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Extended Kohler’s rule of magnetoresistance in TaCo2Te2
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TaCo2Te2 is recently reported to be an air-stable, high mobility van der Waals material with probable magnetic
order. Here we investigate the scaling behavior of its magnetoresistance. We measured both the longitudinal (ρxx)
and Hall (ρxy) magnetoresistivities of TaCo2Te2 crystals in magnetic fields parallel to the c axis and found that the
magnetoresistance violates the Kohler’s rule MR ∼ f [H/ρ0] while obeying the extended Kohler’s rule MR ∼
f [H/(nT ρ0)], where MR ∼ [ρxx (H ) − ρ0]/ρ0, H is the magnetic field, nT is a thermal factor, and ρxx (H ) and
ρ0 are the resistivities at H and zero field, respectively. While deviating from those of the densities of electrons
(ne) and holes (nh) obtained from the two-band model analysis of the magnetoconductivities, the temperature
dependence of nT is close to that of the Hall carrier densities nH calculated from the slopes of ρxy(H ) curves at
low magnetic fields, providing a different way to obtain the thermal factor in the extended Kohler’s rule.
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I. INTRODUCTION

Magnetic field dependent resistance is a long-studied prop-
erty of materials [1–5]. The magnetic-field-induced resistance
change of a material, termed as magnetoresistance (MR) [1],
can have large values based on intrinsic sample properties,
such as colossal MR (CMR) [2] and giant MR (GMR) [3]
in magnetic materials, and extremely large MR (XMR) in
nonmagnetic materials [4]. Kohler developed a rule in 1938
to describe the scaling behavior of magnetoresistance in met-
als [5]. This rule states that MR will scale as a function
of magnetic field H divided by zero-field resistivity ρ0 of a
material, such that MR = f [H/ρ0], where MR = [ρxx(H ) −
ρ0]/ρ0 and ρxx(H ) is the longitudinal resistivity at H. Kohler’s
rule has since been applied to other nonmagnetic materials
such as semimetals [6–11] and superconductors (in the nor-
mal state) [12]. Violations of Kohler’s rule have been widely
reported [13–16] and are used as evidence for phase tran-
sitions [6–8]. An extended Kohler’s rule [13] has recently
been developed and shown to resolve these violations for
a variety of materials by introducing a thermal factor nT,
such that MR = f [H/(nT ρ0)]. In general, nT is associated
with the Fermi level and dispersion relation of the material.
Thus, it could be challenging to derive its temperature de-
pendence analytically while it can be obtained experimentally
from the scaling behavior. Here, we demonstrate that the
extended Kohler’s rule is valid in TaCo2Te2 and the thermal
factor nT has nearly the same temperature dependence of the
charge carrier density nH derived from the Hall resistivity
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at low magnetic fields, providing a different way to obtain
nT.

TaCo2Te2 was recently reported as an air-stable high mo-
bility van der Waals material with probable magnetic order,
compensated electron-hole densities, and exfoliable down to
a few layers [17]. The atomic structure is reported as or-
thorhombic with a known Peierls distortion in the Ta-Co
chains [18]. It has also been reported to have a complex
Fermi surface with multiple Fermi pockets, eightfold fermions
and fourfold degenerate Van Hove singularity [19] as well
as large intrinsic nonlinear Hall effect [20]. Resistivity mea-
surements show nonsaturating magnetoresistance, with MR
being as large as 3.72 × 103% at T = 3 K and H = 9 T
[21]. Annealing has shown to have effects on the magne-
totransport and magnetic properties of the material, such as
carrier mobilities that have a direct effect on the magnitude of
magnetoresistance [21]. The magnetoresistances in TaCo2Te2

have been analyzed using the two-band model, yielding the
density and mobility of the charge carriers [17,21]. Kohler’s
rule plots have also been tested for magnetoresistances in both
as-grown and annealed crystals measured at temperatures up
to T = 75 K and violations could be seen [21]. In this work
we probe Kohler’s rule for magnetoresistances obtained at
temperatures up to T = 200 K, enabled by high precision
ac resistivity measurements that yield low-noise MR down
to 10−2%. The extension of the temperature limit to higher
values, which increases carrier densities due to enhanced
thermal excitation, enables us to evidently demonstrate the
violation of the Kohler’s rule, test the newly developed
extended Kohler’s rule, and compare the temperature de-
pendence of the thermal factor nT in the extended Kohler’s
rule, the charge carrier densities ne and nh derived from the
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two-band model analysis, and nH from the low field Hall
resistivity.

