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Complex dynamics approach to dynamical quantum phase transitions: The Potts model
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This paper introduces complex dynamics methods to study dynamical quantum phase transitions in the one-
and two-dimensional quantum three-state Potts model. The quench involves switching off an infinite transverse
field. The time-dependent Loschmidt echo is evaluated by an exact renormalization group (RG) transformation
in the complex plane where the thermal Boltzmann factor is along the positive real axis, and the quantum time
evolution is along the unit circle. One of the characteristics of the complex dynamics constituted by repeated
applications of RG is the Julia set, which determines the phase transitions. We show that special boundary
conditions can alter the nature of the transitions, and verify the claim for the one-dimensional system by transfer
matrix calculations. In two dimensions, there are alternating symmetry-breaking and restoring transitions, both
of which are first order, despite the criticality of the Curie point. In addition, there are finer structures because of
the fractal nature of the Julia set. Our approach can be extended to multi-variable problems, higher dimensions,
and approximate RG transformations expressed as rational functions.
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I. INTRODUCTION

A dynamical quantum phase transition (DQPT) is a sudden
or nonanalytic change in the behavior of a large quantum
system during its time evolution. A typical example is the
Loschmidt echo, which measures the probability P(t ) of find-
ing the system in the original state ψ0 after time t [1,2].
Interestingly, these transitions occur at critical times without
having to change any of the system’s parameters.

Quench dynamics in quantum systems is a widely re-
searched topic that holds importance in several areas. It ranges
from conceptual issues such as dynamics in many-body sys-
tems, thermalization, entanglements, and novel dynamics to
practical applications in quantum computations and infor-
mation [3–5]. While DQPT was originally observed in the
transverse field Ising model [6,7], subsequent investigations
have been conducted on various types of systems for both pure
and mixed states [8–15]. Different types of quenches have
been studied in Floquet systems, topological models, bosonic
and fermionic systems, and many others [16–27]. A crucial
question that arises is whether the phases, transitions, or crit-
icalities in DQPT are just analogous to the known thermal
phases and transitions observed in the same system or new
phases or transitions may emerge in the quantum domain.

The terminology used here follows thermodynamic def-
initions. A system is deemed to be in the same phase at
two different times if its properties evolve smoothly whereas
a transition between phases happens when the pattern of
evolution experiences abrupt or divergent changes in time
derivatives [28]. DQPT is classified as a first-order transition
if the first derivative of P(t ) [or rather, − ln P(t )] in time
is discontinuous at the transition point. Any other form of
singular behavior is regarded as a continuous transition.
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A. On DQPT

Consider the time evolution of a quantum system described
by the Hamiltonian H when started in a state |ψ0〉, which is
not an eigenstate of H . The state at time t is |ψt 〉 = e−iHt |ψ0〉
(take h̄ = 1). The quantity of interest is the probability of
finding the system in the initial state, called the Loschmidt
echo, and it is given by

P(t ) = |L(t )|2, where L(t ) = 〈ψ0|ψt 〉. (1)

In the basis of W orthonormal eigenstates of H ,

H =
W∑

n=1

En|n〉〈n|, (2)

with 〈n|m〉 = δnm, where δnm is the Kronecker delta, the states
at time t = 0 and t are, respectively,

|ψ0〉 =
W∑

n=1

cn|n〉, and|ψt 〉 =
W∑

n=1

cne−iEnt |n〉, (3a)

so that

L(t ) =
W∑

n=1

|cn|2e−iEnt . (3b)

Let us restrict ourselves to the case with cn = 1/
√
W , i.e.,

all eigenstates are equally probable in the initial state. The
Loschmidt amplitude is then L(t ) = 1

W
∑W

n=1 e−iEnt , which
is to be compared with the partition function at the inverse
temperature β, Z (β ) = ∑

n e−βEn .
We define a complex function

L(z) = 1

W

W∑
n=1

e−zEn , (4a)
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such that

L(z) =
{

1
W Z (β ), for z = β (real),

L(t ), for z = it (real t ).
(4b)

In simpler terms, L(z) is the extension of the thermal par-
tition function of a quantum system from the real axis to the
complex plane by extending the real inverse temperature β to
the complex variable z. This analytic continuation connects
the partition function to the Loschmidt amplitude.

The extensivity of thermodynamic quantities requires that
the free energy βF = − ln Z is proportional to the size of
the system so that for N degrees of freedom, N−1 ln Z in the
limit N → ∞ should be independent of N . As an analytic
continuation, we then expect N−1 ln L to be also independent
of N so that (Re is real part)

P(t ) = e−2N f , where f = − Re lim
N→∞

N−1 ln L, (5)

where f is independent of N , and is called the rate function
in the large-deviation theory [29]. The phase transitions are
given by the singularities of f .

It is convenient to use y = eβ� (a Boltzmann factor with
eit� as its complex extension) as the variable, instead of β

and t , and treat L, Z,L as functions of y. Here, � > 0 is a
typical energy scale for the problem. In the complex-y plane,
the thermal partition function is defined along the positive real
axis while the quantum time evolution is along the unit circle
|y| = 1. Specifically, the singularities in f as y varies on the
unit circle are the DQPTs during the quantum evolution.

B. Objectives

We can use the mathematical approach of zeros of the
partition function Z (y) in the complex-y plane to generate the
singularities in free energy [30,31]. It is important to note that,
in any finite system, there are no real positive zeros of Z (y)
(no phase transition). However, in the thermodynamic limit
(infinite size), the zeros may pinch the real axis as a limit
point, creating a thermal phase transition. Additionally, the
same set of zeros also describes L(y) [and so L(y)]. Therefore
the local dispositions of the zeros (not just pinching at a point)
around the unit circle |y| = 1 determine the singularities in
f (y) for the Loschmidt echo, connecting the complex zeros to
DQPT. A thermodynamic limit is required to ensure a dense
set of zeros, without which there can be no phase transitions.

A different but more general framework for analyzing a
many-body interacting system is the renormalization group
(RG) method [30,32], which is the method of choice for
DQPT. The technique involves two essential steps. Firstly,
small-scale degrees of freedom (df) are integrated out, and
their effects are accounted for by adjusting (renormalizing)
the effective interactions of the remaining dfs. Secondly,
the remaining system is rescaled to keep physical quantities
invariant, like the free energy per df. This leads to the trans-
formation of parameters, where y becomes y′ = R(y), and the
concerned physical quantity is renormalized. By repeatedly
performing these steps, the large-scale behavior of the system
can be determined by observing how the renormalized param-
eters approach their fixed point values. The stable fixed points
represent the phases of the system, while the unstable ones

represent phase transitions or critical points. Apart from these,
the renormalization of the free energy allows us to generate
the zeros of the partition function in the thermodynamic limit.

This paper explores the relationship between DQPT and
the transitions in the equilibrium thermal problem to uncover
the possibilities of new phases and transitions. The connection
is via the RG transformation in the complex plane and the
complex zeros of the partition function in a class of models
amenable to exact analysis. We study the three-state Potts
model [10,33–36] defined on hierarchical lattices for which
the real-space renormalization group can be implemented ex-
actly, thereby avoiding artifacts of approximations [37–39].
The repeated RG transformations constitute an iterated map
in the complex plane of a properly defined Boltzmann factor.
Results of the dynamics of one complex variable [40–42]
(complex dynamics in short) can be made to bear upon the
quantum problem. Near-exact numerical computations then
supplement these analytical results.

C. Outline

The three-state quantum Potts model on a lattice is defined
in Sec. II, where the eigenstates and eigenvalues required for
the subsequent analysis can be found. The hierarchical lattices
used in this paper and their characteristics are in Sec. II A. The
particular quench of interest here is elaborated in Sec. II B
while the early time behavior of the rate function for the
Loschmidt echo after the quench is analyzed in Sec. III.

The details of the RG procedure is discussed in Sec. IV.
The exact implementation of the RG transformation allows us
to compute the rate function as a sum along the RG trajectory,
given by Eq. (20c). In this process, a boundary-dependent
term emerges that plays a critical role in the one-dimensional
case.

