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Phase transitions in the Haldane-Hubbard model
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The Haldane-Hubbard model is a prime example of the combined effects of band topology and electronic
interaction. We revisit its spinful phase diagram at half filling as a consensus on the presence of SU(2)
symmetry is currently lacking. To start, we utilize the Hartree-Fock mean-field method, which offers a direct
understanding of symmetry breaking through the effective mass term that can acquire spin dependence. Our
results, in agreement with previous studies, provide an instructive insight into the regime where the Chern
number C = 1, with only one spin species remaining topological. Besides that, we numerically study the phase
diagram of the Haldane-Hubbard model via a large-scale infinite-density matrix renormalization group (iDMRG)
method. The phase boundaries are determined by the Chern number and the correlation lengths obtained from
the transfer-matrix spectrum. Unlike previous studies, the iDMRG method investigates the Haldane-Hubbard
model on a thin and infinitely long cylinder and examines scenarios consistent with the two-dimensional
thermodynamic limit. Here, the phase diagram we obtained qualitatively goes beyond the Hartree-Fock scope,
particularly in the C = 1 region, and serves as a quantitative benchmark for further theoretical and experimental
investigations.
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I. INTRODUCTION

The study of topologically ordered states has garnered
significant attention in condensed matter physics, especially
since the discovery of the quantum Hall effect (QHE) [1–3].
This field aims to understand the intricate interplay between
topology and electronic properties in materials [4,5], lead-
ing to the emergence of novel phenomena and potential
applications in quantum computing [6] and spintronics [7,8].
Haldane’s original proposal suggested that a honeycomb lat-
tice model with electrons hopping on it could exhibit QHE
without requiring Landau levels, indicating the potential for
nontrivial topology in basic band insulators [9]. This discov-
ery culminated in its experimental realization using ultracold
atoms [10] and sparked a surge of interest in studying sys-
tems with both topologically nontrivial band structures and
electron-electron interactions. In recent years, there has been
a particular focus on the Haldane model [11–24], as well as
other models such as the Kane-Mele [25–28] and Bernevig-
Hughes-Zhang models [29–31].

Concerning the spinful Haldane-Hubbard model and its
variations, the exploration of the topological phases and phase
transitions has been performed by various numerical methods,
including the static mean-field (MF) theory [13,14,17,19,20],
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exact diagonalization (ED) [17,20,24], dynamical mean-field
theory (DMFT) [17], as well as the cluster variations [15,16]
and bold diagrammatic Monte Carlo (BDMC) technique [32].
When the ground state exhibits nontrivial topology, a Chern
number C �= 0 exists, mapping the number of protected chiral
edge modes in the presence of open boundary conditions.
When the interacting (Hubbard) term is turned off, the topo-
logical insulator of the spinful Hamiltonian leads to a total
Chern number C = 2 (CI2), wherein each spin species con-
tributes with a Chern number C = 1. Remarkably, an exotic
insulator with a Chern number C = 1 (CI1) can also emerge,
which has been considered as a result of spontaneous spin-
rotation symmetry breaking. Although the observation of
this state has reached a certain consensus [17,24,32], there
are qualitative and quantitative inconsistencies in the phase
diagrams obtained by different methods. Moreover, a de-
bate persists regarding the presence of CI1 in the extended
Haldane-Hubbard model [19,20]. As such, the phase diagram
of the Haldane-Hubbard model and the comprehensive char-
acterization of the associated phase transitions remain largely
unresolved.

Here, we mainly focus on the model at half filling on a
thin and infinitely long cylinder to address these questions.
The infinite density matrix renormalization group (iDMRG)
method is employed to better understand phase transitions in
the model. In addition, we revisit the Hartree-Fock method
and present results that help set the stage for the unbiased
ones from iDMRG and can be used to readily understand its
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mapping onto the familiar noninteracting phase diagram of the
model [9]. Furthermore, we investigate the symmetry-broken
topological phase CI1 with a Chern number C = 1.

Our paper is structured as follows. In Sec. II, we intro-
duce the Haldane-Hubbard model on a honeycomb lattice
and provide a detailed explanation of the two distinct lattice
structures that were examined using the iDMRG simulations.
In Sec. III, we present the Hartree-Fock approximation and
results, which are used to benchmark and introduce all phases
and phase transitions. Section IV showcases our main results,
specifically the phase diagram at half filling with the iDMRG
method. Lastly, we conclude our paper in Sec. V. The Ap-
pendixes contain additional numerical results for other lattice
structures obtained through the iDMRG method, as well as
other parameter sets in mean-field results.

II. MODEL AND METHOD

On a honeycomb lattice composed of two nested triangular
sublattices, A and B, the Hamiltonian of the Haldane-Hubbard
model (HHM) reads

Ĥ = − t1
∑

〈l,l ′〉,σ
ĉ†

lσ ĉl ′σ − t2
∑

〈〈l,l ′〉〉,σ
eiφll′ ĉ†

lσ ĉl ′σ

+U
∑

l

(
n̂l↑ − 1

2

)(
n̂l↓ − 1

2

)
+ δ

∑
l,σ

sl n̂lσ , (1)

where ĉ†
lσ (ĉlσ ) is the creation (annihilation) operator for an

electron with spin σ =↑, ↓ at site l , n̂lσ = ĉ†
lσ ĉlσ the par-

ticle number operator, t1 and t2 the hopping amplitudes on
the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
links, respectively, U > 0 the strength of the on-site repul-
sion, and δ > 0 the staggered chemical potential with the sign
sl = +1 (−1) for the sublattice A (B). Lastly, l sums over N
unit cells or equivalently 2N sites; 〈l, l ′〉 and 〈〈l, l ′〉〉 run over
all NN and NNN links; see Fig. 1(a).

