE. The
doubled Hermitian Hamiltonian has a screw symmetry written

as Ũ k
{C2x |x̂/2}H̃ (k)(Ũ k

{C2x |x̂/2})
−1

= H̃ (C2xk) with

Ũ k
{C2x |x̂/2} =

( −e−ikx (AC2k
g )†

Ak
g

)
. (10)

The doubled Hermitian Hamiltonian hosts 2D Weyl points
on the screw-invariant lines. The schematic band structures
are illustrated in Fig. 2. The 2D Weyl points originate from
band crossings of eigenstates with different screw-symmetry
eigenvalues. In general, a winding number can be nonzero
in the presence of 2D Weyl points [87–91]. The relationship
between a winding number and 2D Weyl points is given in
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FIG. 2. (a) Schematic band structures of a doubled Hermi-
tian Hamiltonian with g = {C2x|x̂/2} symmetry and time-reversal
symmetry along the screw-invariant line. � and Ũ k

g satisfy anticom-
mutation relation. Colors of the bands indicate the opposite sign of
the screw eigenvalues. (b) An illustrative example of the positions of
the Weyl points in class DIII with cg = −1 and the regions with the
nonzero winding number in the Brillouin zone. The arrows indicate
the direction of integration of Wi(k⊥). The colors (red and blue) of the
points represent the opposite chirality of the Weyl points. The red and
blue colors of the nonzero Wx (ky ) regions indicate the opposite sign
of the winding number: Wx (ky ) = −Wx (−ky ).

Appendix A. Therefore, we can see that the model shows the
NHSE.

B. Conditions for the screw symmetry

Hereafter, we discuss general conditions to systematically
realize NHSEs protected by screw symmetry, including the
NHSE in the above 2D model. First, we briefly review con-
ditions of non-Hermitian Hamiltonians for doubled Hermitian
Hamiltonians in Eq. (2) to have crystal symmetry g = {pg|tg}
[73]. The symmetry for the doubled Hermitian Hamiltonian is
expressed as

Ũ k
g H̃ (k)

(
Ũ k

g

)−1 = H̃ (pgk), (11)

where Ũ k
g is a symmetry representation of g. Since H̃ (k) has

chiral symmetry � = diag(1N ,−1N ), we specify a relation
between Ũ k

g and � by using a projective factor cg, which is
defined as [73]

Ũ k
g � = cg�Ũ k

g . (12)

Because �2 = 1, the projective factor is given by cg ∈ {±1}.
Therefore, symmetry representations commute or anticom-
mute with �. Then, crystal symmetries can be represented by
[73]

Ũ k
g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Ak

g

Bk
g

)
(cg = 1),

(
Bk

g

Ak
g

)
(cg = −1),

(13)

where Ak
g and Bk

g are unitary matrices that are periodic in the
Brillouin zone. By substituting Eq. (13) into Eq. (11), the
conditions for the non-Hermitian Hamiltonian can be obtained
as follows:

Ak
gH (k) =

{
H (pgk)Bk

g (cg = 1),

H†(pgk)Bk
g (cg = −1).

(14)

In this paper, we show that screw symmetry with cg = −1
enforces NHSEs, and therefore we focus on cg = −1 in the
main text. We discuss the case cg = +1 in Appendix B.

Next, we apply the above discussion to screw symmetry
to derive the symmetry condition in Eq. (3), which corre-
sponds to the screw symmetry with cg = −1. When a doubled
Hermitian Hamiltonian has screw symmetry g = {C2x|x̂/2}, it
satisfies

Ũ k
g H̃ (k)

(
Ũ k

g

)−1 = H̃ (C2xk), (15)

where Ũ k
g is a representation matrix of the screw symme-

try. Because {C2x|x̂/2}2 = {C2
2x|x̂}, it follows that ŨC2xk

g Ũ k
g =

e−ikx (−e−ikx ) for C2
2x = 1(−1). Therefore, we obtain the fol-

lowing equation:

csB
k
g = (

cse
ikx AC2xk

g

)†
(cg = −1), (16)

where cs = 1(i) for C2
2x = 1(−1), and Ak

g and Bk
g are unitary

matrices in Eq. (13). By combining Eq. (14) with Eq. (16), we
can obtain

csA
k
gH (k) =

[
cse

ikx AC2xk
g H (C2xk)

]†
(cg = −1). (17)

By using a unitary matrix U k
g := csei kx

2 Ak
g, we can rewrite

Eq. (17) as Eq. (3).
Furthermore, we derive Eq. (5), which indicates the re-

lationship between the unitary matrix U k
g and time-reversal

symmetry in class AII†. The non-Hermitian Hamiltonian
H (k) has time-reversal symmetry defined as [21]

T HT (k)T −1 = H (−k), (18)

where T is a unitary matrix and satisfies

T T ∗ = −1. (19)

The doubled Hermitian Hamiltonian H̃ (k) can obtain time-
reversal symmetry given by

T̃ H̃ (k)T̃ −1 = H̃ (−k), (20)

where T̃ is given by

T̃ =
(

T
T

)
K (21)

and satisfies T̃ 2 = −1. The symmetry class of H̃ (k) is class
DIII [92] because H̃ (k) has particle-hole symmetry that satis-
fies P̃2 = 1 owing to �T̃ = −T̃ �. We also obtain T̃ Ũ k

g =
Ũ −k

g T̃ by imposing the commutation relation on {C2x|x̂/2}
and T̃ . Therefore, we have

T
(
Ak

g

)∗ = B−k
g T . (22)

Moreover, we choose cs = i because T̃ 2 = −1. Hence, we
obtain

T
(
Ak

g

)∗ = −eikx
(
A−C2xk

g

)−1T . (23)

By using the unitary matrix U k
g = iei kx

2 Ak
g, we get Eq. (5).
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FIG. 3. Nonsymmorphic-symmetry-enforced NHSEs in the 3D
system. We choose the parameters t0 = 0.125, ta = 0.1, tb = td =
0.05, and tc = 0.025. (a) The energy spectra of H3D(k) with
(kx, ky ) = (2.6, 0.6) under the PBC in the z direction and the OBC
in the z direction. The system size in the z direction is 40. (b) The
spatial distributions of the skin mode in the dotted circle in (a). The
inset shows the spatial distribution in log scale.

C. Mechanism of NHSEs enforced by nonsymmorphic
symmetry in class AII†

As shown in Sec. II B, if H (k) satisfies the condition in
Eq. (3), H̃ (k) has the screw rotation symmetry g = {C2x|x̂/2}.
Thus, eigenstates of H̃ (k) have the screw rotation eigenvalues
±cse−i kx

2 on the screw-invariant lines (ky = 0, π ). In order to
take time-reversal symmetry into account, we consider a case
where Eq. (5) holds with C2

2x = −1 (cs = i).
We show that the doubled Hermitian Hamiltonian has 2D

Weyl points at zero energy if cg = −1. The eigenstates on
the screw-invariant lines (ky = 0, π ) are labeled by the screw

symmetry eigenvalues ±ie−i kx
2 . Because of the time-reversal

symmetry, while Kramers pairs at kx = 0 have opposite screw
rotation eigenvalues ±i, Kramers pairs at kx = π have the
same eigenvalues [Fig. 2(a)]. Moreover, because the chiral
operator anticommutes with the screw operator, a pair of
eigenstates with the energy E and −E has screw eigenvalues
with the opposite signs [93]. Since the eigenvalues must cross
on the line, the eigenstates with these symmetry eigenvalues
enforce Weyl points on the screw-invariant line. Because the
number of bands of the doubled Hermitian Hamiltonian is
8M + 4 by assumption, the chiral symmetry fixes the 2D Weyl
points at zero energy.

