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The widespread use of the noninteracting ground state as the initial state for the digital quantum simulation of
the Fermi-Hubbard model is largely due to the scarcity of alternative easy-to-prepare approximations to the exact
ground state in the literature. Exploiting the fact that the spin- 1

2 Heisenberg model is the effective low-energy
theory of the Fermi-Hubbard model at half-filling in the strongly interacting limit, here we propose a three-step
deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model
through a shallow circuit suitable for near-term quantum hardware. First, the ground state of the Heisenberg
model is initialized via a hybrid variational method using an ansatz that explores only the correct symmetry
subspace. Second, a general method is devised to convert a multi-spin- 1

2 wave function into its fermionic version.
Third, taking inspiration from the Baeriswyl ansatz, a constant-depth single-parameter layer that adds doublon-
holon pairs is applied to this fermionic state. Numerical simulations on chains and ladders with up to 12 sites
confirm the improvement over the noninteracting ground state of the overlap with the exact ground state for
the intermediate values of the interaction strength at which quantum simulation is found to be most relevant.
More broadly, the general scheme to convert a multi-spin- 1

2 state into a half-filled fermionic state may bridge
the gap between quantum spin models and lattice models of correlated fermions in the realm of digital quantum
simulation.

DOI: 10.1103/PhysRevB.109.035128

I. INTRODUCTION

Digital quantum simulation [1,2] is expected to become a
leading method to study correlated electrons [3]. By exploit-
ing the principle of superposition and the natural encoding of
entanglement, quantum computers can represent the full wave
function of quantum many-body systems in a scalable way,
which may allow the properties that defy state-of-the-art nu-
merical methods on conventional hardware to be probed [4,5].
A problem that offers the prospect of achieving such a
quantum advantage [6,7], even with noisy intermediate-scale
quantum (NISQ) processors [8], is the determination of
the phase diagram of the Fermi-Hubbard model [9–11] by
preparing the exact ground state of the second-quantized
Hamiltonian

Ĥ = −t
∑
i,τ

∑
σ=↑,↓

(ĉ†
i,σ ĉi+τ,σ + H.c.) + U

∑
i

n̂i,↑n̂i,↓, (1)

where the sum over τ includes the nearest neighbors of
site i, and t > 0 and U > 0 define the interaction strength
U
t . The most challenging and relevant regime [12] of the

Fermi-Hubbard model occurs when the two competing energy
scales are comparable, i.e., the Hubbard parameter U is of
the order of the bandwidth W of the underlying tight-binding
model (e.g., W = 4t in one dimension, W = 8t for the square
lattice).
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A key requirement for any ground-state preparation
method is an initial state with non-negligible overlap with
the target state. In the case of the Fermi-Hubbard model, the
standard choice is the noninteracting ground state [6,7], but its
vanishing fidelity relative to the exact ground state [13] for the
intermediate range U ∼ W calls for a more educated guess.
Mean-field states [14] face the same issue, with the additional
drawback of often breaking symmetries of the Hamiltonian.
The Gutzwiller wave function [9] does produce a substantially
greater overlap with the exact ground state at intermediate
and large U

t , but the NISQ-friendly schemes proposed to ini-
tialize it [13,15] require, on average, a number of repetitions
to succeed that becomes prohibitively large for a lattice of
sufficiently great size due to their probabilistic nature.

Here we introduce a deterministic quantum routine that is
suitable for NISQ hardware to prepare a better approximation
than the noninteracting ground state of the exact ground state
of the Fermi-Hubbard model at half-filling with intermediate
or large U

t . This scheme makes use of the fact that, in the
strongly interacting limit U

t → ∞, the charge degrees of free-
dom are frozen and the Fermi-Hubbard model is reduced [3]
to the antiferromagnetic spin- 1

2 Heisenberg model [16],

Ĥ = J
∑
i,τ

(
Ŝx

i Ŝx
i+τ + Ŝy

i Ŝy
i+τ + Ŝz

i Ŝz
i+τ

)
, (2)

with J = 4t2

U . This result is valid for any lattice at half-filling
and may be extended to hopping terms beyond nearest neigh-
bors. Although determining the ground state of the Heisenberg
model is generally nontrivial, we can benefit from the smaller
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FIG. 1. Quantum circuit that prepares improved fermionic ver-
sion of ground state of spin- 1