The methods of complex dynamics for iterated maps in
the complex plane are summarized in Sec. V. The phases
and the phase transitions in the system are determined by the
flows in the complex plane, which fall into two categories: the
Fatou set, controlled by attractive fixed points and the Julia
set forming the boundary of the Fatou set. The properties of
these sets are summarized in Sec. V. The Julia set is linked
to the zeros of the partition function and the rate function in
Sec. VI.

DQPT in the one-dimensional Potts model is discussed in
detail, particularly the role of the Julia set, in Sec. VII. We
also examine the effects of boundary conditions (Secs. VII A–
VII D) and further corroborate them using a transfer matrix
approach (Sec. VII E). In Sec. VII D 2, we provide a statement
on the conditions under which boundaries may supress an
otherwise allowed DQPT. Moving on to the two-dimensional
case in Sec. VIII, we observe that, despite the complications
introduced by the wide intersections of the unit circle with the
Julia set, DQPTs are first-order and described by the repulsive
fixed points of the Julia set. The paper concludes in Sec. IX
with a summary and remarks on possible generalizations of
the approach developed in the paper.

A few algebraic details can be found in Appendices. A few
periodic orbits for the one-dimensional Potts chain with their
multiplicities are listed in Appendix C. The full Julia set for
the two-dimensional case is shown in Appendix D.
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FIG. 1. Hierarchical lattices constructed by replacing a bond by
a motif ad infinitum. Here the motif is a diamond of b branches,
with each branch adding a new point (red square). Each motif adds
2b bonds. Successive lattices are indexed by the generation number
n with n = 0 for the starting bond. (a) A one dimensional lattice
generated by a b = 1 “diamond” (which is a line). (b) For b = 2, two
new sites and 2b = 4 bonds are created for each bond. Eventually,
one gets a two-dimensional lattice, though not a Bravais lattice.
Three generations are shown in (a) and (b). (c) A planar vector
representation of a Potts spin with q = 3 states. The vectors are
mutually at an angle of 2π/3.

II. THE POTTS MODEL

We study the three-state (q = 3) Potts model on a lattice
(Fig. 1) with nearest-neighbor interaction [33–36]. In the
quantum model, each site has a Potts variable with eigen-
states represented by a planar spin oriented in three symmetric
directions: 0, 2π/3, 4π/3 on a circle [Fig. 1(c)]. The ferro-
magnetic interaction generates a threefold degenerate ground
state, which may endure quantum and thermal fluctuations to
produce an ordered state. As a result, the model may demon-
strate a symmetry-breaking transition (breaking of the discrete
permutation symmetry in this case).

The Hamiltonian H has two parts, (i) an interaction term H
that tries to order the spins, and (ii) a “transverse-field” term
H� that disrupts ordering by flipping the spins, and these are
given by [34]

H = H + H�, (6a)

H = −J
2

∑
< jk>

(�†
j�k + �†

k� j ), (J > 0), (6b)

H� = −�
∑

j

T j, (6c)

where dagger denotes Hermitian conjugate, j, k denote the
lattice sites with < · · · > denoting nearest neighbors,

� j = I ⊗ I ⊗ · · ·
jth︷︸︸︷
� ⊗ I ⊗ · · · , (6d)

T j = I ⊗ I ⊗ · · · T︸︷︷︸
jth

⊗ I ⊗ · · · , (6e)

with �, T at the jth position in the direct products over
sites, and I the identity. The Potts variables are given by
(ω = ei2π/3)

� =
⎛⎝1 0 0

0 ω 0
0 0 ω2

⎞⎠, and M =
⎛⎝0 1 0

0 0 1
1 0 0

⎞⎠, (7)

with T = M + M†. Here, �, T for the Potts spins are ex-
pressed in the eigenstates |1〉, |2〉, |3〉, and, in that basis, M

is a spin flip operator, satisfying

�q = Mq = I, with q = 3. (8)

The eigenstate for the largest eigenvalue of T is

|0〉 = 1√
3
(|1〉 + |2〉 + |3〉).

The special property of T is that it flips any of the three states
|μ〉, μ = 1, 2, 3 to an equal superposition of the other two
states, e.g.,

T |1〉 = |2〉 + |3〉, (9)

The 3N eigenstates of H for N spins, H |n〉 = En |n〉, are
the direct product states of individual spin states |α〉, α =
1, 2, 3 as

|n〉 = ⊗ j |α〉 j ≡ |α1α2 · · · αN 〉, (10a)

with eigenvalues En given by

En = −J
∑
〈 jk〉

cos(θ j − θk ), θ j = 2π

3
(α j − 1). (10b)

The ground state for a single pair of spins is a state with
parallel spins, θ j = θk , and has energy −J . This state is
threefold degenerate. On the other hand, the excited state is
sixfold degenerate and is achieved through nonparallel spins
with |θ j − θk| = 2π/3 mod 2π , with an energy of −J /2. To
simplify our calculation, we shift and rescale the energy to
express it as

En = −J
∑
〈 jk〉

δα j ,αk , (11)

so that the ground state energy is −J and the gap in the
spectrum for a bond is J . The Boltzmann factor

y = eβJ , (12)

appears as the variable of choice.

A. Hierarchical lattices

The Potts spins are placed on the sites of a lattice con-
structed in a manifestly scale-invariant way, as shown in
Fig. 1. The nearest neighbors are defined by the bonds. We
start with a single bond with two sites as generation n = 0
and a diamondlike motif of 2b branches [Fig. 1(b)] [43]. The
lattice for generation n can be constructed from the (n − 1)-
generation lattice by replacing each bond with the diamond
motif. When b = 1, the recursive process results in a one-
dimensional lattice [Fig. 1(a)]. From the growth of the lattice
(the number of bonds B with generation n), the Hausdorff
dimension [44] of the lattice is db = ln 2b

ln 2 . This expression
gives d1 = 1, which is consistent with Fig. 1(a), and d2 = 2
for b = 2. We consider these two cases, viz., one-dimensional
(b = 1) and the two-dimensional (b = 2) lattices.

The numbers of bonds and sites for generation n are

Bn = (2b)n, and Nn = 2 + b
(2b)n − 1

2b − 1
, (13)

with limn→∞ Nn
Bn

= b
2b−1 . Thanks to this asymptotic propor-

tionality, we use the number of bonds (instead of the number
of spins) to describe extensivity.
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The recursive construction of the lattice allows one to
implement real-space RG exactly on these lattices [37,38].
Moreover, dimensionality can be tuned by adjusting the value
of b, which allows for a comprehensive examination of the
impact of dimensionality on relevant properties. Recent stud-
ies have predominantly focused on quantum phase transitions
in higher dimensional (>1) Euclidean lattices for the q-
state quantum Potts model [35,36]. Although mapping the
d-dimensional quantum problem to a (d + 1)-dimensional
classical statistical mechanical problem has proven advanta-
geous, such mappings are of limited use for the hierarchical
lattices.

B. The quench and the echo

We are interested in the sudden quench from � → ∞ to
� = 0. A large field, � → ∞, forces the spins to be in the
eigenstate of T with the largest eigenvalue. This pure state is
in a product form

|ψ0〉 =
⊗

j

|0〉 j =
⊗

j

[
1√
3

(|1〉 + |2〉 + |3〉)

]
j

. (14)

At time t = 0, � is switched off, and the Potts system un-
dergoes a unitary evolution with H , Eq. (6b). Our aim is to
determine the behavior of L(y) [Eq. (4a)] and f (y) defined
in Eq. (5), by extending the Boltzmann factor to a complex
number

y = exp(zJ ), with zJ = βJ, or itJ/h̄, (15)

where all the dimensional quantities are shown explicitly. In
the complex-y plane, y = 1 corresponds to the infinite temper-
ature case and the t = 0 state. Henceforth, we set h̄ = kB = 1

III. EARLY TIME BEHAVIOR

The normalization conditions ensure that f (t = 0) = 0. In
the complex-y plane, f is analytic around y = 1 which cor-
responds to t = β = 0. For small values of t , a Taylor series
expansion of f (t ) can be performed, and analyticity around
y = 1 guarantees that the derivatives there are independent of
the direction in the complex plane (Cauchy-Riemann condi-
tions). As a result, the thermal free-energy high-temperature
behavior determines the behavior of f (t ) at early times.

