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Probing quantum spin liquids with a quantum twisting microscope
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The experimental characterization of quantum spin liquids poses significant challenges due to the absence
of long-range magnetic order, even at absolute zero temperature. The identification of these states of matter
often relies on the analysis of their excitations. In this paper, we propose a method for detecting the signatures
of the fractionalized excitations in quantum spin liquids using a tunneling spectroscopy setup. Inspired by the
recent development of the quantum twisting microscope, we consider a planar tunneling junction, in which a
candidate quantum spin-liquid material is placed between two graphene layers. By tuning the relative twist angle
and voltage bias between the leads, we can extract the dynamical spin structure factor of the tunneling barrier
with momentum and energy resolution. Our proposal presents a promising tool for experimentally characterizing
quantum spin liquids in two-dimensional materials.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are states of matter that defy
magnetic ordering even at temperatures far below their ex-
change energy. While theoretical understanding of QSLs has
made significant progress [1–3], experimental verification of
these states of matter remains a formidable challenge [4–6].
The absence of order serves as an imperfect definition, as it
is impossible to rule out all possible ordered states. A more
experimentally accessible characteristic of QSLs is the pres-
ence of emergent gauge field and low-energy excitations with
fractionalized quantum numbers, such as spinons, which carry
fractional spin and zero charge.

Several experimental techniques have been employed to
investigate the signatures of fractionalized excitations in po-
tential QSL materials. Thermal transport measurements, for
instance, have been used to explore the low-energy physics of
α-RuCl3 [7], volborthites [8], κ-(ET)2Cu2(CN)3 [9], and or-
ganic dmits [10]. Optical absorption and Raman spectroscopy
have provided access to the zero-momentum excitation spec-
trum of pyrochlores [11], herbertsmithite [12], and Kitaev
materials [13–16]. Nuclear magnetic resonance and muon
spin relaxation have enabled to locally probe these candi-
date materials [17,18]. Additionally, spin transport [19,20],
NV centers [21–23], and numerous other techniques [24–29]
have been proposed for investigating QSLs. Inelastic neutron
scattering [30–35], however, stands out due to its unique
advantage of probing the excitation spectrum with both
momentum and energy resolution. Unfortunately, a major lim-
itation of inelastic neutron scattering is its reliance on large
bulk three-dimensional crystals. This drawback renders it un-
suitable for studying QSLs in the monolayer and few-layer
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limit, which attracted considerable interest with the emer-
gence of high-quality two-dimensional materials [36].

Inspired by the recent development of the quantum twisting
microscope [37], we consider a planar junction formed by
two graphene layers separated by a QSL material, depicted in
Fig. 1(a), as a technique for investigating the fractionalized ex-
citations in two-dimensional materials. Traditional tunneling
probes offer limited momentum resolution, thereby restricting
their capability to fully characterize these excitations [38–54].
In our proposal, the momentum resolution is achieved by
controlling the relative twist angle θ between the graphene
layers. A finite twist angle introduces a momentum mismatch
�K between the Dirac cones of the two graphene layers. In
the absence of the QSL barrier, as depicted in Fig. 1(b), the di-
rect tunneling of electrons can occur if h̄vF|�K| < eVtb + 2μ,
where eVtb is the voltage bias between the layers and μ the
chemical potential [37,55–57]. If we continue increasing the
twist angle while keeping the voltage bias fixed, the direct
tunneling gets suppressed. When the tunneling barrier hosts
low-energy excitations, however, additional processes come
into play. The graphene’s electrons can change their energy
and momentum by scattering from the excitations in the QSL.
Consequently, these additional inelastic processes contribute
to the total current even when h̄vF|�K| > eVtb + 2μ [38–40]
[see Fig. 1(c)]. This inelastic contribution to the tunneling
current offers valuable insights into the excitation spectrum
and the underlying dynamics of the QSL.

The central result of our study is captured by Eq. (18). By
considering the second derivative of the tunneling current with
respect to the voltage bias, i.e., the inelastic electron tunneling
spectroscopy (IETS) signal, we access the dynamical spin
structure factor of the tunneling barrier at momentum �K
and energy eVtb. The twist angle determines the separation
between the Dirac cones of the two graphene layers and
controlling it provides the sought-after momentum resolution.
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FIG. 1. (a) Schematic representation of the tunneling het-
erostructure. The top and bottom layers are graphene, while the
middle barrier is a monolayer of a candidate QSL material, e.g.,
1T-TaS2. Vtb is the voltage bias between the graphene layers, while
θ is the relative twist angle between them. Two distinct tunnel-
ing processes can take place. (b) Direct tunneling can occur only
if h̄vF|�K| < eVtb + 2μ such that the momentum and energy of
the graphene’s electron are conserved. The tunneling process cor-
responds to a particle-hole excitation across the layers. (c) The
low-energy excitation of the barrier can mediate additional inelastic
tunneling processes through which the graphene’s electron changes
its momentum and energy. The electron can then tunnel even when
the Dirac cones of the two layers are further apart compared to (b),
i.e., h̄vF|�K| > eVtb + 2μ. An example of a QSL excitation, i.e., a
spinon particle-hole excitation, is here schematically represented in
blue.

This additional tunable knob enables qualitative and quantita-
tive distinction among various QSLs, facilitating the inference
of the microscopic Hamiltonian governing a candidate QSL
material.

The development of probes capable of providing mo-
mentum and energy resolution similar to inelastic neutron
scattering but tailored for two-dimensional materials is highly
desirable. This is particularly important considering the po-
tential existence of materials that exhibit QSL behavior
exclusively in the monolayer limit. One intriguing example
is 1T-TaS2, a layered transition metal dichalcogenide (TMD).
Below a critical temperature of approximately 200 K, it un-
dergoes a commensurate

√
13 × √

13 charge-density wave
(CDW) transition. The CDW arrangement forms a triangular
lattice of stars of David, each containing an odd number of
electrons per unit cell. The residual Coulomb interaction in
this system induces a Mott-insulating gap of 400 meV [58,59].
Interestingly, no magnetic ordering has been observed down
to very low temperatures, leading to suggestions that it may
host a gapless QSL [60–64]. However, in the bulk material,
the formation of interlayer dimers can compete with the Mott

physics picture, potentially opening a trivial band-insulator
gap [65–69]. Nevertheless, the possibility of observing a QSL
in a monolayer of 1T-TaS2 remains promising.

In this work, our primary focus is on QSLs, which are
intriguing and elusive states of matter that demand new ex-
perimental probes. Nonetheless, our proposal equally applies
to the study of arbitrary magnetic barriers. For instance, it
can be used to investigate magnon excitations in magneti-
cally ordered materials [40,41,52]. Therefore, we anticipate
that the quantum twisting microscope [37] will expand our
understanding of magnetic interactions in two-dimensional
materials.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the setup, describing the tunneling
through a QSL in a quantum twisting microscope. In Sec. III,
we demonstrate how, under a set of simplifying assumptions,
the inelastic electron tunneling spectroscopy signal contains
a contribution directly proportional to the dynamical spin
structure factor of the QSL. Section IV focuses on studying
the spin structure factor of different types of QSLs via a
mean-field approximation and showcases how our proposal
can distinguish among them. Finally, we provide concluding
remarks in Sec. V.

II. TUNNELING THROUGH A QUANTUM SPIN LIQUID
IN A QUANTUM TWISTING MICROSCOPE

We investigate the vertical tunneling of electrons between
two twisted graphene layers, separated by a QSL material
that acts as a tunneling barrier. The twist angle between the
graphene layers, denoted by θ , can be controlled in situ,
and a voltage bias, denoted by Vtb, is applied across them.
While a similar setup has been explored in Ref. [42], the
tunability of the twist angle was not considered. The recent
development of the quantum twisting microscope [37] moti-
vates us to investigate the potential of this additional degree of
freedom.

The Hamiltonian describing the junction is given by

H = Ht + Hb + HQSL︸ ︷︷ ︸
H0

+Htb, (1)

where Ht and Hb are the Hamiltonians of the top and bottom
graphene layers, respectively, HQSL characterizes the QSL
serving as a tunneling barrier, and Htb is the tunneling Hamil-
tonian.