2 Heisenberg model [16] on a lattice
with N = 4 sites, which approximates the ground state of the Fermi-
Hubbard model [9–11]. The first part (left of first dashed line)
prepares the ground state of the Heisenberg model via VQE [21]
using a NLayers-layer ansatz that starts from a product state of valence
bonds and explores the STotal = 0 subspace [22]. The two-qubit build-
ing block of the ansatz is defined in Eq. (3). The second part converts
this wave function into its 2N-qubit fermionic version, assuming the
Jordan-Wigner transformation [23] is used. The third part (right of
second dashed line) introduces pairs of empty and doubly occupied
sites to this fermionic state. The two-qubit operation D(θ ) is defined
in Eq. (6). The ellipses before and after two-qubit operations indicate
the middle qubit is idle.

size of the Hilbert space relative to the full-blown fermionic
model to mitigate some of the most cumbersome issues faced
in quantum simulation that arise from the exponential wall
problem [17], namely, the orthogonality catastrophe [18] and
the barren plateaus [19] in hybrid variational methods [20].

The quantum scheme herein put forth comprises three
parts that can be identified in the circuit scheme shown
in Fig. 1. The first part concerns the preparation of the
ground state of the spin- 1

2 Heisenberg model defined on an
N-site balanced bipartite lattice via the variational quantum
eigensolver (VQE) [21] with an ansatz that explores only
the STotal = 0 subspace [22]. The second part converts this
N-spin- 1

2 wave function into the respective fermionic state
defined on 2N qubits, assuming the Jordan-Wigner transfor-
mation [23] is employed. The third part introduces pairs of
empty and doubly-occupied sites in the fermionic version
of the Heisenberg ground state. The remainder of this paper
follows the construction of this three-step initial state prepa-
ration routine sequentially, with one section dedicated to each
step. Numerical results of simulations on chains and ladders
with up to 12 sites complement the explanations. The final
section summarizes the main results and discusses potential
further developments.

II. HYBRID VARIATIONAL PREPARATION OF GROUND
STATE OF HEISENBERG MODEL

In the first part, the exact ground state of the antiferromag-
netic spin- 1

2 Heisenberg model on a given lattice with N sites
is prepared via VQE. The building block of the ansatz is the
eSWAP(θ ) = e−i θ

2 SWAP [22], corresponding to the following

SU(2)-invariant two-qubit operation

(3)

The basis gate decomposition of the eSWAP can be found in
Appendix A. Starting from a reference state with the expected
STotal and Sz

Total for the exact ground state ensures the manifold
spanned by the parameterized state is confined to the subspace
defined by these good quantum numbers. In particular, for a
balanced bipartite lattice, the Lieb-Mattis theorem [24] guar-
antees that the ground state of the antiferromagnetic spin- 1

2
Heisenberg model has STotal = Sz

Total = 0, so an appropriate
reference state motivated by the ease of preparation is a
product state of valence bonds |↑↓〉−|↓↑〉√

2
at the odd-even pairs

(1, 2), (3, 4), . . . , (N − 1, N ) of adjacent qubits in a linear
configuration. On top of this reference state, Nlayers layers of
the ansatz are applied, each corresponding to the execution
of N

2 − 1 eSWAPs at the even-odd pairs of qubits, followed
by the implementation of N

2 eSWAPs at the odd-even pairs
(see Fig. 1). The structure of the ansatz is defined such that
even in the most restrictive case of linear qubit connectivity
no rerouting of qubits is required to implement it. Although
previous works [25–27] have motivated this ansatz in the spirit
of discretized adiabatic evolution [28,29], here we follow its
interpretation [22] as a generator of resonating-valence-bond
(RVB) states [30,31], in which case each eSWAP is assigned
its own free parameter, resulting in a total of Nlayers(N − 1)
parameters. Henceforth, this ansatz will be referred to as
RVB-inspired ansatz. Since the first step is the only potential
bottleneck of this scheme, in silico noiseless simulations were
performed to assess the scalability of the preparation of the
ground state of the spin- 1

2 Heisenberg model via VQE. The
details of the optimization of the parameters of the ansatz can
be found in Appendix B. Two lattice geometries were consid-
ered: L × 1 (i.e., chains) and L × 2 (i.e., ladders). The total
number of lattice sites—N = L and N = 2L, respectively—
was at most 12. Open boundary conditions were considered in
all cases, but periodic boundary conditions could be adopted
as well, though the scaling of the number of layers with
the system size may not be as favorable (see Supplemen-
tal Material, SM [32], and Ref. [25]). The total number of
sites was chosen to be even to ensure that the ground state
is a singlet. The true ground state was determined via ex-
act diagonalization [33], which allowed us to calculate the
infidelity, 1 − |〈ψ0|ψRVB〉|2, between the exact ground state,
|ψ0〉, and the optimized RVB-inspired ansatz, |ψRVB〉, for a
given NLayers. Despite having access to |ψ0〉, the cost func-
tion adopted in the optimization of |ψRVB〉 was the energy
instead of |〈ψ0|ψRVB〉|2, as the former is a more scalable
option.