In this model, the time-reversal symmetry is broken due
to the presence of complex phase factors eiφll′ . Specifically,
the sign of the phase angle φll ′ depends on the hopping direc-
tion on the triangular lattice consisting of NNN links, with a
positive (negative) value for the clockwise (counterclockwise)
hopping. Hereafter, t1 = t sets the energy unit, and we choose
t2 = 0.2t and |φll ′ | = φ = π/2. Additionally, we focus our
calculations on the half filling, meaning there is one electron
per site on average. This is represented by N↑ = N↓ = N ,
where Nσ = ∑

l 〈n̂lσ 〉 denotes the number of electrons for
species σ .

To start, we describe a few symmetries of the model. First,
the Hamiltonian (1) is invariant under an arbitrary choice of
phase ϕσ , i.e.,

ĉlσ → ĉlσ eiϕσ and ĉ†
lσ → ĉ†

lσ e−iϕσ , (2)

denoting a conservation of U(1) symmetry, i.e., the number
of electrons Nσ for each spin species. Besides that, under a
rotation

R(ϕr ) =
(

cos ϕr sin ϕr

− sin ϕr cos ϕr

)
(3)

FIG. 1. (a1) Schematic cartoon marking the relevant terms in
the Hamiltonian, where the NNN links get a phase e+iφ (e−iφ) for
clockwise (counterclockwise) directions. This lattice shape is used in
the mean-field calculations, here shown for a linear size Lx = Ly =
L = 3. (a2) FBZ for the diamond-shaped cluster and corresponding
valid momenta in the case of L = 6. The lattice structures for two
distinct cylinders (b1) tZTLy-2 and (c1) ZTLy-1 used in the iDMRG
simulations. Both structures have a rolling n-site shift, as marked
by the red lattice sites. (b2) According to the condition (7), valid
momentum cutting lines (gray), that thread FBZ, are plotted for
the cylinder tZT4-2. Similarly, (c2) for ZT3-1. The high-symmetry
points, �, M1, M2, M3, and K±, in (a2)–(c2) are annotated.

with an arbitrary angle ϕr , we get a new pair of annihilation
operators (ĉ′

l↑, ĉ′
l↓)T = R(ϕr )(ĉl↑, ĉl↓)T, while the Hamilto-

nian remains unchanged. Combining the above-mentioned
double U(1) symmetries with the rotation symmetry yields a
total symmetry of the model (1), characterized by the U(1) ×
SU(2) group for the charge and spin degrees of freedom,
separately. In particular, when ϕr = π/2, the rotation R(π/2)
gives

ĉ′
l↑ = ĉl↓ and ĉ′

l↓ = −ĉl↑. (4)

This corresponds to the “time-reversal” operation defined in
the space of spin degrees of freedom, which is antiunitary, i.e.,
R2(π/2) = −1, so we call it the spin time-reversal symmetry.
Lastly, particle-hole symmetry is also preserved at half filling.
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Regardless of whether the staggered potential and the phase φ

change sign, the overall physics remains unchanged [17].
On the honeycomb lattice, each sublattice site A has three

neighboring sublattice sites B, connected by vectors c1 = (0,√
3/3), c2 = (1/2, −√

3/6), c3 = (−1/2, −√
3/6) in two-

dimensional coordinates, where |c1| = |c2| = |c3| = √
3/3;

see Fig. 1(a1). We can roll the honeycomb lattice onto a sphere
if three edges along the c1, c2, and c3 directions share an equal
side length. After choosing primitive vectors

a1 =
(

1

2
,

√
3

2

)
and a2 = (1, 0), (5)

the first Brillouin zone (FBZ), expanded in reciprocal vectors

b1 =
(

0,
4π√

3

)
and b2 =

(
2π, − 2π√

3

)
, (6)

has high-symmetry points relevant to the point group sym-
metry D6h of the lattice: two inequivalent K points K±, one
� point � = (0, 0), three distinct M points (i.e., M1, M2,
and M3); see Fig. 1(a2). As both δ and φ are finite in the
Hamiltonian (1), the D6h symmetry reduces to a lower C3

one, specifically 120◦ rotational symmetry. However, on a
cylinder that we study by the iDMRG method [33–37], the
C3 symmetry is also absent.

To carry out the iDMRG simulations, one obtains the cylin-
drical geometry by rolling the sheared two-dimensional lattice
onto a thin and infinitely long cylinder. The allowed cutting
lines in the FBZ encompass the momentum points where the
gap closure of the low-energy excitations is most relevant for
capturing phase transitions. This procedure is specifically per-
formed when high-symmetry points are available [12,20,24].
Figures 1(b1) and 1(c1) illustrate this process for two differ-
ent cylinders: zigzag top (ZT) and tilted zigzag top (tZT),
respectively, distinguished by the orientation along the short
direction and the way they are rolled up. For example, we plot
the cylinder tZTLy-2 in Fig. 1(b1), which has zigzag short
edges and a shift of two sites. For the cylinder tZTLy-n, a
translation by Ly sites along the short circumference (y axis)
is equivalent to a translation by n sites along the x axis, which
selects the momentum k = (kx, ky) as follows:

Ly

(
kx

2
+

√
3ky

2

)
= 2π p + nkx (7)

with an arbitrary integer p. Each selected value of p gives
a cutting line of momentum in the FBZ. Previous studies
[20,38] have shown that various cylinders with distinct Ly

and n yield momentum cutting lines in FBZ. This work
mainly considers two cylinders, that is, ZT3-1 and tZT4-
2. As illustrated in Figs. 1(b2) and 1(c2), these strike a
balance of encompassing all the necessary high-symmetry
points relevant to the phase transitions, i.e., two K points,
one � point, and three M points, while having a sufficiently
small variational unit cell (encoded in the values n = 1 and
2) that results in amenable computing times in iDMRG. In
Appendix A, we also study one extra geometry, the cylinder
tZT2-1, which we show to be significantly impacted by finite-
size effects precisely because some of the high-symmetry
points are unavailable. In Sec. IV D, we further analyze the

momentum resolution of the correlation-length spectra for
cylinders tZTLy-1.