The specific form of HQSL, which determines the low-
energy excitations responsible for the inelastic electron
scattering during tunneling, is not crucial for our derivations
and will be discussed in Sec. IV. This flexibility makes our
proposal suitable for exploring a wide range of magnetic
materials beyond QSLs.

We model each graphene layer as a gas of massless Dirac
particles around the valley K�, where � = {t, b} labels the
layer. This approximation holds for energies up to a few hun-
dred meV and for disorder and interaction strengths that do
not induce significant intervalley scattering. We will discuss at
the end of this section how to correctly account for electrons
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in the vicinity of the K ′
� valley. The Hamiltonian of the �

layer is

H� = h̄vF

∑
k,α,β,s

[ταβ · (k + K�) − μ�] c†
k,s,α,�

ck,s,β,�
, (2)

where c†
k,s,α,�

creates an electron in sublattice α = {A, B} with
momentum k and spin s = {↑,↓}. The Pauli matrices τ act on
the sublattice degree of freedom, vF ≈ 106 ms−1 is the Fermi
velocity of graphene, and μ� is the chemical potential of layer
� measured from the charge neutrality point of the layer. In
Eq. (2), the momentum k in each layer is measured with
respect to the Dirac point K�. Due to the twist angle θ , Kb

and K t do not coincide, i.e., �K = Kb − K t = Kb − R(θ )Kb,
where R(θ ) is the matrix implementing a rotation by an
angle θ .

The real-space tunneling Hamiltonian is given by [42]

Htb = 1√
N

∑
Rt,Rb

∑
α,β,s,s′

�ss′ (�r)

× c†
Rt,α,s,tcRb,β,s′,beieVtbt/h̄ + H.c.,

(3)

where Rt and Rb are the unit-cell position in the top and
bottom layer, respectively, and the voltage bias across the
junction is incorporated as a time-dependent hopping process.
The tunneling matrix �ss′ (�r) is a function of the in-plane
distance between the initial and final positions of the electron,
denoted as �r = (Rt + rt,α ) − (Rb + rb,β ). Here, rα� repre-
sents the location of the sublattice α within the unit cell of
layer �. �ss′ (�r) consists of a bare tunneling term, where
the electron does not interact with the QSL, and a term
describing tunneling via an exchange-mediated excitation of
the QSL:

�ss′ (�r) = �0(�r) δs,s′ + �1(�r) σss′ · s(rm). (4)

The Pauli matrices σ act on the spin degree of freedom of
the electrons in the leads, and s(rm) represents the local mag-
netic moment in the insulating barrier at rm = (Rt + rt,α +
Rb + rb,β )/2. This tunneling matrix provides an accurate de-
scription when the exchange energy ≈Jg|s| is smaller than
the spin-independent barrier height 
. In this limit, we have
�1/�0 ≈ Jg/
, with Jg the exchange coupling between the
graphene’s electrons and the magnetic moments of the QSL
[38,39].

In Eq. (4), we assumed that the scattering from the
localized spins occurs at the midpoint rm, neglecting the
microscopic details of the barrier. This assumption simul-
taneously maximizes the transition amplitudes from the top
and bottom graphene layers to the magnetic barrier [42].
Additionally, we neglected Kondo interactions between the
localized moments and the conducting electrons of each layer.
This assumption is justified in the limit of low density in the
leads and strong magnetic correlations in the QSL. Lastly, we
did not include the effect of Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions, which is a good approximation when
the QSL’s lattice constant aQSL is larger than that of graphene

ag = 2.46 Å. In this case, these interactions are random in sign
and weak compared to the magnetic correlations.

We can Fourier transform Eq. (3) and obtain

Htb = 1√
N

∑
k,k′

∑
gt,gb

∑
α,β,s,s′

ei(gt ·rαt−gb·rβb )

× [�0(q′)δs,s′δq + �1(q′)σss′ · sq]

× c†
k,α,s,tck′,β,s′,beieVtbt/h̄ + H.c.,

(5)

with q′ = (k + k′ + K t + Kb + gt + gb)/2 and q = k − k′ +
K t − Kb + gt − gb. Here, gt and gb are the reciprocal lattice
vectors of the top and bottom graphene layer, respectively.
Note that the momenta q and q′ are measured from the center
of the Brillouin zone �. Instead, k and k′ are measured from K t

and Kb, respectively. As in Eq. (2), we consider the tunneling
of electrons in the vicinity of the K valleys and hence assume
small k and k′. At the end of this section, we will comment on
how to correctly account for the tunneling of electrons around
the K ′ valley.

As in the Bistritzer-MacDonald model for twisted bilayer
graphene [70], the tunneling functions �0(q′) and �1(q′)
rapidly decay as a function of |q′| since the vertical separation
of the leads exceeds the in-plane lattice constant [42,70]. We
thus consider only the components of the tunneling matrix
near the Dirac points of the unrotated graphene layers, i.e.,
|q′| ≈ |K t + Kb|/2, and denote the momentum-independent
tunneling amplitudes as �̄0 and �̄1. This simplification con-
strains the sum over reciprocal lattice vectors in Eq. (5) and
we obtain

Htb = 1√
N

∑
k,q

∑
α,β,s,s′

2∑
n=0

[�̄0δs,s′δq,�Kn + �̄1σss′ · sqn
]

× T (n)
αβ (c†

k,α,s,tck−q,β,s′,beieVtbt/h̄

+ c†
k−q,α,s,bck,β,s′,te

−ieVtbt/h̄), (6)

with qn = q + �Kn, and �Kn denotes the separation of the
Dirac cones of the top and bottom layers at the three K
valleys in the Brillouin zone. These three vectors are related
by a 120 ◦ rotation, i.e., �Kn = R(2πn/3)�K. The tunneling
matrices are

T (n) = τ 0 + cos

(
2πn

3

)
τ x − sin

(
2πn

3

)
τ y. (7)

For a sufficiently large barrier height, the tunneling Hamil-
tonian Htb acts as a perturbation and the current flowing
through the heterostructure can be computed using linear re-
sponse theory:

I (eVtb) = i

h̄

∫ +∞

−∞
dt ′θ (t − t ′)〈[Htb(t ′), Itb(t )]〉. (8)
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The current operator in Eq. (8) is given by

Itb = ie

h̄
[Htb, Nt]

= − ie

h̄
√

N

∑
k,q

∑
α,β,s,s′

2∑
n=0

[�̄0δs,s′δq,�Kn + �̄1σss′ · sqn
]

× T (n)
αβ (c†

k,α,s,tck−q,β,s′,beieVtbt/h̄

− c†
k−q,α,s,bck,β,s′,te

−ieVtbt/h̄). (9)

The current consists of two distinct contributions: direct
tunneling, which leaves the magnetic moments of the barrier
unperturbed, and a spin-flip process proportional to the spin
fluctuations of the QSL. The direct tunneling contribution is
given by (see Appendix A)

I (0)(eVtb) = 4e�̄2
0

h̄

2∑
n=0

Atb(�Kn, eVtb, n). (10)

The spin-dependent part, instead, is (see Appendix A)

I (2)(eVtb) = −2e�̄2
1

h̄

∫ +∞

−∞
dω[nB(ω) − nB(ω + eVtb)]

×
∑

n

∑
q

S (qn, eVtb + ω)Atb(q,−ω, n), (11)

where nB is the Bose-Einstein distribution. The excitations
of the QSL are described by the dynamical spin structure

factor S (q, ω) = ∑
γ Sγ (q, ω) defined as Sγ (q, ω)

iω→ω+iε+=
− 1

π
ImGγ

s (q, iωn), with

Gγ
s (q, iωn) = −

∫ β

0
dτ eiτωn

∑
i j

eiq·(ri−r j )
〈
T sγ

i (τ )sγ

j

〉
. (12)

Here, ωn are bosonic (= 2nπ/β) Matsubara frequencies. We
will further characterize the spin structure factor in Sec. IV.