The results are shown in Fig. 2. As expected, for a fixed
NLayers, the infidelity relative to the exact ground state in-
creases as the lattice size grows. Conversely, increasing NLayers

for a given lattice produces a closer approximation to the true
ground state. Importantly, as shown in the tables below the
respective graphs, the minimum number of layers required to
achieve an infidelity of at most 0.01 increases linearly with
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FIG. 2. Infidelity between exact ground state and RVB-inspired ansatz [22] obtained via VQE [21] for antiferromagnetic spin- 1
2 Heisenberg

model [16] in chains (a) and ladders (b) with up to 12 sites and open boundary conditions. The inset plots are a zoomed-in view (with the
vertical axis in logarithmic scale) of the highlighted rectangular section in the bottom-right corner of the main plot. The axes labels of the
insets were not included due to lack of space, but they coincide with those of the main plots. The tables below each graph present the minimum
number of layers of the RVB-inspired ansatz to achieve an infidelity below 0.01 with respect to the exact ground state. The dashed lines in the
main plots are just a guide to the eye. As expected, as the number of lattice sites increases, more ansatz layers are required to achieve a given
infidelity target. NLayers = 0 corresponds to the product state of valence bonds that is the input state of the RVB-inspired ansatz (see Fig. 1).

the number of lattice sites, and the prefactor is small. For
example, the three-layer RVB-inspired ansatz that approxi-
mates the exact ground state of the Heisenberg model on a
12-site chain with fidelity 0.9993 takes only 19 CNOTs of
depth, which is less than the 22 CNOTs of depth required to
prepare the noninteracting ground state of the corresponding
Fermi-Hubbard model [34,35]. As for the 6 × 2 ladder, the
5 layers of the RVB-inspired ansatz that produce a fidelity
of 0.991 take 31 CNOTs of depth, which is not significantly
above the 22 CNOTs needed to prepare the noninteracting
ground state of the Fermi-Hubbard model [34,35]. Hence,
assuming the observed trend continues for larger lattices,
the resulting circuits should be shallow enough for NISQ
hardware.

III. CONVERSION OF MULTI-SPIN- 1
2 STATE

INTO HALF-FILLED FERMIONIC STATE

We now proceed to the second part of the quantum scheme,
where the N-spin- 1

2 ground state of the Heisenberg model is
converted into a 2N-qubit fermionic state that is the exact
ground state of the Fermi-Hubbard model on the same lattice
at half-filling in the U

t → ∞ limit. This conversion is valid for
any multi-spin- 1

2 state.
Let us first consider a generic single-spin- 1

2 state |ψ spin〉 =
a |↑〉 + b |↓〉 ≡ a |0〉 + b |1〉. The corresponding single-site
fermionic state is |ψ fermion〉 = a |10〉 + b |01〉, where the
Jordan-Wigner transformation [23] is implicit. If we add an
ancillary qubit in |0〉 to |ψ spin〉, as in |0〉 ⊗ |ψ spin〉 = a |00〉 +
b |01〉, the two-qubit operation that must be applied to trans-
form |0〉 ⊗ |ψ spin〉 into |ψ fermion〉 should map |00〉 to |10〉

while leaving |01〉 unchanged. Its action on the remaining two
basis states is immaterial [36]. Hence, a valid choice is

(4)

where the top qubit in the diagram is the most significant [37],
and the unfilled circle means the NOT gate is triggered only
when the control qubit is |0〉.