The emergent Weyl points give a path with a nonzero wind-
ing number in the Brillouin zone, depending on their chirality
and positions [87–91]. In addition, the winding number sat-
isfies Wx(−ky) = −Wx(ky) because T HT (k)T −1 = H (−k).
Also, as we show in Appendix A, when the time-reversal
and the chiral operators anticommute, the 2D Weyl points
at k0 and −k0 have the same chirality [see Eq. (A15) in
Appendix A]. Thus, a time-reversal pair of the Weyl points
on the screw-invariant line has the same chirality. It follows
that the winding number Wx(ky) is nonzero at any ky due to
the positions and the chirality of the Weyl points [Fig. 2(b)].
Furthermore, we can find anisotropy in the winding numbers
Wx(ky) and Wy(kx ). Because we cannot annihilate the Weyl
points on the screw-invariant lines, we can always find a path
for a nonzero Wx(ky) in the Brillouin zone. On the other hand,
Wy(kx ) can be zero in the presence of the Weyl points with the
opposite chirality at the same kx. As a result, the NHSE under
the OBC in the x direction is more robust than that under the
OBC in the y direction.

TABLE I. Conditions of the matrix size and the symmetries
for nonsymmorphic-symmetry-enforced NHSEs. When a given non-
Hermitian Hamiltonian satisfies the conditions of the symmetry and
the matrix size, the system can realize symmetry-enforced NHSEs.

Matrix size of Relation between
Symmetry class H (k) and Ak

g T and U k
g

Class A 2M + 1 –
Class AII 4M + 2 T

(
U k

g

)∗ = −U −k
g T

Class AII† 4M + 2 T
(
U k

g

)∗ = −(
U −C2xk

g

)†T

Moreover, since the 2D Weyl points appear at zero en-
ergy, we obtain det[H (k)]det[H†(k)] = 0 at some wave vector
on the screw-invariant lines. Therefore, the point-gap clos-
ing of H (k) is found at E = 0 under the full PBC. Thus,
the nonsymmorphic-symmetry-enforced NHSE always oc-
curs with the point-gap closing on the screw-invariant lines.

D. Nonsymmorphic-symmetry-enforced NHSE
in other symmetry classes

Next, we discuss nonsymmorphic-symmetry-enforced
NHSEs in symmetry class A and class AII. Non-Hermitian
Hamiltonians in class A do not have any internal symmetries.
Meanwhile, non-Hermitian Hamiltonians H (k) in symme-
try class AII have time-reversal symmetry T H∗(k)T −1 =
H (−k), where T is a unitary matrix satisfying T T ∗ = −1
[21]. While Eq. (3) is also applicable to class A and class
AII, U k

g in class AII needs to satisfy a relationship with T
in Table I.

Furthermore, we discuss the matrix size of non-Hermitian
Hamiltonians H (k) to realize symmetry-enforced NHSEs.
To see the conditions of the matrix size we investigate
Weyl points of the doubled Hermitian Hamiltonians H̃ (k)
with the screw symmetry and with and without time-reversal
symmetry. The details of the band topology are given in
Appendices C and D.

When the matrix size of H (k) in class A is 2M + 1, H̃ (k)
has a 2D Weyl point on the screw-invariant lines. On the other
hand, when the matrix size of H (k) in class AII is 4M + 2,
H̃ (k) has a pair of 2D Weyl points on the screw-invariant lines.
Therefore, nonsymmorphic-symmetry-enforced NHSEs can
happen in the two classes (see Appendices C and D). These
results are summarized in Table I.

In contrast, NHSEs are not enforced in 2D class AI and
2D class AI†. We show the absence of NHSEs enforced by
screw symmetry in the two classes. The details are given in
Appendix E.

III. 3D NHSE ENFORCED BY NONSYMMORPHIC
SYMMETRY

While a nonsymmorphic-symmetry-enforced NHSE can-
not be realized in 2D systems in class AI, it can occur in
three-dimensional (3D) class AI. To show this, let us extend
the above discussion for 2D systems to that for 3D sys-
tems. We introduce a 3D two-band non-Hermitian model on a
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primitive orthorhombic lattice. The model is given by

H3D(k) = v0(k)σ0 +
∑
i=x,y

vi(k)σi, (24)

where σi (i = x, y, z) and σ0 are the Pauli matrices and the
identity matrix, respectively. Here, the coefficient functions
are given by

v0(k) = t0 f1(k‖) − ita sin kz f1(k‖),

vx(k) = − itb sin kz f1(k‖) − itc sin kz f2(k‖)

+ td (1 − cos kz ) f2(k‖),

vy(k) = − itb(1 − cos kz ) f1(k‖) + itc(1 + cos kz ) f2(k‖)

− td sin kz f2(k‖), (25)

where k‖ = (kx, ky) is the x-y plane momentum,
f1(k‖) = (1 + e−ikx )(1 + e−iky ), and f2(k‖) = (eikx −
e−2ikx )(1 − e−iky ) − (eiky − e−2iky )(1 − e−ikx ). This model has
time-reversal symmetry: H∗

3D(k) = H3D(−k), and therefore it
belongs to class AI. We calculate energy spectra of H3D(k)
under the PBC in both the x and the y directions. Figure 3(a)
shows that the NHSE occurs under the OBC in the z direction.
Then, Fig. 3(b) shows that the eigenstates are localized at the
surface normal to the z direction.