In Eqs. (10) and (11), we introduced the spectral func-
tion Atb which describes the particle-hole excitations in the
graphene layers and is defined as

Atb(q, ω, n) = π

N

∑
k,λ,λ′

∫ +∞

−∞
dε[nF(ε) − nF(ε + ω)]

× ∣∣T (n)
k,k−q;λ,λ′

∣∣2At
λ(k, ε)Ab

λ′ (k − q, ε + ω).
(13)

Here, A�
λ(k, ω) represents the spectral function of band λ

in the graphene layer �, and nF is the Fermi-Dirac distribu-
tion. The tunneling matrix T (n)

k,k−q;λ,λ′ is obtained by projecting
Eq. (7) onto the eigenbasis of the graphene layers:

T (n)
k,k−q;λ,λ′ = 〈ψλ(k)|T (n)|ψλ′ (k − q)〉

= 1
2 [1 + λei( 2πn

3 +φk )][1 + λ′e−i( 2πn
3 +φk−q )], (14)

where |ψλ(k)〉 = (λe−iφk , 1)T/
√

2 represents the eigenvector
of Eq. (2) in band λ at momentum k = |k|eiφk .

While the graphene layers are C6z symmetric, the candidate
QSL material may lack this symmetry. This consideration
requires to be careful when computing the additional contri-
bution to the inelastic tunneling stemming from the electrons

in the vicinity of the K ′ valleys. The shift of the Dirac
cones at the K ′ valley is opposite to that at the K one, i.e.,
�K ′

n = −�Kn. Therefore, to account for the contribution
from the opposite valley, it is not sufficient to multiply by a
valley degeneracy factor gv = 2. Instead, we have to substitute
S (q + �Kn) in Eq. (11) with S (q − �Kn).

In general, we expect an additional contribution to the total
current that is linear in the magnetic moment of the barrier
〈sqn

〉. However, this term vanishes when the leads are not spin
polarized (see Appendix A) [39]. Our primary objective is to
investigate the properties of QSLs, with a particular emphasis
on measuring the spin structure factor S (q, ω) rather than
〈sqn

〉. The absence of an additional current term linear in
�̄1 is advantageous for our purposes. Nevertheless, the use
of spin-polarized leads would offer the opportunity to probe
individual components of S (q, ω) [71].

III. INELASTIC ELECTRON TUNNELING
SPECTROSCOPY AND THE SPIN STRUCTURE FACTOR

Equations (10) and (11) provide a general description of
the current flowing through the heterostructures, account-
ing for finite temperature, disorder, and interactions in the
leads. Our objective is to establish a simple analytical rela-
tion that directly connects the dynamical spin structure factor
S (q, ω) with a measurable quantity in the tunneling het-
erostructure. To achieve this, we make a series of simplifying
approximations.

To distinguish the features of fractionalized excitations
from the thermal broadening of magnons in magnetically
ordered materials [71], one has to consider a regime where
the thermal energy kBT is much smaller than the charac-
teristic magnetic correlations J within the tunneling barrier,
i.e., kBT � J . Therefore, we consider the limit of zero tem-
perature in the subsequent analysis. The expression for the
spin-dependent current simplifies as follows:

I (2)
T =0(eVtb) = 2e�̄2

1

h̄

∫ eVtb

0
dω

∑
n

∑
q

S (qn, ω)

× Atb(q, eVtb − ω, n), (15)

with

Atb
T =0(q, ω, n) = π

N

∑
k,λ,λ′

∫ ω

0
dε

∣∣T (n)
k,k−q;λ,λ′

∣∣2

× At
λ(k, ε − ω)Ab

λ′ (k − q, ε). (16)

The current is a convolution of the spin structure factor
S (qn, ω) and the particle-hole spectral function Atb

T =0(q, ω, n)
which is a property of the graphene layers. This convolution
acts as a frequency-dependent smearing of the momentum at
which we probe S .

Let us consider electron-doped graphene layers and further
assume μt = μb  eVtb. This situation can be achieved by
independently controlling the bottom and top gates of the
tunneling junction. The largest momentum transfer |q| is then
|qmax| ≈ 2μ/h̄vF. If we focus on sufficiently large twist an-
gles, i.e., 2μ/h̄vF|�K| � 1, we can disregard the smearing
in Eq. (15). Namely, we ignore the momentum transfer q
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between the graphene layers and the QSL, and carry the sum
over q past S (qn, ω).

The scattering matrix T (n)
k,k−q depends exclusively on the an-

gles φk and φk−q [cf. Eq. (14)], and is unity once averaged over
the angular variables. We can then use 1/N

∑
k A(k, ε) =

N (ε), where N (ε) = √
3a2

g|μ + ε|/(4π h̄2v2
F) is the particle

density of the graphene layer. In the limit μ  eVtb, we
neglect the energy dependence of the graphene’s density of
state and reach a simple expression for the spin-dependent
tunneling current:

I (2)
T =0(eVtb) = −3ea2

gL2�̄2
1μ

2

8π h̄5v4
F

∑
n

×
∫ eVtb

0
dω S (�Kn, ω)(eVtb − ω), (17)

where L is the in-plane linear size of the graphene layers.
The scattering from the excitations of the QSL opens new

inelastic channels for the electrons tunneling between the
graphene layers. This should result in a clear signature in the
inelastic electron tunneling spectroscopy. Taking the second
derivative of Eq. (17), we obtain the spin-dependent contribu-
tion to the IETS signal:

d2I (2)
T =0(eVtb)

dV 2
tb

= −3e3a2
gL2�̄2

1μ
2

8π h̄5v4
F

∑
n

S (�Kn, eVtb ). (18)

By measuring the IETS signal in a quantum twisting mi-
croscope with a magnetic insulator acting as the tunneling
barrier, it becomes possible to directly probe the spectrum of
magnetic excitations. The control of the voltage bias between
the graphene layers and the relative twist angle between them
gives access to the energy and momentum dependence of the
spin structure factor, respectively.

While Eq. (11) is a generic result that relies on few
physically motivated assumptions and constitutes a rigorous
starting point for a comparison with future experimental data,
Eq. (18) is a simple analytical relation resting on a series
of additional assumptions. Specifically, it holds at zero tem-
perature, for large twist angles, and for voltage biases much
smaller than the graphene’s chemical potential. These limits
capture the regime where the IETS signal can be directly
linked to the spin structure factor of the barrier, as described
by Eq. (18).

In Appendix B, we compute the current stemming from di-
rect tunneling and show that direct tunneling also contributes
to the IETS signal [37]. The spin-independent contribution,
however, is only present for voltages simultaneously sat-
isfying eVtb < h̄vF|�K| < eVtb + 2μ. Considering that the
relevant energy scale of the QSL is expected to be on the order
of tens of meV, the large Fermi velocity of graphene ensures
that a significant region of the eVtb − θ diagram exclusively
contains the IETS signal originating from the QSL contribu-
tion. This is clearly depicted in Fig. 2, where the gray region
shades the area where the direct tunneling contributes. Note
that it is also the region where the simplifying assumptions
made to reach Eq. (18) break down.

The energy resolution of the quantum twisting microscope
is set by the measurement temperature. Preliminary results
have been obtained with a quantum twisting microscope

(a)

(b)

(c)

(d)

(e)

(deg) (deg)

(deg)

FIG. 2. Inelastic electron tunneling spectroscopy signal for vari-
ous QSLs in a quantum twisting microscope: (a) a Dirac QSL, (b) a
gapped QSL, and (c) a QSL with a spinon Fermi surface with a
parabolic spinon band. For the evaluation of the IETS signal, we
assumed vs = 2.5 × 104 ms−1, �s = 30 meV, ms ≈ 3me, and μ =
100 meV. (d), (e) Present the IETS signal of a QSL with a spinon
Fermi surface obtained by a spinon tight-binding model on a tri-
angular lattice with and without next-to-nearest-neighbor hoppings,
respectively. The inset in (d) shows the IETS signal at zero-bias volt-
age. Here, we assumed ts = 5 meV and χs = 1 meV for the spinon
hopping. The gray region shades the area where elastic tunneling
contributes to the IETS signal.