II. EXPERIMENTAL DETAILS

Single crystals TaCo2Te2 were grown by chemical vapor
transport method with I2 as the transport agent [19]. A mixture
of Ta powder (purity 99.9%), Co pieces (99.99%), and Te
shot (99.99%) were prepared with a molar ratio of Ta : Co
: Te = 1:1:2 and sealed in a quartz tube under high vacuum,
which was then placed in a horizon two-zone tube furnace
and maintained under a temperature gradient of 950–850 °C.
After 2 weeks, shiny single crystals with a typical size of about
1 mm × 2 mm × 0.1 mm were obtained. More characteriza-
tions including x-ray diffraction can be found in Ref. [19].

Both single crystal and exfoliated samples were prepared.
Contacts were made to an exfoliated sample using standard
photolithography techniques. The sample was first mechani-
cally exfoliated using Scotch tape. It was then deposited on
a SiO2 substrate. Contacts were made using photolithogra-
phy micropatterning. After photolithography, 200 nm of gold
following a 5-nm adhesion layer of titanium were deposited
using magnetron sputtering method. The distance between Rxx

and Rxy contacts are designed to be 10 and 20 µm respec-
tively and confirmed with optical microscopy. The thickness
of the exfoliated sample was measured using a Bruker Fast
Scan AFM to be ∼155 nm. Electrical leads for single crystal
samples (with a thickness of ∼100 µm) were gold wires glued
to the crystal using silver epoxy H20E.

We took data on longitudinal and Hall resistances Rxx(H )
and Rxy(H ) using the Electrical Transport Option (ETO) of
Quantum Design PPMS®. Low-frequencies (33.57 Hz for Rxx

and 21.36 Hz for Rxy) ac current of 1 mA was used and flowed
in the ab plane. The magnetic field was applied along the c
axis of the crystal, which is perpendicular to the plane of the
current and voltage contacts. We symmetrize the data using
positive and negative fields, Rxx = [Rxx(+H ) + Rxx(−H )]/2
and Rxy = [Rxy(+H ) − Rxy(−H )]/2 to eliminate contribu-
tions from potential contact misalignment and nonuniform
current distribution. The resistivities are calculated as ρxx =
Rxxwd

l and ρxy = Rxyd , where d , w, and l are the thickness,
width of the sample, and separation between voltage contacts,
respectively.

We measured both single crystal and exfoliated samples.
The single crystal sample shows similar trends to the data
presented in this paper. We choose to present data from the
exfoliated sample due to noise in the low voltage signal of
the larger sample. Exfoliation of the material allows us to
decrease the thickness and thus increase the resistance of the
sample to obtain a larger voltage signal, reducing the effects
of noise on the data.

III. RESULTS AND DISCUSSION

Figure 1 presents the temperature dependence of the sam-
ple as it undergoes zero-field cooling. It shows a metal-like
behavior without apparent transitions. The sample has a resid-
ual resistivity ratio (RRR) of ∼48, suggesting good sample
quality. This value falls between RRR = 17 and 73 reported
in Refs. [17] and [21] for the as-grown crystals, respectively

FIG. 1. Zero-field cooling curve of the exfoliated sample. Sym-
bols are experimental data. Dashed blue line, dashed magenta line
and the red solid line present the fits of ρ0 ∼ T 4, ρ0 ∼ T 2.7 and
Bloch-Gruneisen function Eq. (1), respectively. The inset shows a
logarithmic plot of the temperature dependence of the resistivity after
subtracting the residual value ρ0 (2 K) = 2.244 µ� cm at T = 2 K.
The dashed magenta line represents ρ0 ∼ T 2.7.

while being exactly the same as that of the annealed crystal
[21]. As presented below, these RRR values are indeed direct
indicators of the sample properties such as the amplitudes
of the magnetoresistances. That is, MRs in our sample are
expected to be close to those of the annealed crystals [21]
while being larger than those reported in Ref. [17] and smaller
than those reported in Ref. [21] for as-grown crystals.