The generalization to an arbitrary number of lattice sites
is straightforward, apart from the extra minus signs, due to
the anticommutation relations of fermionic operators. Actu-
ally, these fermionic signs only arise when the qubits are
ordered by spin instead of site. Indeed, in the latter case,
the amplitudes of |ψ fermion〉 are exactly equal to those of
|ψ spin〉. For example, a basis state of the form |↑↓↓↑↓↑〉
corresponds explicitly to |↑〉1 ⊗ |↓〉2 ⊗ |↓〉3 ⊗ |↑〉4 ⊗ |↓〉5 ⊗
|↑〉6, the fermionic version of which is naturally ordered
by site as well: ĉ†

1,↑ĉ†
2,↓ĉ†

3,↓ĉ†
4,↑ĉ†

5,↓ĉ†
6,↑ |�〉, where |�〉 de-

notes the vacuum state. Hence, ordering the 2N qubits by
site, the conversion of |ψ spin〉 into |ψ fermion〉 amounts to
repeating the application of the two-qubit operation stated
in Eq. (4) at all pairs of qubits encoding a lattice site
(see Fig. 1).

If the qubits are ordered by spin instead, returning to the
example above, upon commuting the creation operators we
obtain −ĉ†

1,↑ĉ†
4,↑ĉ†

6,↑ĉ†
2,↓ĉ†

3,↓ĉ†
5,↓ |�〉, so an extra minus sign

must be applied to its amplitude. If Sz
Total is a good quantum

number, fermionic signs can be accounted for by replacing
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FIG. 3. Quantum circuit to transform N-spin- 1
2 wave function |ψ spin

0 〉 into spin- 1
2 fermionic wave function on lattice of N = 4 sites at

half-filling with qubits ordered by spin for linear qubit connectivity (a) and all-to-all qubit connectivity (b). The latter case results in a constant
circuit depth overhead of just two CNOTs but only works if Sz

Total is a good quantum number of |ψ spin
0 〉. If this is not the case, then the O(N )-depth

circuit in (a) must be considered even if there are no connectivity constraints.

Eq. (4) at every other site with

(5)

resulting in a constant-depth overhead as well. In case the in-
put state involves basis states with different Sz

Total, a network of
fermionic SWAPs [38] is required to prepare the spin-ordered
fermionic state, as illustrated in Fig. 3 for N = 4 lattice sites.

IV. ADDITION OF DOUBLON-HOLON PAIRS

The third and final part of the quantum routine aims to
increase the overlap of the fermionic Heisenberg ground state
|ψ (U/t→∞)

0 〉 with the exact ground state of the Fermi-Hubbard
model at finite U

t . A layer of two-qubit operations D(θ ) with a

single free parameter θ is applied to |ψ (U/t→∞)
0 〉. In the spirit

of the Baeriswyl wave function [39], this layer promotes the
hopping of spin-↑ electrons between adjacent odd-even pairs
of sites (see Fig. 1) to give rise to doublon-holon pairs:

D(θ ) |↑,↑〉 = |↑,↑〉 , D(θ ) |↓,↓〉 = |↓,↓〉 ,

D(θ ) |↑,↓〉 = cos
θ

2
|↑,↓〉 + sin

θ

2
|0,↑↓〉 ,

D(θ ) |↓,↑〉 = cos
θ

2
|↓,↑〉 − sin

θ

2
|↑↓, 0〉 . (6)

The basis gate decomposition of D(θ ) can be found in
Appendix A. The physical motivation behind this heuris-
tic layer is that a lower interaction strength U

t makes basis
states with doubly occupied and empty sites less energetically
costly, so the optimal θ found by minimizing the energy of
the ansatz should increase monotonically with U

t , thus better
approximating the exact ground state.

Crucially, the expected improvement of the fidelity with
the exact ground state is only observed if D(θ ) is applied
to the qubits encoding the |i,↑〉 and |i + 1,↑〉 orbitals with
|i,↓〉 between them (see Fig. 1). Expanding D(θ ) in the Pauli
basis and applying the Jordan-Wigner transformation [23] in

reverse, we obtain in this case

D(θ ) = 1 + cos θ
2

2
+ 1 − cos θ

2

2
(1 − 2n̂i,↑)(1 − 2n̂i+1,↑)

− sin
θ

2
[ĉi,↑(1 − 2n̂i,↓)ĉ†

i+1,↑+ ĉ†
i,↑(1 − 2n̂i,↓)ĉi+1,↑].