To see that the NHSE stems from nonsymmorphic sym-
metry, we study the doubled Hermitian Hamiltonian H̃3D(k)
obtained from H3D(k) by using Eq. (2). The doubled Hermi-
tian Hamiltonian H̃3D(k) is given by

H̃3D(k) =V1(k‖)

[
t0
4

sin kzτy ⊗ σ0 + ta
4

τx ⊗ σ0 + tb
8

sin kzτy ⊗ σx + tb
8

(1 − cos kx )τy ⊗ σy

]

+V2(k‖)
[
− t0

4
sin kzτx ⊗ σ0 + ta

4
τy ⊗ σ0 − tb

8
sin kzτx ⊗ σx − tb

8
(1 − cos kz )τx ⊗ σy

]

+V3(k‖)
[
− tc

8
(1 + cos kz )τy ⊗ σy + tc

8
sin kzτy ⊗ σx − td

8
sin kzτx ⊗ σy + td

8
(1 − cos kz )τx ⊗ σx

]
+V4(k‖)

[
− tc

8
(1 + cos kz )τx ⊗ σy + tc

8
sin kzτx ⊗ σx + td

8
sin kzτy ⊗ σy − td

8
(1 − cos kz )τy ⊗ σx

]
, (26)

with

V1(k‖) = 1 + cos kx + cos ky + cos(kx + ky),

V2(k‖) = sin kx + sin ky + sin(kx + ky),

V3(k‖) = (cos kx − cos 2kx )(1 − cos ky) − (cos ky − cos 2ky)(1 − cos kx ) − (sin kx + sin 2kx ) sin ky

+ (sin ky + sin 2ky) sin kx,

V4(k‖) = (cos kx − cos 2kx ) sin ky + (sin kx + sin 2kx )(1 − cos ky) − (cos ky − cos 2ky) sin kx

− (sin ky + sin 2ky)(1 − cos kx ), (27)

where τi (i = x, y, z) and τ0 are the Pauli matrices and the
identity matrix. The doubled Hermitian Hamiltonian corre-
sponds to a 3D tight-binding model on a primitive orthorhom-
bic lattice with the four sublattices at rα = (1/4, 1/4, 0),
(1/4, 1/4, 1/2), (3/4, 3/4, 0), and (3/4, 3/4, 1/2) in each
unit cell [85]. In the model, the Pauli matrices σi represent z =
0 and z = 1/2 sublattices, and the Pauli matrices τi represent
the (x, y) = (1/4, 1/4) and (x, y) = (3/4, 3/4) sublattices.

To see the band topology, we discuss symmetries of the
doubled Hermitian Hamiltonian H̃3D(k) by using the Seitz
notation. Let x, y, and z denote the lattice vectors in the x, y,
and z directions, respectively. The doubled Hermitian Hamil-
tonian belongs to space group P4/ncc (No. 130) generated
by {I|0}, {C4z| 1

2 x̂}, {C2y| 1
2 ŷ + 1

2 ẑ}, and {C2z| 1
2 x̂ + 1

2 ŷ}, where
I represents the inversion, C4z represents the fourfold rotation
around the z axis, and C2y and C2z represent the twofold rota-
tion around the y and the z axes, respectively. The symmetry
representations Ũ k

g are

Ũ k
{I|0} = e−i(kx+ky+kz )τx ⊗ σx,

Ũ k

{C4z | 1
2 x̂}

=
(

1
e−iky

)
⊗ σ0,

Ũ k

{C2y| 1
2 ŷ+ 1

2 ẑ}
=

(
e−i(kx+ky )

e−ikx

)
⊗

(
1

e−ikz

)
,

Ũ k

{C2z| 1
2 x̂+ 1

2 ŷ}
=

(
1

e−i(kx+ky )

)
⊗ σ0. (28)

We can understand that the crystal symmetries stem from
symmetry relations in Eq. (13). Their projective factors can be
calculated from the symmetry representations. The relations
are summarized in Table II. Furthermore, the model H3D(k)
has time-reversal symmetry H∗

3D(k) = H3D(−k), which means
that it belongs to class AI. Thus, H̃3D(k) has time-reversal
symmetry T̃ H̃3D(k)T̃ −1 = H̃3D(−k) with T̃ = K , which sat-
isfies T̃ 2 = 1.

Importantly, when time-reversal symmetry with T̃ 2 = 1
is present, the space group P4/ncc realizes nodal lines en-
forced by glide reflection symmetry [85]. The glide symmetry
is given by G = {Mz| 1

2 x̂ + 1
2 ŷ} = {C2z| 1

2 x̂ + 1
2 ŷ}{I|0}, where

Mz is mirror reflection with the x-y mirror plane. The pro-
jective factor of the glide symmetry is cG = −1. We show
that H̃3D(k) can host a symmetry-enforced nodal line on
the glide-invariant plane kz = π . The eigenstates are labeled
by the glide reflection eigenvalues ±e− i

2 (kx+ky ) on the glide-
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TABLE II. The symmetry relations of the 3D non-Hermitian Hamiltonian H3D(k).

Symmetry operation cg Ak
g Bk

g Symmetry relation

{I|0} −1 e−i(kx+ky+kz )σx e−i(kx+ky+kz )σx Ak
gH3D(kx, ky, kz ) = H†

3D(−kx, −ky, −kz )Bk
g

{C4z| 1
2 x̂} 1 σ0 e−ikyσ0 Ak

gH3D(kx, ky, kz ) = H3D(−ky, kx, kz )Bk
g

{C2y| 1
2 ŷ + 1

2 ẑ} −1

(
e−ikx 0

0 e−i(kx+kz )

) (
e−i(kx+ky ) 0

0 e−i(kx+ky+kz )

)
Ak

gH3D(kx, ky, kz ) = H†
3D(−kx, ky,−kz )Bk

g

{C2z| 1
2 x̂ + 1

2 ŷ} 1 σ0 e−i(kx+ky )σ0 Ak
gH3D(kx, ky, kz ) = H3D(−kx, −ky, kz )Bk

g

T̃ – – – H∗
3D(kx, ky, kz ) = H3D(−kx, −ky,−kz )

invariant plane kz = π . Here, eigenstates at kx = 0 and π are
necessarily doubly degenerate in the space group because of
combinations of time-reversal and crystal symmetries [85].
The doubly degenerate states at kx = 0 (π ) have the opposite
(same) glide eigenvalues. Since cG = −1, a pair of eigen-
states with the energies E and −E have glide eigenvalues
of the opposite sign [Fig. 4(a)]. Figure 4(a) shows that the
glide eigenvalues need to cross between kx = 0 and kx = π

on the glide-invariant kx-ky plane. The eigenvalue crossing
enforces band degeneracy at zero energy due to chiral sym-
metry because the matrix size of H̃3D(k) is 4. In general, the
symmetry-enforced nodal line can appear at zero energy if
the matrix size is 8M + 4. The mechanism is similar to the
symmetry-enforced 2D Weyl point in time-reversal-invariant
classes with T 2 = −1 in Fig. 2. The degeneracy forms the
nodal line on the glide-invariant plane kz = π [Fig. 4(b)].

FIG. 4. (a) The energy spectra of the doubled Hermitian Hamil-
tonian H̃3D(k) on the (ky, kz ) = (0.6, π ) line. ± denotes the sign of
the glide symmetry eigenvalues ±e− i

2 (kx+ky ). (b) The band structures
of the doubled Hermitian Hamiltonian H̃3D(k) on the kz = π plane.
(c) Top view of the winding number Wz(k‖) on the kx-ky space.
The winding number varies on the nodal line on the kz = π plane.
(d) The energy spectra of the non-Hermitian Hamiltonian H3D(k)
with (kx, ky ) = (2.159, 0.6) calculated along the kz direction under
the full PBC. The parameters are the same as those in Fig. 3

Nodal lines generally lead to a path with a nontrivial wind-
ing number in the 3D Brillouin zone [94–98]. In this case,
a winding number calculated along the kz direction changes
its value on the nodal line. Thus, the corresponding non-
Hermitian Hamiltonian H3D(k) has a nonzero winding number
Wz(k‖), as shown in Fig. 4(c). As a result, we see that a
symmetry-enforced NHSE happens in the 3D non-Hermitian
lattice. Also, we find that the point gap of the non-Hermitian
Hamiltonian H3D(k) closes at E = 0 on specific lines along
the kz direction under the full PBC [Fig. 4(d)]. We can also
grasp the point-gap closing at E = 0 from the symmetry-
enforced nodal line.