operating at 4 K [72,73]. While this temperature is already
significantly lower than the magnetic interactions in many
candidate QSL materials, reaching even lower temperatures
will be crucial to conclusively probe the excitations of these
materials. The momentum resolution on �K depends on the
ability to control the twist angle of the leads. Previous studies
[37] achieved a resolution of δθ ≈ 0.001 ◦, which corresponds
to δ|�K| ≈ 3 × 10−5 Å−1. The main uncertainty in probing
the spin-structure factor at a definite momentum, however,
stems from precisely accounting for the convolution with the
graphene’s particle-hole spectral function in Eq. (15). There
are two main factors that limit the momentum resolution.
First, the in-plane linear size L of the graphene layers sets a
limit of δ|q| ≈ 1/L. Second, via the convolution in Eq. (15),
the signal is smeared over the Fermi surface of the graphene
layers with a resolution δ|q| ≈ 2μ/h̄vF. It would appear that
the best resolution is achieved when both graphene layers are
maintained at charge neutrality. Nonetheless, in this config-
uration, one cannot neglect the linear dependence in energy
of the graphene’s density of state. The energy convolution
in Eq. (17) would then be with the cubic rather than linear
power of (eVtb − ω), and only the fourth derivative of the
current with respect to the voltage bias would be directly
proportional to the spin structure factor. Instead, one could use
a two-dimensional metal with a small Fermi pocket at valley
K and achieve similar results to those discussed here for doped
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graphene. Lastly, we neglected any spatial inhomogeneity in
the graphene layers, that can in principle modulate the tun-
neling amplitude on a length scale �. If present, they would
further reduce the momentum resolution by roughly 1/�.

The maximum momentum that can be probed is ap-
proximately |�K|max = 2|K| sin θmax/2, with previous studies
reaching up to θmax = 30 ◦ [72,73]. Given that the unit cell
of graphene is often smaller than that of candidate QSL
materials, even small twist angles should be able to explore
a significant portion of the QSL Brillouin zone (BZ). For
example, for 1T-TaS2 we have aQSL ≈ 12.11 Å and an angle
θ ≈ 11.7 ◦ suffices to probe the corners of the BZ. By tuning
the twist angle between the graphene layers, it is possible to
probe line cuts in the Brillouin zone of the candidate QSL
material. To fully map the angular dependence of the spin
structure factor, however, it would be desirable to also control
the angle between graphene and the QSL barrier.

IV. DISTINGUISHING VARIOUS QUANTUM SPIN LIQUIDS

To analyze different types of QSLs, we adopt a phe-
nomenological approach by using a slave-particle mean-field
Hamiltonian [1,74–78]. While this approach may not capture
the precise details of specific materials, its main purpose is
to demonstrate the efficacy of a quantum twisting microscope
in distinguishing between various QSLs. Importantly, the key
result represented by Eq. (18) remains valid regardless of
the specific details of the QSL Hamiltonian or the methods
employed to compute the spin structure factor S (q, ω).

We consider a tunneling barrier described by a Hamiltonian
quadratic in the spin degree of freedom, such as a Heisen-
berg Hamiltonian. To describe the physical spins, we utilize a
fermionic representation in terms of Abrikosov fermions and
decouple the quartic term in the spinon operators via a mean-
field approximation. The dynamical spin structure factor can
be directly computed using the definition of Eq. (12) (see
Appendix C). For instance, in the case of a U(1) QSL, it is
given by

S (q, ω) = 1

4N

∑
ss′

∑
k

∑
nl

gss′ (k, q, n, l )(2 − δss′ )

× [
nF

(
ξ s

nk

) − nF
(
ξ s′

lk+q

)]
δ
(
ω − ξ s

nk + ξ s′
lk+q

)
, (19)

where ξ s
nk is the energy at momentum k of the band n with spin

s of the spinon mean-field Hamiltonian. The associated eigen-
vector at sublattice α is Uαns(k). The form factor gss′ (k, q, n, l )
accounts for the overlap of the eigenstates’ wave functions:

gss′ (k, q, n, l ) =
∣∣∣∣∣∑

α

eiq·δαU ∗
αns(k)Uαls′ (k + q)

∣∣∣∣∣
2

, (20)

where δα is the position of sublattice α within the unit cell.
The form factor plays an important role in multiband spinon
models, whereas we will neglect it in the low-energy and
single-band models analyzed below.

The dynamical spin structure factor describes spinon
particle-hole excitations rather than a single quasiparticle with
a well-defined dispersion, as it would be for magnons in
magnetically ordered materials. In fact, spin-flip excitations
must have integer spin while spinons have fractional spin.

Consequently, the energy and momentum of the excitation
are shared between two quasiparticles, leading to a broad
continuum of excitations rather than a sharp dispersion. This
broad continuum in the excitation spectrum is characteristic
of QSL behavior.

Now, let us consider three qualitatively distinct quantum
spin liquids: a Dirac spin liquid, a gapped chiral QSL, and a
gapless QSL with a spinon Fermi surface. For each case, we
derive the dynamical spin structure factor S (q, ω) in the long-
wavelength and low-energy limit at zero temperature [19].

Let us start with the Dirac spin liquid. Its low-energy
dispersion is given by ξnk = nh̄vs|k|, with n = ± and vs the
spinon Fermi velocity. The dynamical spin structure factor for
this case is obtained as

S (q, ω) = 3�

2

∫
d2k

(2π )2
δ(ω − h̄vs|k| − h̄vs|k + q|)

= 3�

16π h̄2v2
s

ω2 − h̄2v2
s q2/2√

ω2 − h̄2v2
s q2

�(ω − h̄vsq), (21)

where � is the unit-cell area of the QSL. Note that this ex-
pression equally applies to the case of Z2 Dirac spin liquids.
The spin structure factor given by Eq. (21) exhibits a square-
root singularity as ω approaches h̄vsq+ and a threshold at
ω > h̄vsq, which is determined by the spinon Fermi velocity
[cf. Fig. 2(a)].

In the case of gapped chiral QSLs, we assume that the
spinon dispersion has a minimum at k = 0 for the con-
duction band and a maximum for the valence band at the
same location. The low-energy dispersion is given by ξnk =
n(h̄2k2/2ms + �s/2), where n = ±. �s is the gap in the
spinon spectrum and ms is the spinon mass. The dynamical
spin structure factor is obtained as

S (q, ω) = 3�

2

∫
d2k

(2π )2
δ

(
ω − �s − h̄2k2

2ms
− h̄2(k + q)2

2ms

)

= 3ms�

8π h̄2 �

(
ω − �s − h̄2q2

4ms

)
. (22)

The result holds for gapped Z2 QSLs as well. The spin
structure factor described by Eq. (22) exhibits a steplike be-
havior with a threshold at ω > �s + h̄2q2/4ms, as depicted in
Fig. 2(b).

Finally, let us consider a gapless QSL with a spinon
Fermi surface. We approximate the spinon dispersion with a
parabola and consider the limit |q| � ks,F, where ks,F is the
spinon Fermi momentum. The spin structure factor is given
by [79]

S (q, ω) = 3

2

1

2ks,Fqn

∫
k<ks,F

|k+q|>ks,F

d2k
(2π )2

× δ

(
ω + h̄2k2

2ms
− h̄2(k + q)2

2ms

)

= 3

8π2h̄qvs

ω√
h̄2v2

s q2 − ω2
�(h̄vsq − ω), (23)
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where vs = h̄ks,F/ms and ms is the effective mass of the
spinons. The spin structure factor, shown in Fig. 2(c), de-
creases linearly at small frequencies and has a finite signal
only for ω < h̄vsq.

By analyzing the IETS signal in the quantum twisting
microscope, we can qualitatively distinguish between various
QSLs. Since the direct tunneling dominates at small twist
angle and large voltage bias, it is beneficial to control the twist
angle to access the large-angle regime where the inelastic
contribution prevails at low voltage biases, as shown in Fig. 2.
Examining how the IETS signal evolves at low applied bias
voltage allows to differentiate among different quantum spin
liquids, as discussed in the previous paragraphs [19,42]. While
Ref. [43] first showed the possibility to single out the IETS
signal of a gapped QSL in a planar tunneling junction lacking
the twist angle tuning knob, at odds with previous proposals
[42,43,43], the additional momentum resolution provided by
the twist angle allows to also extract low-energy parameters
of the spinon Hamiltonian, such as the effective mass and the
Fermi velocity of the spinons.