Expanding the exponentials in Eq. (3b),

eiEnt = 1 + iEnt − 1
2 E2

n t2 + . . . ,

we can write the rate function or the free energy [Eq. (5)] per
bond as

f (t ) = 〈E2〉 − 〈E〉2

B
t2 + O(t3), (16a)

where the averaging 〈· · · 〉 is done over the probability distri-
bution at t = 0. There is no linear term in t because f involves
only the real part. The quadratic dependence on t is consistent
with time reversibility under the unitary evolution of the initial
state with H .

The specific heat (per bond) is given by the energy fluctua-
tion

c(β ) = 〈E2〉β − 〈E〉2
β

B
β2, (16b)

where 〈· · · 〉β denotes the thermal average at inverse temp β.
For β → 0, c(β ) ∼ β2 because the energy spectrum for the
model is bounded, and the variance is extensive (i.e., ∝ B). In
other words, if the high temperature specific heat

c ≈ C0

T 2
, such that C0 = lim

T →∞
T 2c(T ),

the initial t dependence of the rate function during the quan-
tum quench is

f (t ) ≈ C0t2, (small t ),C0 > 0. (16c)

Equation (16c) connecting the quench behavior to the spe-
cific heat is a general result valid for any H with bounded
spectrum, provided the quench is from a state of uniform
distribution of states.

IV. IMPLEMENTING RG IN THE COMPLEX PLANE

The procedure adopted in this paper is the real-space renor-
malization group. The scale invariance of the hierarchical
lattices (Sec. II A) allows us to decimate (integrate out a set of
degrees of freedom) exactly and repeatedly. The exact decima-
tion gives us the renormalized parameters for the decimated
lattice, as well as the transformation of the rate function.

Below is a summary of the basic steps, which are further
illustrated through diagrams in Appendix A. The rate function
is also expressed as a sum over the renormalized parameters
(here y), with an additional boundary term that is needed in
our discussion of the one-dimensional case.

The RG analysis involves a partial summation of a subset
of spins to define a new effective parameter for the remaining
spins. The protocol would be as follows [37,38].

(1) Let us start with a large lattice and sum over the spins
represented by the red squares in Fig. 1.

(2) The partial partition functions correspond to the
weights (Boltzmann factors for the thermal problem) for the
remaining spins. In our case, the b-branched diamond reduces
to a single bond connecting the blue spins. (The decimation
step).

(3) The partial partition function of a diamond of b
branches with the two blue spins in the same state, say state
α = 1 is Zdia (y|α, α) = (y2 + 2)b which is proportional to the
partition function of a bond with the renormalized weight y′,
Zbond(y′|1, 1) = y′. There are q such partition functions, and
all are equal.

(4) The partial partition function for the blue spins in dif-
ferent states, α and β 
= α is Zdia (y|α, β ) = (2y + 1)b which
should be proportional to the weight of a renormalized bond
connecting two different spins, Zbond(y′|α, β ) = 1. By sym-
metry, there are q(q − 1) such partition functions, and all are
equal.

(5) There are two RG equations to determine the renor-
malized parameter y′ and the proportionality factor c(y). The
RG equations are

(y2 + 2)b = cy′, and (2y + 1)b = c, (17a)

and, therefore,

y′ = R(y) =
(

y2 + 2

2y + 1

)b

, and c = (2y + 1)b (17b)
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This completes the rescaling step.
(6) The total partition function, with q = 3 is

Z (y) = qZ (y|α, α) + q(q − 1)Z (y|α, β ), (18a)

which should be invariant under the RG transformation. The
invariance requirement is satisfied by the proportionality fac-
tor c(y). The partition function for the nth generation Zn(y) is
related to Zn−1(y′) by

Zn(y) = Zn−1(y′) c(y)Bn−1 , (18b)

with Z1(y) = q(y + q − 1). (18c)

(7) The Loschmidt rate function per bond is calculated
along the RG trajectory from the repeated application of R(y).
We denote the nth iteration by [45]

R(n)(y) ≡ R(R(. . . R(y))) (19a)

and use y( j) ≡ R( j)(y), with y(1) = y′, y(0) = y. (19b)

The rate function is then given by (in the full complex
form)

fn(y) = − 1

Bn
ln Zn(y) (20a)

= 1

2b
fn−1(y′) + 1

2b
g(y) [g(y) = ln c(y)] (20b)

=
∑
j=0

1

(2b) j
g(y( j) ) + 1

(2b)n
ln Z1(y(n) ). (20c)

Equation (20c) is rapidly convergent and can be used to
compute the Loschmidt echo numerically for large n. We
obtain f (y) by taking the real part at the end.

The principal branch of the log function is to be used
(cut along the negative real axis). However, as the Loschmidt
echo is determined by the real part of f (y) [Eq. (20)], and
the multivaluedness of the logarithmic function appears in
the imaginary part only, the location of the branch cut is not
crucial for the problem at hand.

V. COMPLEX DYNAMICS IN ONE VARIABLE

The gradual thinning of degrees of freedom in the renor-
malization group approach, as discussed in Sec. IV, requires
repeated applications of the transformation y′ = R(y) of the
characteristic Boltzmann factor. To address the Loschmidt
echo problem, we treat y as a complex variable in the ex-
tended complex plane Ĉ = C ∪ {∞} which is the Riemann
sphere obtained via stereographic projection [46]. Infinity has
to be included because the zero temperature corresponds to
β, y → ∞.

In contrast to the thermal problem (real y), where fixed
points are sufficient, the RG flows in the complex plane re-
quire a more detailed understanding of their behavior. These
flows can be divided into two categories: the Fatou set and
the Julia set. The Fatou set represents the set of points that
converge to one of the transformation’s attractive fixed points.
This set can be considered as the potential phases of the
system, but only if the attractive fixed points are accessible
from the unit circle (|y| = 1). On the other hand, the Julia set
is composed of the boundaries of the basins of attractions and

includes the repulsive fixed points. It generally contains an
infinite number of points and is a dense set.

The study of repeated maps in the complex plane is made
possible by the use of complex dynamics methods. This sec-
tion discusses important aspects such as the classification of
fixed points and orbits (Sec. V B), the characteristics of the
Julia and the Fatou sets (Sec. V D), providing an overview of
the methods and results of complex dynamics.

A. RG as an iterated map

The exact RG transformation, Eq. (17b), is a rational func-
tion R = P/Q, where P and Q are polynomials in y. This
is because the RG transformation involves partition functions
of a small or finite number of degrees of freedom, and is,
therefore, nonsingular for real y. In the complex-y plane, there
can, however, be poles. The iterated maps of such a function
are generally called dynamics in one complex variable, in
short, complex dynamics. A few general properties of such
complex dynamics are summarized here [40–42].

The rational form P/Q is such that there are no common
factors of P and Q. In this situation, if P and Q are polyno-
mials of degree p and q,

P (y) =
p∑

j=0

a jy
j, and Q(y) =

q∑
j=0

b jy
j, (ap, bq 
= 0), (21a)

the degree of the transformation R is defined as

deg(R) = max(p, q), (21b)

so that there are deg(R) + 1 fixed points (fp) in Ĉ as solutions
of R(y) = y, or P(y) = yQ(y) (counting multiplicities and
infinity).

For the thermal problem, with y as a Boltzmann factor,
1 � y � ∞, there should be at least two fixed points, (i) y = 1
representing the infinite-temperature fixed point (noninteract-
ing limit) and (ii) y = ∞ representing the zero-temperature
behavior (generally an ordered state). In addition, there could
be a critical fp representing a transition. Now, for the zero-
temperature fixed point, y′ = R(y) → ∞ as y → ∞, which
implies p > q. Consequently, the RG transformation should
be such that

p � 2, p > q, and deg(R) = p. (22)

B. Fixed points

Let us represent the fps by y∗
k , k = 1, 2, . . . , deg(R) + 1.