III. MEAN-FIELD ANALYSIS

Let us begin by describing some general features of the
original Hamiltonian (1). Setting U = 0, the model reduces to
the original Haldane model. In the case of δ = 0, the phase
φ = π/2 guarantees a Chern insulator CI2 with a Chern num-
ber C = 2 in the ground state (Cσ = 1 for each spin species).
Such Chern insulator survives until the closure of the gap
at |δ/t2| = 3

√
3, evolving into a band insulator with a trivial

charge density wave (CDW) state, manifesting a finite density
imbalance between sublattices A and B [9], given by

I = |nA↑ + nA↓ − nB↑ − nB↓|, (8)

where

nA↑ = 〈n̂l↑〉 and nA↓ = 〈n̂l↓〉, for l ∈ A,

nB↑ = 〈n̂l↑〉 and nB↓ = 〈n̂l↓〉, for l ∈ B, (9)

denote the number of electrons for distinct sublattice sites and
species. We stress that I �= 0 once δ > 0 and thus the tran-
sition at |δ/t2| = 3

√
3 occurs without any relevant symmetry

breaking.
In the other limit of δ = 0 and U � t1, t2, the presence

of charge excitations is suppressed: The second-order hop-
ping processes result in an effective Heisenberg model, which
includes NN and NNN antiferromagnetic Heisenberg cou-
plings, denoted as J1 and J2, respectively. When the ratio of
J2/J1 = t2

2 /t2
1 � 0.27 [39–41], a Néel phase can be achieved

in the honeycomb lattice. In this phase, the ground state
exhibits SU(2) symmetry breaking, and the low-energy ex-
citation spectrum contains gapless Goldstone modes [42,43].
Nonetheless, when hopping energy scales are compatible
with the repulsive interactions, the emergence of CI1 with
spontaneous spin-rotation symmetry breaking has also been
observed in this model using various methods [17,24,32].

In the simplest mean-field treatment, the on-site interaction
is approximated by

n̂l↑n̂l↓ ≈ n̂l↑〈n̂l↓〉 + 〈n̂l↑〉n̂l↓ − 〈n̂l↑〉〈n̂l↓〉. (10)

This approximation assumes that one species of electrons
move in the background of the site-dependent chemical po-
tential provided by the other species. The superconducting
term 〈ĉl↑ĉl↓〉, which breaks U(1) symmetry, is also neglected
here because U > 0, following the BCS paradigm [44,45].
We notice that spin-flipping terms 〈ĉ†

l↑ĉl↓〉, describing gapless
transverse spin excitations in the Néel phase, would artificially
assign a finite mass to the relevant Goldstone modes, indi-
rectly breaking SU(2) symmetry. Therefore, the Néel phase is
characterized by the spin-spin correlation function along the z
axis, given by

SSDW = 1

N2

∑
l,l ′

〈(n̂l↑ − n̂l↓)(n̂l ′↑ − n̂l ′↓)〉. (11)

This correlation function describes the long-range spin stag-
gering in space, corresponding to a spin density wave (SDW)
state. However, we observe that including spin-flipping terms
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in the mean-field approximation does not alter our conclusions
below, and we remove them for simplicity.

In principle, a total of 2N variational parameters, specifi-
cally 〈n̂l↑〉 and 〈n̂l↓〉 for all sites, are necessary. In practice,
considering the translation symmetry, only four variational
parameters, that is, nA↑, nA↓, nB↑, and nB↓, are sufficient for
representing the density imbalance of charge and spin be-
tween the two inequivalent sublattices in four distinct phases
of the quantum phase diagram [17].

In reciprocal space, the creation operators are defined as
follows:

ĉ†
lσ = 1√

N

∑
k∈FBZ

d̂†
kσ

e−ik·rl , for l ∈ A,

ĉ†
lσ = 1√

N

∑
k∈FBZ

ĝ†
kσ

e−ik·rl , for l ∈ B, (12)

with d̂†
kσ and ĝ†

kσ denoting the creation operators in reciprocal
space. The resulting mean-field Hamiltonian is given by

ĤMF =
∑

k∈FBZ

ψ̂
†
kHMF

k ψ̂k, (13)

where ψ̂
†
k = (d̂†

k↑, ĝ†
k↑, d̂†

k↓, ĝ†
k↓) is the spinor notation used as

a basis for each lattice momentum k. The 4 × 4 matrix HMF
k

is given by⎛
⎜⎜⎝

m+
k + δA↓ fk

f ∗
k m−

k + δB↓
m+

k + δA↑ fk
f ∗
k m−

k + δB↑

⎞
⎟⎟⎠ (14)

with the NN structure factor fk = t1(1 + e−ik·a1 + e−ik·a2 ),
the NNN ones m±

k = ±2t2{sin(k · a1) − sin(k · a2) − sin[k ·
(a1 − a2)]}, and finally, δAσ = δ + UnAσ̄ and δBσ = −δ +
UnBσ̄ . This leads to an effective spin-dependent staggered
potential

δσ
MF ≡ 1

2
(δAσ − δBσ ) = δ + U

2
16nAσ̄ − nBσ̄ ), (15)

where σ̄ denotes the reverse of σ .
In the nonlinear variational process, to avoid the problem

of metastable states, we minimize the energy by starting from
various initial guesses of the ground state. More concretely,
each of the four parameters in an initial guess can be randomly
chosen from the range of [0, 1]. However, given that the
exchanging symmetry between species potentially breaks, we
restrict the initial states to have nA↑ > nA↓ and nB↓ > nB↑
[46]. Apart from the normal CDW state, the staggered magne-

tization is represented by M =
√
M2

x + M2
y + M2

z , where

Mx/y/z = 1

2

√〈(
Ŝx/y/z

A − Ŝx/y/z
B

)2
〉

(16)

represent the components of staggered magnetization in the x,
y, and z axes,

ŜA/B =
∑
σσ ′

ĉ†
lσ Sσσ ′ ĉlσ ′ (17)

gives the vector operators of the spin at site l belonging to the
sublattices A and B, and the vector S = (Sx, Sy, Sz ) includes

0 π/2 π

φ

−3
√

3

0

3
√

3

δ/
t 2

C = 0

C = +1

(a)