To further prove how the momentum resolution offers in-
sights into the underlying Hamiltonian of the QSL, let us
consider a QSL with a spinon Fermi surface on a trian-
gular lattice. This state has been suggested to be a good
description for the putative QSL in 1T-TaS2 [61]. At the
mean-field level, this state can be described by a nearest-
neighbor tight-binding model for spinons on the triangular
lattice [80]. The spinon energy is spin independent and given

by ξk = −2ts[ cos (kx ) + 2 cos ( kx
2 ) cos (

√
3ky

2 )] − μs, where ts
is the spinon hopping parameter, and the chemical poten-
tial μs = 0.8346 ts ensures half-filling of the spinon bands.
We consider a spinon hopping ts = 5 meV. Note that the ac-
tual value for 1T-TaS2 is currently unknown. Attempts to fit
the residual temperature-independent static spin susceptibility
and specific heat measured in 1T-TaS2 [62,81] to a simple
mean-field spinon model [61] result in an order of magni-
tude larger spinon hopping parameter. These measurements,
however, were carried out in bulk samples and it is unclear
whether they should be linked to a QSL model [65–68]. STM
studies reporting evidence of QSL behavior in the closely
related 1T-TaSe2 monolayer, instead, put an upper bound of
5 meV on the in-plane exchange coupling [45,46]. While at
the present time we cannot reliably estimate the physical value
of ts, we stress that our proposal works best for QSLs with a
small exchange coupling. Namely, a larger separation in the
QSL’s and graphene’s energy scales improves the validity of
the approximations that led to Eq. (18) and increases the area
in the eVtb − θ diagram where the IETS signal is dominated
by the QSL contribution. Note also that the spinon spectral
signatures takes place at voltage biases smaller than the charge
gap, e.g., 400 meV for 1T-TaS2. Therefore, spinon excitations
can be easily separated from charge excitations. The IETS
signal arising from this state, as obtained from Eqs. (19) and
(18), is shown in Fig. 2(d). The inset shows the IETS signal at
zero voltage bias. It proves how the IETS signal as a function
of the twist angle can determine the spinon Fermi momen-
tum. In fact, the peaks of the IETS signal at zero voltage
bias and nonzero twist angle correspond to 2|K| sin(θ/2) =
|2kF,s + bi|, where bi is a QSL reciprocal lattice vector.

An additional next-nearest-neighbor hopping term for the
spinons represents a minimal modification to the previous
model [80]. The new energy dispersion is given by ξ ′

k =
ξk − 2χs[ cos (

√
3ky) + 2 cos ( 3kx

2 ) cos (
√

3ky

2 )], and the chem-
ical potential is adjusted to maintain half-filling. The resulting
IETS signal is shown in Fig. 2(e). We observe a signifi-
cant shift of weight towards lower voltage biases. While this
example is particularly simple, it illustrates how the experi-
mentally measurable IETS signal, when compared to different
microscopic theories, contains sufficient information to better
constrain the Hamiltonian of the underlying QSL material. Ul-
timately, the finite resolution may limit the ability to precisely
determine the microscopic parameters, but the possibility to
map the spin structure factor in both momentum and energy
space presents a substantial advantage over existing probes for
QSL materials in monolayer and few-layer materials.

In Fig. 2, we presented the IETS signal expected in a
quantum twisting microscope according to Eq. (18). These
results have been obtained fixing the chemical potential of
the graphene layers to μ = 100 meV, which meets the condi-
tion μ  eVtb for the voltage biases considered. Nonetheless,
such a large value of the chemical potential carries unwanted
consequences. To reach Eq. (18) from Eq. (15), we neglected
the momentum transfer to the QSL q, whose maximum value
is δq = 2μ/h̄vF ≈ 3 × 10−2 Å−1, or alternatively δθ ≈ 0.7 ◦.
Here, we show how relaxing the condition μ  eVtb to μ �
eVtb allows to reduce the uncertainty on momentum and still
distinguish among various QSLs.

By requiring μ � eVtb, we can still restrict our attention
to scattering involving only electrons in the upper band, but
we cannot ignore the linear-in-energy density of state of
graphene. In this case, we obtain

d2I (2)
T =0(eVtb)

dV 2
tb

= −3e3a2
gL2�̄2

1

8π h̄5v4
F

∑
n

[
μ2S (�Kn, eVtb )

−
∫ eVtb

0
dω S (�Kn, ω)(eVtb − ω)

]
. (24)

In Fig. 3, we compare the IETS signal at a fixed angle θ =
2 ◦ obtained by Eq. (18) and by Eq. (24) with μ = 20 eV.
The chemical potential μ = 20 meV corresponds to an error
δq ≈ 6 × 10−3 Å−1. In Fig. 3(a), we present the result for
Dirac QSL, where we can see that while at large voltages
the signal differs, we still detect an onset at eVtb = h̄vs|�K|
with a square-root singularity above it [cf. Eq. (21)]. A similar
analysis is displayed in Fig. 3(b) for a gapped chiral QSL.
We again observe an onset at eVtb = �s + h̄2|�K|2/2ms, as
expected from Eq. (22), but the signal is no longer constant
above it. The absence of a singularity at the onset allows
to distinguish this case from that of a Dirac QSL. Lastly,
in Fig. 3(c), we present the IETS signal of a QSL with a
spinon Fermi surface. Here, the signal ceases to be zero above
the threshold eVtb = h̄vs|�K|. The presence of a finite sig-
nal below the threshold with a linear dependence on eVtb at
small voltage biases and a square-root singularity when the
threshold is approached from below clearly distinguishes this
case from the previous ones. In Figs. 3(d) and 3(e), we show
that even with Eq. (24) and a smaller chemical potential, it
is possible to identify the spinon Fermi wave vector and the
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(a)

(b)

(d)

(e)

(c)

(deg)

(deg)

FIG. 3. Inelastic electron tunneling spectroscopy signal with
smaller chemical potential: (a) a Dirac QSL, (b) a gapped QSL,
and (c) a QSL with a spinon Fermi surface with a parabolic spinon
band. For the evaluation of the IETS signal, we assumed the same
parameters as in Fig. 2 but μ = 20 meV and fixed the angle at
θ = 3◦. The black dashed line indicates the IETS signal obtained
via Eq. (18), while the orange line the one obtained by Eq. (24). (d),
(e) Are analogous to the same panels in Fig. 2 but with IETS signal
computed according to Eq. (24) and μ = 20 meV.

shift of the IETS signal at lower voltage biases upon the
introduction of next-to-nearest-neighbor hopping in toy model
of spinon hopping on a triangular lattice.

Lastly, we note that for QSL with large energy scales, even
the condition μ � Vtb might result in too large δq. In this case,
we foresee two possible strategies. On one hand, we could
change the chemical potential as a function of the voltage
bias such that at low energies, the IETS signal is still well
described by Eq. (18) with a small momentum uncertainty.
On the other hand, one could numerically solve Eq. (11) in
its full generality to compare various theoretical models to the
experimental results.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we introduced the quantum twisting micro-
scope as a promising tool for imaging the excitations of QSLs
in two-dimensional materials. One significant advantage of
this technique, distinguishing it from previous proposals, is
its ability to provide resolution in both momentum and en-
ergy. By focusing on simplified limits, we demonstrated that
the IETS signal of the tunneling junction has a contribution
directly proportional to the dynamical spin structure factor of
the tunneling barrier, as shown in Eq. (18).

References [42,43] first proposed to use a planar tunnel-
ing junction to probe quantum spin liquids. Reference [43]

showed how to effectively separate between the elastic and
inelastic contributions to the tunneling current in this config-
uration. In their proposal, however, only the zero-momentum
spin structure factor of quantum spin liquids with short-range
spinon correlations could be probed. Using graphene as metal-
lic leads and introducing a fixed finite twist angle, Ref. [42]
showed how to probe the spin structure factor of a Kitaev
QSL at finite momentum. Nonetheless, it did not investigate
the possibility to continuously vary the twist angle or the
signal stemming from different QSLs. Here, motivated by
these previous works and the quantum twisting microscope of
Ref. [37], we showed how the in situ control over the twist
angle is an important tuning knob that allows to probe the
spin structure factor with energy and momentum resolution.
Conceptually, our proposal provides a tool to study candidate
QSL materials in the monolayer and few-layer limit in ways
that were previously achievable only for bulk materials via
inelastic neutron scattering. The additional momentum resolu-
tion will allow to extract precious information on the effective
parameters of the microscopic Hamiltonian describing the
QSL, e.g., the spinon velocity, the Fermi wave vectors, and
the spinon mass.