IV. CONCLUSION AND DISCUSSION

In summary, we study NHSEs enforced by nonsym-
morphic symmetry in 2D and 3D non-Hermitian systems,
which we call nonsymmorphic-symmetry-enforced NHSEs.
We have clarified the conditions of symmetry and matrix
size of non-Hermitian Hamiltonians for the NHSEs. If the
conditions are satisfied, these NHSEs inevitably happen. We
have also revealed that the point gap at E = 0 closes under the
full PBC when the NHSEs occur. These NHSEs can occur in
2D systems not only without time-reversal symmetry but also
with time-reversal symmetry.

NHSEs have been experimentally observed in artificially
designed systems [33,99–106]. We believe that our theory can
be readily confirmed in artificial two-dimensional systems,
such as active matter [105] and electric circuits [33,106].
Symmetries in these artificial platforms can be flexibly con-
trolled. Our theory is helpful for design of non-Hermitian
band structures in terms of spatial symmetries.
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APPENDIX A: REVIEW OF DOUBLED HERMITIAN
HAMILTONIANS AND WINDING NUMBERS

1. Winding numbers for non-Hermitian Hamiltonians
and doubled Hermitian Hamiltonians

We briefly review the relationship between the NHSEs and
band topology of a doubled Hermitian Hamiltonian. Through-
out this work, we choose the convention for non-Hermitian
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Hamiltonians H (k) to satisfy H (k + G) = H (k), as used for
the Fourier transformation in the main text.

We start with a winding number for the NHSE in 2D and
3D non-Hermitian systems, which is defined as [43]

W (E ) = 1

2π i

∮
l
dk · ∂k log det[H (k) − E ], (A1)

where l is a loop in the Brillouin zone, and E is a reference en-
ergy. If a winding number with a reference energy is nonzero
in the system, a NHSE happens under an OBC [43]. On the
other hand, it is unclear what OBC leads to the NHSE among
the various OBCs. We can determine how to take an OBC to
observe a NHSE by choosing a line in the Brillouin zone as l .
For instance, let us introduce the following winding number:

Wi(k⊥, E ) = 1

2π i

∫ 2π

0
dki

∂

∂ki
log det[H (k) − E ], (A2)

where k⊥ is the wave vector perpendicular to ki (i = x, y, z).
If W (k⊥, E ) is nonzero, a NHSE happens under the OBC in
the i direction and under the PBC in the other directions [30].
In this paper, we investigate the winding number with E = 0.

Next, we see the band topology of a doubled Hermi-
tian Hamiltonian defined by Eq. (2). The doubled Hermitian
Hamiltonian has chiral symmetry � = diag(1N ,−1N ), where
N is the matrix size of H (k). For the topological classification
of the doubled Hermitian Hamiltonians, we introduce the Q
matrix defined as [87]

Q(k) = 1 − 2
∑
Eα<0

|
α (k)〉 〈
α (k)| , (A3)

where |
α (k)〉 is an eigenstate of the doubled Hermitian
Hamiltonian with the energy Eα . When chiral symmetry is
diagonal, the Q matrix is block off-diagonal, represented by

Q(k) =
(

0 q(k)
q†(k) 0

)
, (A4)

where q(k) is a unitary matrix. When only chiral symmetry
is present, the Hamiltonians belong to class AIII [92]. The
Hermitian Hamiltonians can be characterized by

νi(k⊥) = 1

2π i

∫ 2π

0
dki

∂

∂ki
log det[q(k)], (A5)

which is also a winding number [87]. In high-dimensional
systems, the winding number νi(k⊥) is used to characterize
the topological gapless band structures [87,91].

Hereafter, we show that the winding number Wi(k⊥) in
the main text is equivalent to the winding number ν(k⊥),
according to Ref. [91]. Any doubled Hermitian Hamiltonian
H̃ (k) commutes with the Q matrix because

H̃ (k)Q(k) = H̃ (k) − 2
∑
Eα<0

Eα |
α (k)〉 〈
α (k)|

= Q(k)H̃ (k). (A6)

Because the commutation relation can be written on the basis

of Eq. (A4) as(
0 H (k)

H†(k) 0

)(
0 q(k)

q†(k) 0

)

−
(

0 q(k)
q†(k) 0

)(
0 H (k)

H†(k) 0

)
= 0, (A7)

we obtain

H (k)q†(k) = q(k)H†(k). (A8)

Therefore, we have

det[H (k)q†(k)] = det[q(k)H†(k)]

= det[H (k)q†(k)]∗, (A9)

which indicates that det[H (k)q†(k)] is real. It follows that∫ 2π

0
dki

∂

∂ki
log det[H (k)q†(k)] = 0, (A10)

because the integrant log det[H (k)q†(k)] is real and periodic
in the Brillouin zone. Eventually, we obtain∫ 2π

0
dki

∂

∂ki
log det[H (k)] = −

∫ 2π

0
dki

∂

∂ki
log det[q†(k)]

=
∫ 2π

0
dki

∂

∂ki
log det[q(k)],

(A11)

where we have used log det q(k) = − log det q†(k) because of
the unitarity of q(k). From this equation, it is clear that νi(k⊥)
is the same as Wi(k⊥).

2. Winding number and chirality of Weyl points

Here, we review a relationship between a winding number
and 2D Weyl points. In the presence of chiral symmetry, a 2D
Weyl point at zero energy can have a nonzero chirality related
to the winding number. When a 2D Weyl point is located at k0

in the Brillouin zone, the chirality is given by [88,91]

ν(k0) = 1

2π i

∮
l (k0 )

dk · ∂k log det[q(k)], (A12)

where l is a loop encircling the Weyl point. Moreover, when
time-reversal symmetry T̃ is present, another Weyl point can
appear at −k0 if k0 is not a time-reversal-invariant momentum.
The chirality can be determined by whether the time-reversal
and the chiral operators commute or anticommute. We write
the relation as

T̃ � = cT̃ �T̃ , (A13)

cT̃ = ±1. (A14)

Then, winding numbers encircling each of the 2D Weyl points
at k0 and −k0 are related via the relation [91]

ν(−k0) = −cT̃ ν(k0). (A15)

We also show how the winding number in Eq. (A5) is re-
lated to the chirality. Let k⊥ be the wave vector perpendicular
to ki. We choose as l the integral path that encircles only
one Weyl point at k⊥ = k0, as shown in Fig. 5. Then, since
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FIG. 5. An integral path l for the winding number encircling a
Weyl point at k⊥ = k0.