(7)

If |i,↑〉 and |i + 1,↑〉 are adjacent instead, the Zi,↓ ≡ 1 −
2n̂i,↓ operators are absent from the spin-↑ hopping terms,
which gives rise to a phase shift of −1 between the original
basis states with only singly-occupied sites and the newly
added ones with empty and doubly-occupied sites. This minus
sign inhibits any improvement of the overlap with the exact
ground state. For the sake of clarity, this point is illustrated
with the Fermi-Hubbard dimer in Appendix C.

Figure 4 shows the improvement of the fidelity relative
to the Fermi-Hubbard model ground state of the fermionic
version of the Heisenberg ground state—prepared via the
RVB-inspired ansatz with the minimum number of layers to
achieve a fidelity of at least 0.99 (see Fig. 2)—upon applying
this layer with a single parameter θ for the 12-site chain and
ladder. Similar results were obtained for smaller chains and
ladders (see SM [32]). Remarkably, the convex θ vs U

t curves
(shown in insets) obtained for chains and ladders of different
sizes match almost perfectly (see Appendix D), so this param-
eter does not have to be optimized through a hybrid scheme.
In fact, the results presented in Fig. 4 were obtained using
the optimized θ from the simulations with the 10-site lattices
of the same geometry. Importantly, the improved fermionic
Heisenberg state outperforms the noninteracting ground state
for U

t � 4—well within the most relevant regime of the
Fermi-Hubbard model—and even goes beyond the Gutzwiller
wave function for a larger U

t .

V. DISCUSSION AND CONCLUSION

Before we conclude, a critical analysis of the scalability
of this three-step initial state preparation scheme is justified.
The third step addresses the absence of charge fluctuations in
the ground state of the spin- 1

2 model with a negligible depth
overhead and no repetition overhead at all. However, other
variants may be explored in the future to produce a greater
improvement of the fidelity relative to the exact ground state
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FIG. 4. Fidelity relative to the exact ground state of the Fermi-Hubbard model of the noninteracting ground state (red solid line), Gutzwiller
wave function [9] (cyan dashed line), fermionic version of the Heisenberg ground state (green dashed-dotted line), and its improved version
via the addition of doublon-holon pairs with a layer with a single free parameter θ (blue dotted line) for 12 × 1 (a) and 6 × 2 (b) lattices. The
RVB-inspired ansatz with the minimum number of layers to achieve a fidelity of at least 0.99 was used to initialize the Heisenberg ground
state (see Fig. 2). Open boundary conditions were considered. The insets show the optimized free parameter θ against the interaction strength
U
t . Identical θ vs U

t were obtained for smaller lattices. In fact, the values of θ used for these 12-site-lattice simulations were obtained from the
simulations with 10-site lattices of the same geometry.

of the Fermi-Hubbard model in two dimensions. Regarding
the first step, although the scaling of the number of layers of
the RVB-inspired ansatz with the size of the ladders shown
in Fig. 2(b) seems to be slow enough for NISQ hardware,
numerical simulations on larger two-dimensional lattices are
required to confirm this trend. Even if the exact ground state
of a local Hamiltonian can only be approximated in terms of a
long-range RVB state, in principle O(poly(N )) layers suffice
to generate such long-ranged valence bonds (see Appendix C
of Ref. [22]). Importantly, the general character of the second
step of this scheme allows one to take advantage of any ac-
curate approximation of the ground state of a quantum spin- 1

2
model (regardless of the ansatz employed) to approximate the
ground state of the corresponding Fermi-Hubbard model for
a sufficiently large interaction strength, thus bridging the gap
between quantum spin models and lattice models of correlated
electrons in digital quantum simulation.

In summary, we have developed a scheme to prepare an
educated guess of the ground state of the Fermi-Hubbard
model that may be adopted as the initial state on NISQ
hardware. Further developments that we anticipate include
simulations on nonbipartite lattices, possibly modifying the
reference state of the RVB-inspired ansatz to probe the
right symmetry subspace (e.g., replacing a valence bond
with a triplet to set STotal = 1); the consideration of the
spin- 1

2 model that includes O(t4/U 3) ring-exchange terms
in the VQE simulation; the exploration of analytical re-
sults to bypass the VQE simulation altogether, e.g., Bethe
ansatz states [40–42] in one-dimensional (1D), Majumdar-
Ghosh [43,44], and Shastry-Sutherland [45,46] states upon
adding next-nearest-neighbor hopping terms in one and two
dimensions, respectively; and the extension of the scheme
beyond half-filling, e.g., replacing the Heisenberg model with
the t-J model [3] or changing the particle number through a
chemical potential term.
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APPENDIX A: BASIS GATE DECOMPOSITIONS