In the following, we briefly discuss the implications of
departing from the limits considered in our study and the
experimental feasibility of our proposal. Equation (11) is
valid at finite temperatures, and in the presence of disorder
and interaction in the leads. Moreover, it holds regardless of
the approximation used to compute the spin structure factor.
While not as simple as Eq. (18), it establishes a starting point
for comparing experimental results to theoretical predictions.
Additionally, a faithful representation of the experimental
conditions requires a careful description of the electrostatics
of the junction. In this study, we assumed that the voltage bias
through the junction results in a simple electrostatic potential
shift. However, in reality, a voltage bias will induce both a
shift of the chemical potential and an electrostatic potential
between the layers. This more realistic situation can be easily
accounted for [37,56,57]. A dual-gated device, with indepen-
dent control of the gates of the bottom and top graphene layers
[37], offers a more direct realization of the present proposal as
it allows to maintain fixed chemical potentials and change the
relative electrostatic potential shift.

From a fabrication standpoint, substantial progress has
been made in the mechanical exfoliation of monolayer and
few-layer samples of candidate quantum spin liquids such as
α-RuCl3 and 1T-TaS2 [82–87]. Moreover, successful deposi-
tion of monolayer graphene onto the surface of these materials
has been achieved [7,88–96]. These advancements give us
hope that our proposed tunneling junction could be realized
in the near future. However, it is worth noting that these
interfaces often exhibit significant charge transfer between
graphene and the candidate quantum spin liquid due to the dif-
ference in the work functions of the materials, i.e., 0.5 eV [95]
and 1.5 eV [83] for graphene on 1T-TaS2 and α-RuCl3, respec-
tively. In a dual-gated device, with independent control of the
gates of the bottom and top graphene layers, we might hope to
mitigate this charge transfer. This strategy seems particularly
suitable for 1T-TaS2, where graphene deposited on top of the
bulk material gets hole doped by 0.1 eV [95]. Alternatively,
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an additional hBN or TMD spacer layer between graphene
and the QSL material, e.g., a monolayer on each side of the
junction, could further reduce the doping to an acceptable
level. The additional layer between the graphene and the
candidate QSL material further allows to cap air-sensitive ma-
terials like 1T-TaS2 in the glove box and more easily transfer
them in the quantum twisting microscope [37].

In conclusion, we presented a proposal to detect the
signatures of fractionalized excitations in two-dimensional
materials via tunneling spectroscopy in a quantum twisting
microscope. Importantly, this technique extends to the mono-
layer limit and offers both momentum and energy resolution,
going beyond the capabilities of current experimental methods
to probe magnetic materials.
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APPENDIX A: DERIVATION OF THE
TUNNELING CURRENT

We here present the derivation of the tunneling current
flowing through the junction. Our derivation parallels the one
performed in Ref. [42]. Our starting point is the tunneling
Hamiltonian

Htb = 1√
N

∑
k,q

∑
α,β,s,s′

2∑
n=0

T (n)
αβ [�̄0δs,s′δq,�Kn + �̄1σss′ · sqn

]

× (c†
k,α,s,tck−q,β,s′,beieVtbt + c†

k−q,α,s,bck,β,s′,te
−ieVtbt ),

(A1)

where the voltage bias across the tunneling junction is
captured by a time-dependent tunneling process. This ap-
proach allows us to use equilibrium techniques to compute
the tunneling current in linear response theory. The current
operator is

Itb = ie

h̄
[Htb, Nt]

= − ie

h̄
√

N

∑
k,q

∑
α,β,s,s′

2∑
n=0

T (n)
αβ [�̄0δs,s′δq,�Kn + �̄1σss′ · sqn

]

× (c†
k,α,s,tck−q,β,s′,beieVtbt − c†

k−q,α,s,bck,β,s′,te
−ieVtbt ).

(A2)

The current through the junction is then given by

I = i

h̄

∫ +∞

−∞
dt ′θ (t − t ′)〈[Htb(t ′), Itb(t )]〉 = 2e

h̄
ImχAA(eVtb),

(A3)

with the time evolution generated by H0. The operator A is
defined as

A(t ) = 1√
N

∑
k,q

∑
α,β,s,s′

2∑
n=0

T (n)
αβ [�̄0δs,s′δq,�Kn + �̄1σss′ · sqn

(t )]

× c†
k,α,s,t (t )ck−q,β,s′,b(t ), (A4)

and the response function χAA is

χAA(ω) = − i

h̄
lim

η→0+

∫ ∞

0
dt ei(ω+iη)t/h̄〈[A(t ), A†(0)]〉. (A5)

The current can be easily evaluated via the Matsubara
formalism. We separately compute the contribution stemming
from elastic tunneling χ (0) and the one from the spin-
dependent scattering from the quantum spin liquid χ (2). To
this end, we define as A0 the spin-independent part of the
operator in Eq. (A4) and as A2 the spin-dependent one.

First, let us consider the elastic tunneling contribution:

χ (0)(iωn) = −
∫ β

0
dτ eiωnτ 〈T A0(τ )A†

0(0)〉

= −2�̄2
0

N

∑
k

2∑
n=0

∫ β

0
dτ eiωnτ Tr

× [Gb(k − �Kn, τ )T (n)G t (k,−τ )T (n)], (A6)

where we assumed that the two graphene layers are uncorre-
lated in the absence of the tunneling Hamiltonian. The factor
2 comes from the spin multiplicity, and Tr acts on the orbital
space. In Eq. (A6), we introduced the electron Green’s func-
tions

G�
α,α′ (k,−τ ) = −〈T c†

k,α′,s,�(τ )ck,α,s,�〉, (A7)

G�
α,α′ (k, τ ) = −〈T ck,α,s,�(τ )c†

k,α′,s,�〉. (A8)

We conveniently parametrize the matrices T (n) as

T (n) = τ 0 + cos

(
2πn

3

)
τ x − sin

(
2πn

3

)
τ y, (A9)

and move from orbital to band space. Via a Fourier transform
of the electronic Green’s functions, we then obtain

χ (0)(iωn) = −2�̄2
0

N

∑
k,λ,λ′

2∑
n=0

|〈λ, k|T (n)|λ′, k − �Kn〉|2 1

β

×
∑
νl

G t
λ(k, iνl )Gb

λ′ (k − �Kn, iνl + iωn),

(A10)

with 〈λ, k|T (n)|λ′, k − �Kn〉 the projection of the tunneling
matrices on the eigenstates of band λ and momentum k of the
top graphene layer, and band λ′ and momentum k − �Kn for
the bottom one [cf. Eq. (14)]. Lastly, we perform the Matsub-
ara sum over the fermionic frequency νl , perform an analytical
continuation, and take the imaginary part to obtain Eq. (10).
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The derivation of the spin-dependent tunneling current proceeds in an analogous way. We need to compute

χ (2)(iωn) = −
∫ β

0
dτ eiωnτ 〈T A2(τ )A†

2(0)〉

= − �̄2
1

N

∑
k,k′

2∑
n=0

∫ β

0
dτ eiωnτ

∑
γ

〈
T sγ

k−k′+�Kn
(τ )sγ

−k+k′+�Kn

〉
Tr [Gb(k′, τ )T (n)G t (k,−τ )T (n)], (A11)

where we assumed that, in the absence of the tunneling Hamiltonian, the quantum spin liquid and graphene layers are
uncorrelated. The trace in Eq. (A11) acts again on orbital space and we used that for Pauli matrices tr(σ iσ j ) = ∑

s,z σ i
szσ

j
zs = δi, j .