Each fp y∗
k is characterized by its multiplier (also called eigen-

value)

λ = dR(y)

dy

∣∣∣∣
y∗

k

, (23a)

which can be used for a classification of the fps as
(1) repelling (unstable) fp, if |λ| > 1;
(2) attracting (stable) fp, if 0 < |λ| < 1;
(3) superattracting fp, if λ = 0, i.e., R(y) = y∗

k + cm(y −
y∗

k )m + . . . , for some integer m � 2;
(4) Neutral, if λ = ei2πθ , |λ| = 1, with three possibilities,

(a) θ = 0, so that R(y) = y + c2(y − y∗
k )2 + . . . ,

(b) θ = m/n so that λn = 1 for integers m, n,
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(c) θ is not a rational fraction.
Neutral points do not occur in this paper.
For an fp at ∞, R(∞) = ∞, the multiplier is deter-

mined by the behavior of ỹ = 1/y with the transformed map
1/R(1/̃y). The multiplier is then given by

λ = 1
dR(y)
dy

∣∣∣
∞

, (23b)

which can be used for its classification in the above scheme.

C. Periodic orbits

The RG trajectory or orbit for any point y0 is the sequence
of numbers, y(n) ≡ R(n)(y0) [see Eq. (19a)],

y0 →
R

y(1) →
R

y(2) · · · →
R

y(n) · · · . (23c)

If y(n) = y0 for some integer n, then the trajectory is periodic,
a cycle of order n for the smallest integer n. The multiplier λ

for a cycle is given by

λ = dR(n)

dy

∣∣∣∣
y0

=
j=n−1∏

j=0

dR

dy

∣∣∣∣
y( j)

, (23d)

and the product formula follows from the chain rule. Note that
λ is independent of the starting point y0. The cycles can then
be classified by the value of the multiplier at the fixed points
of R(n)(y). A periodic orbit (also called a cycle) indicates that
the RG transformation simplifies if it is based on a larger cell.
However, the small-scale periodicities would show some nice
properties at a local level. We shall see such examples in this
paper.

D. Julia and Fatou sets

The extended complex plane Ĉ (i.e., the Riemann sphere)
can be divided into two broad categories based on how the
RG trajectories approach the fps. One set, to be called the
Fatou set, consists of points whose RG trajectories approach
any attractive fp or periodic cycle. This set includes the basins
of attraction (not necessarily connected) of all the attractive
fps. The second category, named, the Julia set, J (R) of the
transformation R, is the boundary of the Fatou set, and J (R)
consists of points whose trajectories may behave chaotically.
The trajectories remain confined to the set. The importance of
the Julia set is discussed below, but before that, we summarize
[40–42] some of the properties of the two sets here.

(1) Trajectories on Ĉ are considered equicontinuous when
two points maintain their proximity throughout their paths
[47]. All such equicontinuous trajectories belong to the Fatou
set, which, as already mentioned, need not be a connected set.
It should be noted, however, that any attractive fixed point
possesses a connected neighborhood, no matter how small,
where the multiplier λ can accurately depict the trajectories.

(2) If the trajectories behave chaotically, i.e., there is a
sensitive dependence on the initial point, and the equicontin-
uous definition [47] fails, then y0, the starting point, belongs
to the Julia set. The points of the Julia set transform among
themselves under R and do not flow to any attracting fp.

(3) The Fatou set is open, and the Julia set is its boundary.
The Julia set is dense with dimension dimJ � 2 as J ⊂ Ĉ.

(4) All attracting fixed points and cycles belong to the
Fatou set.

(5) All repelling fps and periodic orbits belong to the Julia
set.

(6) If y belongs to J (R) then R(y) ∈ J (R). It follows that
J (R(n) ) = J (R), for any n. In other words, the Julia set of the
n-fold iterate is the same as the Julia set of R.

(7) If degree deg(R) � 2 [Eq. (22)], then there are no
isolated points in J (R).

The Julia set is crucial in determining the phase transitions
discussed in this paper. Specifically, the unstable fixed points
and periodic points of the RG transformation, located at the
intersections of the Julia set with the unit circle or the positive
real axis, are of utmost importance. Moreover, the stable fps
belonging to the Fatou set determine the phases of the system,
provided that an RG trajectory takes an initial point on the
unit circle to that fp. Finally, the Julia set is also connected
to the zeros of the partition function. This connection makes
the intersections of the unit circle |y| = 1 with the Julia set at
points other than fixed points important as possible candidates
for singularities.

VI. ZEROS AND JULIA SETS

The partition function for a finite lattice of Bn bonds is a
polynomial in y of degree Bn. The highest power of y comes
from the threefold degenerate ground state, and this term is
3yBn . There are Bn zeros of Zn in the complex-y plane. We
establish the connection between the zeros of the partition
function and the Julia set through the renormalization group
transformation [38].

The partition function for the nth generation, with Bn

bonds, is connected to that of the (n − 1)th generation by the
RG transformation as given by Eq. (18b). By denoting the
zeros of Zn by ζ j and those of Zn−1 by ζ ′

k , we rewrite Eq. (18b)
as

Bn∏
j=1

(y − ζ j ) =
⎡⎣Bn−1∏

k=1

(y′ − ζ ′
k )

⎤⎦c(y)Bn−1 , (24a)

=
Bn−1∏
k=1

[(y2 + 2)b − (2y + 1)bζ ′
k], (24b)

where the second line follows from the substitution of c(y)
and y′ from Eqs. (17b). Each factor of the right-hand side of
Eq. (24b) is a polynomial of degree 2b, which means that for
a given zero ζ ′

k of Zn−1, there are 2b roots of the polynomial,
which, in turn, represent the zeros of Zn. As a result, ζ j , the
solutions of Zn(y) = 0 are the roots of R(y) = ζ ′

k for every ζ ′
k ,

the solutions of Zn−1(y) = 0. In short, ζ j are the preimages of
ζ ′

k .
By starting with the zeros of the smallest lattice, successive

preimages can be constructed. In the limit of a large lattice
(= a large number of iterations), the preimages inevitably
converge on the Julia set of the map. This convergence on the
Julia set is because the preimages cannot be attractive fixed
points. The exceptional cases are those where the initial zero
is a fixed point of the RG transformation. Such exceptional
cases appear in the one-dimensional case discussed below.
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FIG. 2. RG behavior in the complex-y plane for the Potts chain.
Quantum time evolution takes place along the unit circle (|y| = 1
or y = eiθ ), while the thermal behavior comes from the positive real
axis, notably 1 < y < ∞. The blue vertical line at Rey = −1/2 is
the Julia set for the RG transformation R(y) which has three fps,
two attractive fps at y∗ = 1, y∗ = −2, and a repulsive fp at y∗ = ∞.
Aj, ( j = 1, 2) represent a periodic cycle of period 2. The points on
the arc from A1 to A2 on the right side (darker region) flow to y∗ = 1,
while those on the arc on the left side (lighter region) of the blue line
flow to y∗ = −2.

VII. ONE-DIMENSIONAL POTTS MODEL (b = 1)

We now implement the RG procedure for the one-
dimensional problem, which corresponds to the b = 1 case as
shown in Fig. 1. Two cases are to be distinguished: (i) an open
chain, constructed as in Fig. 1, and (ii) a periodic chain (pbc:
periodic boundary condition).

In the following text, we discuss the RG transformation and
its fp behavior. We then use this transformation to examine
chains with open boundary conditions (Sec. VII A) and peri-
odic boundary conditions (Sec. VII B). Although the RG flow
remains the same, the DQPT behavior differs, and we explain
this aspect in Sec. VII A 1. In Sec. VII D, we elaborate on
the differences between the thermal case and the quantum
case, especially the role of boundary conditions. Furthermore,
we explore the nature of DQPT in Sec. VII C. In Sec. VII E,
we utilize a transfer matrix approach [30] to support and
augment the results from complex dynamics.