H̃ (k + G) = H̃ (k) because of the gauge choice, the winding
number is written as

ν(k0) = νi(k0 − δ) − νi(k0 + δ), (A16)

where δ is a real and positive value. Because the winding
number ν(k0) is nonzero, either νi(k0 + δ) or νi(k0 − δ) is
nonzero. Thus, the Weyl point leads to the nonzero winding
number Wi(k⊥) since ν(k⊥) = Wi(k⊥).

We can generalize the idea to 3D systems. Three-
dimensional chiral-symmetric systems can realize nodal lines
due to band crossing instead of Weyl points because band
degeneracy forms a gapless line in the 3D Brillouin zone
[87]. The nodal line can be characterized by the same winding
number in Eq. (A12). When we choose a loop linking with the
nodal line as the integral path, the winding number is nonzero.
By deforming the loop to a line in the same way as 2D, the
system with the nodal line has a nonzero winding number in
Eq. (A5), which is equivalent to Eq. (1) in the main text.

APPENDIX B: SCREW SYMMETRY WITH cg = 1 IN 2D
CLASS AII†

In this Appendix, we discuss screw symmetry g =
{C2x|x̂/2} with cg = 1 in Eq. (14) in class AII†. We apply
the symmetry condition in Eq. (14) to the screw symme-
try Ũ k

g H̃ (k)(Ũ k
g )−1 = H̃ (C2xk). Since {C2x|x̂/2}2 = {C2

2x|x̂},
it follows that ŨC2xk

g Ũ k
g = e−ikx (−e−ikx ) for C2

2x = 1(−1).
Therefore, we obtain

csA
k
g = (

cse
ikx AC2xk

g

)†
(cg = 1),

csB
k
g = (

cse
ikx BC2xk

g

)†
(cg = 1), (B1)

where cs = 1(i) for C2
2x = 1(−1), and Ak

g and Bk
g are unitary

matrices in Eq. (13). When Eqs. (14) and (B1) hold, the
doubled Hermitian Hamiltonian has the screw symmetry.

Because the chiral operator commutes with the symmetry
representation Ũ k

g here, a pair of eigenstates at energy E
and −E have the same eigenvalues of the screw symmetry
[93]. At the same time, the time-reversal symmetry gives rise
to Kramer’s degeneracy of two states with the same screw

FIG. 6. Schematic band structures of a doubled Hermitian
Hamiltonian with {C2x|x̂/2} symmetry and time-reversal symmetry
along the screw-invariant line. � and Ũ k

g satisfy commutation relation
(cg = 1).

eigenvalues. Therefore, the screw symmetry with cg = 1 leads
to a fourfold degeneracy at kx = π (Fig. 6), and this case is
beyond our scope.

APPENDIX C: MECHANISM OF SYMMETRY-ENFORCED
NHSEs IN 2D CLASS A

We henceforth show that screw symmetry with cg = −1
yields the nonsymmorphic symmetry-enforced NHSE. We
assume that the matrix size of H (k) is 2M + 1 with a non-
negative integer M. When H (k) satisfies Eq. (3), the doubled
Hermitian Hamiltonian H̃ (k) has the screw rotation symme-
try. Eigenstates of H̃ (k) can be labeled by the symmetry
eigenvalues ±cse−i kx

2 on the screw-invariant lines. By replac-
ing kx with kx + 2π , the eigenvalues change from ±cse−i kx

2 to
∓cse−i kx

2 . Therefore, pairs of bands with opposite eigenvalues
must intersect an odd number of times [107] from kx = 0 to
kx = 2π on the screw-invariant line, which enforces 2D Weyl
points [79].

We consider the effect of chiral symmetry on the band
structures of the doubled Hermitian Hamiltonian. Because
of the chiral symmetry �, an eigenstate with the energy E
appears with an eigenstate with −E in pairs. When � and
Ũ k

g satisfy anticommutation relation (i.e., cg = −1), a pair of
the eigenstates has the screw eigenvalues with opposite signs
[Fig. 7(a)]. The two eigenstates with opposite screw symmetry
eigenvalues intersect an odd number of times along the screw-
invariant line. The crossing points are 2D Weyl points. By
assumption about the matrix size, the Weyl points appear at
zero energy, which gives a nonzero winding number.

In contrast, when cg = 1, the pair of states with the en-
ergy E and −E have the same screw symmetry eigenvalues
[Fig. 7(b)]. Therefore, the screw symmetry with cg = 1 leads
to gap-closing lines at zero energy. Hence, the 2D Weyl points
do not appear in this case, and we do not consider this case in
our paper.

When the doubled Hermitian Hamiltonian H̃ (k) has a
nonzero winding number, the non-Hermitian Hamiltonian
H (k) also has nonzero Wi(k⊥), as discussed above. Thus,
corresponding to the 2D Weyl points enforced by the
screw symmetry, the non-Hermitian Hamiltonian H (k) has
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FIG. 7. Weyl point and gapless line in a 2D doubled Hermi-
tian Hamiltonian with screw symmetry in class AIII. The yellow
(green) lines represent energy eigenvalues with the screw symmetry
eigenvalue +e−ikx/2(−eikx/2). (a) and (b) show energy bands along
a screw-invariant line in the cases where the chiral and the screw
symmetries satisfy the anticommutation relation (cg = −1) and com-
mutation relation (cg = 1), respectively.

a nonzero winding number (Fig. 8). Also, because the posi-
tions of the Weyl points are fixed on the screw-invariant lines
(ky = 0, π ), there is always at least one direction where the
winding number is nonzero regardless of the positions of the
Weyl points. As a result, a NHSE along some direction is also
enforced by the screw symmetry of H̃ (k). Namely, because a
winding number is necessarily nonzero in the Brillouin zone
thanks to the symmetry-enforced Weyl points, the NHSE is
robust as long as H (k) satisfies Eq. (3).

Similarly to class AII†, we can find anisotropy of wind-
ing numbers for the symmetry-enforced NHSE in class A.
Since two Weyl points are enforced to appear on the different
screw-invariant lines, we can always find a path for a nonzero
Wx(ky) in the Brillouin zone, as shown in Fig. 8. Thus, the
symmetry-enforced NHSE under the OBC in the x direction
is more robust than that under the OBC in the y direction.

1. Model calculation in class A

We introduce a tight-binding model to demonstrate a
nonsymmorphic-symmetry-enforced NHSE in class A. The

FIG. 8. Weyl points and regions with the nonzero winding num-
ber Wi(k⊥) (i = x, y). The arrows indicate the direction of the
integration of Wi(k⊥). The red and the blue points are Weyl points,
and the color difference represents their opposite chirality.

FIG. 9. Energy spectra and eigenstates of HA
2D(k) with the param-

eters t1 = 0.4, t2 = 0.1, t3 = 0.1, t4 = 0.8, and t5 = 0.5. We take the
PBC in the x direction for all the calculations. (a) The energy spectra
on the kx = π line under the PBC and the OBC in the y direction.
(b) The spatial distributions of all the right eigenstates ψn on the
kx = π line. (c) The energy spectra on the ky = 0 and ky = π lines
under the full PBC. (d) The energy spectra in E -ky space.