The basis gate decomposition of the eSWAP(θ ) [see Eq. (3)],
the building block of the RVB-inspired ansatz considered in
the first step (see Fig. 1) of the three-step initial state prepara-
tion method herein introduced, is

(A1)
where the general single-qubit operation U (α, β, γ ) is [47]

U (α, β, γ ) =
(

cos(α/2) −eiγ sin(α/2)
eiβ sin(α/2) ei(β+γ ) cos(α/2)

)
. (A2)

Similarly, the two-qubit operation D(θ ) [see Eq. (6)], which
adds doublon-holon pairs to the fermionic version of the
Heisenberg ground state in the third step, can be decomposed
in terms of elementary gates as follows:

(A3)
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APPENDIX B: OPTIMIZATION OF RVB-INSPIRED
ANSATZ

The ground state of the antiferromagnetic spin- 1
2 Heisen-

berg model was determined via VQE [21] using the RVB-
inspired ansatz defined in Fig. 1. The parameters were
optimized by minimizing the energy. Even though in the
numerical simulations considered in this work we have ac-
cess to the exact ground state obtained by diagonalizing the
many-body Hamiltonian, the cost function considered in this
optimization process was the energy and not the fidelity rel-
ative to the exact ground state, since for larger systems the
exact ground state would not be known in advance.

The scipy.optimize.minimize function [48] was used
to optimize the free parameters of the RVB-inspired ansatz.
Since all parameters were bounded to the [0, 2π ] interval, this
function implemented the sequential least squares program-
ming (SLSQP) method. For a sufficiently large number of
sites N , the optimization landscape became complex enough
for the optimizer to become trapped in local minima for
multiple sets of initial conditions. A twofold strategy was
adopted to overcome this issue. First, after having opti-
mized the (NLayers − 1)-layer ansatz, which resulted in a set
of (NLayers − 1)(N − 1) parameter values �θNLayers−1, the initial
conditions for the next step corresponding to the optimization
of the NLayers-layer ansatz were set as �θ init

NLayers
= (�θNLayers−1, �0),

where �0 is a (N − 1)-dimensional vector with all entries set
to zero. The key point is that a layer of the RVB-inspired
ansatz with all parameters set to zero amounts to the identity,
so this corresponds to a layer-by-layer strategy where the
outcome of one iteration is used as the starting point of the
next. Second, to avoid being trapped in this initial state (which
is often associated with a local minimum of the optimization
landscape), a random value in the range [−2ηπ, 2ηπ ]—with
η ∈ [0, 1/2] a simulation parameter—was added to every en-
try of �θ init

NLayers
. In practice, five different values of the noise

parameter, η ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, were considered, with
Nreps = 10 repetitions performed for each. Hence, for each

lattice geometry and every NLayers, a total of 50 trials of
the optimization process were carried out, each involving
the optimization of all NLayers(N − 1) parameters. In the
end, the trial that produced the lowest energy was selected
per the variational principle, and the corresponding optimized
parameters were stored. The final ansatz corresponds to the
RVB-inspired ansatz with the optimized parameters associ-
ated with the best (i.e., lowest-energy) trial.

We note that no statistical analysis was involved in this
optimization process and no outliers in the trials had to be
excluded manually. The estimation of the energy of the pa-
rameterized state was performed via explicit matrix-vector
multiplications using the full representation of the wave func-
tion, instead of sampling the Pauli strings with nonzero weight
in the Hamiltonian. No noise model was adopted in these in
silico simulations.

APPENDIX C: ADDING DOUBLON-HOLON PAIRS:
FERMI-HUBBARD DIMER

As noted in Sec. IV, upon applying the two-qubit D(θ )
operations to introduce charge fluctuations in the fermionic
version of the ground state of the Heisenberg model,
|ψ (U/t→∞)

0 〉, it turns out that having the |i,↓〉 qubit between
the (|i,↑〉 , |i + 1,↑〉) qubits on which D(θ ) acts nontriv-
ially is decisive to obtain the expected improvement of the
overlap with the exact ground state at finite U

t with re-

spect to |ψ (U/t→∞)
0 〉. This is made clear by considering the

Fermi-Hubbard dimer (i.e., a 2 × 1 lattice). In this case,
|ψ (U/t→∞)