The Fourier transform to Matsubara frequency space leads to

χ (2)(iωn) =
∑

q

2∑
n=0

�̄2
1

β

∑
�m

Gs(q + �Kn, iωn + i�m)Gtb(q, i�m, n), (A12)

with q = k − k′ and

Gtb(q, i�m, n) = 1

N

∑
k,λ,λ′

|〈λ, k|T (n)|λ′, k − q〉|2 1

β

∑
νl

G t
λ(k, iνl )Gb

λ′ (k − q, iνl − i�m), (A13)

Gs(q + �Kn, iωn + i�m) = −
∫ β

0
dτ ei(ωn+�m )τ 〈T sγ

k−k′+�Kn
(τ )sγ

−k+k′+�Kn

〉
. (A14)

Lastly, we perform the Matsubara sums, perform an analytical continuation, and take the imaginary part to obtain Eq. (11).
In all generality, one would be an additional contribution to the total current linear in �̄1. This additional term, however,

vanishes for spin-nonpolarized leads as it is proportional to 〈s〉. This last term is given by

χ (1)(iωn) = −
∫ β

0
dτ eiωnτ 〈T A2(τ )A†

0(0)〉

= − �̄0�̄1

N

∑
γ

∑
k,q

∑
n,s

σγ
ss

〈
T sγ

q+�Kn
(τ )

〉
Tr [Gb(k + �Kn, τ )T (n)G t (k,−τ )T (n)].

(A15)

In the absence of spin polarization in the leads, the term
∑

s σ
γ
ss results in a vanishing contribution.

APPENDIX B: CONTRIBUTION OF THE ELASTIC TUNNELING TO THE TOTAL CURRENT

We here derive the contribution to the total current stemming from elastic tunneling. We restrict ourselves to the limit μ > eVtb

and consider electron-doped graphene layers. Therefore, we consider tunneling events involving only the conduction bands of
the two layers, i.e., λ = λ′ = +1. First, from Eq. (14), we note that

∣∣T (n)
+1,+1

∣∣2 =
[

1 + cos

(
2πn

3
+ φk

)][
1 + cos

(
2πn

3
+ φk−q

)]
. (B1)

We then have

I (0)
T =0(eVtb) = −

√
3ea2

g�̄
2
0

2π h̄

∑
n

∫ eVtb

0
dε

∫
d2k

[
1 + cos

(
2πn

3
+ φk

)][
1 + cos

(
2πn

3
+ φk−�Kn

)]

× δ(ε − eVtb − h̄vF|k| + μ)δ(ε − h̄vF|k − �Kn| + μ)

= −
√

3ea2
g�̄

2
0

2π h̄2vF

∑
n

∫
d2k

[
1 + cos

(
2πn

3
+ φk

)][
1 + cos

(
2πn

3
+ φk−�Kn

)]

× δ

(
eVtb

h̄vF
+ |k| − |k − �Kn|

)
�(eVtb − h̄vF|k − �Kn| + μ), (B2)

where we converted the sum over k in an integral. To perform the integral, we introduce the new variable p = |k − �Kn| and
replace the integral over φk in

∫
d2k = ∫ ∞

0 dk k
∫ 2π

0 dφk via [97]∫
d2k =

∫ ∞

0
dk

∫ 2π

0
dφk

∫ ∞

0
dp

p

�Kn
δ

(
p2 − �K2

n − k2

2k�Kn
+ cos φk

)
. (B3)
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We also express the cosine and sine of the angles φk and φk+�Kn in Eq. (B1) in terms of the new variables k and p:

cos φk = �K2
n +k2−p2

2�Knk , (B4)

cos φk−�Kn = k2−�K2
n −p2

2�Kn p , (B5)

sin φk =
√

4�K2
n k2−

(
�K2

n +k2−p2
)2

2�Knk , (B6)

sin φk−�Kn =
√

4�K2
n p2−

(
k2−�K2

n −p2
)2

2�Kn p . (B7)

We can now carry out the integral over φk:∫ 2π

0
dφk δ

(
p2 − �K2

n − k2

2k�Kn
+ cos φk

)
= 1

2π

∫ +∞

−∞
dx

∫ 2π

0
dφkeix( p2−�K2

n −k2

2k�Kn
+cos φk )

=
∫ +∞

−∞
dx eix p2−�K2

n −k2

2k�Kn J0(|x|)

= 4k�Kn√[
(p + k)2 − �K2

n

][
�K2

n − (p − k)2
] , (B8)

where J0(x) is the zero Bessel’s function of the first kind.
With these replacements, and carrying out the sum over n, we obtain

I (0)
T =0(eVtb) = −3

√
3ea2

g�̄
2
0

2π h̄2vF

∫ ∞

0
dk

∫ ∞

0
dp δ

(
eVtb

h̄vF
+ k − p

)
�(eVtb − h̄vF p + μ)

× 4kp√[
(k + p)2 − �K2

n

][
�K2

n − (p − k)2
]
{

1 + k2 + p2 − �K2
n

4pk

}
. (B9)

The remaining integrals can now be readily solved to obtain

I (0)
T =0(eVtb) = − 3

√
3ea2

g�̄
2
0

16π h̄3v2
F

√
h̄2v2

F�K2
n − eV 2

tb

�[h̄vF�Kn − eVtb]�[eVtb + 2μ − h̄vF�Kn]

×
[

3(eVtb + 2μ)
√

(eVtb + 2μ)2 − h̄2v2
F�K2

n

− (
h̄2v2

F�K2
n + 2eV 2

tb

)
log

(
eVtb + 2μ

h̄vF�Kn
+

√
(eVtb + 2μ)2

h̄2v2
F�K2

n

− 1

)]
. (B10)

As stressed in the main text, the elastic tunneling contributes to the total current, and hence to the IETS signal, only if
eVtb < h̄vF|�Kn| < eVtb + 2μ.

APPENDIX C: DERIVATION OF THE SPIN STRUCTURE FACTOR

As discussed in Sec. IV, we represent the physical spins in terms of Abrikosov fermions. We choose fermions rather than
Schwinger bosons as they allow us to easily treat gapless quantum spin liquid without worrying about the condensation of the
spinons. We define

s(r) = 1

2

∑
s,s′

f †
r,sσss′ frβ, (C1)

where fr,s annihilates a spinon at location r with spin s. Imposing constraints to avoid unphysical states, such as empty or doubly
occupied sites, i.e.,

∑
s f †

rs frs = 1 and fis fis′εss′ = 0, introduces additional gauge degrees of freedom. At the mean-field level, we
neglect gauge fluctuations and enforce the constraints only on average. By introducing auxiliary fields to decouple the quartic
term in the spinon operators, we obtain the quadratic Hamiltonian for the spinons that serves as the basis for further analysis:

HQSL =
∑

rir j ,ss′

(
trir j f †

is f js + �rir j f †
is f †

js′ + H.c.
)
. (C2)
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Here, � �= 0 describes a Z2 QSL, whereas, a U(1) QSL requires � = 0. The chemical potential, included in trir j , enforces the
half-filling condition of the spinon bands.

We now derive the spin structure factor expressed in terms of the spinon operators, as shown in Eq. (19). We will consider the
possibility of multiple sublattices in the unit cell at locations ri = Ri + δα , where Ri is the unit-cell center and δα the position of
the sublattice inside the unit cell:

Gs(q, iωn) = 1

N

∑
γ

∑
α,β

∫ β

0
dτ eiτωn

∑
i j

eiq·(ri−r j )
〈
T sγ

iα (τ )sγ

jβ

〉

= 1

4N

∑
γ

∑
ss′
zz′

∑
α,β

σ
γ

ss′σ
γ

zz′

∫ β

0
dτ eiτωn

∑
i j

eiq·(ri−r j )〈T f †
αis(τ ) fαis′ (τ ) f †

β jz fβ jz′ 〉

= 1

4N

∑
ss′

∑
α,β

∫ β

0
dτ eiτωn

∑
i j

eiq·(ri−r j )[2〈T f †
αis(τ ) fαis′ (τ ) f †

β js′ fβ js〉 − 〈T f †
αis(τ ) fαis(τ ) f †

β js′ fβ js′ 〉]