Hamiltonian on the square lattice is given by

HA
2D =

∑
R

∑
rx=−ex,2ex

(t1 |R + rx〉 〈R|

+ t2 |R + rx + ey〉 〈R| + t3 |R + rx〉 〈R + ey|)
+

∑
R

∑
rx=0,ex

(it4(−1)rx ·ex |R + rx + ey〉 〈R|

+ it5(−1)rx ·ex |R + rx〉 〈R + ey|). (C1)

By using the Fourier transformation under the PBC, we obtain
the Bloch Hamiltonian

HA
2D(k) = (eikx + e−2ikx )(t1 + t2e−iky + t3eiky )

+ i(1 − e−ikx )(t4e−iky + t5eiky ). (C2)

The Hamiltonian HA
2D(k) satisfies the condition in Eq. (3)

with cs = 1 and Ak
g = 1. Figure 9(a) shows energy spectra of

HA
2D(k) on the kx = π line under both the full PBC and the

OBC in the y direction. Figure 9(b) shows spatial distributions
for all the eigenstates, and we can see that they are localized
at the right edge. These results indicate that a NHSE occurs
in the model. Moreover, the point gap closes at E = 0 on the
ky = 0 and ky = π lines under the full PBC [Figs. 9(c) and
9(d)].

Next, we investigate a doubled Hermitian Hamiltonian
H̃AIII

2D (k) obtained from HA
2D(k). The doubled Hermitian

Hamiltonian can be written as

H̃AIII
2D (k) =

(
HA

2D(k)
HA

2D(k)†

)
(C3)

= fx(k)σx + fy(k)σy, (C4)

with

fx(k) = (cos kx + cos 2kx )(t1 + t2 cos ky + t3 cos ky)
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FIG. 10. (a) The band structures of H̃AIII
2D (k). (b and c) The energy bands of H̃AIII

2D (k) along the screw-invariant line (b) at ky = 0 and (c) at
ky = π . Here, we choose the parameters t1 = 0.4, t2 = 0.1, t3 = 0.1, t4 = 0.8, and t5 = 0.5.

+ (− sin kx + sin 2kx )(−t2 sin ky + t3 sin ky)

+ (t4 − t5)(1 − cos kx ) sin ky

− (t4 + t5) sin kx cos ky,

fy(k) = − (cos kx + cos 2kx )(−t2 sin ky + t3 sin ky)

− (sin kx − sin 2kx )(t1 + t2 cos ky + t3 cos ky)

− (t4 + t5)(1 − cos kx ) cos ky

+ (−t4 + t5) sin kx sin ky. (C5)

The doubled Hermitian Hamiltonian has chiral symmetry
represented by �H̃AIII

2D (k)�−1 = −H̃AIII
2D (k) with � = σz. The

screw g = {C2x|x̂/2} symmetry of the doubled Hermitian
Hamiltonian is represented by

Ũ k
g H̃AIII

2D (k)
(
Ũ k

g

)−1 = H̃AIII
2D (C2xk), (C6)

with

Ũ k
g =

(
e−ikx

1

)
. (C7)

Because ŨC2xk
g Ũ k

g = e−ikx in the model, the screw symmetry
eigenvalues are ±e−ikx/2. Moreover, Ũ k

g and � satisfy the
anticommutation relation Ũ k

g � = −�Ũ k
g , which corresponds

to cg = −1.
Figure 10(a) shows the band structure of the doubled Her-

mitian Hamiltonian H̃AIII
2D (k), where we can find two Weyl

points at zero energy. Figures 10(b) and 10(c) show the band
structures along the screw-invariant line at ky = 0 and ky = π .
We can see that the two eigenstates with screw eigenvalues
with opposite signs switch, leading to the Weyl points. Since
a winding number is nonzero between the Weyl points, the
NHSE necessarily occurs.

APPENDIX D: MECHANISMS OF
SYMMETRY-ENFORCED NHSEs IN 2D CLASS AII

In this Appendix, we study symmetry-enforced NHSEs in
2D class AII. We clarify the relationship between NHSEs and
2D Weyl points enforced by the screw symmetry when the
screw operator commutes with the time-reversal operator.

First, we discuss symmetry condition of a non-Hermitian
Hamiltonian in class AII [21] for the doubled Hermitian
Hamiltonian to have time-reversal symmetry. Let us assume
that a non-Hermitian Hamiltonian H (k) in class AII satisfies

Eq. (3). The non-Hermitian Hamiltonian H (k) has time-
reversal symmetry

T H∗(k)T −1 = H (−k), (D1)

where T is a unitary matrix and satisfies

T T ∗ = −1. (D2)

The doubled Hermitian Hamiltonian H̃ (k) has time-reversal
symmetry given by

T̃ H̃ (k)T̃ −1 = H̃ (−k), (D3)

where T̃ is expressed as

T̃ =
(
T

T

)
K, (D4)

with T̃ 2 = −1. The doubled Hermitian Hamiltonian H̃ (k) has
particle-hole symmetry given by P̃ = T̃ −1�, and therefore
P̃2 = −1 due to �T̃ = T̃ � (i.e., cT̃ = 1). Thus, H̃ (k) be-
longs to class CII. We also impose the condition that g =

FIG. 11. Illustrative examples of the positions of the Weyl points
with cg = −1 in class CII and the regions with the nonzero wind-
ing number Wy(kx ) in the Brillouin zone. When a non-Hermitian
Hamiltonian belongs to class AII, the class of the doubled Hermitian
Hamiltonian is CII. The arrows indicate the direction of integration of
Wy(kx ). The colors (red and blue) of the points represent the opposite
chirality of the Weyl points. Here, we assume Wy(0) = 0.
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{C2x|x̂/2} and T̃ commute in order to specify their relation.
Then, because T̃ Ũ k

g = Ũ −k
g T̃ , we obtain

T
(
Ak

g

)∗ = A−k
g T , (D5)

T
(
Bk

g

)∗ = B−k
g T . (D6)

By using the unitary matrix U k
g = iei kx

2 Ak
g, we can rewrite

Eq. (D5) as

T
(
U k

g

)∗ = −U −k
g T . (D7)

Similarly to class AII†, we consider the case for cs = i
since T̃ 2 = −1 corresponds to spinful systems with C2

2x =
−1, and we assume that the non-Hermitian Hamiltonian has
a matrix size of 4M + 2. Thus, we obtain the band structure
of the doubled Hermitian Hamiltonian similar to that in class
AII† [Fig. 2(a)]. This band structure enforces the 2D Weyl
points on the screw-invariant lines. It follows that the non-
Hermitian Hamiltonian H (k) has a nonzero winding number
Wi(k⊥) between the two 2D Weyl points in the doubled
Hermitian Hamiltonian H̃ (k).