0 5 10 15 20
-25

0

25

50

75

δσ M
F
/t

2

3
√

3

−3
√

3

(b)
δ↑MF

δ↓MF

0 5 10 15 20

0

0.2

0.4

0.6

M
(c)

0 5 10 15 20

U/t

0

5

10

Δ
c

(d)

L = 30

L = 180

0

1

2

I

−4
3

−2
3

0

2
3

4
3

k
x /π

K− K+

FIG. 2. Mean-field results for staggered potential δ/t = 6.
(a) The positive-φ phase diagram in the noninteracting limit (U = 0)
for each spin species. (b) The effective staggered potential δσ

MF for
σ =↑, ↓ defined in (15), as a function of the interaction strength
U . The shaded region marks the topological regime. (c) The stag-
gered magnetization order parameter M and the sublattice density
imbalance I as a function of U/t . (d) The charge gap 	c(k) defined
in (19) as a function of U/t . Here, contrasting two different system
sizes, L = 30 and 180, finite-size effects are marginal. Inset: FBZ
with two K points K± annotated [and similarly shown in (a) and
(b)], and where a gap closing occurs at values of the interactions
Uc1/t = 11.28 and Uc2/t = 14.3, respectively, marking the two topo-
logical transitions. The right vertical axis gives the location kx of the
smallest gap 	c.

the matrix representations Sx, Sy, and Sz for the spin-1/2
operators.

To characterize the different phases and associated transi-
tions, we now consider the case of fixed δ/t = 6 in Fig. 2 as
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an example. At small interactions U , due to the strong alter-
nating chemical potential, electrons mostly occupy sublattice
B, resulting in I > 0 [Fig. 2(c)], namely nBσ � nAσ . Besides
that, no staggered spin polarization is observed, resulting in
M = 0; such a regime corresponds to a normal CDW state
with a band gap. In contrast, the ground state favors a Mott
insulator with SDW in the large-U region, where double occu-
pancies are disfavored and spin-up/down electrons separately
reside on sublattices A/B. This results in a reduced imbalance
I → 0 while M turns finite.

Interestingly, a topologically nontrivial Chern insulator
with finite staggered spin polarization emerges in an inter-
mediate region, the spin-rotation symmetry-broken CI1 state.
This is easy to see by mapping to the effective staggered
potential for each spin species δσ

MF. Compared to the phase
diagram of the original noninteracting Haldane model [9],
because of the effective chemical potential [Fig. 2(b)]∣∣δ↑

MF/t2
∣∣ < 3

√
3 and δ

↓
MF/t2 > 3

√
3, (18)

only the spin-up species contributes with a finite Chern num-
ber C = 1 [see Fig. 2(a)].

Two consecutive topological transitions, CDW-CI1 and
CI1-SDW, occur as the interaction strength U increases. These
transitions can be characterized by the closure of the charge
gap

	c(k) = min
k1,k2

[E2(k2) − E1(k1)], (19)

which is defined as the minimum energy difference between
the first unoccupied band E2 at momentum k2 and the last
occupied band E1 at momentum k1. They occur approxi-
mately at transition points Uc1/t � 11.28 and Uc2/t � 14.3,
with gap closing at two distinct Dirac points k = k2 − k1 =
K±, respectively. The magnetic order parameter M behavior
suggests a first-order transition for CDW-CI1, while the CI1-
SDW transition appears to be continuous. We consider a fully
periodic diamond-shaped lattice with a linear dimension L
to study these transitions. When L is a multiple of 3, all the
high-symmetry momentum points are captured, as illustrated
in Fig. 1(a2) for L = 6.

In summary, we obtain the phase diagram within the
mean-field approximation in the parameter space (U, δ)
quantitatively agreeing with existing results [17]. Here, at
large δ, there are three distinct phases with increasing in-
teraction strength U : band insulating with trivial CDW in
the weak-U region, Chern insulator CI1 with SDW in the
intermediate region, and trivial SDW in the strong-U region.
If the original staggered potential is small, one also recovers
a Chern insulator CI2 phase when the interaction strength U
is sufficiently small (see Appendix B). In the next section, we
depart from this approximation, considering all quantum fluc-
tuations, and advance that the microscopic physical scenario
of the spin part qualitatively changes in the CI1 and SDW
regions.

IV. iDMRG CALCULATIONS

Having established the mean-field results, particularly on
the emergence of the symmetry-broken phase with a Chern
number C = 1, in this section, we use the iDMRG method

to supplement them. In what follows, Secs. IV A and IV B
are used to briefly introduce the algorithm for evaluating
characteristic correlation lengths and the Chern number, re-
spectively, which are then employed to identify the different
phases of the Hamiltonian (1) in Sec. IV C.

A. Correlation lengths

In the iDMRG method for an infinitely long cylinder, a
“snakelike” matrix product state (MPS) is translation invariant
along the longitudinal direction [47,48]. Within this repre-
sentation, we can immediately obtain the transfer matrix for
a large variational unit cell along the circumference, whose
eigenvalues indicate the contribution of different excitations
to the correlation functions [49,50]. By normalizing the MPS,
we obtain the dominant eigenvalue γmax = 1 and sort the
eigenvalues in descending order of their amplitudes.