= 1

4N

∑
kk′

∑
ss′

∑
α,β

∫ β

0
dτ eiτωn eiq·(δα−δβ )[2〈T f †

αks(τ ) f
αk+qs′ (τ ) f †

βk′s′ f
βk′−qs

〉 − 〈T f †
αks(τ ) f

αk+qs(τ ) f †
βk′s′ f

βk′−qs′ 〉],

(C3)

where, in the second line, we used that
∑

γ σ
γ

ss′σ
γ

zz′ = 2δs,z′δz,s′ − δs,s′δz,z′ .
We restrict ourselves to the case of a U(1) quantum spin liquid. As a first step, we move from orbital to band basis:

fnks =
∑

α

Uαns fαks, (C4)

where Uαns is the nth eigenvector of the spinon mean-field Hamiltonian at momentum k with spin s at sublattice α:

Gs(q, iωn) = 1

4N

∑
kk′

∑
αβ

∑
s,s′

∑
nlqt

∫ β

0
dτ eiτωn eiq·(δα−δβ )

× [2U ∗
αns(k)Uαls′ (k + q)U ∗

βqs′ (k′)Uβts(k
′ − q)〈T f †

nks(τ ) flk+qs′ (τ ) f †
qk′s′ f

tk′−qs
〉

− U ∗
αns(k)Uαls(k + q)U ∗

βqs′ (k′)Uβts′ (k′ − q)〈T f †
nks(τ ) flk+qs(τ ) f †

qk′s′ f
tk′−qs′ 〉]

= 1

4N

∑
kk′

∑
αβ

∑
s,s′

∑
nlqt

∫ β

0
dτ eiτωn eiq·(δα−δβ )U ∗

αns(k)Uαls′ (k + q)U ∗
βqs′ (k′)Uβts(k

′ − q)

× [
2Gn

ss(k,−τ )Gl
s′s′ (k + q, τ )δntδlqδk,k′−q − Gn

ss(k,−τ )Gl
s′s′ (k + q, τ )δss′δntδlqδk,k′−q

]
= 1

4N

∑
k

∑
ss′

∑
nl

∫ β

0
dτ eiτωn gss′ (k, q, n, l )(2 − δss′ )Gn

ss(k,−τ )Gl
s′s′ (k + q, τ ). (C5)

We introduced the spinons Green’s functions

Gn
ss(k, τ ) = 〈T fnsk(τ ) f †

nsk〉,
Gn

ss(k,−τ ) = 〈T f †
nsk(τ ) fnsk〉,

(C6)

and the function g that accounts for the overlap of the eigenstates’ wave functions:

gss′ (k, q, n, l ) =
∣∣∣∣∣∑

α

eiq·δαU ∗
αns(k)Uαls′ (k + q)

∣∣∣∣∣
2

. (C7)

With the fermionic Matsubara frequencies νl and �l , we can rewrite the spinon Green’s function in frequency space:

Gn
ss(k + q, τ ) = 1

β

∑
�l

ei�l τ Gn
ss(k + q, i�l ),

Gn
ss(k,−τ ) = 1

β

∑
νl

e−iνl τ Gn
ss(k, iνl ).

(C8)
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We then obtain

Gs(q, iωn) = 1

4N

∑
k

∑
ss′

∑
nl

1

β

∑
�l

gss′ (k, q, n, l )(2 − δss′ )Gn
ss(k, i�l + iωn)Gl

s′s′ (k + q, i�l ). (C9)

Note that iωn = iνl − i�l is a bosonic Matsubara frequency. We can finally perform the Matsubara sum over �l and obtain

Gs(q, iωn) = − 1

4N

∑
ss′

∑
k

∑
nl

gss′ (k, q, n, l )(2 − δss′ )
nF

(
ξ s

nk

) − nF
(
ξ s′

lk+q

)
iωn − ξ s

nk + ξ s′
lk+q

. (C10)

Finally, performing an analytical continuation and taking the imaginary part, we reach

S (q, ω) = 1

4N

∑
ss′

∑
k

∑
nl

gss′ (k, q, n, l )(2 − δss′ )
[
nF

(
ξ s

nk

) − nF
(
ξ s′

lk+q

)]
δ
(
ω − ξ s

nk + ξ s′
lk+q

)
, (C11)

which corresponds to Eq. (19).

1. Dirac quantum spin liquid

We can first study a gapless U(1) quantum spin liquid where spinons have a massless Dirac dispersion: a Dirac quantum spin
liquid. The low-energy dispersion is given by ξnk = h̄vsn|k|, with n = ± and vs the spinon Fermi velocity.

The computation of spin structure factor of a Dirac quantum spin liquid is analogous to the derivation of the particle-hole
spectral function of graphene presented in Appendix B, without the additional complication of the scattering matrix of the
graphene bilayer’s structure.

We readily obtain

S (q, ω) = 3�

2

∫
d2k

(2π )2
δ(ω − h̄vs|k| − h̄vs|k + q|) = 3�

16π h̄2v2
s

ω2 − h̄2v2
s q2/2√

ω2 − h̄2v2
s q2

�(ω − h̄vsq), (C12)

where � is the area of the QSL’s unit cell.

2. Chiral quantum spin liquid

To capture a U(1) chiral spin liquid, we consider a spinon model with a gap in the spectrum. For simplicity, we assume that
the spinon dispersion has a minimum at k = 0 for the conduction band and a maximum at the same location for the valence band.
The gap at k = 0 is �s. We consider the dispersion ξnk = n( h̄2k2

2ms
+ �s

2 ), with n = ± and ms the spinon mass. At zero temperature,
we need to consider exclusively transition from the valence to the conduction band, i.e., n = + and l = − in Eq. (C11).

The integral to compute is

S (q, ω) = 3�

2

∫
d2k

(2π )2
δ

(
ω − �s − h̄2k2

2ms
− h̄2(k + q)2

2ms

)
. (C13)

It can be readily solved:

S (q, ω) = 3�

2

∫
d2k

(2π )2
δ

(
ω − � − h̄2k2

ms
− h̄2q2

2ms
− h̄2kq cos φk

ms

)

= 3�

2

∫
d2k

(2π )2
δ

(
ω − � − h̄2q2

4ms
− h̄2(k − q/2)2

ms

)

= 3ms�

8π2

∫ ∞

0
dp

∫ 2π

0
dφp pδ

[
ms

(
ω − � − h̄2q2

4ms

)
− h̄2 p2

]

= 3ms�

8π h̄2 �

(
ω − � − h̄2q2

4ms

)
. (C14)

A completely analogous result captures the zero-temperature low-energy and small-momentum spin structure factor of a gapped
Z2 spin liquid.

3. Spinon Fermi surface

The calculation of the spin structure factor in the presence of a spinon Fermi surface is analogous to the calculation of the
dynamical spin structure factor of a neutral Fermi gas [79].
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For the spinons, we assume a simple parabolic dispersion with mass ms and Fermi momentum ks,F. If we restrict to small
momentum q, the states contributing to the dynamical spin structure factor S (q, ω) are those in the crescent defined by |k| < ks,F

and |k + q| > ks,F. We have

S (q, ω) = 3

2

1

2ks,Fq

∫
k<ks,F

|k+q|>ks,F

d2k
(2π )2

δ

(
ω + h̄2k2

2ms
− h̄2(k + q)2

2ms

)

= 3

2

1

2ks,Fq

∫
k<ks,F

|k+q|>ks,F

d2k
(2π )2

δ

(
ω − h̄2q2

2ms
− h̄2qk cos φk

ms

)
,

(C15)

where φk is the angle between k and q.
For small q, we can express the number of states in the crescent between φk and φk + dφk as

d2k
(2π2)

= ks,Fq cos φk dφk

(2π )2
, (C16)

where we approximated dk = q cos φk. We finally obtain

S (q, ω) = 3

16π2h̄qvs

∫ π/2

−π/2
dφk cos φk δ

(
ω

h̄qvs
− cos φk

)

= 3

8π2h̄qvs

ω√
h̄2q2v2

s − ω2
�(h̄qvs − ω),

(C17)

where the Fermi velocity is defined as vs = h̄ks,F/ms, and we neglected the contribution h̄2q2/2ms in the delta function. This
expression corresponds to Eq. (23) of the main text.
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