Next, we discuss the nonzero winding numbers due to the
positions of the Weyl points with cg = −1 in the Brillouin
zone. By using Eq. (A15) with cT̃ = 1, we find that the time-
reversal pair of Weyl points on the screw-invariant line has
opposite chirality. Therefore, two types of positions of the 2D
Weyl points can be realized, as shown in Fig. 11. Because of
these positions of the Weyl points, the winding number Wx(ky)
is zero in Fig. 11. In contrast, the winding number Wy(kx ) can
be nonzero.

1. Model calculation in class AII

To show a symmetry-enforced NHSE in class AII, let us
introduce a 2D tight-binding model on a square lattice with
the two degrees of freedom A and B in each unit cell. This
model is given by

HAII
2D = HAII(1)

2D + HAII(2)
2D + HAII(3)

2D , (D8)

with

HAII(1)
2D = − it

∑
R

∑
r=0,ex,ey,ex+ey

(−1)r·(ex+ey )(|R + r, B〉 〈R, A| + |R + r, A〉 〈R, B|)

− 0.5it
∑

R

∑
r=0,ex

(−1)r·ex (|R + r − ey, B〉 〈R, A| + |R + r − ey, A〉 〈R, B|), (D9)

HAII(2)
2D = v

∑
R

∑
rx=0,ex

(−2 |R + rx, A〉 〈R, B| + 2 |R + rx, B〉 〈R, A|

+ |R + rx − ey, A〉 〈R, B| − |R + rx − ey, B〉 〈R, A| − |R + rx + ey, A〉 〈R, B| + |R + rx + ey, B〉 〈R, A|), (D10)

HAII(3)
2D = − ic

∑
R

∑
ry=−ey,ey

(|R − ex + ry, A〉 〈R, A| − |R − ex + ry, B〉 〈R, B|)

− |R + ex + ry, A〉 〈R, A| + |R + ex + ry, B〉 〈R, B| − |R + ry, A〉 〈R, A| + |R + ry, B〉 〈R, B|
+ |R + 2ex + ry, A〉 〈R, A| − |R + 2ex + ry, B〉 〈R, B|). (D11)

We obtain the 2 × 2 Bloch Hamiltonian

HAII
2D (k) = − it (1 − e−ikx )(1 − e−iky + 0.5eiky )σx

− 2iv(1 + e−ikx )(1 − i sin ky)σy

+ 4c(1 − e−ikx ) sin kx cos kyσz, (D12)

where σi (i = x, y, z) corresponds to the two degrees of free-
dom A and B. The model satisfies the condition for the screw
symmetry g = {C2x|x̂/2} with cg = −1, which is described as

iAk
gHAII

2D (k) =
[
ieikx AC2xk

g HAII
2D (C2xk)

]†
, (D13)

Ak
g = −ie−ikyσx. (D14)

Correspondingly, we have

Bk
g = −(

eikx AC2xk
g

)† = −ie−i(kx+ky )σx. (D15)

Our model also has time-reversal symmetry

T HAII∗
2D (k)T −1 = HAII

2D (−k), (D16)

with T = iσy, which corresponds to class AII. Therefore, the
symmetry-enforced NHSE occurs in this model.

To confirm the symmetry-enforced NHSE, we calculate
energy spectra of HAII

2D (k) under the PBC in the x direction.
Figure 12(a) shows the energy spectra under the PBC and
under the OBC in the y direction. Indeed, we can find that
the spectrum under the full PBC gives the nonzero Wy(kx ) in
the Brillouin zone because HAII

2D (k) satisfies the conditions of
the symmetry and the matrix size. As a result, we can also
find eigenstates localized at the edge under the OBC in the y
direction [Fig. 12(b)]. Moreover, we can also see symmetry-
enforced gaplessness on the lines ky = 0 and ky = π , as shown
in Figs. 12(c) and 12(d).
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FIG. 12. Energy spectra of HAII
2D (k) with the parameters t = v = 0.15 and c = 0.05. (a) The energy spectra under the PBC in the x direction.

We apply the PBC in the y direction and the OBC in the y direction. (b) The spatial distributions of |ψn|2 for all the right eigenstates ψn under
the OBC in (a). The system size in the y direction is 40. (c and d) The energy spectra under the full PBC. The wave vector is fixed to (c) ky = 0
and (d) ky = π . (e) The positions of the 2D Weyl point of HCII

2D (k) and the regions with the nonzero winding number Wy(kx ) in the Brillouin
zone. The arrows indicate the direction of integration of the winding number. The colors of the points represent the opposite chirality of the
Weyl points.

To see the origin clearly, we find Weyl points of the doubled Hermitian Hamiltonian

H̃CII
2D (k) =

(
HAII

2D (k)
HAII

2D (k)†

)
(D17)

= t[1.5(1 − cos kx ) sin ky + sin kx(1 − 0.5 cos ky)]τx ⊗ σx + t[(1 − cos kx )(1 − 0.5 cos ky) − 1.5 sin kx sin ky]τy ⊗ σx

− 2v[(1 + cos kx ) sin ky + sin kx]τx ⊗ σy + 2v[(1 + cos kx ) − sin kx sin ky]τy ⊗ σy

+ 4c(1 − cos kx ) sin kx cos kyτx ⊗ σz − 4c sin2 kx cos kyτy ⊗ σz. (D18)

The doubled Hermitian Hamiltonian has the screw rotation symmetry Ũ k
g H̃CII

2D (k)Ũ k†
g = H̃CII

2D (C2xk), where Ũ k
g is represented as

Ũ k
g = −ie−iky

(
e−ikx

1

)
⊗ σx. (D19)

Indeed, 2D Weyl points can be found on the screw-invariant lines [Fig. 12(e)]. Thus, the winding number can be nonzero
between the Weyl points, as shown in Fig. 12(e). Figures 13(a) and 13(b) show the energy spectra and the screw-symmetry

FIG. 13. Band structures of H̃CII
2D (k) with the parameters t = v = 0.15 and c = 0.05. (a and b) The energy spectra with the screw {C2x|x̂/2}

symmetry eigenvalues, ±i exp[−i(ky + kx
2 )] along the screw-invariant lines, with (a) ky = 0 and (b) ky = π . (c) The band structures in a quarter

of the Brillouin zone.
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eigenvalues along the screw-invariant lines (ky = 0, π ). In
addition, Fig. 13(c) shows the band structure in a quarter of the
Brillouin zone. The occupied states with the screw-symmetry
eigenvalues require the Weyl point on the screw-invariant
lines with ky = 0 and ky = π . Because these Weyl points are
enforced by the screw symmetry and time-reversal symmetry,
the NHSE in Fig. 12(a) cannot disappear when H2D(k) has the
symmetry condition [Eq. (D13)] and time-reversal symmetry
[Eq. (D16)].