Using U(1) symmetry for each spin species individually,
we divide the transfer matrix into multiple subspaces. For
a subspace S , we get conserved numbers of electrons for
each spin species NS

↑ and NS
↓ . By taking the ground state at

half filling as a reference, we can define the deviation in the
number of electrons and the spin polarization along the z axis
as follows:

δN = NS
↑ + NS

↓ − 2N and Sz = 1
2 (NS

↑ − NS
↓ ). (20)

Within the subspace S of the transfer matrix, which is
labeled by (δN, Sz ), the jth eigenvalue can be expressed as

γ S
j = exp

(
ikSj − |ax|/ξS

j

)
, (21)

where real numbers kSj and ξS
j represent the momentum and

correlation length, respectively, and ax is the translation vector
between two NN variational unit cells. For cylinder types
tZTLy-n and ZTLy-n described in Sec. II, |ax| = 1 and

√
3,

respectively. Thus, the correlation lengths in the subspace S
can be defined as

ξS
j = −|ax|/ ln

∣∣γ S
j

∣∣. (22)

For the case of n = 1, the variational unit cell in practice
reduces to one Lyth of the above-mentioned size, i.e., 2 and
4 for the geometry tZTLy-1 and ZTLy-1, respectively. In such
cases, we have

ξS
j = −|ax|

/(
Ly ln

∣∣γ S
j

∣∣). (23)

Here, we focus on three representative correlation lengths
in the subspaces specified by S = (0, 0), (1, 1/2), and (0, 1):
ξc ≡ ξ

(1,1/2)
0 , associated with the charge excitation where a

single spin-up electron is added; ξs ≡ ξ
(0,1)
0 , associated with

the spin-flipping excitation where a spin-up electron is added
after a spin-down electron is removed; and ξn ≡ ξ

(0,0)
1 , as-

sociated with a neutral excitation that potentially indicates a
combination of the charge and spin excitations.

In the ground-state phase diagram of HHM, the lowest-
energy charge excitations in all phases have a finite gap,
implying the insulating nature of all phases, topologically
trivial or not. Assuming that they are Lorentz-invariant, the
inverse of the correlation length 1/ξc is proportional to the
charge gap 	c. At a continuous phase transition point, where
the charge gap closes in the thermodynamic limit, the relevant
correlation length ξc becomes infinite. However, due to the
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FIG. 3. (a) Phase diagram of the HHM (1) in the (U, δ) space of parameters determined by the iDMRG simulations with a cylindrical
geometry and a truncated bond dimension m = 2048. Here we contrast the phase boundaries calculated from two different cylinders ZT3-1
and tZT4-2 exhibiting overall minimal discrepancy. (b) Correlation lengths for neutral (ξn) and spin (ξs) excitations for U/t = 8, showing the
SDW-CI2 transition. (c) The charge excitation correlation length (ξc) at U/t = 18 whose peaks mark the SDW-CI1 and CI1-CDW transitions.
In (a)–(c), dashed (solid) lines are data for the ZT3-1 (tZT4-2) cylinder with m = 4096. The colored regions in (b) and (c) represent the
corresponding phases classified for the tZT4-2 cylinder in (a). (d) Accumulative discrepancy Q as a function of the adiabatically inserted
magnetic flux θ with a small interval δθ/π = 0.1 for the tZT4-2 cylinder, using a truncated bond dimension m = 4096. The markers and color
codes are also inserted in (a).

finite truncated bond dimension m and the small circumfer-
ence of the cylinder, sharp peaks in ξc arise instead. Besides
that, the spin and neutral excitations have an “extra degen-
eracy” in the CI1 state, specifically a spin-triplet state with
degenerate Sz = 0, ±1 states, where ξs = ξn, exemplified with
cylinder tZT2-1 in Appendix A. That degeneracy implies that
the lowest-energy elementary excitation behaves as a magnon
carrying a total spin of 1, similar to the Goldstone modes in the
SDW phase (or precisely, Néel phase) [51]. Therefore, when
U is fixed, we determine the phase boundaries according to
two features in the correlation lengths as a function of δ: the
sharp peaks of ξc and the overlaps between ξs and ξn.

B. Chern number

To substantiate the phase diagram determined by the cor-
relation lengths, we further calculate the Chern number in
different phases by the iDMRG method using a charge pump-
ing scheme [52]. Specifically, one can envision that if a
magnetic flux θ is adiabatically inserted along the x axis,
charges would be pumped from the left to the right side
of a cylinder. The accumulative discrepancy of the charges
between two sides of the cylinder can be obtained with

Q(θ ) =
∑

p


2
p(θ )

[
QL

p(θ ) − QR
p (θ )

]
, (24)

where 
p is the singular value obtained after decomposing
the whole cylinder into two semi-infinite parts, QL/R

p is the
charge degree of freedom on the left/right side marked for
the pth renormalized basis, and p runs over all truncated bond
dimension m.

Upon inserting the magnetic flux from θ to θ + δθ , all
eigenstates of the system undergo adiabatic evolution, mean-
ing that the system stays at its targeted state, indicated by the
fidelity F (θ ) = |〈�0(θ )|�0(θ + δθ )〉| being approximately
fixed at 1. As a result, the Chern number can be calculated

using the accumulated change with

C = 1
2 |Q(2π ) − Q(0)|. (25)

C. Phase transitions

We begin by presenting the phase diagram of HHM in
the space of parameters (U, δ), as shown in Fig. 3(a). The
phase boundaries are determined using the correlation lengths
and the Chern number. In particular, we note that the phase
boundaries for cylinders ZT3-1 and tZT4-2 are fairly consis-
tent. Four phases exist: the CI1 phase with a Chern number
C = 1 and the CI2 phase with a Chern number C = 2, when
U/2 and δ are comparable; a CDW and an SDW insulator
phase, both with a zero Chern number, when either δ or U/2
prevails. Other methods have also predicted such phases, e.g.,
MF, ED, DMFT [17], and BDMC [32], although quantitative
agreement regarding the locations of the phase transitions was
lacking.

Several remarks on Fig. 3(a) are in order: (i) The CI2 phase
can extend to the lobe at U/t ≈ 11 and δ/t ≈ 4.6, in closer
quantitative agreement to the DMFT outcomes [17]. In addi-
tion, for 10 � U/t � 11, the CI2 phase survives in the middle
of CI1, exhibiting a reentrant behavior. (ii) The CI1 phase ex-
ists even at the small-U region, making the transition between
the CI2 and CDW phase indirect, in qualitative agreement with
the ED results [17]. (iii) At δ = 0, the transition between the
CI2 and SDW phase occurs around U/t ∼ 6.8, comparable
to those of ED, DMFT, and BDMC [17,32]. However, when
increasing U with a small nonzero δ, both ED and BDMC
predict two consecutive transitions from CI2 to CI1, and then
to SDW, instead of the CI2-SDW transition predicted by us.