In previous reports ρ0(T ) in the low-temperature region
(T � 30 K) was found to follow a ρ0(T ) ∼ T 4 relation-
ship, which differs from the ρ0(T ) ∼ T 2 expected for pure
electron-electron scattering or a ρ0(T ) ∼ T 5 expected for the
electron-phonon scattering and was attributed to interband
electron-phonon scattering [17,21]. As indicated by the blue
dashed line in Fig. 1, ρ0(T ) in our sample can be fitted with
ρ0(T ) ∼ T 4 for temperatures up to T ≈ 30 K. On the other
hand, a power-law relationship with an exponent of 2.7 is re-
vealed in the logarithmic plot, as presented in the inset. Thus,
power-law fittings may be oversimplified or unreliable in un-
covering the scattering mechanisms. We tried to fit our ρ0(T )
with the well-known Bloch-Gruneisen function [22–28]:

ρ(T ) = ρ0(0) + A

(
T

θD

)n ∫ θD/T

0

xn

(ex − 1)(1 − e−x )
dx, (1)

where A is a weighting parameter, T is temperature, θD is
the Debye temperature, ρ0(0) is the resistivity plateau at
low temperatures, and n is a scattering-dependent parameter,
with n = 2, 3, 5 corresponding to electron-electron, electron-
magnon, and electron-phonon scattering, respectively [28].
As presented in Fig. 1 as a red solid line, ρ0(T ) in a much
wider range (up to T � 100 K) can be well described by
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FIG. 2. (a) Magnetic field dependence of the longitudinal resis-
tivity, ρxx (H ), at T = 3, 25, 35, 50, 75, 100, 125, 150, and 200 K
(from bottom to top). (b) Temperature dependence of the longitudi-
nal resistivity, ρxx (T ), at various magnetic fields as denoted by the
legend.

Eq. (1) with n = 5, along with A = 430, θD = 188 K, and
ρ0(0) = 2.25 µ� cm. A fit with n as a free parameter also
yields n = 4.78. Thus, we conclude that ρ0(T ) is governed
by electron-phonon scattering. At high temperatures (T > 100
K) the measured resistivities are lower than those expected
from Eq. (1). As we will reveal below from the violation of
Kohler’s rule of magnetoresistance, this deviation is caused
by thermally induced increase in the charge carrier densities,
which is not accounted for in the Bloch-Gruneisen function.
That is, such a deviation may indicate the violation of Kohler’s
rule of magnetoresistance, which is the focus of this work.

We measured Rxx(H ) and Rxy(H ) in intervals of �T = 5
K at T � 150 K and then increased to large temperature in-
tervals as the magnetoresistance quickly decreases at higher
and higher temperatures. Data were taken up to T = 300 K
but magnetoresistance is negligible at T > 200 K. As such,
we will focus on data only up to T = 200 K, as presented
in Figs. 2(a) and 2(b) for the ρxx(H ) curves at a few fixed
temperatures and ρxx(T ) curves at a few fixed magnetic fields,
respectively. We obtained ρxx(T ) curves from the ρxx(H )
curves rather than directly measure them by sweeping tem-
perature to avoid nonequilibrium temperature effects. As
expected, ρxx(H ) data in Fig. 2(a) show that the magnetic field
has stronger effects on the resistivity at lower temperatures,
e.g., the ρxx(H ) curve at 3 K crosses those at T = 25 and
35 K at high fields. The ρxx(T ) curves in Fig. 2(b) are also
consistent with those reported in Ref. [21], including the turn-
on temperature behavior at H � 5 T.

We present quantitative analysis of the magnetoresistance
in Fig. 3, with the calculated MR(H ) and MR(T ) in Figs. 3(a)
and 3(b), respectively. We use logarithmic scale to exhibit the
data of small values, particularly the MR curves obtained at
high temperatures. Furthermore, MR(H ) plots in logarithmic
scale enable us to show that the curves are parallel to each
other, as expected from the Kohler’s rule, which suggests that
a multiplier of 1/ρ0 to H (x axis) could cause them to overlap
or collapse onto the same curve [13].