APPENDIX E: ABSENCE OF THE
SYMMETRY-ENFORCED NHSE IN

2D CLASS AI AND CLASS AI†

We comment on class AI and class AI† in 2D
systems. We consider non-Hermitian Hamiltonians sat-

isfying the conditions in Eq. (3) in class AI and
class AI†. When a non-Hermitian Hamiltonian belongs
to class AI (AI†), the doubled Hermitian Hamiltonian
belongs to class BDI (CI). In both classes, the dou-
bled Hermitian Hamiltonian has time-reversal (T̃ ) symme-
try. In a similar way to class A, the screw symmetry
of the doubled Hermitian Hamiltonian enforces double de-
generacy on the screw-invariant lines (ky = 0, π ) when the
matrix size is 4M + 2 [79]. However, because of time-
reversal symmetry, the two states form the double degeneracy
along the kx = π line because (T̃ {C2x|x̂/2})2 = e−ikx . Thus,
the gap-closing line appears at zero energy instead of
2D Weyl points in both class BDI and class CI, and
therefore nonzero winding numbers are not enforced in
these cases.
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C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert, Reciprocal
skin effect and its realization in a topolectrical circuit, Phys.
Rev. Res. 2, 023265 (2020).

[34] K. Yokomizo and S. Murakami, Non-Bloch band theory in
bosonic Bogoliubov–de Gennes systems, Phys. Rev. B 103,
165123 (2021).

[35] F. Schindler and A. Prem, Dislocation non-Hermitian skin
effect, Phys. Rev. B 104, L161106 (2021).

[36] K. Yokomizo and S. Murakami, Scaling rule for the crit-
ical non-Hermitian skin effect, Phys. Rev. B 104, 165117
(2021).

[37] Y.-X. Xiao and C. T. Chan, Topology in non-Hermitian Chern
insulators with skin effect, Phys. Rev. B 105, 075128 (2022).

[38] K. Yokomizo, T. Yoda, and S. Murakami, Non-Hermitian
waves in a continuous periodic model and application to pho-
tonic crystals, Phys. Rev. Res. 4, 023089 (2022).

[39] K. Deng and B. Flebus, Non-Hermitian skin effect in magnetic
systems, Phys. Rev. B 105, L180406 (2022).

[40] S. Longhi, Non-Hermitian skin effect and self-acceleration,
Phys. Rev. B 105, 245143 (2022).

[41] Q. Liang, D. Xie, Z. Dong, H. Li, H. Li, B. Gadway, W. Yi,
and B. Yan, Dynamic signatures of non-Hermitian skin effect
and topology in ultracold atoms, Phys. Rev. Lett. 129, 070401
(2022).

[42] S. Franca, V. Könye, F. Hassler, J. van den Brink, and C. Fulga,
Non-Hermitian physics without gain or loss: The skin effect of
reflected waves, Phys. Rev. Lett. 129, 086601 (2022).

[43] K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin
effect in two and higher dimensions, Nat. Commun. 13, 2496
(2022).

[44] Y. Jin, W. Zhong, R. Cai, X. Zhuang, Y. Pennec, and B.
Djafari-Rouhani, Non-Hermitian skin effect in a phononic
beam based on piezoelectric feedback control, Appl. Phys.
Lett. 121, 022202 (2022).

[45] F. Alsallom, L. Herviou, O. V. Yazyev, and M. Brzezińska,
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g � |
(k)〉 = cgug� |
(k)〉. Hence, if cg =
+1(−1), the symmetry eigenvalues of |
(k)〉 and � |
(k)〉
have the same (opposite) signs.

[94] A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal
semimetals, Phys. Rev. B 84, 235126 (2011).

[95] M. Phillips and V. Aji, Tunable line node semimetals, Phys.
Rev. B 90, 115111 (2014).

[96] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[97] L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie,
and R. J. Cava, A new form of Ca3P2 with a ring of Dirac
nodes, APL Mater. 3, 083602 (2015).

[98] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line
nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115,
036806 (2015).

[99] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P.
Xue, Non-Hermitian bulk–boundary correspondence in quan-
tum dynamics, Nat. Phys. 16, 761 (2020).

[100] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A.
Stegmaier, M. Greiter, R. Thomale, and A. Szameit, Topolog-
ical funneling of light, Science 368, 311 (2020).

[101] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T.
Kiessling, L. Molenkamp, C. Lee, A. Szameit, M. Greiter,
and R. Thomale, Generalized bulk–boundary correspondence
in non-Hermitian topolectrical circuits, Nat. Phys. 16, 747
(2020).

[102] M. Brandenbourger, X. Locsin, E. Lerner, and C. Coulais,
Non-reciprocal robotic metamaterials, Nat. Commun. 10,
4608 (2019).

[103] Y. Chen, X. Li, C. Scheibner, V. Vitelli, and G. Huang, Real-
ization of active metamaterials with odd micropolar elasticity,
Nat. Commun. 12, 5935 (2021).

[104] L. Zhang, Y. Yang, Y. Ge, Y.-J. Guan, Q. Chen, Q. Yan, F.
Chen, R. Xi, Y. Li, D. Jia et al., Acoustic non-Hermitian skin
effect from twisted winding topology, Nat. Commun. 12, 6297
(2021).

[105] L. S. Palacios, S. Tchoumakov, M. Guix, I. Pagonabarraga, S.
Sánchez, and A. G Grushin, Guided accumulation of active
particles by topological design of a second-order skin effect,
Nat. Commun. 12, 4691 (2021).

[106] C. Shang, S. Liu, R. Shao, P. Han, X. Zang, X. Zhang, K. N.
Salama, W. Gao, C. H. Lee, R. Thomale, A. Manchon, S.
Zhang, T. J. Cui, and U. Schwingenschlögl, Experimental
identification of the second-order non-Hermitian skin effect
with physics-graph-informed machine learning, Adv. Sci. 9,
2202922 (2022).

[107] L. Michel and J. Zak, Connectivity of energy bands in crystals,
Phys. Rev. B 59, 5998 (1999).

035131-15

https://doi.org/10.1103/PhysRevB.103.L201114
https://doi.org/10.1103/PhysRevB.104.035424
https://doi.org/10.1103/PhysRevB.105.085109
https://doi.org/10.1103/PhysRevResearch.2.022062
https://doi.org/10.1103/PhysRevB.102.205118
https://doi.org/10.1103/PhysRevLett.128.226401
https://doi.org/10.1103/PhysRevB.105.214103
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/PhysRevB.94.155108
https://doi.org/10.1038/nature19099
https://doi.org/10.1103/PhysRevB.93.155140
https://doi.org/10.1038/nphys4277
https://doi.org/10.1103/PhysRevLett.117.096404
https://doi.org/10.1103/PhysRevB.96.155206
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1088/1367-2630/15/6/065001
https://doi.org/10.1103/PhysRevLett.118.156401
https://doi.org/10.1103/PhysRevB.105.035429
https://doi.org/10.1103/PhysRevB.106.045126
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.90.115111
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1063/1.4926545
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1126/science.aaz8727
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/10.1038/s41467-021-26034-z
https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/10.1038/s41467-021-24948-2
https://doi.org/10.1002/advs.202202922
https://doi.org/10.1103/PhysRevB.59.5998