The RG transformation y′ = R(y) is given by a rational
function

R(y) = y2 + 2

2y + 1
, (25)

which is of degree deg(R) = 2 [see Eq. (21b)]. There are,
therefore, only three fixed points, which are given below with
their multipliers (λ), as

y∗ =
⎧⎨⎩ 1, (λ = 0), the high temperature fp

∞, (λ = 2), the zero temperature fp
−2, (λ = 0), unphysical fp

. (26)

See Fig. 2.
For the thermal behavior, y∗ = 1 is the high temperature

fixed point that corresponds to the disordered state, while
y∗ = ∞ corresponds to the zero temperature threefold degen-
erate ordered state. The third f.p., though it plays no role in
the thermal behavior, is important for the quantum problem.
Incidentally, the magnitude of this fp (|y∗| = 2) represents the

0
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0.8

1
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f(
t)

J t

fp y*=1

FIG. 3. Loschmidt rate function f (t ) vs t for the Potts chain
under open boundary condition. There is no DQPT but oscillations
with periodicity Jt = 2π . This function is the characteristic of the
phase that corresponds to the fixed point y∗ = 1.

multiplicity of the spin states that do not contribute to the
energy [48].

In the RG framework, the stable fixed points (λ < 1) rep-
resent the phases of the system, while the unstable points
are the points of phase transitions (thermodynamic critical
points). The stabilities are determined by the multipliers of the
fps. The zero temperature ordered state is unstable (λ > 1) in
one dimension, consistent with the Landau argument for any
system with discrete symmetry. The flow along the real axis
to the attracting fp at y∗ = 1 indicates the lack of any phase
transition, or, equivalently, the lack of any ordered state at any
nonzero temperature.

In the complex-y plane, R(y) has a pole at y0 = − 1
2 , such

that R(y0) = ∞. Moreover, for any yη = − 1
2 + iη (real η),

R(yη ) = −1

2
+ iη′, where η′ = Rp(η) = − 9

8η
+ η

2
. (27)

As the RG trajectory of any point on this line stays on the
line, the map can also be described by Rp for real arguments.
One notes that the two imaginary fixed points (η∗ = ±i3/2)
of Rp(η) are just the two finite fps (y∗ = − 1

2 + iη∗ = 1,−2)
of Eq. (26).

A. Open boundary conditions

For the open boundary condition, the partition function for
a single bond, Eq. (18c) has a zero at y = −2, which also
happens to be a fp. Therefore the partition function for the
open chain, as discussed in Sec. VI, has a multiple zero at the
isolated point y = −2. The Loschmidt amplitude for B bonds,
by Eq. (24), is given by

L(t ) = 1
3B (y + 2)B, (28a)

with the rate function, Eq.(20), for y = eiJt given by

f (t ) = − Re ln
y + 2

3
= −1

2
ln

5 + 4 cos Jt

9
. (28b)

See Fig. 3 for a plot of f (t ). There is no DQPT in an open
chain, as was shown in Ref [2]. The duality transformation of
the one-dimensional classical chain where each bond acts as a
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FIG. 4. A periodic chain constructed hierarchically. Each bond
of the triangle (generation n = 0) goes through the iteration process
of Fig. 1(a). The number of bonds for generation n is Bn = 3 × 2n.

Potts spin in a field with no interaction, leads to an innocuous
oscillation characterized by one isolated zero of the partition
function.

1. Contradiction with RG?

The absence of any singularity in f (t ) apparently contra-
dicts the results of RG, which, from the flow to the fixed
points, predict phase transitions at A1 and A2. The clue is in
the boundary term in Eq. (20c), which is determined by the
partition function of the smallest structure at the renormalized
y. We show that the boundary term itself is singular, and there
is a perfect cancellation of the singularity from the sum on
the rhs of Eq. (20c). More detailed discussion is given in
Sec. VII E 1.

B. Periodic boundary conditions

For the periodic boundary condition, the construction starts
with the triangle, Fig. 4, whose partition function is given by

Z� = 3y3 + 18y + 6, (29)

with a total of 27 states (i.e., Z� = 27 for y = 1). The preim-
ages of the three zeros,

− 0.32748000207 . . . , 0.16374000103 . . .

± i2.4658532729 . . . , (30)

on successive back iterations, approach either infinity or a
point on the line z = −1/2 + iη [Eq. (27)], which is the Julia
set for R(y). As the point at infinity (a single point on the
Riemann sphere) is unstable (repulsive), it belongs to the Julia
set as well.

The points on the complex plane are separated into two
groups by the Julia set. These groups belong to either the basin
of attraction for the attracting fixed point y∗ = 1, or the basin
for the attracting point y∗ = −2. Incidentally, these are the
only two critical points of the map.

The Julia set intersects the unit circle at two points, namely
A1 = ei2π/3 and A2 = ei4π/3 (Fig. 2). These two points form
a periodic cycle of order two. There is a uniform density of
zeros along the vertical line at the intersection point. Such a
uniform density is a signature of a first-order transition which
is indicated by a slope discontinuity of the rate function.

We now combine the results to see the behavior of the
Loschmidt echo. At time t = 0, the rate function f (t ) = 0.
As time progresses, the system moves towards A1 along the
unit circle in the anticlockwise direction, Fig. 2, but the rate
function is just an analytic continuation of the initial state
described by the attracting fp y∗ = 1 (high temperature, disor-
dered state). Except for the time interval from A1 to A2, i.e.,

between

tc1 = 2π

3

1

J
, and tc2 = 4π

3

1

J
, (31)

the Potts chain behaves as a disordered phase characterized by
the high temperature fp y∗ = 1 with f (t ) given by Eq. (28b).
There is no difference between the open and periodic bound-
ary conditions because the spins (or, rather, dual spins) behave
independently. For the time interval between A1, A2, given by
Eq. (31), the rate function is characteristic of the fp y∗ = −2
[Eq. (39d)]. There is a periodicity, and the transitions take
place at tc1 + 2πn/J , and tc2 + 2πn/J, for integer n. These
transitions were pointed out in Ref. [10]. There is a phase that
has no analog in the thermodynamic system.

C. Nature of transitions

To explore the nature of the phase transitions, we first
note that A1 and A2 form a period-2 cycle so that each one
is a repulsive fixed point of R(2) with multiplier λ = 22 (see
Table II of Appendix C). The RG transformation R(2) requires
a decimation of exactly four bonds, which results in a length
rescaling factor of s = 4. Therefore, in this one-dimensional
(d = 1) case, λ = sd . This relationship between the fixed
point’s λ and the rescaling factor s is a characteristic of a
“discontinuous” fixed point for a first-order transition [49].

We now show that f (y) has slope discontinuities at
the transition points. Let us assume power-law singularities
around such a “discontinuous” fp, generically denoted by yc,
of the form

f (y) ∼ f0 |y − yc|2−α, (32a)

using the standard notation for critical exponents [30,32].
The relation for the free energy as given by Eq. (20b) can

be written in terms of R(2) as

fn(y) = 1
22 fn−2(R(2)(y)) + g2(y), (32b)

where g2(y) = 1
2 ln c(y) + 1

22 ln c(R(y)) is an analytic function
around each of the fps (y = R(2)(y))

yc1 = ei2π/3 and yc2 = ei4π/3.

Expanding around yc,

R(2)(y) = λ (y − yc), with λ = 22, (32c)

we rewrite Eq. (32b) for large n [when fn(y) is independent of
n] as

f (y) ≈ 1
22 f (R(2)(y)), (32d)

which implies, for the singular part,

|y − yc|2−α = λ2−α

22
|y − yc|2−α, (32e)

so that

λ2−α

22
= 1, or, α = 1, (32f)

i.e., f (y) behaves linearly near yc. Therefore, at both the
points A1, A2, there are slope discontinuities in f (t ) as seen
in Fig. 5. The transitions in time are akin to first-order tran-
sitions. Surprisingly, the transitions are described by a cycle
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FIG. 5. The rate function vs time (Jt) for the periodic Potts
chain. The results from the sum of 60 terms [Eq. (20c)] is shown
by the thick line which shows two points (indicated by arrows)
with slope discontinuities at Jtc1 = 2π/3, and Jtc2 = 4π/3. There
is a periodicity—the transitions are seen at Jtc1 + 2πn, Jtc2 + 2πn
for any integer n. The rate functions characteristic of the two fps
(y∗ = 1, −2) are denoted by the thin lines [Eqs. (28b) and (39d)].
These overlap within numerical accuracy with the data points.

of period-2 or by fps of bigger blocks for RG, rather unusual
when compared with thermal phase transitions.