Having established those main features unifying the picture
for the phase diagram obtained from different methods, we
now illustrate how the phase boundaries in Fig. 3(a) are de-
termined by the correlation lengths introduced in Sec. IV A.
In Fig. 3(b), the charge correlation length ξc exhibits two
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pronounced peaks for U/t = 18 when sweeping the staggered
potential δ, indicative of the critical points of the phase tran-
sitions SDW-CI1 and CI1-CDW. In Fig. 3(c) for U/t = 8, one
more feature emerges compared to those in Fig. 3(c): ξn and ξs

overlap for δ/t � 1.68 and they exhibit a sharp discontinuity
at this point. This is a signature of the phase transition SDW-
CI2, since in the SDW phase, the spin and neutral excitation
form a spin-triplet excitation.

By computing such correlation lengths for different sets
of parameters, we compile the final phase diagram, Fig. 3(a).
Lastly, we note that despite minor quantitative differences, the
results for the smaller cylinder geometry ZT3-1 [dashed lines
in Figs. 3(a)–3(c)] result in similar behavior to the ones for the
tZT4-2 (solid lines).

After computing the correlation lengths and obtaining the
phase diagram, our analysis progresses toward determining
the Chern number in different phase regions with the charge
pumping scheme introduced in Sec. IV B; results for the tZT4-
2 cylinder geometry are summarized in Fig. 3(d). Specifically,
in the case of U/t = 8 and δ/t = 1.4, the adiabatic inser-
tion of a 2π flux pumps a charge 	Q = Q(2π ) − Q(0) = 0,
confirming that the Chern number is given by C = 0, which
is indicative of the system being in a topologically trivial
SDW phase. On the other hand, for U/t = 8 and δ/t = 2.9, a
continuous curve with an adiabatic process yields a pumping
charge 	Q = 4, which corresponds to a topologically non-
trivial phase with a Chern number of C = 2. Lastly, the CI1

phase is exemplified in the set of parameters U/t = 15 and
δ/t = 7.1—a clear accumulated charge 	Q = 2 exposes the
CI1 ground state.

Overall, the phase characteristics revealed by the Chern
number calculations for different parameters agree with the
expected correlation lengths. Therefore, the phase diagram
of HHM can be accurately identified through the combined
analysis of correlation lengths and Chern numbers with the
iDMRG method.

D. Correlation-length spectrum

Further characterization can be performed by describ-
ing the low-energy excitations with momentum resolution,
achieved via a particular type of adiabatic driving. For the
charge excitations, for example, we add a uniform phase factor
in front of hopping terms ĉ†

lσ ĉl ′σ for both species, which
equivalently threads a gauge flux θ through the thin and
infinitely long cylinder adiabatically. For the cylinder tZTLy-
1, the corresponding momentum cutting lines, mentioned in
Eq. (7) of Sec. II, follow a set of equations

kSj,1 = kSj + θ/Ly and kSj,2 = LykSj modulo 2π, (26)

which sweeps the FBZ as θ grows from 0 to 2π . Here, kSj,1
and kSj,2 denote the momenta in the basis of two reciprocal
vectors b1 and b2. As a result, we can obtain the momentum-
dependence features of the correlation-length spectrum 1/ξc

for the charge excitations in the subspace (1, 1/2) of the
associated transfer matrix.

In contrast, to produce the spectrum for the spin-flipping
excitations in the subspace (0, 1), it is necessary to adiabat-
ically thread a −θ (+θ ) flux to the cylinder for the spin-up
(spin-down) electrons. Considering the exchanging symmetry
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FIG. 4. The correlation-length spectrum as a function of the in-
serted flux θ , the momenta k1 and k2 in the reciprocal vectors b1 and
b2, respectively. We consider two distinct excitations for the cylinder
tZT4-1 when U/t = 15 and δ/t = 0 in the SDW region. (a1)–(a3)
The inverse correlation lengths 1/ξc for the charge excitations in the
subspace (1, 1/2) of the transfer matrix. The lowest-energy charge
excitations in the positive (red) and negative (magenta) branches hit
K points K± as θ approaches ±2π/3, individually. (b1)–(b3) The
inverse correlation lengths 1/ξs for the spin-flipping excitations in
the subspace (0,1). Both of the lowest-energy spin excitations hit
the � point as θ approaches 0 and ±π . (a4), (b4) We annotate
the momenta of the lowest-energy excitations for various θ , color
marked according to the previous panels. The momentum-cutting
lines (gray) for the charge and spin-flipping excitations are indicated
by Eq. (26) and Eq. (27), respectively, when θ = 0. Here, we set the
truncated bond dimension m = 4096.

between two spin species, it is sufficient to increase θ from
0 to π . Similarly, for the cylinder tZTLy-1, the corresponding
momentum is resolved as

kSj,1 = kSj − 2θ/Ly and kSj,2 = LykSj modulo 2π. (27)

First, we exemplify the correlation-length spectrum for a
typical parameter U/t = 15 and δ/t = 0 in the SDW phase
region. As shown in Fig. 4(a1), the lowest-lying branch of
charge excitations reaches its minimum at θ = ±2π/3, where
one of the momentum cutting lines goes through either of

K± =
(

k1 = ±2π

3
, k2 = ±4π

3

)
modulo 2π, (28)

which equivalently corresponds to the momenta kx = ±4π/3
and ky = 0 in Cartesian coordinates, marked in Fig. 4. For the
spin-flipping excitations, the lowest-lying branch, as shown
in Figs. 4(b1)–4(b3), gets the minimum at the high-symmetry
point � = (0, 0) modulo 2π as θ = 0. The cone structure in
the vicinity of the � point implies the emergence of Goldstone
modes, providing a hallmark of gapless excitations in the
SU(2)-symmetry broken Néel phase [53,54]. The small but
finite Ly/ξs at the � point is caused by the finite truncated
bond dimension m = 4096 and circumference Ly.