We see large MR gain at low temperatures, reaching up to
MR of ∼8.33 × 102% at T = 3 K and H = 9 T. This value
lies in the middle of those (2.63 × 102% − 3.72 × 103%) re-
ported for the as-grown crystals [17,21] while being close to
that (5.71 × 102%) of the annealed crystals [21], consistent
with their relative RRR values. Figure 3(a) indicates that
MR(H ) does not follow a simple power law, similar to that
observed in multiband semimetals [9,10,13,29]. Figure 3(b)
reveals that the MR(T ) is very sensitive to temperature at
T > 20 K, with its value down to MR ≈ 0.5% at T = 200 K
and H = 9 T, while reaching a plateau at T � 10 K.

Kohler’s rule tells us that the curves when plotted as MR ∼
H/ρ0 should collapse onto each other, showing an invariance
in MR scaling with temperature. We can see from Fig. 3(c)
that Kohler’s rule is followed very well for T � 50 K whereas
its violation can be clearly identified for the curve at T = 75
K and becomes more prominent with increasing tempera-
ture. On the other hand, those curves at high temperatures
are still parallel to each other, suggesting that an additional
temperature dependent scaling factor nT is needed to col-
lapse all MR(H/ρ0) to a single curve, leading to the extended
Kohler’s rule MR ∼ f [H/(nT ρ0)] proposed in Ref. [13] and
verified by others [29–32]. Following the same procedures
used in Ref. [13] we use nT = 1 for MR at T = 200 K, i.e.,
this scaling factor is normalized to scale all curves to the
T = 200 K curve. As shown in Figs. 3(e) and 3(f), all the
curves MR[H/(nT ρ0)] indeed overlap each other, confirming
the applicability of the extended Kohler’s rule in TaCo2Te2.
The corresponding nT values obtained at various temperatures
are presented in Fig. 4(a), which show significant tempera-
ture dependence at T > 50 K while being nearly constant
at T � 50 K. As indicated by the red line, it can be fitted
with a power-law relationship nT ∼ T ν with ν = 2.2, which
is very close to that (ν = 2) reported for TaP, where nT can
be theoretically described by the temperature dependence of
the charge carrier densities [13]. That is, nT of TaCo2Te2

is probably dominated by a thermally induced change in its
charge carrier densities. However, TaCo2Te2 is a multiband
semimetal with a more complicated band structure [17,19]
than that of TaP, hindering the calculation of its temperature
dependent charge carrier densities. Below we will compare it
with the temperature dependence of carrier densities derived
from the same sets of magnetoresistivity data using various
analysis approaches and demonstrate that nT has in fact sim-
ilar temperature dependence as the Hall carrier density nH

determined from the low-field Hall resistivities.
In the literature two-band model fittings of longitudi-

nal and/or Hall magnetoresistivities/conductivities have been
widely used to obtain the electron and hole carrier densities
ne and nh [33–36]. In fact, they have also been applied on
TaCo2Te2 [17,21], yielding ne and nh whose values decrease
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FIG. 3. (a),(b) Magnetic field and temperature dependencies of the MR derived from data in Figs. 2(a) and 2(b), respectively. (c),(d)
Kohler’s rule plots of the data in (a) and (b), respectively. (e),(f) Extended Kohler’s rule plots of the MR curves in (a) and (b), respectively. The
used nT values are presented in Fig. 4(a), where nT = 1 at T = 200 K. (g),(h) Extended Kohler’s rule plots of the MR curves in (a) and (b) by
replacing nT with n∗

H, where n∗
H = nH(T )/nH(200 K) is the normalized Hall carrier density, i.e., n∗

H = 1 at T = 200 K, for direct comparisons
with the results in (e) and (f), where nH(T ) is the Hall carrier density obtained from the Hall resistivity at low magnetic fields, as elaborated in
Fig. 6 and its caption. n∗

H and nH data are presented in Figs. 4(a) and 4(b) respectively.

significantly with increasing temperature at T � 75 K [21],
which differs from temperature-insensitive nT in that tem-
perature regime as presented in Fig. 4. On one hand, this
inconsistence may arise from the two-band model fitting ap-
proach itself, which could result in capricious outcomes in
TaCo2Te2 that is not a two-band system, as demonstrated in
our recent work on ZrSiSe [36]. On the other hand, it might
occur simply because the data are from different samples,
since carrier densities can depend strongly on the synthesis
conditions of the crystals [21]. For a reliable comparison on
the temperature dependence of ne and nh to that of nT, we also
conduct two-band model analysis on magnetoconductivities
σxx and σxy of our TaCo2Te2 sample. The magnetoconductivi-
ties are converted from the measured magnetoresistivities ρxx

and ρxy via σxx = ρxx

ρ2
xx+ρ2

xy
and σxy = ρxy

ρ2
xx+ρ2

xy
. By limiting the

discussions in Ref. [13] on multiband systems to i = 1 and
2 and assigning n1 = nh, μ1 = μh for holes and n2 = −ne,
μ2 = −μe for electrons, we obtain the following expressions:

σxy = eH

{
nhμ

2
h

1 + (μhH )2 − neμ
2
e

1 + (μeH )2

}
, (2)

σxx = e

{
nhμh

1 + (μhH )2 + neμe

1 + (μeH )2

}
, (3)

where e is the charge of the electron, H is the magnetic
field, and nh, μh, ne, μe are carrier densities and mobilities
of holes and electrons, respectively. We then simultane-
ously fit the experimental σxx(H ) and σxy(H ) curves with
Eqs. (2) and (3), as shown in Fig. 5 for T = 3 and 100
K as examples. While the two-band model does describe
the data well at high temperatures, the fitting curves deviate
significantly from the measured ones at low temperatures,
consistent with that reported in Ref. [17]. At T = 3 K, we
obtain nh = 3.07 × 1026 m−3, ne = 3.45 × 1026 m−3, μh =
0.462 m2 V−1 s−1, and μe = 0.364 m2 V−1 s−1. These values
are on the same order of magnitude as those presented in
previous works [17,21]. We see that the density of electrons
is larger than that of holes in our sample, in agreement with
initial report [17]. As shown in Fig. 4(b) for ne and nh obtained
at temperatures up to T = 200 K, their values are the same
at T > 50 K while they have a small difference at T � 50 K,
consistent with the electron-hole compensation claimed previ-
ously [17]. Furthermore, their temperature dependence indeed
follows a similar trend as that in Ref. [21] at T < 75 K, though
the temperature sensitivity in our sample is weaker. At T > 75
K, the values of ne and nh do become larger with increasing
temperature, similar to that of nT. However, it increases only
by a factor of ∼1.7, which is significantly smaller than the
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FIG. 4. (a) Temperature dependence of the thermal factor nT and
the normalized Hall carrier density n∗

H = nH(T )/nH(200 K). The red
and violet lines represent power-law fittings of nT ∼ T 2.2 and n∗

H ∼
T 2.1, respectively. (b) Temperature dependence of the Hall carrier
density nH and the electron and hole densities ne and nh derived from
two-band model analysis.

factor of ∼ 2.5 for nT when the temperature is increased from
T = 75 K to T = 200 K. Both this weaker temperature sensi-
tivity and the nonmonotonic temperature dependence indicate
that the temperature dependence of the ne and nh obtained
from two-band model analysis of the magnetconductivities
does not reflect that of the thermal factor nT.

On the other hand, we can derive the thermal factor for
a multiband material at magnetic fields satisfying μiH � 1,

FIG. 5. (a),(b) Two-band model fittings of the longitudinal and
Hall magnetoconductivities σxx and σxy for T = 3 K, respectively.
(c),(d) The same analysis as those in (a) and (b) but for T = 100 K.
Symbols are experimental data and lines are fittings with Eqs. (2) and
(3). The derived densities are presented in Fig. 4(b).

FIG. 6. (a) Magnetic field dependence of the Hall resistivity,
ρxy(H ), at various temperatures. (b) Expanded view of ρxy(H ) in (a)
at magnetic fields up to H = 0.2 T. For clarity, only data at T = 3,
50, 100, 150, and 200 K are presented. The linearity of ρxy(H ) allow
us to derive the Hall carrier density nH = H/(eρxy).

which can be expressed as nT = e [
∑

i niμi]
3/2

[
∑

i niμ
3
i ]1/2 , where ni and

μi are the density and mobility of the charge carriers in the
ith band [13]. Namely, the thermal factor nT contains con-
tributions from the temperature dependencies of the carrier
densities and mobilities of all bands. In the simplest case
that the densities or mobilities from different bands have the
same or similar temperature dependence, i.e., ni = n0

i fn(T )

and μi = μ0
i fμ(T ), we can have nT = e [

∑
i n0

i μ
0
i ]