D. Open versus periodic boundary conditions

The rate function f (t ) for the Potts chain depends on the
boundary condition (bc) imposed on the chain, open or peri-
odic (see Secs. VII A–VII C). This difference contradicts the
typical behavior observed in thermodynamic systems’ bulk
behavior. The open chain, with free boundary spins, does not
exhibit DQPT, while the periodic chain does, despite having
identical RG flow equations and fixed points.

The distinction arises from the remainder or boundary
term, (see Sec. VII A 1)

bn = 2−n ln Z1(y(n) ), (33)

in the RG computation of the rate function, Eq. (20c). The
behavior of bn for n → ∞ is analyzed below for the thermal
and the quantum cases.

1. Thermal case

The boundary term, Eq. (33), in the n → ∞ limit requires
the fp value of y. For the thermal problem (real y), the partition
function for the finite system is never zero and, therefore,
2−n ln Z1 → 0. In this case, the free energy is determined
solely by the sum of the contributions from the RG factors
g(y( j) ) [Eq. (20c)], and the summation is independent of the
boundary conditions.

2. Quantum case

We now consider Eq. (33) for the quantum case. For large
n, y(n) approaches one of the two attractive fixed points, y∗ =
1, or −2 (for the Potts chain), both of which belong to the
Fatou set.

We can categorize the possibilities into two groups. Typ-
ically, the Julia set is comprised of the zeros of the partition

function, while the Fatou set represents the different phases of
the system. Nevertheless, there is the second scenario when
the zeros are the attractive fixed points within the Fatou set.
These two cases form the basis of the boundary-condition de-
pendent dichotomy. The results (proved below) can be stated
as a mathematical mechanism as follows.

Theorem (Boundary). If an attractive fixed point of the RG
transformation, which is a member of the Fatou set, coincides
with the zero of the partition function, the boundary contri-
butions become as significant as the bulk rate function. If the
singularities cancel out exactly, the phase linked to that fixed
point would not appear.

We establish this theorem under various boundary condi-
tions.

a. Periodic chain. For the periodic case, the remainder
term is determined by Z�(y(n) ) (the first generation lattice),
which approaches a finite nonzero number so that bn → 0 as
y → y∗. This is the generally expected result, and the RG flow
determines the nature of f (t ). A DQPT ensues.

b. Open chain. For the open boundary case, we note that
Z1 approaches a constant when y(n) → 1, and the remainder
term vanishes (bn → 0) in the limit. In contrast, over the
region characterized by y(n) → y∗ = −2, extra care is needed
because Z1 = 3(y(n) + 2) → 0.

Defining zn = 3(y(n) + 2), the recursion relations for zn

and bn can be written with the help of the RG equation y′ =
R(y) as

zn+1 = 3(R(y) + 2) = z2
n

2zn − 9
, (34a)

bn+1 = bn − 1

2n+1
ln(2zn − 9). (34b)

These relations allow us to evaluate the boundary-
dependent remainder term, bopen(y) as

bopen(y) ≡ lim
n→∞ bn =

{
0, for y∗ = 1,

nonzero, for y∗ = −2.
(34c)

It follows that bopen(y) is singular at A1, A2, the transition
points of Fig. 5.

Numerically evaluated bopen(t ) is shown in Fig. 6 and is
compared with the following ansatz,

bopen(t ) = 1

2
ln

2 − 2 cos(Jt )

5 + 4 cos(Jt )
,

2π

3
< Jt <

4π

3
. (34d)

The exact cancellation of the singularities of f (t ) of the
periodic chain (the bulk contribution) by the boundary terms
gives us the analytic behavior of the open chain of Fig. 3.
There is no DQPT in this case.

The above arguments predict that there will be no DQPT
if one boundary spin is kept fixed while the other end is free.
Instead, if both the boundary spins are held fixed, there will
be DQPT. A few cases are listed in Table I. These predictions
are verified in the next section by the transfer matrix approach
[10].

E. Intermediate phase and transfer matrix

The rate functions are evaluated so far with the help of
the series of Eq. (20c). To analyze the intermediate behavior,
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FIG. 6. The remainder term bopen(t ) vs Jt for the open three-state
Potts chain. Equations (34c) and (34d) for the rate function (green
solid line for 2π/3 < Jt < 4π/3) compares well with the numeri-
cally evaluated values of bn for n = 10. The green lines have been
extended beyond the intersections for clarity.

we utilize the transfer matrix approach [30]. The partition
function for a chain of B bonds can be expressed as a 3 × 3
matrix which can be constructed by repeated multiplication of
3 × 3 symmetric transfer matrices

M =
⎛⎝y 1 1

1 y 1
1 1 y

⎞⎠, (35)

so that after B steps, the partition function with the first spin
in state α j and the last spin in state αk ( j, k = 1, 2, 3) is given
by

Z (y|α jαk ) = MB
∣∣

jk . (36)

For the periodic boundary conditions, we identify the first and
the last spins, and therefore, the total partition function is

Zpbc(y) = Tr MB. (37)

For the open boundary conditions, the first and the last spins
are independent, and the partition function involves a sum
over all the nine possible combinations, i.e., the sum of all

TABLE I. Boundary conditions and DQPT. An arrow indicates a
spin of fixed orientation, while a bullet or a light vertex indicates a
spin that takes all three possible orientations. The end point condi-
tions are preserved as the lattice is built hierarchically.

Boundary Chain type Partition function DQPT?
Conditions (n = 1) Z1(y)

Open • • 3y + 6 No
free free

Open ↑ • y + 2 No
fixed free

Open ↑ ↑ y (if parallel) Yes
fixed fixed 1 (nonparallel)

Periodic � 3y3 + 18y + 6 Yes
Periodic • • 3y2 + 6 Yes

the terms of the Z matrix so that

Zopen(y) = Tr MB + 6Z (y|α jαk ), ( j 
= k). (38)

These extra off-diagonal terms do not contribute to the ther-
modynamic behavior but are vital for the quantum problem.

The eigenvalues of M are [50]

�1 = y + 2, �2 = y − 1, (39a)

where �2 is doubly degenerate. Thanks to the symmetric form
of M, the eigenvector of �1 is (1, 1, 1)/

√
3, while the other

two can be chosen as (−1, 0, 1)/
√

2, (−1, 2,−1)/
√

6. The
eigenvectors are all real, orthogonal, and independent of y,
allowing us to write [51]

MB = 1

3B

⎛⎝a b b
b a b
b b a

⎞⎠ with

{
a = �B

1 + 2�2

b = �B
1 − �B

2

, (39b)

so that

Zpbc(y) = 1

3B

(
�B

1 + 2�B
2

)
=

B→∞

{
(�1/3)B if |�1| > |�2|
(�2/3)B if |�1| < |�2|

. (39c)

For real y, 1 � y < ∞, we have �1 � �2, equality only for
y → ∞, and the free energy of the Potts chain per bond is
given by −kBT ln �1 for all temperatures. However, for the
quantum problem with y = exp(iJt ), there is a crossing of the
eigenvalues with degeneracy occurring on the unit circle |y| =
1. When |�2| > |�1|, the rate function per bond is given by

f (t ) = − Re ln(�2/3) = − 1
2 ln[(2 − 2 cos Jt )/9], (39d)

as shown in Fig. 5. This form is observed for tc1 � t � tc2, the
range in which y flows to the fp y∗ = −2. There is no analog
of this phase in the one-dimensional magnet.

Since the phase transition occurs at the point of degeneracy
of the distinct eigenvalues, a diverging length scale appears
close to the transition point as

ξ =
∣∣∣∣ln ∣∣∣∣�1

�2

∣∣∣∣ ∣∣∣∣−1

, (39e)

such that ξ → ∞ as t → tc1± or t → tc2±. This diverging
length scale is to be interpreted as a finite-size length scale
such that for a finite system, deviations from the sharp transi-
tion is seen for B < ξ (t ).