Second, we check the effects of the finite circumference of
the cylinder on the spectrum as we vary Ly from 2 to 5, while
choosing a sufficiently large m � 4096. In the SDW phase
region, at U/t = 15 and δ/t = 0, as shown in Figs. 5(a1)
and 5(a2), all minima of the lowest-lying branches of charge
excitations are located at the K points K± and 1/ξc ap-
proaches a constant as Ly grows. In turn, for the minima of
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FIG. 5. Finite-circumference effect of the lowest-lying
correlation-length spectrum level ξ (1,1/2) for the charge excitation
(two left columns), and ξ (0,1) for the spin excitation (two right
columns). We choose four typical parameter sets: (a1)–(a4)
U = 15 and δ = 0, (b1)–(b4) U = 18 and δ = 8, (c1)–(c4) U = 18
and δ = 8.5, and (d1)–(d4) U = 15 and δ = 8.5. Besides, we
systematically select four circumferences: Ly = 2 (brown), 3
(black), 4 (red), 5 (blue) in the cylinder tZTLy-1. The truncated bond
dimension is given by m = 4096.

spin-flipping excitations at �, shown in Figs. 5(a3) and 5(a4),
the inverse correlation length 1/ξs, theoretically associated
to the gapless Goldstone modes, is expected to decrease as
the circumference Ly grows. We notice that the approach to
the thermodynamic limit is highly influenced by large finite-
size effects when Ly � 5. In contrast, in the CDW phase, at
U/t = 15 and δ/t = 8.5, all the minima of the inverse corre-
lation lengths 1/ξc and 1/ξs for the charge and spin-flipping
excitations in Figs. 5(d1) and 5(d4) approach convergence as
the circumference Ly increases.

Lastly, in the CI1 region, such as δ/t = 8 and 8.5 when
U/t = 18, the equivalent charge gap 	c ∝ 1/ξc remains finite
[Figs. 5(b1)–5(b2) and 5(c1)–5(c2)]. Up to relatively small
Ly = 5, we cannot conclude that the gap for the spin-flipping
excitations closes in the thermodynamic limit of infinite
cylinder circumference [Figs. 5–5(b4) and 5(c3)–5(c4)]. Yet,
compared to the spin excitation spectrum in the SDW phase
for U/t = 15 and δ/t = 0 [Figs. 5(a3)–5(a4)], we find that
the low-energy spectrum of the spin-flipping excitations in
the CI1 phase region has a similar qualitative profile, based
on which we believe that the resulting ground state behaves
as a Néel state with SU(2) symmetry breaking. However,
when the iDMRG simulations are applied to a cylinder with

a finite circumference Ly, we consistently obtain the lowest-
energy state with a total spin of 0. This is because the energy
spacing between quasidegenerate joint states in distinct total
spin sectors is approximately proportional to 1/Ly [53,54].
The resulting spin-spin correlation functions preserve the spin
rotation symmetry, as shown in Fig. 9 in Appendix C for the
cylinder circumferences studied.

V. SUMMARY AND CONCLUSIONS

We have investigated the ground-state phase diagram of
HHM at half filling using the MF and iDMRG methods.
Within MF, we examine four physical quantities: the effective
mass term for each spin species, the staggered magnetiza-
tion, the sublattice density imbalance, and the excitation gap,
extracting a phase diagram consistent with previous MF calcu-
lations [17]. Remarkably, the calculated effective mass term,
as a function of the interaction U , clearly demonstrates a
scenario where only one of the two spin species contributes
to the Chern number, thereby unequivocally identifying the
CI1 phase.

Within an unbiased scheme using iDMRG, we have em-
ployed the Chern number and three different characteristic
correlation lengths to determine the phase diagram in the
(U, δ) space, with ±δ the staggered potential energies of
the two sublattices of the honeycomb lattice. In addition, we
unveil a detailed analysis of the low-energy charge and spin
excitations by resolving the momentum information in the
correlation-length spectrum. Our state-of-the-art phase dia-
gram not only analyzes the discrepancies between the phase
boundaries predicted by different approaches as MF, ED,
DMFT [17], and BDMC [32], but also excludes the emergence
of any new phase other than the SDW, CDW, CI1, and CI2

phases, therefore establishing a reliable benchmark for future
theoretical and experimental investigations of HHM. Further-
more, we expect that the study of variants of this model, in
particular when including nearest-neighbor interactions as in
the extended Haldane-Hubbard model, can now be clearly
accessed with our simulations, addressing whether or not the
unique CI1 survives in the presence of a staggered potential
energy δ, extending the results of Ref. [20].
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FIG. 6. Phase diagram of the HHM in the space (U, δ) of param-
eters for cylinder tZT2-1. Unlike in Fig. 3(a), the CI2 phase does not
exhibit a reentrant behavior in the CI1 phase, a feature to which we
attribute being related to finite-size effects; see text. (b), (c) Correla-
tion lengths as a function of the potential energy δ by setting on-site
interaction (b) U/t = 6 and (c) 15. All results are obtained by the
iDMRG simulations with a truncated bond dimension m = 2048.

APPENDIX A: TZT2-1 CYLINDER

In Sec. IV, we have presented a detailed account of the
quantitatively consistent phase diagrams of ZT3-1 and tZT4-
2 with the iDMRG method. In this section, we extend our
investigation to the cylinder tZT2-1 and demonstrate the sig-
nificance of the proper choice of the lattice structure in the
iDMRG simulation.

To summarize these results, Fig. 6(a) shows the phase
diagram in the (U, δ) space for the tZT2-1 cylinder. The phase
diagram is qualitatively similar to the one before, exhibiting
four different phases. The most remarkable difference be-
tween Fig. 3 and Fig. 6(a) is the direct transition between CI2

and SDW, which leads to the absence of the CI2 phase when
U/t = 10 ∼ 11. In other words, the CI2 phase misses the
reentrant behavior in the CI1 phase. Reference [24] obtained
the precise same result on the 12A cluster. Again, we attribute
this difference to a finite-size effect; i.e., Ly = 2 is too small
to adequately capture fine features of the phase diagram in
the thermodynamic limit. Overall, an accurate selection of the
lattice structure on the infinite cylinder in our work effectively
preserves the physical properties of the ground state related to
the high-symmetry points.