0 〉 = 1√
2
(|↑,↓〉 − |↓,↑〉) (i.e., NLayers = 0 in the

RVB-inspired ansatz presented in Fig. 1). The exact ground
state at an arbitrary interaction strength U

t is given by

|ψexact〉 = N
[
α

|↑,↓〉 − |↓,↑〉√
2

+ |↑↓, 0〉 + |0,↑↓〉√
2

]
,

(C1)
where α = U+√

U 2+16t2

4t , N = 1√
1+α2 normalizes the wave

function, and the basis states are ordered by site instead of

FIG. 5. Unsuccessful (a), (b) and successful (c), (d) implementations of the heuristic parameterized layer to improve the overlap of the
fermionic version of the Heisenberg ground state with the exact ground state of the Fermi-Hubbard dimer at finite U

t . D(θ ) is defined in
Eq. (A3). Circuits in (a) and (c) assume all-to-all connectivity, while those in (b) and (d) are restricted to linear connectivity. The improvement
of the overlap with the exact ground state at finite U

t for an optimized parameter θ only occurs when the qubit that encodes the occupation of
the spin-↓ orbital at site 1 is between the two qubits encoding the spin-↑ orbitals on which D(θ ) acts nontrivially. Notice the subtle difference
between (b) and (d): in the former (unsuccessful) case, the moving qubit is rerouted with fermionic SWAPs, while in the later (successful) case,
the qubit rerouting is performed with conventional SWAPs.
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FIG. 6. Optimal value of free parameter θ of constant-depth layer that adds doublon-holon pairs to fermionic version of Heisenberg ground
state for L × 1 (a) and L × 2 (b) lattices. θ decreases monotonically with U

t , resulting in a simple convex landscape. The θ vs U
t profiles for

lattices with the same geometry but different sizes are nearly coincident.

spin. However, upon applying D(θ ) at the pair of adjacent
qubits (|1 ↑〉 , |2 ↑〉) of |ψ (U/t→∞)

0 〉 [see Figs. 5(a) and 5(b)],
we obtain the following state:

cos
θ

2

( |↑,↓〉 − |↓,↑〉√
2

)
− sin

θ

2

( |↑↓, 0〉 + |0,↑↓〉√
2

)
.

(C2)
Were it not for the relative phase factor of −1 = eiπ be-
tween the left-hand-side part involving only half-filled sites
and the right-hand-side part with doublon-holon pairs, this
ansatz would give rise to an exact representation of the true
ground state of the Fermi-Hubbard dimer at any U

t for a
suitable choice of θ [cf. Eq. (C1)]. To remove this minus sign,
we can instead apply the same two-qubit operation D(θ ) but
with the qubit encoding the spin-↓ orbital at site 1 between
the two qubits on which D(θ ) acts nontrivially, as shown in
Figs. 5(c) and 5(d). The only change this introduces is an extra
Zi,↓ = 1 − 2n̂i,↓ operator in the hopping terms of D(θ ) [see
Eq. (7)].

The same behavior is observed for larger lattices: applying
D(θ ) to adjacent qubits encoding spin-↑ orbitals leads to no
improvement of the fidelity relative to the exact ground state,
but introducing the qubit storing the occupation of the spin-↓
orbital between them does allow for an enhancement of the
overlap. Interestingly, while the Z strings arising from the

anticommutativity of fermionic operators are often regarded
as inconvenient because they convert local fermionic opera-
tors into nonlocal qubit operations, here the Zi↓ = 1 − 2n̂i↓
introduced in the spin-↑ hopping terms [see Eq. (7)] was
useful.

APPENDIX D: ADDING DOUBLON-HOLON PAIRS:
OPTIMAL PARAMETER VALUE IS IDENTICAL

REGARDLESS OF LATTICE SIZE

Figure 6 shows the optimal value of the free parameter θ

against the interaction strength U
t for the chains and ladders

of different sizes considered in this work. Not only is the
θ vs U

t profile a simple convex curve for all geometries, but
there is a nearly perfect matching of the quantitative values for
lattices with the same geometry but different sizes. Hence, this
parameter does not even require explicit optimization through
a hybrid (quantum-classical) scheme: the optimal value for
larger systems that cannot be simulated on conventional hard-
ware can be simply obtained from the in silico simulations
of smaller systems. In fact, the results presented in Fig. 4 for
a 12-site chain (a) and ladder (b) were produced using the
optimal parameter θ obtained from the analogous simulations
on 10-site lattices.
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