By using the known eigenvalues Eq. (39a), the divergence
of ξ is given by

ξ ∼ |t − tc|−1, both for tc = tc1 and tc2, (39f)

and to see the sharpness of the transition, we need to respect
B � ξ . Or, finite B data can be made to collapse on a master
curve (data collapse) [52] if B/ξ is used as a scaling behavior.
Therefore, for a chain of B bonds, the rate function fB(t ) per
bond satisfies a scaling form

fB(t ) ≡ f (tc) + B F
(

B

ξ (t )

)
, (39g)

where the scaling function

F (x) ≈ f±
1

x
, as t → tc ± . (39h)
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with f± determining the jump in the slope at tc. It is straight-
forward to verify such a data collapse from numerics.

The same scale ξ determines the spatial exponential decay
of spin-spin correlations in both the phases characterized by
y∗ = 1 and −2, indicating that these phases are paramagnetic.

1. Importance of freedom

The RG analysis can be compared with the transfer matrix
results. In the open chain case, Eq. (38) shows a perfect
cancellation of the contributions from �2. However, changes
in the free conditions of the boundary spins would tilt the
behavior towards the DQPT case. There is no DQPT if we
keep one boundary spin fixed at, say, state-1, so that the
partition function involves a summation of the elements across
one row of the matrix in Eq. (39b). On the other hand, if the
two boundary spins are kept fixed, only one element of the
matrix is needed, and there is DQPT. All the entries of Table I
can be verified with the help of Eq. (39b).

VIII. HIGHER DIMENSIONS (d > 1)

Dimensionality (d) is important in determining the nature
of phase transitions in classical and quantum systems. We
expect d to be important for DQPT, too, thanks to the intimate
connection between DQPT and classical phase transitions. For
example, in classical systems with finite range interactions
and discrete symmetry, a transition occurs for d > 1 (Peierls’
argument) but not in d = 1 (Landau’s argument) [30]. From
the perspective of the renormalization group, these results
mean that the zero-temperature fixed point (y∗ = ∞), which
is unstable for d = 1 [see Eq. (26)], must become stable for
d > 1. An immediate consequence is that the Julia set, rele-
vant for DQPT, is compact, i.e., restricted to the finite complex
plane.

Let us consider a two-dimensional hierarchical lattice, i.e.,
with b = 2 (Sec. II A). The renormalization transformation is
now

R2(y) = R(y)2 =
(

y2 + 2

2y + 1

)2

, (40)

which is different from R(2) of Eq. (32c).
The complex dynamics protocol reveals that R2(y) has a

degree of four, leading to five fixed points, including the point
at infinity. At low temperatures, the ordered state remains
stable, making y = ∞ a stable fp with a basin of attraction
near the point at infinity in the extended complex-y plane. This
region belongs to the Fatou set.

The fixed points and their multipliers are

y∗ = 1, λ = 0, (41a)

y∗ = 4, λ = 16/9, (41b)

y∗ = e±i2π/3, λ = 4e∓i2π/3, |λ| = 4, (41c)

y∗ = ∞, λ = 0. (41d)

Of these y∗ = 1, and ∞ are the two stable (super-attractive,
because the multipliers = 0) fixed points representing the
para or high-temperature phase and the ordered phase,

respectively, with y∗ = 4 as the thermodynamic critical point
(“Curie point”) separating the two phases. The remaining two
fixed points are on the unit circle and are repulsive or unstable.
These are relevant for DQPT.

A. Nature of the Julia set

A notable difference between b = 2 and the one-
dimensional b = 1 case is the behavior of the y = ∞ fp, which
is now a super-attractive fp, with its own basin of attraction.
The Julia set, as pointed out earlier, contains an infinite num-
ber of points that do not flow to the stable fps [53] (see also
Sec. V D).

The RG map has critical points (where the first derivative
is either zero or infinity) at

(i) y = 1,∞ (fp);
(ii) y = −2,±i

√
2 (not fps);

(iii) y = −1/2 (a pole).
Of these y = −2,±i

√
2 are in the Julia set, as repeated

iterations give [54]

−2 −→
R2

4 −→
R2

4, and ± i
√

2 −→
R2

0 −→
R2

4. (42)

The Julia set for R2 is shown in Fig. 7. The color code
indicates the number of iterations (<20) required to reach
the stable fps (y∗ = 1 or ∞). The unstable fp at y∗ = 4
where the zeros pinch the real axis is the classical critical
point of the q = 3 Potts model for b = 2. The two complex
fps are A1, A2 of the b = 1 case, Fig. 2. A closer view of the
area around A1 is shown in Fig. 7(b), while Fig. 7(c) provides
a display of the region close to the imaginary axis on the first
quadrant. (See Fig. 10 of Appendix D for the Julia set only.)

B. Transition points

The intersection points of the Julia set with the unit circle
(red circle in Fig. 7) are the transition points for DQPT, while
the intersection with the positive real axis gives the thermal
critical point. The absence of isolated points in the Julia set en-
sures that the zeros of the partition function for b = 2 are not
isolated and, therefore, stand for points of phase transitions.
Suppose a continuum limit is taken to describe the zeros by
a line or surface density of “charges.” In that case, the nature
of the transition is completely determined by the behavior of
the density at the intersection point. On the other hand, if the
intersection point is an unstable fp, the RG procedure would
suffice to determine the transition behavior.

The unstable fp at y∗ = 4 describes the thermal criticality
of the Potts model. The temperature derivative of the specific
heat is divergent [see Eq. (32f)] with

α = 2 − ln 4

ln λ
= 2 − ln 4

ln(16/9)
= −0.4094 . . . , (43)

where α is one of the critical exponents to describe the
symmetry breaking of this particular two-dimensional Potts
model.

The two additional fixed points on the unit circle,

y∗ = ei2π/3, and ei4π/3 = e−i2π/3, (44)

correspond to A1 and A2 in Fig. 2.
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(b)

(c)

(a)

FIG. 7. The Julia set for the b = 2 RG transformation R2. The
color code represents the number of iterations required (<20) to
reach the stable fps y∗ = 1 or ∞. The complex fps on the unit circle
are represented by yellow dots. The full Julia set is shown in (a) while
a magnified image around the fp y = exp(i2π/3) is shown in (b).
The intersection of the unit circle with the Julia set in the first
quadrant is shown in (c).

FIG. 8. The rate function f (t ) vs t (red solid curve) for b = 2.
The arrow marks the peak, which represents the location of the first-
order transition at Jt = 2π/3 = 2.094 . . . The yellow vertical lines
indicate some of the zeros derived from the intersection of the unit
circle |y| = 1 with the Julia set. These singularities, which form a
dense set, are not described by the listed fixed points but belong to
higher order periodic orbits.

In the decimation process of the two-dimensional (d = 2)
lattice, the length is rescaled by a factor of s = 2, so that the
multiplier can be written as λ = 4 = sd . This enables us to
identify the two fixed points A1 and A2 as “discontinuous”
fixed points, which signify first-order transitions.

The RG flow takes y to y∗ = 1 for the arc A1 to A2 on the
right side, similar to the d = 1 case. However, on the left part
of the arc, the flow is to y = ∞, indicating that the system is in
the ordered state. There is a symmetry-breaking transition in
time at Jtc1 = 2π/3 and then a symmetry-restoring transition
at Jtc2 = 4π/3 (periodic para to ferro to para transitions). All
these transitions are described by fixed points different from
the thermodynamic one.

We determine the exponent α at A1 (and, by symmetry,
identical behavior at A2, though time-reversed) from Eq. (32e)
with a rescaling factor of 2b = 4

α = 2 − ln 2b

ln |λ| = 1, (45)

by using the multiplier noted in Eq. (41). This signals a first-
order transition (slope-discontinuity of f (t )).