Figures 6(b) and 6(c) show various correlation lengths at
U/t = 6 and 15, respectively, which qualitatively agrees with
the conclusions in the large-U region for the cylinder ZT3-1
mentioned in the main text. We also obtained the SDW-CI1

and CI1-CDW transition points by observing the peaks of the
correlation length for the lowest-energy charge excitation ξc.
The correlation lengths for the spin and neural excitations
exhibit an “extra degeneracy” of ξs = ξc in the CI1 state. This
implies the presence of an excitation “magnon” with degener-
ate Sz = 0, ±1 states in the lowest excited energy level. On the
other hand, the multiplet vanishes in the CI2 state. Hence, we
distinguish the CI1 and CI2 states by examining the overlaps
between ξs and ξn.

For the lattice structure under consideration, the allowed
momentum values appear as a discrete set of lines tangent to
two edges of FBZ [see Fig. 7(a)], owing to the finite number
of sites on the circumference of the cylinder. Notably, despite
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FIG. 7. (a) Excitation momentum in the first Brillouin zone;
several excitation momenta are superimposed and color-coded ac-
cording to (b). (b) The corresponding excitation momentum kx in
the x axis as a function of the potential energy δ by setting on-site
interaction U/t = 15 for cylinder tZT2-1. (c) A zoom-in of the
excitation momentum kx after it transitioned to close K+, the x-axis
projection of which is equal to 4π/3 (black dashed line). We use a
truncated bond dimension m = 2048 in the iDMRG simulations.

being a lattice encompassing the inequivalent Brillouin zone
corners, it does not capture other essential symmetry points,
as it misses some of the inequivalent M points.

The x-axis projection of the excitation momentum kx

in FBZ with increasing δ is illustrated by the empty blue
hexagons positioned near the momentum points K− and
K+. The momentum associated with the spin and neutral
excitations, represented by red and black empty hexagons,
respectively, are located at the � point instead. Generally, the
momentum kx of the low-energy excitations along the longi-
tudinal direction of the cylinder can be obtained according to
Eq. (21).

To give an intuitive understanding of the low-energy ex-
citation momentum points, Figs. 7(b) and 7(c) show the kx

dependence of δ. The momentum point jumps from K− to K+
within the CI1 phase region in Fig. 7(b). We have also checked
the phase transitions SDW-CI1/CI2 related to the K+ point,
while the others are about K−, by sweeping the parameter
space. Figure 7(c) gives a zoom-in of the excitation momen-
tum for the charge excitation around K+ for δ/t � 6.8, close
to where the momentum point jumping occurs. Unlike the MF
results in the inset of Fig. 2(c), the energy gap closure here
does not strictly happen at the Dirac point. We emphasize that,
similarly, for ED studies in small clusters, charge excitation
momentum may not coincide with the K points [24]. As here,
such 12-site clusters (often labeled as 12A) do not present all
point-group symmetries also missing many of the inequivalent
M points.

APPENDIX B: OTHER δ VALUES IN THE MEAN-FIELD
THEORY

The main text shows a line cut in the (U, δ) phase diagram
using the MF method, with δ/t = 6 fixed. While illustrative of
the CI1 phase and the topologically trivial ones, either band-
insulating CDW or SDW, it does not show the fourth phase in
the phase diagram, corresponding to CI2. For completeness,
we include in Fig. 8 data for δ/t = 1, which with increasing
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(a) The effective staggered potential for each spin species after the
interactions are accounted for on a mean-field level; the shaded
region marks the topological regime. (b) The staggered magnetic
order parameter, the sublattice density imbalance, and the excitation
gap (c) vs U/t .

interactions U drive the system across the phases CI2, CI1,
and SDW. As for the δ/t = 6 case shown in the main text, the
topological character of the different phases can be readily
inferred from the value of the effective staggered potential
δσ

MF [Fig. 8(a)], checking whether |δσ
MF/t2| < 3

√
3. For small

U , both δ
↑
MF and δ

↓
MF satisfy this condition, and the result-

ing phase exhibits a Chern number of 2. The spontaneous
symmetry breaking that occurs when δ

↑
MF �= δ

↓
MF is marked
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FIG. 9. Spin-spin correlation function Oα
l = 〈Ŝα

0 Ŝα
l 〉 (α = x, y,

and z) for the cylinder tZTLy-1 with different circumferences, i.e.,
Ly = 2 (brown), 3 (black), 4 (red), 5 (blue). We choose U/t = 18 and
δ/t = 8 in the CI1 phase region, which shares the same parameter
set of Figs. 5(b1)–5(b4). All results are obtained by the iDMRG
simulations with a truncated bond dimension m = 4096.

as a first-order transition with a discontinuous magnetic or-
der parameter M [Fig. 8(b)], whereas a continuous transition
occurs from the CI1 to the SDW regime. Nevertheless, in both
cases, the gap excitation 	c(k) → 0 identifies the topological
transition.

APPENDIX C: SPIN-ROTATION SYMMETRY

In Fig. 9, we present the spin-spin correlation function
Oα

l = 〈Ŝα
0 Ŝα

l 〉 (α = x, y, and z) along a “snakelike” path for the
cylinder tZTLy-1 in the CI1 phase region. We use a parameter
set of U/t = 18 and δ/t = 8. For four different circumfer-
ences Ly = 2, 3, 4, and 5, we demonstrate that the gapless
lowest-energy spin excitations, indicated by the inverse of the
correlation lengths in Figs. 5(b3) and 5(b4), do not arise from
spin-rotation symmetry breaking at these lattice sizes. Also
note that the decay rate, nonmonotonic in Ly, is tied to the
nonmonotonic spin gap structure observed in Figs. 5(b3) and
5(b4).
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