3/2

[
∑

i n0
i (μ0

i )3]
1/2 fn(T ) ∼

fn(T ). That is, nT is governed by the temperature depen-
dence of the carrier density. In this case the Hall resistivity

can also be reduced to ρxy = �i (eniμ
2
i H )

[�i (eniμi )]2 , i.e., ρxy(H ) curves
are linear at low fields. Together with the definition of
Hall carrier density nH, i.e., ρxy = H

enH
, we obtain nH =

[
∑

i(n
0
i μ

0
i )]2/�i[n0

i (μ0
i )2] fn(T ) ∼ fn(T ). That said, the Hall

carrier density nH determined from the slope of the linear
ρxy(H ) curve at low fields is expected to have similar tem-
perature dependence as that of nT.

Figure 6(a) presents ρxy(H ) curves calculated from the
Rxy(H ) curves obtained simultaneously with Rxx(H ) curves
used to derive the ρxx(H ) curves in Fig. 2(a). While they
are linear at high temperatures (T � 100 K), the ρxy(H )
curves become obviously nonlinear at high magnetic fields
at low temperatures (T � 75 K), resembling those reported
in other multiband semimetals [10,11,25,30,36]. On the other
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hand, Fig. 6(b) shows that the ρxy(H ) curves are linear at
temperatures down to T = 3 K at H � 0.2 T. From the es-
timated mobilities from the two-band model analysis, we
see that μiH � 1 is satisfied in this field range, consistent
with the above theoretical consideration. From the slopes
of the low-field ρxy(H ) curves we obtain the Hall carrier
densities nH, which are presented in Fig. 4(b). Similar to
nT, nH becomes more temperature sensitive with increasing
temperatures. The small diplike feature around T = 20 K in
the nH(T ) curve is likely due to fitting errors, since Kohler’s
rule is followed closely in this regime, i.e., carrier densities
are expected to be temperature insensitive. For a better com-
parison with the temperature dependence of nT, we define
a normalized Hall carrier density n∗

H = nH(T )/nH(200 K),
i.e., dividing the temperature-dependent Hall carrier densities
by its value at T = 200 K, and plot it together with nT in
Fig. 4(a). We see that n∗

H follows nearly the same temperature
dependence of nT. As indicated by the violet line in Fig. 4(a),
the temperature dependence of n∗

H also follows a power-law
relationship n∗

H ∼ T ν with ν = 2.1, closely resembling that
(ν = 2.2) of nT. Figures 3(g) and 3(h) further demonstrate
that scalings of similar quality can be achieved when nT in
the extended Kohler’s rule is replaced with n∗

H. These results
clearly show that the temperature sensitive carrier densities
are the dominant contributors to the violation of Kohler’s rule
in TaCo2Te2. They also demonstrate an alternative way to
obtain the thermal factor in the extended Kohler’s rule. On the
other hand, Fig. 4(b) shows that the values of nH are 10–20
times larger than those of ne and nh. While the two-band
model analysis may only yield an estimate of the values of
ne and nh, such a large difference is most likely caused by
the definition of nH. As discussed above, it can be expressed
as nH = [�i(niμi )]2/�i(niμ

2
i ), indicating that its values can

differ significantly from those of the true carrier densities in
the material, though it is related to and can even be propor-
tional to them, as evidently demonstrated in Fig. S2 and its
caption in Ref. [13] for a compensated two-band material with

various ratio of μh/μe. That is, the absolute values of nH may
be unable to provide reliable information on the true carrier
densities but its temperature dependence can reflect that of the
thermal factor in the extended Kohler’s rule.

IV. CONCLUSIONS

In summary, we investigated the magnetoresistance of
TaCo2Te2 at temperatures up to 200 K and showed it has
a clear violation to Kohler’s rule at high temperatures. We
demonstrated the validity of the extended Kohler’s rule in
TaCo2Te2 and compared the temperature dependence of the
derived thermal factor nT with those of the electron and hole
densities ne and nh estimated from the two-model analysis as
well as the Hall carrier density nH obtained from the low-
field Hall resistivities. We show that nT and nH have similar
temperature dependence, highlighting the role of temperature-
sensitive carrier densities in the violation of Kohler’s rule of
magnetoresistance and providing a different experimental way
to obtain the thermal factor in the extended Kohler’s rule.
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