A gross feature of the quantum quench in the Potts model
is the oscillatory behavior of para and ferro states with the
symmetry-breaking (and restoring) transitions taking place at
times tc1, tc2 given by Eq. (31). Figure 8 shows the Loschmidt
rate function obtained by using the sum formula of Eq. (20c).
The remainder term does not contribute here. The major tran-
sition is (point A1) described by a fp [Eq. (45)] and is indicated
by the arrow to the Peak. The transitions occur periodically at
tc1 + 2πn/J and tc2 + 2πn/J .

In addition to the above gross features, the fractal nature
of the Julia set creates finer structures in the time evolution.
These structures can be determined by monitoring the flow
of y along the unit circle or by studying the unit circle’s
intersection with the Julia set. Figure 7 shows that the unit
circle passes through regions of the Julia set, fragmenting the
arc of the unit circle into segments flowing to either y = 1
or ∞. Multiple para-ferro-para transitions are expected in a
cycle, especially in regions close to Jt = π/2 and around A1.
Similar regions also exist in the lower half of the unit circle
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due to symmetry. Figure 8 displays the transition points from
the flow of y (represented by yellow lines). Unlike the major
transitions, these minor transitions are not connected to the
fps but, as members of the Julia set, should be related to some
higher order periodic or chaotic orbit. Further exploration of
these minor transitions is imperative.

Successive iterations of the RG transformation are equiv-
alent to choosing more spins for decimation. Rb(y) (R or
R2(y) for b = 1, 2) is obtained by decimating the motifs one
at a time, while R(n)

b would be an RG scheme of a larger
step. Therefore periodic orbits are equivalent to fps of R(n)

b of
periodicity n, though it indicates a subtle connection between
space and time transformations, respecting time reversibility.
Note that in these one-parameter systems, the thermal problem
cannot display any periodicity, which is only feasible in the
complex plane for the quantum problem.

Both fps, A1 and A2, can be considered as the fps of R(2)

in the one-dimensional scenario. Nevertheless, when seen as
an iteration of R(y), A1 ↔ A2. Decimation in space leads
to a transformation of time, causing A1 to become A2. This
transformation can be interpreted as the system being in the
future or the past (eiJt = ei(Jt±2π )), a consequence of the time
reversibility of the process.

IX. CONCLUSION

In this paper, we investigated dynamical quantum phase
transitions (DQPT) in the quantum three-state Potts model
[Eq. (6a)] using the iterated map formulation (complex dy-
namics) for exact renormalization group (RG) transformation.
We focused on one and two-dimensional lattices built hier-
archically as examples of the exact formulation. The DQPT
occurs during the time evolution of the interacting system,
and here, we started from a state of uniform superposition of
all states that a large transverse field can produce. The time
evolution here is unitary and the timescale (restoring h̄) is
tJ/h̄. This means that there is no classical limit as h̄ → 0, and
the reported phenomena are inherently quantum in nature.

The RG transformation of the Boltzmann factor y is a
rational function that divides the complex-y plane into (a)
the Fatou set of points that flow to the attractive fixed points
(possible phases of the system) and (b) the Julia set consisting
of the repulsive fixed points (possible transition points) and
repulsive periodic orbits. The Julia set is the boundary of the
Fatou set and plays a vital role in the formulation because of
its connection to the zeros of the partition function. The de-
scription of DQPT requires an analysis of the Julia set, and the
RG flows. The rate function determining the Loschmidt echo
and the thermodynamic free energy are determined exactly (or
numerically exactly) from the RG flows.

From the studies of the open and periodic Potts chains (and
other cases), we conclude that the coincidence of an attractive
fixed point of the renormalization group transformation with
the zero of the partition function makes boundary contribu-
tions to the rate function on par with the bulk, to the extent
of even annulling DQPT. For the one-dimensional case, the
DQPTs are between two paramagnetic phases described by
two different stable (i.e., attractive) fixed points. The transi-
tions are first-order and are characterized by a periodic cycle
of order 2.

For the two-dimensional models, we find alternating
symmetry-breaking and restoring transitions between the para
and ferro phases. The transitions are first-order, described by
RG fixed points related by time-reversibility. To be noted here
that the fixed point description for the first-order transitions
are consistent with the discontinuous fixed points known for
equilibrium phase transitions.

We may contrast the DQPT results with the thermal prob-
lem. A one-dimensional Potts chain does not undergo any
thermal phase transition, while, in two dimensions, there is
a symmetry-breaking critical point (Curie point).

It has not escaped our notice that the first-order dynamic
quantum phase transitions we observed in the Potts system of
discrete symmetry-breaking immediately suggests the possi-
bility of interfaces separating the two coexisting phases. The
nature of the interface in the quantum system remains to be
elucidated.

Even for approximate real space RG for the Boltzmann
factor, the transformation for y can be represented in terms
of rational functions, and then the theory used here can be
applicable. The complex dynamics formulation can be ex-
tended to many other systems including models in higher (>2)
dimensions, and also for more than one variables.
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APPENDIX A: RG EQUATIONS

Some details of the RG procedure of Sec. IV are given here.
The RG steps are indicated schematically in Fig. 9.

Note that a bond with two Potts spin in the same state has
a weight of y = eβJ , while a bond with two different spins has
a weight of 1. The decimation process involves removing (by
summing over) the spins at the red square sites within each
pink ellipse, while keeping the spins at the blue disk sites

FIG. 9. The steps of RG transformation given in Sec. IV are
shown schematically. The decimation is done by summing over the
spins at the re square sites.
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TABLE II. For the one-dimensional Potts model, the periodic orbits and their multipliers. The points are on the line z = −0.5 + iη, and
only the η values are tabulated.

period points (η) : z = −0.5 + iη λ

2 ± sin 2π/3 22

3 P3 = {−3.11478, −1.19621, 0.342365}, 23

−P3

4 P4,1 = {−7.05695, −3.36906, −1.35061, 0.157656}, 24

−P4,1,

P4,2 = {−2.06457, −0.48738, 2.06457, 0.48738},
5 P5,1 = {−14.7507, −7.29908, −3.49541, −1.42586, +0.0760714}, 25

−P5,1,

−P5,2 = {−1.16109, 0.388377, −2.70248, −0.934957, 0.735785},
P5,3 = {−0.555539, 1.74729, 0.229792, −4.78085, −2.15511},

−P5,3

fixed. The new lattice is obtained by joining the blue sites with
bonds. These are steps 1 and 2 of Sec. IV. The blue spins are
now coupled by a renormalized interaction or a renormalized
weight y′. See Fig. 9.

The renormalization procedure preserves the physical
properties, such as the partition function. The renoralized
Hamiltonian is similar to the original one upto an additive
constant. The additive constant in energy is the multiplicative
factor c in the RG steps. The two unknows y′ and c are then
determined by equating the partition functions.

APPENDIX B: RECURSION RELATIONS
FOR THE PARTITION FUNCTION

For small lattices, the Loschmidt amplitudes can be com-
puted by constructing the recursion relations as the lattice
is built up. By using the permutation symmetry of the spin
orientations, the relations are written as

Zn(y|α, α) = [Zn−1(y|α, α)2 + (q − 1)Zn−1(y|α, β )2]b,

where β 
= α, (B1a)

Zn(y|α, β ) = [2Zn−1(y|α, α)Zn−1(y|α, β )

+ Zn−1(y|α, γ )Zn−1(y|γ , β )]b,

where β 
= α, γ 
= α, γ 
= β, (B1b)

Zn(y) = qZn(y|α, α) + q(q − 1)Zn(y|α, β ), any α 
= β.

(B1c)

APPENDIX C: PERIODIC ORBITS FOR THE POTTS
CHAIN

For the one dimensional chain, there are no unstable fixed
points, except the point at infinity. However, the Julia set
contains many periodic orbits. The orbits of periodicity 2 to
5 are listed in Table II.

APPENDIX D: JULIA SET FOR THE b = 2 POTTS MODEL

The Julia set for the b = 2 case is shown in Fig. 10. For
example, the unstable fixed point y∗ = 4 of R2(y) from Eq. 40
belongs to the set, as do the preimages y = 0,−2 such that
R2(y) = 4.

FIG. 10. The Julia set for the three-state Potts model on the b = 2
diamond hierarchical lattice, obtained from MATHEMATICA [56].
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